JP5367752B2 - Solder plated wire manufacturing method and manufacturing apparatus - Google Patents

Solder plated wire manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5367752B2
JP5367752B2 JP2011078949A JP2011078949A JP5367752B2 JP 5367752 B2 JP5367752 B2 JP 5367752B2 JP 2011078949 A JP2011078949 A JP 2011078949A JP 2011078949 A JP2011078949 A JP 2011078949A JP 5367752 B2 JP5367752 B2 JP 5367752B2
Authority
JP
Japan
Prior art keywords
wire
plated
plating
heat treatment
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011078949A
Other languages
Japanese (ja)
Other versions
JP2012017515A (en
Inventor
勝敏 若菜
高敏 上村
隆之 増井
智 富松
勝好 藤間
峻 塚野
孝政 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Riken Electric Wire Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Riken Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Riken Electric Wire Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011078949A priority Critical patent/JP5367752B2/en
Publication of JP2012017515A publication Critical patent/JP2012017515A/en
Application granted granted Critical
Publication of JP5367752B2 publication Critical patent/JP5367752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/003Regulation of tension or speed; Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/10Winding-up or coiling by means of a moving guide
    • B21C47/12Winding-up or coiling by means of a moving guide the guide moving parallel to the axis of the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • B21C47/345Feeding or guiding devices not specially adapted to a particular type of apparatus for monitoring the tension or advance of the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

この発明は、電気電子機器や通信機器に用いられる半田メッキ線の製造方法及び製造装置に関し、詳しくは、太陽電池のリード線として用いるのに好適な低耐力特性を有する半田メッキ線の製造方法及び製造装置に関する。   The present invention relates to a method and apparatus for producing a solder plated wire used in electrical and electronic equipment and communication equipment, and more specifically, a method for producing a solder plated wire having low strength characteristics suitable for use as a lead wire of a solar cell, and It relates to a manufacturing apparatus.

電子部品に用いられるメッキ線の中には、0.2%耐力値が低いという低耐力特性であることが要求されるものがある。例えば、太陽電池用リード線もその1つである。   Some plated wires used for electronic parts are required to have low yield strength characteristics such as a low 0.2% yield strength value. For example, the lead wire for solar cells is one of them.

太陽電池セルは、該太陽電池セルを構成するシリコン材料のコストダウンを図るためや材料供給不足の影響を緩和するため、薄型化が求められている。
しかし、太陽電池セルが薄型化すると強度が弱くなり、太陽電池セルにおける太陽電池用リード線を半田接続した接続部分は、互いの膨張率の違いにより太陽電池セルに反りや破損が発生し易くなるという問題があった。
Solar cells are required to be thin in order to reduce the cost of the silicon material constituting the solar cells and to mitigate the effects of insufficient material supply.
However, when the solar cell is thinned, the strength is weakened, and the connecting portion where the solar cell lead wire in the solar cell is soldered is likely to be warped or damaged due to the difference in expansion coefficient. There was a problem.

よって、太陽電池用リード線は、太陽電池セルとの接続部分が太陽電池セルの変形に追従する必要があり、0.2%耐力値を低下させることが重要となる。このことから、太陽電池用リード線としては、低耐力特性を有する半田メッキ線が用いられる。   Therefore, the solar cell lead wire needs to follow the deformation of the solar cell at the connection portion with the solar cell, and it is important to reduce the 0.2% proof stress value. For this reason, a solder plated wire having a low yield strength characteristic is used as the lead wire for the solar cell.

このような半田メッキ線は、低耐力特性を有しているか否かに関わらず特許文献1に開示するような半田メッキ工程を経て被メッキ線に対してメッキ層を形成して成る。   Such a solder-plated wire is formed by forming a plating layer on the wire to be plated through a solder plating process as disclosed in Patent Document 1 regardless of whether or not it has low strength characteristics.

特許文献1に開示の半田メッキ工程は、被メッキ線としての金属素線を、金属素線導入口を通じて溶融半田メッキ液の入ったメッキ液部に導入し、半田メッキ線導出口から導出させ、大気冷却するなどして金属素線にメッキを施す工程である。   In the solder plating process disclosed in Patent Document 1, a metal wire as a wire to be plated is introduced into a plating solution containing molten solder plating solution through a metal wire introduction port, and is led out from a solder plating wire outlet. This is a step of plating the metal wires by cooling to the atmosphere.

さらに、半田メッキ線の製造工程においては、上述した半田メッキ工程以外にも、金属素線の表面に対して洗浄や焼鈍などの半田メッキ前処理工程を施したり、半田メッキ工程の後工程では、メッキ線を巻取る巻取り工程が行われる。   Furthermore, in the solder plating wire manufacturing process, in addition to the solder plating process described above, the surface of the metal element wire is subjected to a solder plating pretreatment process such as cleaning and annealing, A winding process for winding the plated wire is performed.

そして、このような工程を低耐力化した被メッキ線に対して連続して行おうとした場合には、被メッキ線に負荷がかかり易くなるため、連続加工することが困難になり、連続加工することができたとしても所望の品質のメッキ線を安定して得ることが困難であった。   And when it is going to perform such a process continuously with respect to the to-be-plated wire which carried out low yield strength, since it becomes easy to apply a load to a to-be-plated wire, it becomes difficult to carry out a continuous process and it carries out a continuous process. Even if it was possible, it was difficult to stably obtain a plated wire having a desired quality.

例えば、低耐力化した被メッキ線にかかる負荷を抑制することに重点を置くあまり、被メッキ線の表面を十分に洗浄することができず、表面に不純物や酸化層が残留することがあった。   For example, too much emphasis is placed on suppressing the load applied to the plated wire whose strength has been lowered, and the surface of the plated wire cannot be sufficiently cleaned, and impurities and oxide layers may remain on the surface. .

そうすると、その後の半田メッキ工程で被メッキ線の表面にメッキ層を形成する際に、メッキ層が剥離し易くなるなど所望の品質のメッキ線を安定して得ることが困難であった。   Then, when forming a plating layer on the surface of the wire to be plated in the subsequent solder plating process, it is difficult to stably obtain a plating wire of a desired quality such that the plating layer is easily peeled off.

その他にも、メッキ線の製造途中に、メッキ線(被メッキ線)の耐力が低いために、メッキ線の走行速度を上げることができず、製造時間が大幅にかかり、連続して行おうとすると、かえって製造効率が低下する場合も生じるという難点を有していた。   In addition, during the production of the plated wire, because the proof strength of the plated wire (wire to be plated) is low, it is not possible to increase the traveling speed of the plated wire, it takes a lot of production time, and if you try to do it continuously On the contrary, there is a problem that the production efficiency may be lowered.

低耐力特性を有する半田メッキ線の製造方法としては、例えば、特許文献2において太陽電池用平角導体の製造方法が提案されている。
特許文献2における太陽電池用平角導体の製造方法は、導体を圧延などの工程により平角状に成形した後、熱処理工程により0.2%耐力を低減することや、導体の表面に半田メッキ膜を施す製造方法である。
As a method for producing a solder-plated wire having low yield strength characteristics, for example, Patent Document 2 proposes a method for producing a flat conductor for solar cells.
In the method of manufacturing a rectangular conductor for solar cell in Patent Document 2, the conductor is formed into a rectangular shape by a process such as rolling, and then 0.2% proof stress is reduced by a heat treatment process, or a solder plating film is formed on the surface of the conductor. It is a manufacturing method to be applied.

しかし、引用文献2には、熱処理を行う上での温度設定や、軟化焼鈍炉の内部の雰囲気ガスの成分といった具体的な記載や、例えば、洗浄工程といった熱処理工程以外の工程についての具体的な言及がされていない。   However, the cited document 2 includes specific descriptions such as temperature setting for performing heat treatment, components of atmospheric gas inside the softening annealing furnace, and specific processes other than the heat treatment process such as a cleaning process. There is no mention.

このため、仮に、洗浄工程を行うにしても、これら熱処理工程、洗浄工程、或いは、メッキ工程といった各工程を独立した生産ラインで行うか否かといった点や、仮に、これら複数の工程を連続して行うにしても、如何なる工程順で行うかについて定かではない。   For this reason, even if the cleaning process is performed, these processes such as the heat treatment process, the cleaning process, or the plating process are performed on an independent production line. Even if it is performed, it is not certain in what process order.

すなわち、引用文献2は、上述したように、平角導体の0.2%耐力を低減したことに伴い太陽電池のリード線としての品質を確保することが困難となる一方で、0.2%耐力値を低減したメッキ線の品質を確保するために製造効率が低下するという2つの相反する製造上の課題について何ら着目されていない。   That is, as described above, Cited Document 2 has a 0.2% proof stress while it becomes difficult to ensure the quality of the lead wire of the solar cell as the 0.2% proof stress of the flat conductor is reduced. No attention is paid to two conflicting manufacturing problems that the manufacturing efficiency is lowered in order to ensure the quality of the plated wire with a reduced value.

特開2000−80460号公報JP 2000-80460 A 特開2006−54355号公報JP 2006-54355 A

そこで本発明は、0.2%耐力値を十分に低下させた所望の品質のメッキ線を得ることができ、このようなメッキ線を安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる半田メッキ線の製造方法及び製造装置の提供を目的とする。   Therefore, the present invention can obtain a plated wire of a desired quality with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire, the product yield can be improved. It is another object of the present invention to provide a method and apparatus for manufacturing a solder plated wire that can improve manufacturing efficiency.

本発明は、純銅系材料で形成した銅線に対してメッキ前処理を行うメッキ前処理手段と、銅線の表面に半田メッキを施すメッキ手段と、表面にメッキを施した銅線を巻取る巻取り手段とで構成される半田メッキ線の製造装置であって、前記メッキ前処理手段に、銅線を軟化焼鈍して低耐力化する軟化焼鈍手段を備え、低耐力化した前記銅線を、該銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とし、前記軟化焼鈍手段、前記メッキ手段、及び、前記巻取り手段を、銅線の走行方向の上流側からこの順に一連配置し、前記メッキ前処理手段に、銅線に対して加熱処理を行う加熱処理手段と、洗浄手段とを備え、前記加熱処理手段と前記洗浄手段とを、前記軟化焼鈍手段よりも銅線走行方向の上流側にこの順に配置し、前記加熱処理手段を、100〜300度の加熱処理温度に設定可能に構成するとともに、前記軟化焼鈍手段を、800〜900度の軟化焼鈍温度に設定可能に構成したことを特徴とする。 The present invention relates to a plating pretreatment means for performing a plating pretreatment on a copper wire formed of a pure copper-based material, a plating means for performing solder plating on the surface of the copper wire, and winding the copper wire having the surface plated. An apparatus for producing a solder plated wire comprising a winding means, wherein the plating pretreatment means includes a softening annealing means for softening and annealing the copper wire to reduce the strength, The winding means is wound by the winding means with a winding force lower than the proof stress of the copper wire, and the softening annealing means, the plating means, and the winding means are arranged from the upstream side in the running direction of the copper wire. The plating pretreatment means includes a heat treatment means for performing a heat treatment on the copper wire, and a cleaning means. The heat treatment means and the cleaning means are more copper than the softening annealing means. Arranged in this order on the upstream side of the line travel direction, Processing means, as well as capable of setting the heat treatment temperature of 100 to 300 degrees, the anneal unit, characterized by being capable of setting the anneal temperature of 800 to 900 degrees.

ここで、上述した銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とは、銅線を前記巻取り手段のみで巻取る構成に限定せず、例えば、該巻取り手段による巻取りを補助する送りキャプスタンを巻取り手段よりも上流側に配置し、前記巻取り手段と該送りキャプスタンとで銅線を巻取る構成も含むものとする。   Here, the configuration in which the winding means winds with the winding force lower than the proof strength of the copper wire described above is not limited to the configuration in which the copper wire is wound only with the winding means, for example, the winding means. A feed capstan for assisting winding by the above-described arrangement is disposed upstream of the winding means, and a configuration in which a copper wire is wound by the winding means and the feed capstan is also included.

前記銅線は、形状、サイズは限定しないが、平角線であることが好ましい。前記銅線を、上述した純銅系導体材料により平角線で形成することにより、表面にメッキ処理を施すことで、シリコン結晶ウェハ(Siセル)の所定領域に接続する接続用リード線として、すなわち、太陽電池用はんだメッキ線として用いることができるためである。   The copper wire is not limited in shape and size, but is preferably a rectangular wire. By forming the copper wire as a rectangular wire with the above-described pure copper-based conductor material, by plating the surface, the lead wire for connection connected to a predetermined region of the silicon crystal wafer (Si cell), that is, It is because it can be used as a solder plating wire for solar cells.

前記一連配置したとは、走行方向の上流側から下流側に沿って連続的か断続的かに関わらず連なって、いわゆるタンデムで配置したことを示す。   The term “arranged in series” means that they are arranged in a so-called tandem, continuously or intermittently from the upstream side to the downstream side in the traveling direction.

前記純銅系材料とは、例えば、無酸素銅(OFC)、タフピッチ銅、リン脱酸銅といった酸化物などの不純物を含まない純度が99.9%以上であるものを示す The pure copper-based material refers to a material having a purity of 99.9% or more that does not include impurities such as oxides such as oxygen-free copper (OFC), tough pitch copper, and phosphorus deoxidized copper .

たこの発明は、純銅系材料で形成した銅線に対してメッキ前処理を行うメッキ前処理工程と、銅線の表面に半田メッキを施すメッキ工程と、表面にメッキを施した銅線を巻取る巻取り工程とを経て製造される半田メッキ線の製造方法であって、前記メッキ前処理工程では、銅線を軟化焼鈍して低耐力化する軟化焼鈍工程を行い、前記巻取り工程を、低耐力化した前記銅線の耐力よりも低い巻取り力で巻取る工程とし、前記巻取り工程の間、前記軟化焼鈍工程と前記メッキ工程とを連続して行い、前記メッキ前処理工程において、前記軟化焼鈍工程の前に銅線に対して加熱処理工程と、洗浄工程とをこの順で行い、加熱処理工程において、100〜300度の加熱処理温度に設定するとともに、前記軟化焼鈍工程において、800〜900度の軟化焼鈍温度に設定することを特徴とする Or octopus invention, a pre-plating treatment step of performing plating pretreatment to copper wire formed of pure copper material, a plating step of applying solder plating on the surface of the copper wire, a copper wire plated on the surface A method of manufacturing a solder plated wire manufactured through a winding process, wherein in the pre-plating process, a softening annealing process is performed to soften and anneal the copper wire to reduce the yield strength, and the winding process is performed. In the pre-plating process, the softening annealing process and the plating process are continuously performed during the winding process, with the winding process being lower than the yield strength of the copper wire having a reduced yield strength. In addition, the heat treatment step and the cleaning step are performed in this order on the copper wire before the softening annealing step, and in the heat treatment step, the heat treatment temperature is set to 100 to 300 degrees , and in the softening annealing step, , 800 to 900 And setting the softening annealing temperature.

この発明によれば、0.2%耐力値を十分に低下させた所望の品質のメッキ線を得ることができ、このようなメッキ線を安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる半田メッキ線の製造方法及び製造装置を提供することができる。   According to this invention, it is possible to obtain a plated wire of a desired quality with a sufficiently reduced 0.2% proof stress value, and to improve the product yield by stably obtaining such a plated wire. In addition, it is possible to provide a method and an apparatus for manufacturing a solder plated wire that can improve manufacturing efficiency.

本実施形態の半田メッキ線の製造装置の概略図。Schematic of the manufacturing apparatus of the solder plating wire of this embodiment. 本実施形態の軟化焼鈍炉の説明図。Explanatory drawing of the softening annealing furnace of this embodiment. 本実施形態のボビントラバース方式巻取り機の説明図。Explanatory drawing of the bobbin traverse type winder of this embodiment. 加熱処理温度を100℃とした軟化焼鈍温度と0.2%耐力値の関係を示すグラフ。The graph which shows the relationship between the softening annealing temperature which made heat processing temperature 100 degreeC, and 0.2% yield strength value. 加熱処理温度と0.2%耐力値の関係を示すグラフ。The graph which shows the relationship between heat processing temperature and a 0.2% yield strength value. 軟化焼鈍工程で水素含有の有無に応じた還元ガスをそれぞれ用いた場合における被メッキ線の0.2%耐力値を示すグラフ。The graph which shows the 0.2% yield strength value of the to-be-plated wire at the time of each using the reducing gas according to the presence or absence of hydrogen containing in a softening annealing process. 還元ガスの水素混合比と0.2%耐力値の関係を示すグラフ。The graph which shows the relationship between the hydrogen mixing ratio of reducing gas, and 0.2% yield strength value. 他の実施形態の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment. 他の実施形態の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment.

この発明の一実施形態を、以下図面を用いて説明する。
本実施形態の半田メッキ線の製造装置10は、図1に示すように、被メッキ線1aに対してメッキ前処理を行うメッキ前処理手段2と、被メッキ線1aの表面に半田メッキを施すメッキ手段61と、表面にメッキを施したメッキ線1bを巻取る巻取り手段71とで構成している。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a solder plated wire manufacturing apparatus 10 according to the present embodiment performs a plating pretreatment means 2 for performing a pretreatment for plating on a wire to be plated 1a, and performs solder plating on the surface of the wire to be plated 1a. It comprises a plating means 61 and a winding means 71 for winding the plated wire 1b plated on the surface.

被メッキ線1aには、別途備えた平角線製造機(図示せず)により、無酸素銅(OFC)を厚みが0.05〜0.5mm、幅が0.8〜10mmに、より好ましくは、厚みが0.08〜0.24mm、幅が1〜2mm圧延した平角銅線を用いている。   The to-be-plated wire 1a is preferably made of oxygen-free copper (OFC) with a thickness of 0.05 to 0.5 mm and a width of 0.8 to 10 mm by a separately provided flat wire manufacturing machine (not shown). A rectangular copper wire rolled with a thickness of 0.08 to 0.24 mm and a width of 1 to 2 mm is used.

前記メッキ前処理手段2は、主にサプライヤ11、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51で構成している。   The plating pretreatment means 2 mainly comprises a supplier 11, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, and a softening annealing furnace 51.

サプライヤ11は、ドラムに巻き回された状態の被メッキ線1aをドラムが回転することで、順に解いていきながら製造ラインに供給している。サプライヤ11は、必要に応じてダンサー機能付きの構成であってもよく、また、通常の横繰り出しで繰り出す構成であってもよい。   The supplier 11 supplies the wire to be plated 1a that is wound around the drum to the production line while the drum rotates in order to be solved. The supplier 11 may be configured with a dancer function as necessary, or may be configured to be fed out in a normal lateral feed.

加熱処理炉22は、後述する軟化焼鈍炉51と略同様の構成であり、厚み方向に対して走行方向に長い直方体形状をした外観形状で構成している。加熱処理炉22は、走行方向に沿って走行方向の下流側端部が上流側端部よりも低位置になるよう傾斜配置している。加熱処理炉22の内部は、200℃の設定温度の蒸気雰囲気としている。   The heat treatment furnace 22 has substantially the same configuration as a soft annealing furnace 51 described later, and has an outer shape that is a rectangular parallelepiped shape that is long in the traveling direction with respect to the thickness direction. The heat treatment furnace 22 is inclined and arranged along the traveling direction so that the downstream end in the traveling direction is lower than the upstream end. The inside of the heat treatment furnace 22 is a steam atmosphere having a set temperature of 200 ° C.

また、加熱処理炉22に対して走行方向の下流側には、加熱処理炉22の内部を通過した被メッキ線1aを冷却する冷却水槽23を設置している。加熱処理炉22の下流側端部と冷却水槽23は、加熱処理炉22から導出した被メッキ線1aが空気に触れないよう冷却水槽23まで案内する連結管24で互いに連結されている。   A cooling water tank 23 for cooling the wire to be plated 1 a that has passed through the inside of the heat treatment furnace 22 is installed on the downstream side of the heat treatment furnace 22 in the traveling direction. The downstream end of the heat treatment furnace 22 and the cooling water tank 23 are connected to each other by a connecting pipe 24 that guides the plated wire 1a led out from the heat treatment furnace 22 to the cooling water tank 23 so as not to touch the air.

酸洗浄槽31は、被メッキ線1aの表面を酸洗浄するリン酸系洗浄液32を貯溜している。   The acid cleaning tank 31 stores a phosphoric acid cleaning liquid 32 for acid cleaning the surface of the wire 1a to be plated.

超音波水洗浄槽41では、被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を、別途備えた超音波水洗浄機を用いて洗浄するための水43を貯留している。超音波水洗浄槽41の底面には、被メッキ線1aの走行方向に沿って超音波水洗浄機42の一部を構成する超音波振動板42aを配置している。なお、超音波水洗浄槽41の上方には、被メッキ線1aの走行する軌道上の側方から被メッキ線1aに向けてエアを吹き付けるエアワイパ45を設置している。   The ultrasonic water cleaning tank 41 stores water 43 for cleaning the water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a using an ultrasonic water cleaning machine provided separately. On the bottom surface of the ultrasonic water cleaning tank 41, an ultrasonic vibration plate 42a constituting a part of the ultrasonic water cleaning machine 42 is disposed along the traveling direction of the wire to be plated 1a. Note that an air wiper 45 is provided above the ultrasonic water cleaning tank 41 to blow air from the side on the track on which the wire to be plated 1a travels toward the wire to be plated 1a.

前記軟化焼鈍炉51は、図2に示すように、走行方向の上流側端部よりも下流側端部が徐々に低位置になるよう傾斜配置している。前記軟化焼鈍炉51は、加熱処理炉22と同様に直方体形状で構成した軟化焼鈍炉本体52と、該軟化焼鈍炉本体52を貫通するように配置し、被メッキ線1aの挿入を許容する内径を有するパイプ状の鞘管53と、軟化焼鈍炉本体52の内部を加熱するヒータ54とで構成している。   As shown in FIG. 2, the softening annealing furnace 51 is inclined so that the downstream end is gradually lower than the upstream end in the traveling direction. The softening annealing furnace 51 is arranged so as to penetrate the softening annealing furnace main body 52 configured in a rectangular parallelepiped shape like the heat treatment furnace 22 and the softening annealing furnace main body 52, and allows the insertion of the wire to be plated 1a. And a heater 54 that heats the inside of the softening annealing furnace main body 52.

鞘管53は、軟化焼鈍炉本体52の内部空間を走行方向に沿って配置され、軟化焼鈍炉本体52の上端部、及び、下端部から軟化焼鈍炉本体52に対して突出している。鞘管53における軟化焼鈍炉本体52の上端部から突出した鞘管上側突出部分55の上端には、上端開口部55uを形成している。   The sheath tube 53 is disposed along the traveling direction in the internal space of the soft annealing furnace main body 52, and protrudes from the upper end portion and the lower end portion of the soft annealing furnace main body 52 with respect to the soft annealing furnace main body 52. An upper end opening 55u is formed at the upper end of the sheath tube upper projecting portion 55 projecting from the upper end of the softening annealing furnace main body 52 in the sheath tube 53.

上端開口部55uは、鞘管53の内部へ被メッキ線1aの導入を許容するとともに、後述するが、鞘管53の内部に充填された還元ガスGを排出する。鞘管53における軟化焼鈍炉本体52の下端部から突出した鞘管下側突出部分56の下端には、下端開口部55dを形成している。   The upper end opening 55u allows the introduction of the wire to be plated 1a into the sheath tube 53 and discharges the reducing gas G filled in the sheath tube 53 as will be described later. A lower end opening 55 d is formed at the lower end of the sheath pipe lower projecting portion 56 that projects from the lower end of the soft annealing furnace body 52 in the sheath pipe 53.

下端開口部55dは、被メッキ線の鞘管からの導出を許容する。鞘管下側突出部分56は、連結管58に直列に連結されている。さらに、鞘管下側突出部分56の途中部分には、分岐部分を構成し、該分岐部分を鞘管53の内部に還元ガスGを供給する還元ガス供給部57として構成している。   The lower end opening 55d allows the wire to be plated to be led out from the sheath tube. The casing tube lower protruding portion 56 is connected to the connecting tube 58 in series. Further, a branch portion is formed in the middle portion of the sheath tube lower projecting portion 56, and the branch portion is configured as a reducing gas supply portion 57 that supplies the reducing gas G to the inside of the sheath tube 53.

なお、還元ガス供給部57には、図示しないが、圧力調節バルブ、圧力計などを備え、前記軟化焼鈍炉51の内部の還元ガスGの濃度に応じて、還元ガス供給部57では、還元ガスGの流入量を調節可能としている。   Although not shown, the reducing gas supply unit 57 includes a pressure control valve, a pressure gauge, and the like, and the reducing gas supply unit 57 reduces the reducing gas according to the concentration of the reducing gas G inside the softening annealing furnace 51. The inflow amount of G can be adjusted.

鞘管53の内部は、還元ガス供給部57から還元ガスGを流入することで内部を還元ガス雰囲気としている。   The inside of the sheath tube 53 is made into a reducing gas atmosphere by flowing the reducing gas G from the reducing gas supply unit 57.

ヒータ54は、直線の棒状に構成したものを複数本備え、軟化焼鈍炉本体52の内部空間において鞘管53に対して上方側空間と下方側空間に配置している。ヒータ54は、被メッキ線1aの走行方向に対して直交方向、詳しくは、図2の紙面を正面視したとき図2の紙面に対して垂直な方向に相当する方向に設置し、複数本のヒータ54は、上方側空間と下方側空間とのそれぞれにおいて、互いに走行方向に沿って所定間隔ごとに並列配置している。   The heater 54 includes a plurality of heaters configured in a straight bar shape, and is arranged in an upper space and a lower space with respect to the sheath tube 53 in the internal space of the soft annealing furnace main body 52. The heater 54 is installed in a direction orthogonal to the traveling direction of the wire to be plated 1a, specifically, in a direction corresponding to a direction perpendicular to the paper surface of FIG. 2 when the paper surface of FIG. The heaters 54 are arranged in parallel at predetermined intervals along the traveling direction in each of the upper space and the lower space.

軟化焼鈍炉51内は、ヒータにより、800℃またはそれ以上の温度設定に設定している。   The temperature inside the softening annealing furnace 51 is set to 800 ° C. or higher by a heater.

鞘管下側突出部分を、連結管58に直列に連結することによって、軟化焼鈍炉51を通過した被メッキ線1aが、溶融半田メッキ液63中に浸入するまで空気に触れないようよう走行させることができる。   By connecting the lower protruding portion of the sheath pipe in series to the connecting pipe 58, the wire 1a to be plated that has passed through the softening annealing furnace 51 is caused to travel so as not to come into contact with air until it enters the molten solder plating solution 63. be able to.

メッキ手段61は、溶融半田メッキ液63が貯溜された溶融半田メッキ槽62で構成し、溶融半田メッキ液63は、260℃の設定温度とし、溶融錫(Sn−3.0Ag−0.5Cu)を用いている。   The plating means 61 is composed of a molten solder plating tank 62 in which a molten solder plating solution 63 is stored. The molten solder plating solution 63 is set to a set temperature of 260 ° C. and molten tin (Sn-3.0Ag-0.5Cu). Is used.

溶融半田メッキ槽62の内部には、表面に溶融半田メッキ液63が付着したメッキ線1bの走行方向を鉛直上方へ方向転換する槽中方向転換ローラ64を配置している。   Inside the molten solder plating tank 62, a tank middle direction changing roller 64 is disposed that changes the traveling direction of the plated wire 1b having the molten solder plating solution 63 attached to the surface thereof vertically upward.

さらに、槽中方向転換ローラ64の鉛直上方には、メッキ線1bを鉛直上方への走行方向から巻取り手段71に向かう方向へ転換する槽上方向転換ローラ65を備えている。   Furthermore, a tank upper direction changing roller 65 for changing the plating wire 1b from a traveling direction vertically upward to a direction toward the winding means 71 is provided vertically above the tank direction changing roller 64.

槽中方向転換ローラ64、及び、槽上方向転換ローラ65は、通常のφ20mm程度のローラよりも大径である例えば、φ100mm程度のローラで構成している。さらに、槽中方向転換ローラ64、及び、槽上方向転換ローラ65は、それぞれに備えた図示しない駆動モータによって、巻取り手段71に備えた後述するダンサーローラ74やボビン76の回転速度と略同じ回転速度で自ら積極的に能動回転し、巻取り手段71による巻取り速度と同調するように、メッキ線1bの方向転換を行う。   The tank middle direction changing roller 64 and the tank upper direction changing roller 65 are constituted by, for example, a roller having a diameter of about 100 mm, which is larger than a normal roller having a diameter of about 20 mm. Further, the tank middle direction changing roller 64 and the tank upper direction changing roller 65 are substantially the same as the rotational speeds of dancer rollers 74 and bobbins 76, which will be described later, provided in the winding means 71 by drive motors not shown. The direction of the plated wire 1b is changed so as to actively rotate by itself at the rotational speed and to synchronize with the winding speed by the winding means 71.

続いて巻取り手段71について説明する。
巻取り手段71は、巻取り張力調節機72、及び、ボビントラバース方式巻取り機75で構成している。
Next, the winding means 71 will be described.
The winding means 71 includes a winding tension adjusting machine 72 and a bobbin traverse type winding machine 75.

巻取り張力調節機72は、固定ローラ73に掛け渡したメッキ線1bに加わる張力に応じて上下方向に可動させて張力の具合を調節するダンサーローラ74を備えている。さらに図示しないが、掛け渡したメッキ線1bの張力を検出する張力検出センサと、該張力検出センサが検出した張力に応じて張力が安定するよう制御する制御部と、制御部の指令に基づいてダンサーローラ74を可動させるローラ可動機とで構成している。   The winding tension adjuster 72 includes a dancer roller 74 that is movable in the vertical direction in accordance with the tension applied to the plated wire 1b that spans the fixed roller 73 and adjusts the tension. Although not shown, based on a tension detection sensor that detects the tension of the plated wire 1b that has been passed, a control unit that controls the tension to be stabilized according to the tension detected by the tension detection sensor, and a command from the control unit It is comprised with the roller moving machine which moves the dancer roller 74. FIG.

ボビントラバース方式巻取り機75は、図3(a)に示すように、メッキ線1bの幅に対して幅広に構成したボビン76と、該ボビン76の軸方向に沿って該ボビン76を揺動させるモータ77、及び、モータ77の駆動を伝達するボールネジなどの伝達手段78で構成している。さらに、ボビントラバース方式巻取り機75は、ボビン76による巻取り力を検出する巻取り力検出センサ79と、該巻取り張力検出センサ79で検出した巻取り力に応じて該張力が安定するよう制御する制御部81と、制御部81の指令に基づいてボビン76を回転させるモータ82とで構成している。   As shown in FIG. 3A, the bobbin traverse type winder 75 swings the bobbin 76 along the axial direction of the bobbin 76 and the bobbin 76 configured to be wider than the width of the plating wire 1b. Motor 77 to be transmitted, and a transmission means 78 such as a ball screw for transmitting the drive of the motor 77. Further, the bobbin traverse type winding machine 75 has a winding force detection sensor 79 for detecting the winding force by the bobbin 76, and the tension is stabilized according to the winding force detected by the winding tension detection sensor 79. A control unit 81 to be controlled and a motor 82 for rotating the bobbin 76 based on a command from the control unit 81 are configured.

このように構成した半田メッキ線の製造装置10は、メッキ前処理手段2としてのサプライヤ11、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51と、メッキ手段61としての溶融半田メッキ槽62と、巻取り手段71とのそれぞれを、被メッキ線1a、及び、メッキ線1bの走行方向の上流側からこの順にタンデムで一連配置している。   The solder plating wire manufacturing apparatus 10 configured in this manner includes a supplier 11 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, and a plating. Each of the molten solder plating tank 62 as the means 61 and the winding means 71 are arranged in tandem in this order from the upstream side in the traveling direction of the plated wire 1a and the plated wire 1b.

さらに、半田メッキ線の製造装置10は、メッキを施す前に被メッキ線1aの0.2%耐力値を低下させ、その後、この低耐力化した被メッキ線1aにメッキを施し、これら工程を行う間、該メッキ線1bの耐力よりも低い巻取り力で前記巻取り手段71により巻取る構成としている。   Further, the solder plated wire manufacturing apparatus 10 lowers the 0.2% proof stress value of the wire 1a to be plated before plating, and thereafter performs plating on the wire 1a having the reduced proof stress. While performing, it is set as the structure wound up by the said winding means 71 with the winding force lower than the yield strength of this plated wire 1b.

具体的には、巻取り手段71として上述した巻取り張力調節機72、及び、ボビントラバース方式巻取り機75を採用するとともに、巻取り手段71の巻取りを補助する第1送りキャプスタン91と第2送りキャプスタン92とを設置している。第1送りキャプスタン91と第2送りキャプスタン92とは、いずれも低耐力化する前の被メッキ線1aの走行を送り補助するよう軟化焼鈍炉51の上流側に設置している。   Specifically, the above-described winding tension adjusting machine 72 and the bobbin traverse type winding machine 75 are adopted as the winding means 71, and the first feed capstan 91 assisting the winding of the winding means 71; A second feed capstan 92 is installed. Both the first feed capstan 91 and the second feed capstan 92 are installed on the upstream side of the soft annealing furnace 51 so as to feed and assist the traveling of the wire to be plated 1a before the reduction in yield strength.

詳しくは、第1送りキャプスタン91は、加熱処理炉22と酸洗浄槽31との間に備えるとともに、第2送りキャプスタン92は、酸洗浄槽31と軟化焼鈍炉51との間に備えている。   Specifically, the first feed capstan 91 is provided between the heat treatment furnace 22 and the acid cleaning tank 31, and the second feed capstan 92 is provided between the acid cleaning tank 31 and the softening annealing furnace 51. Yes.

なお、メッキ線1bの巻取り速度が遅すぎたり、速すぎたりするとメッキ線1bにかかる負荷が大きくなる。特に、巻取り速度が速すぎると、線ブレという問題も生じることになるため、第1送りキャプスタン91、及び、第2送りキャプスタン92では、巻取り手段71での巻き取り速度よりも僅かに速い速度、例えば、巻き取り速度に対して+1m/min程度速い送り速度で被メッキ線1a及びメッキ線1bを下流側に送り出している。   If the winding speed of the plated wire 1b is too slow or too fast, the load applied to the plated wire 1b increases. In particular, if the winding speed is too high, a problem of line blurring also occurs. Therefore, the first feed capstan 91 and the second feed capstan 92 are slightly lower than the winding speed of the winding means 71. The to-be-plated wire 1a and the plated wire 1b are sent to the downstream side at a very high speed, for example, at a feed speed that is about +1 m / min faster than the winding speed.

また、巻取り手段71には、上述した巻取り張力調節機72、及び、ボビントラバース方式巻取り機75の近傍においてメッキ線1bを架け渡す複数の固定ローラ73を適宜、備えている。   In addition, the winding means 71 is appropriately provided with a plurality of fixed rollers 73 that bridge the plated wire 1b in the vicinity of the winding tension adjuster 72 and the bobbin traverse type winding machine 75 described above.

巻取り手段71に配置した複数の固定ローラ73のうち、最も走行方向上流側に設置した固定ローラ73を巻取り手段上流側配置ローラ73Aに設定する。巻取り手段上流側配置ローラ73Aは、槽上方向転換ローラ65により方向転換後に、巻取り手段71の側へ走行してきたメッキ線1bを巻取り手段71の側で最初に架け渡すローラである。
槽上方向転換ローラ65は、巻取り手段上流側配置ローラ73Aよりも高い位置に配置している。
Of the plurality of fixed rollers 73 arranged in the winding means 71, the fixed roller 73 installed on the most upstream side in the running direction is set as the winding means upstream arrangement roller 73A. The winding means upstream arrangement roller 73 </ b> A is a roller that first bridges the plated wire 1 b that has traveled to the winding means 71 side after the direction is changed by the tank upward direction changing roller 65 on the winding means 71 side.
The tank upper direction changing roller 65 is arranged at a position higher than the winding means upstream arrangement roller 73A.

続いて半田メッキ線の製造方法について説明する。
半田メッキ線の製造方法は、被メッキ線1aに対してメッキ前処理を行うメッキ前処理工程と、被メッキ線1aの表面に半田メッキを施すメッキ工程と、表面にメッキを施したメッキ線1bを巻取る巻取り工程とを経て製造される。
Then, the manufacturing method of a solder plating wire is demonstrated.
The solder plating wire manufacturing method includes a pre-plating process for performing plating pre-treatment on the plated wire 1a, a plating process for performing solder plating on the surface of the plated wire 1a, and a plated wire 1b having a plated surface. It is manufactured through a winding process.

メッキ前処理工程は、加熱処理工程、酸洗浄工程、水洗浄工程、及び、軟化焼鈍工程をこの順で行う工程である。   The plating pretreatment process is a process in which a heat treatment process, an acid washing process, a water washing process, and a softening annealing process are performed in this order.

加熱処理工程では、蒸気雰囲気とした加熱処理炉22の内部において被メッキ線1aを走行させることで、被メッキ線1aの表面を蒸気洗浄する工程である。この蒸気洗浄により、被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を除去し易いよう表面から分離させることができる。   In the heat treatment step, the surface of the wire to be plated 1a is steam cleaned by running the wire to be plated 1a inside the heat treatment furnace 22 in a steam atmosphere. By this steam cleaning, the water-soluble lubricant and other impurities adhering to the surface of the wire to be plated 1a can be separated from the surface so that it can be easily removed.

加熱処理工程では、加熱処理炉22内での焼鈍温度を、一般の650℃程度の焼鈍温度よりも低い200℃に設定し、この低い温度に設定した加熱処理炉22内を蒸気雰囲気とし、被メッキ線1aを走行させて、被メッキ線1aに対して水蒸気洗浄を行う。   In the heat treatment step, the annealing temperature in the heat treatment furnace 22 is set to 200 ° C., which is lower than the general annealing temperature of about 650 ° C., the inside of the heat treatment furnace 22 set at this low temperature is made a steam atmosphere, The plating wire 1a is made to travel, and water vapor cleaning is performed on the wire to be plated 1a.

このように、本工程では、被メッキ線1aに対して水蒸気洗浄を行うことに加えて、被メッキ線1aを焼鈍することにより低耐力化させることも行っている。但し、本工程では、焼鈍温度を200℃に設定することで、被メッキ線1aを低耐力化する度合いを抑制している。また、加熱処理炉22を通過後の被メッキ線1aを冷却水槽23により所定の温度まで冷却する。   Thus, in this step, in addition to performing steam cleaning on the wire to be plated 1a, the yield strength is also reduced by annealing the wire to be plated 1a. However, in this process, the annealing temperature is set to 200 ° C., thereby suppressing the degree of lowering the yield strength of the wire to be plated 1a. Further, the wire 1a to be plated after passing through the heat treatment furnace 22 is cooled to a predetermined temperature by the cooling water tank 23.

酸洗浄工程では、酸洗浄槽31に貯留したリン酸系の洗浄液32中を走行させることでこの中を走行した被メッキ線1aの表面の酸洗浄を行う。   In the acid cleaning step, the surface of the to-be-plated wire 1a that has traveled through the phosphoric acid-based cleaning liquid 32 stored in the acid cleaning tank 31 is cleaned.

水洗浄工程では、超音波水洗浄槽41において被メッキ線1aの表面を超音波水洗浄し、該被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を除去する。
軟化焼鈍工程では、内部を還元ガス雰囲気とした軟化焼鈍炉51の内部に被メッキ線1aを走行させることで該被メッキ線1aを軟化焼鈍して低耐力化するとともに、被メッキ線1aの表面の酸化層を還元する工程である。
In the water washing step, the surface of the wire to be plated 1a is ultrasonically washed in the ultrasonic water washing tank 41 to remove the water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a.
In the softening annealing step, the wire to be plated 1a is run inside the softening annealing furnace 51 in which the inside is a reducing gas atmosphere, thereby softening and annealing the wire 1a to be plated and reducing the strength, and the surface of the wire 1a to be plated. This is a step of reducing the oxide layer.

詳しくは、図2に示すように、軟化焼鈍工程では、走行方向の上流側よりも下流側が低位置になるよう傾斜配置した軟化焼鈍炉51の鞘管53の内部に、鞘管下側突出部分56に設けた還元ガス供給部57から還元ガスGとして例えば、窒素ガスに水素ガスを混合した混合ガスを供給し、鞘管53の内部を還元性ガス雰囲気としておく(図2中の矢印d参照)。さらに、ヒータ54によって、軟化焼鈍炉本体52の内部空間を約800℃にまで加熱している。   Specifically, as shown in FIG. 2, in the softening annealing step, the sheath tube lower protruding portion is disposed inside the sheath tube 53 of the softening annealing furnace 51 that is inclined so that the downstream side is lower than the upstream side in the traveling direction. As a reducing gas G, for example, a mixed gas obtained by mixing hydrogen gas with nitrogen gas is supplied from a reducing gas supply unit 57 provided in 56, and the inside of the sheath tube 53 is set as a reducing gas atmosphere (see arrow d in FIG. 2). ). Further, the internal space of the soft annealing furnace main body 52 is heated to about 800 ° C. by the heater 54.

このような還元ガス雰囲気とした鞘管53の内部において、上端開口部55uから導入した被メッキ線1aを、還元ガスGが上昇してくる方向dと逆方向である下方向Dへ向けて走行させている。   In the inside of the sheath tube 53 having such a reducing gas atmosphere, the wire to be plated 1a introduced from the upper end opening 55u travels in a downward direction D that is opposite to the direction d in which the reducing gas G rises. I am letting.

続くメッキ工程では、被メッキ線1aが、溶融半田メッキ槽62に貯溜された溶融半田メッキ液63中を走行することで、被メッキ線1aの表面に溶融錫を付着させる。   In the subsequent plating step, the wire to be plated 1a travels in the molten solder plating solution 63 stored in the molten solder plating tank 62, thereby attaching molten tin to the surface of the wire to be plated 1a.

軟化焼鈍炉51の下端開口部55dから導出された被メッキ線1aは、連結管58の内部を走行することで空気に接触することがなく溶融半田メッキ液63中に浸入するまで案内される。   The to-be-plated wire 1a led out from the lower end opening 55d of the softening annealing furnace 51 is guided until it penetrates into the molten solder plating solution 63 without contacting the air by running inside the connecting pipe 58.

溶融半田メッキ液63に浸入した被メッキ線1aは、表面に溶融半田メッキ液63が付着し、表面全体が溶融半田メッキ液63で被覆されたメッキ線1bとなる。メッキ線1bは、溶融半田メッキ槽62の内部を走行する過程で溶融半田メッキ槽62中に備えた槽中方向転換ローラ64により、溶融半田メッキ槽62を走行する過程で鉛直上方に方向転換され、溶融半田メッキ槽62から鉛直上方に向けて導出される。   The to-be-plated wire 1a that has entered the molten solder plating solution 63 becomes a plated wire 1b in which the molten solder plating solution 63 adheres to the surface and the entire surface is coated with the molten solder plating solution 63. The plating wire 1b is redirected vertically upward in the process of running through the molten solder plating tank 62 by the tank direction changing roller 64 provided in the molten solder plating tank 62 in the process of running inside the molten solder plating tank 62. Then, it is led out vertically from the molten solder plating tank 62.

メッキ線1bは、溶融半田メッキ槽62から導出された後、槽上方向転換ローラ65により方向転換され、巻取り手段71側へ走行する。   After the plating wire 1b is led out from the molten solder plating tank 62, the direction of the plating wire 1b is changed by the tank upper direction changing roller 65 and travels to the winding means 71 side.

巻取り工程では、被メッキ線1aに対して上述したメッキ前工程及びメッキ工程を行っている間、これら工程を経たメッキ線1bを、巻取り張力調節機72のダンサーローラ74の制御によりメッキ線1bの張力の調節を行いながらボビントラバース方式巻取り機75に備えたボビン76に整列巻きしていく。   In the winding process, while the pre-plating process and the plating process described above are performed on the wire to be plated 1 a, the plated wire 1 b that has undergone these processes is plated by controlling the dancer roller 74 of the winding tension adjuster 72. While adjusting the tension of 1b, the bobbin traverse type winder 75 is aligned and wound around the bobbin 76.

詳しくは、図3(a),(b)に示すように、ボビントラバース方式巻取り機75のボビン76を回転させながら該ボビン76の軸方向へ揺動させることでメッキ線1bを、ボビン76の軸方向に沿って並列巻きすることができ、複数層に重なり合うようにして巻取ることができる。   Specifically, as shown in FIGS. 3A and 3B, the bobbin 76 of the bobbin traverse type winding machine 75 is rotated in the axial direction of the bobbin 76 by rotating the bobbin 76, thereby causing the bobbin 76 to move the plating wire 1 b. Can be wound in parallel along the axial direction, and can be wound so as to overlap a plurality of layers.

この並列巻きは、図3(b)中の一部拡大断面図に示すように、重なり合う層間でメッキ線1bの並列ピッチを例えば、半ピッチずらして並列されるようメッキ線1bを巻き取る巻き取り方式である。   As shown in a partially enlarged cross-sectional view in FIG. 3B, this parallel winding is a winding for winding the plated wire 1b so that the parallel pitch of the plated wire 1b is shifted by, for example, a half pitch between the overlapping layers. It is a method.

上述した半田メッキ線の製造装置10および製造方法は、以下のように様々な作用、効果を得ることができる。
半田メッキ線の製造装置10は、メッキ前処理手段2としてのサプライヤ11、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51と、メッキ手段61としての溶融半田メッキ槽62と、巻取り手段71を、それぞれメッキ線1bの走行方向の上流側から下流側へこの順に一連配置している。
The solder plated wire manufacturing apparatus 10 and the manufacturing method described above can obtain various actions and effects as follows.
The solder plating wire manufacturing apparatus 10 includes a supplier 11 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, and a melting as a plating means 61. The solder plating tank 62 and the winding means 71 are sequentially arranged in this order from the upstream side to the downstream side in the traveling direction of the plated wire 1b.

このように各手段を一連配置することで、製造中に低耐力化したメッキ線1bを無駄な距離を走行させることを防ぐことができ、走行中にメッキ線1bにかかる負荷を低減させることができる。   By arranging each means in this way, it is possible to prevent the plated wire 1b, which has been reduced in strength during manufacturing, from traveling a useless distance, and to reduce the load applied to the plated wire 1b during traveling. it can.

従って、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。   Therefore, it is possible to obtain a desired quality plated wire 1b with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire 1b, the product yield can be improved, Moreover, manufacturing efficiency can be improved.

さらにまた、半田メッキ線の製造方法では、メッキ前処理工程としての加熱処理工程、酸洗浄工程、水洗浄工程、及び、軟化焼鈍工程と、メッキ処理工程と、巻取り工程との各工程を連続して行う。   Furthermore, in the method for producing a solder plated wire, the heat treatment process, the acid washing process, the water washing process, the softening annealing process, the plating process, and the winding process as the plating pretreatment process are continuously performed. And do it.

このように各工程を連続して行うことで例えば、所定の工程を経る度にメッキ線1b(被メッキ線1a)の走行を中断し、次の工程を行うために別の走行ラインにメッキ線1b(被メッキ線1a)を移行するといった手間を要しないため、メッキ線1bにかかる負荷を大幅に緩和でき、所望の品質のメッキ線1bを安定して得ることができる。   Thus, by continuously performing each process, for example, the traveling of the plated wire 1b (the plated wire 1a) is interrupted every time a predetermined process is performed, and the plated wire is placed on another traveling line to perform the next process. Since there is no need to move 1b (wire to be plated 1a), the load applied to the plated wire 1b can be greatly reduced, and a plated wire 1b having a desired quality can be stably obtained.

従って、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。   Therefore, it is possible to obtain a desired quality plated wire 1b with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire 1b, the product yield can be improved, Moreover, manufacturing efficiency can be improved.

さらに、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを、効率よく製造できるため、太陽電池用のリード線として好適な低耐力化したメッキ線1bを大量生産することも実現することができる。   Furthermore, since the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress can be efficiently produced, mass-produced low-proof plated wire 1b suitable as a lead wire for a solar cell is produced. Can also be realized.

また、半田メッキ線の製造装置10は、前記軟化焼鈍炉51を、走行方向の上流側よりも下流側が低位置になるよう傾斜配置し、前記軟化焼鈍炉51における走行方向の下流側に、被メッキ線1aが内部に挿入された状態での走行を許容する鞘管53に対して還元ガスGの供給を許容する還元ガス供給部57を設けた構成である。   In addition, the solder plating wire manufacturing apparatus 10 has the soft annealing furnace 51 inclined so that the downstream side is lower than the upstream side in the running direction, and the soft annealing furnace 51 is placed on the downstream side in the running direction in the soft annealing furnace 51. In this configuration, a reducing gas supply unit 57 that allows the supply of the reducing gas G to the sheath tube 53 that allows the traveling with the plated wire 1a inserted therein is provided.

半田メッキ線の製造方法は、軟化焼鈍工程において、軟化焼鈍炉51の内部に、鞘管53の下端側部分(下流側部分)に設けたから還元ガス供給部57を通じて還元ガスGを鞘管53の内部に供給し、還元ガス雰囲気とした鞘管53の内部に被メッキ線1aを走行方向の上流側から下流側に向けて走行させる製造方法である。   In the softening annealing step, the solder plating wire manufacturing method is provided in the softening annealing furnace 51 at the lower end side portion (downstream side portion) of the sheath tube 53, so that the reducing gas G is supplied to the sheath tube 53 through the reducing gas supply unit 57. This is a manufacturing method in which the wire to be plated 1a travels from the upstream side to the downstream side in the traveling direction inside the sheath tube 53 that is supplied to the inside and has a reducing gas atmosphere.

上述した半田メッキ線の製造装置10および製造方法により、図2に示すように、還元ガス雰囲気とした鞘管53の内部において還元ガスGが上昇してくる方向dと逆方向である下方向Dへ向けて被メッキ線1aを走行させることができる。   As shown in FIG. 2, by the solder plating wire manufacturing apparatus 10 and manufacturing method described above, the downward direction D, which is opposite to the direction d in which the reducing gas G rises inside the sheath tube 53 in the reducing gas atmosphere. The to-be-plated wire 1a can be made to travel toward.

これにより、鞘管53の内部を走行する被メッキ線1aを、上昇しようとする還元ガスGの雰囲気に積極的に晒すことができるため、被メッキ線1aの表面の酸化層の還元および被メッキ線1aの低耐力を効率的に促進することができる。   Thereby, since the to-be-plated wire 1a running inside the sheath tube 53 can be positively exposed to the atmosphere of the reducing gas G to be raised, the reduction of the oxide layer on the surface of the to-be-plated wire 1a and the to-be-plated The low proof stress of the wire 1a can be promoted efficiently.

しかも、鞘管53の内部において走行する被メッキ線1aの長さ方向における、より下端側部分(下流側部分)を、還元ガス供給部57を通じて鞘管53の内部に新たに供給された直後の還元ガスGの雰囲気に晒すことができる(図2参照)。   Moreover, immediately after the lower end side portion (downstream side portion) in the length direction of the wire to be plated 1 a traveling inside the sheath tube 53 is newly supplied to the inside of the sheath tube 53 through the reducing gas supply unit 57. It can be exposed to the atmosphere of the reducing gas G (see FIG. 2).

すなわち、鞘管53の内部では、走行中の被メッキ線1aが還元ガス供給部57に近づく程、被メッキ線1aの低耐力化と表面の酸化層の還元を積極的に促進することができ、被メッキ線1aが還元ガス供給部57を通じて軟化焼鈍炉51から導出するまでの間にヒータ54による加熱下で確実に被メッキ線1aの低耐力化と表面の酸化層の還元を行うことができる。   That is, in the sheath tube 53, the lower the proof stress of the wire 1a to be plated and the reduction of the oxide layer on the surface can be actively promoted as the traveling wire 1a nears the reducing gas supply unit 57. Before the plated wire 1a is led out from the softening annealing furnace 51 through the reducing gas supply unit 57, it is possible to reliably reduce the yield strength of the plated wire 1a and reduce the oxide layer on the surface under heating by the heater 54. it can.

また、このように被メッキ線1aの低耐力化と表面の酸化層の還元を確実、且つ、効率的に行うことができるため、軟化焼鈍炉51の内部を走行する被メッキ線1aの走行距離の短縮化を図ることができるとともに、被メッキ線1aの走行速度の向上を図ることもできる。   Further, since the low yield strength of the wire to be plated 1a and the reduction of the oxide layer on the surface can be reliably and efficiently performed, the travel distance of the wire to be plated 1a that travels inside the softening annealing furnace 51. Can be shortened, and the traveling speed of the plated wire 1a can be improved.

さらに、メッキ前処理工程において、このように被メッキ線1aの低耐力化と表面の酸化層の除去とを、軟化焼鈍炉51を用いて軟化焼鈍工程で同時に行うことで被メッキ線1aの表面に有する酸化膜を還元する還元工程と、被メッキ線1aの軟化焼鈍を行う軟化焼鈍工程とを別々の工程で直列に行う場合と比較して被メッキ線1aの走行距離の短縮化を図ることができる。   Further, in the pre-plating process, the surface of the wire to be plated 1a is reduced by simultaneously reducing the yield strength of the wire to be plated 1a and removing the oxide layer on the surface by using the softening annealing furnace 51 in the softening annealing step. Reducing the travel distance of the wire to be plated 1a compared with the case where the reduction step of reducing the oxide film included in the wire and the softening annealing step of softening and annealing the wire to be plated 1a are performed in series in separate steps. Can do.

従って、低耐力化した被メッキ線1aにかかる負荷を低減することができ、高品質の半田メッキ線1bを製造することができる。   Therefore, it is possible to reduce the load applied to the plated wire 1a having reduced strength, and to manufacture a high quality solder plated wire 1b.

また、軟化焼鈍工程の前に行う加熱処理工程において、加熱処理炉22では、被メッキ線1aの表面に付着した付着物を加熱により除去することができる。例えば、付着物が油などの液状付着物である場合には、気化することができる。このように固形状、液状といった付着物の性状に関わらず、被メッキ線1aの表面から付着物を除去することができる。   Further, in the heat treatment step performed before the softening annealing step, the heat treatment furnace 22 can remove the deposits attached to the surface of the wire to be plated 1a by heating. For example, when the deposit is a liquid deposit such as oil, it can be vaporized. Thus, regardless of the nature of the deposit such as solid or liquid, the deposit can be removed from the surface of the wire 1a to be plated.

特に、加熱処理工程を酸洗浄工程の直前に行うことで、加熱処理工程において被メッキ線1aを加熱しておき、酸洗浄工程において加熱した状態の被メッキ線1aに対して酸洗浄を行うことができるため、酸洗浄効果をより高めることができる。   In particular, by performing the heat treatment step immediately before the acid cleaning step, the wire to be plated 1a is heated in the heat treatment step, and the acid cleaning is performed on the wire to be plated 1a heated in the acid cleaning step. Therefore, the acid cleaning effect can be further enhanced.

さらに、加熱処理炉22では、加熱温度によっては被メッキ線1aに対しての焼鈍効果も得ることができる。
但し、上述した半田メッキ線の製造装置10および製造方法によれば、加熱処理工程において、軟化焼鈍炉51の上流側に配置した加熱処理炉22で0.2%耐力値が所定の値に完全に低下するまで被メッキ線1aに対して軟化焼鈍せずに、軽度の軟化焼鈍に留めておく。そして、加熱処理工程後の洗浄工程において、被メッキ線1aに対して必要な洗浄を完了しておき、その後、メッキ工程の直前である軟化焼鈍工程で0.2%耐力値が所定の値に低下するまで被メッキ線1aに対して軟化焼鈍を行う。
Furthermore, in the heat treatment furnace 22, an annealing effect on the plated wire 1a can be obtained depending on the heating temperature.
However, according to the solder plating wire manufacturing apparatus 10 and the manufacturing method described above, the 0.2% proof stress value is completely set to a predetermined value in the heat treatment furnace 22 arranged on the upstream side of the softening annealing furnace 51 in the heat treatment process. The wire 1a is kept soft and annealed without being softened until the wire 1a is lowered. Then, in the cleaning process after the heat treatment process, the necessary cleaning for the plated wire 1a is completed, and then the 0.2% proof stress value is set to a predetermined value in the softening annealing process immediately before the plating process. Softening annealing is performed on the to-be-plated wire 1a until it falls.

これにより、低耐力化した被メッキ線1aに対して洗浄工程を行う必要がないため、被メッキ線1aにかかる負荷を軽減することができる。   Thereby, since it is not necessary to perform a washing | cleaning process with respect to the to-be-plated wire 1a reduced in yield strength, the load concerning the to-be-plated wire 1a can be reduced.

詳しくは、加熱処理炉22は、通常の加熱処理炉22での焼鈍を行う際の設定温度が約650℃であるのに対して上述したように例えば、約200℃という低温に設定した蒸気雰囲気としている。   Specifically, the heat treatment furnace 22 has a steam atmosphere set to a low temperature of about 200 ° C. as described above, for example, while the set temperature when annealing in the normal heat treatment furnace 22 is about 650 ° C. It is said.

さらに、軟化焼鈍炉51は、通常の軟化焼鈍炉での温度設定が約530℃であるのに対して上述したように例えば、約800℃という高温に設定している。   Furthermore, the softening annealing furnace 51 is set to a high temperature of, for example, about 800 ° C. as described above, while the temperature setting in a normal softening annealing furnace is about 530 ° C.

これにより、加熱処理工程においては、被メッキ線1aの低耐力化を抑え、その後の酸洗浄、超音波水洗浄といった洗浄工程の後で行う軟化焼鈍工程において、軟化焼鈍炉51を用いて被メッキ線1aを0.2%耐力値が所定の値に低下するまで低耐力化する。   As a result, in the heat treatment process, the reduction in the yield strength of the wire to be plated 1a is suppressed, and in the softening annealing process performed after the subsequent cleaning process such as acid cleaning and ultrasonic water cleaning, the soft annealing furnace 51 is used for plating. The wire 1a is reduced in proof strength until the 0.2% proof stress value decreases to a predetermined value.

よって、低耐力化する前の被メッキ線1aに対して酸洗浄、超音波水洗浄を行うことにより、例えば、従来のように、低耐力化した後の被メッキ線1aに対してこれら工程を行う場合と比較して被メッキ線1aに及ぼす負荷の影響を軽減することができ、その分、メッキ線1bの品質向上を図ることができる。   Therefore, by performing acid cleaning and ultrasonic water cleaning on the to-be-plated wire 1a before lowering the yield strength, for example, these steps are performed on the to-be-plated wire 1a after lowering the yield strength as in the prior art. Compared with the case where it performs, the influence of the load which acts on the to-be-plated wire 1a can be reduced, and the quality improvement of the plated wire 1b can be aimed at by that much.

なお、加熱処理炉22では、内部を蒸気雰囲気としているため、加熱温度によっては被メッキ線1aの軟化焼鈍も可能であるが、蒸気洗浄効果も期待できる。よって、加熱処理炉22において、被メッキ線1aに対して蒸気洗浄するとともに、その後で行う酸洗浄工程、及び、水洗浄工程において被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を確実に除去することができる。   In addition, since the inside of the heat treatment furnace 22 has a steam atmosphere, the wire to be plated 1a can be softened and annealed depending on the heating temperature, but a steam cleaning effect can also be expected. Therefore, in the heat treatment furnace 22, the wire to be plated 1 a is steam-washed, and then a water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1 a in the acid cleaning step and the water cleaning step performed thereafter. Can be reliably removed.

よって、均一なメッキ厚で被覆した高品質のメッキ線1bを製造することができる。   Therefore, a high quality plated wire 1b coated with a uniform plating thickness can be manufactured.

以下、効果確認実験について説明する。   The effect confirmation experiment will be described below.

(効果確認実験)
まず、加熱処理工程、及び、軟化焼鈍工程に関する効果確認実験として行った焼鈍効果確認実験A,Bの2つの実験について説明する。
(焼鈍効果確認実験A)
焼鈍効果確認実験Aでは、加熱処理温度が100度という低い温度設定の下で加熱処理工程を行い、その後、軟化焼鈍工程において、様々な焼鈍温度の下で軟化焼鈍を行う場合における焼鈍温度の設定と、巻き取り工程後の銅線の低耐力値との関係を明らかにし、この関係をもとに、所望の低耐力値を得るために軟化焼鈍工程において設定すべき焼鈍温度について確認した。
(Effect confirmation experiment)
First, two experiments of annealing effect confirmation experiments A and B performed as an effect confirmation experiment regarding the heat treatment process and the softening annealing process will be described.
(Annealing effect confirmation experiment A)
In the annealing effect confirmation experiment A, the heat treatment process is performed under a low temperature setting of 100 ° C., and then the annealing temperature is set in the softening annealing process when softening annealing is performed under various annealing temperatures. And the relationship with the low proof stress value of the copper wire after a winding process was clarified, Based on this relationship, in order to obtain a desired low proof stress value, it confirmed about the annealing temperature which should be set in a softening annealing process.

なお、焼鈍効果確認実験Aは、上述した製造装置を用いて、表1に示す実験条件で行った。   The annealing effect confirmation experiment A was performed under the experimental conditions shown in Table 1 using the manufacturing apparatus described above.

Figure 0005367752
また、焼鈍効果確認実験Aの結果を、表2、及び、図4に示す。
Figure 0005367752
Moreover, the result of the annealing effect confirmation experiment A is shown in Table 2 and FIG.

Figure 0005367752
ここで、表2は、軟化焼鈍炉51において所定の焼鈍温度ごとの設定の下で被メッキ線に対して焼鈍を行い、巻き取り工程で巻き取り後の半田メッキ線の引張特性の1つである0.2%耐力値を測定した結果を示している。図4は、巻き取り後の半田メッキ線の0.2%耐力値と、軟化焼鈍温度との関係を、表2をもとにグラフ化したものである。
Figure 0005367752
Here, Table 2 shows one of the tensile characteristics of the solder-plated wire after the wire is annealed in the softening annealing furnace 51 under the setting for each predetermined annealing temperature and wound in the winding process. The result of measuring a certain 0.2% proof stress is shown. FIG. 4 is a graph based on Table 2 showing the relationship between the 0.2% proof stress value of the solder plated wire after winding and the softening annealing temperature.

表2、及び、図4に示す結果のとおり、加熱処理工程での加熱処理温度が100度という低い温度の下で加熱処理工程を行った場合であって、軟化焼鈍工程での焼鈍温度が例えば、550℃程度の低い温度である場合、被メッキ線1aに対する焼鈍が不十分となり、0.2%耐力値が高い値となる傾向を示す結果となった。   As shown in Table 2 and FIG. 4, the heat treatment temperature in the heat treatment step is a low heat treatment temperature of 100 degrees, and the annealing temperature in the softening annealing step is, for example, When the temperature was as low as about 550 ° C., annealing to the wire to be plated 1a was insufficient, and the 0.2% proof stress value tended to be a high value.

しかし、加熱処理工程での加熱処理温度が100度という低い温度であっても、軟化焼鈍工程において焼鈍温度が800℃から900℃であれば、巻き取り後のメッキ線1bの0.2%耐力値を55MPa以下という所望の低耐力値に確実に収束できることが確認できた。   However, even if the heat treatment temperature in the heat treatment step is as low as 100 ° C., if the annealing temperature is 800 ° C. to 900 ° C. in the softening annealing step, the 0.2% yield strength of the plated wire 1b after winding is It was confirmed that the value could be reliably converged to a desired low proof stress value of 55 MPa or less.

(焼鈍効果確認実験B)
焼鈍効果確認実験Bでは、様々な加熱処理温度の下で加熱処理工程を行い、加熱処理工程後の被メッキ線1aの0.2%耐力値と加熱処理温度との関係を明らかにするとともに、これら被メッキ線1aに対して、850℃という一定の焼鈍温度の設定の下で軟化焼鈍工程を行い、軟化焼鈍工程後の0.2%耐力値と加熱処理温度との関係を明らかにした。
(Annealing effect confirmation experiment B)
In the annealing effect confirmation experiment B, the heat treatment process is performed under various heat treatment temperatures, and the relationship between the 0.2% proof stress value of the wire to be plated 1a after the heat treatment process and the heat treatment temperature is clarified. A softening annealing process was performed on these wires 1a to be plated under a constant annealing temperature setting of 850 ° C., and the relationship between the 0.2% proof stress value after the softening annealing process and the heat treatment temperature was clarified.

なお、本効果確認実験Bは、上述した製造装置を用いて、表3に示す実験条件で行った。   In addition, this effect confirmation experiment B was performed on the experimental conditions shown in Table 3 using the manufacturing apparatus mentioned above.

Figure 0005367752
焼鈍効果確認実験Bの結果を、表4、及び、図5に示す。
Figure 0005367752
The results of the annealing effect confirmation experiment B are shown in Table 4 and FIG.

Figure 0005367752
ここで、表4(a)は、加熱処理工程において被メッキ線1aに対して加熱処理を行い、軟化焼鈍工程を行う前における被メッキ線1aの0.2%耐力値を、所定の加熱処理温度の設定ごとに測定した結果を示している。
表4(b)は、上述した所定の加熱処理温度の設定ごとに、加熱処理工程を行った各被メッキ線1aに対して、軟化焼鈍工程において焼鈍温度を850度という共通の設定の下で焼鈍を行い、巻取り後の半田メッキ線1bの0.2%耐力値を測定した結果を示している。
Figure 0005367752
Here, Table 4 (a) shows that the 0.2% proof stress value of the wire to be plated 1a before the softening annealing step is performed on the wire to be plated 1a in the heat treatment step. The measurement results are shown for each temperature setting.
Table 4 (b) shows that for each setting of the predetermined heat treatment temperature described above, for each wire 1a subjected to the heat treatment step, the annealing temperature is 850 degrees in the softening annealing step under a common setting. It shows the result of annealing and measuring the 0.2% proof stress value of the solder plated wire 1b after winding.

図5は、加熱処理炉22を通過後の被メッキ線1aの0.2%耐力値と加熱処理炉温度との関係を表4(a)をもとにプロットするとともに、軟化焼鈍炉を通過後の被メッキ線1aの0.2%耐力値と焼鈍温度との関係を表4(b)をもとにプロットしたグラフである。   FIG. 5 plots the relationship between the 0.2% proof stress value of the wire to be plated 1a after passing through the heat treatment furnace 22 and the heat treatment furnace temperature based on Table 4 (a), and passes through the soft annealing furnace. It is the graph which plotted the relationship between the 0.2% yield strength value of the later to-be-plated wire 1a, and annealing temperature based on Table 4 (b).

表4(a),(b)、及び、図5に示すとおり、加熱処理工程において加熱処理温度が低いと焼鈍効果が少なく、0.2%耐力値が低下しなかった。しかし、その分、軟化焼鈍工程において焼鈍効果が大きくなり、0.2%耐力値を低下させることができた。
一方、加熱処理工程において加熱処理温度が高ければ、該加熱処理工程においても十分に焼鈍効果を得ることができ、その分、軟化焼鈍工程での焼鈍効果が小さくなった。
As shown in Tables 4 (a) and 4 (b) and FIG. 5, when the heat treatment temperature was low in the heat treatment step, the annealing effect was small and the 0.2% proof stress value did not decrease. However, the annealing effect increased in the softening annealing process, and the 0.2% proof stress value could be reduced.
On the other hand, if the heat treatment temperature is high in the heat treatment step, a sufficient annealing effect can be obtained also in the heat treatment step, and the annealing effect in the softening annealing step is reduced accordingly.

すなわち、加熱処理工程における加熱処理温度に関わらず、軟化焼鈍工程での焼鈍温度を850℃という高温に設定することで略55Mpa以下という低い値まで0.2%耐力値を確実に低下できることを確認できた。   That is, regardless of the heat treatment temperature in the heat treatment step, it is confirmed that the 0.2% proof stress value can be reliably reduced to a low value of about 55 Mpa or less by setting the annealing temperature in the soft annealing step to a high temperature of 850 ° C. did it.

このように、加熱処理工程での加熱処理温度に関わらず、加熱処理工程の後に行う軟化焼鈍工程において焼鈍温度を850℃にすることで軟化焼鈍工程を行う被メッキ線1aを十分に低耐力化することができるという結果となった。この結果より、逆に、加熱処理工程の側からみれば、加熱処理温度を必ずしも高く設定する必要はなく、目的に応じて任意に設定できるともいえる。   Thus, regardless of the heat treatment temperature in the heat treatment step, the to-be-plated wire 1a that performs the soft annealing step in the softening annealing step that is performed after the heat treatment step is sufficiently reduced in yield strength. The result is that you can. On the contrary, from this result, it can be said that it is not always necessary to set the heat treatment temperature high, and it can be arbitrarily set according to the purpose from the heat treatment step side.

詳しくは、加熱処理工程において、加熱処理温度を例えば、100〜300度程度の低温に設定することで、加熱処理炉22での被メッキ線1aの低耐力化を抑制することができる。これにより、加熱処理工程後であって、軟化焼鈍工程前に行う洗浄工程において被メッキ線1aに負荷が加わっても、被メッキ線1aが不測に伸びたり、破断したりしない程度に低耐力化できることが加熱処理工程において可能であることを確認できた。   Specifically, in the heat treatment step, by setting the heat treatment temperature to a low temperature of, for example, about 100 to 300 degrees, it is possible to suppress a reduction in the yield strength of the wire to be plated 1a in the heat treatment furnace 22. Thereby, even if a load is applied to the wire to be plated 1a after the heat treatment step and before the softening annealing step, the yield strength is reduced to such an extent that the wire to be plated 1a does not unexpectedly stretch or break. It was confirmed that it was possible in the heat treatment process.

一方、加熱処理工程において、加熱処理温度を例えば、100度〜300程度よりもさらに高い温度に設定した場合には、加熱処理工程において被メッキ線1aの低耐力化を促進することができる。このため、最終的に、被メッキ線1aを、軟化焼鈍工程において約55MPa以下というレベルまで十分に低耐力化するために行う本格的な焼鈍を、より迅速に行うことができる。   On the other hand, in the heat treatment step, when the heat treatment temperature is set to a temperature higher than, for example, about 100 degrees to 300 degrees, it is possible to promote a reduction in the yield strength of the plated wire 1a in the heat treatment step. For this reason, finally, the full annealing performed in order to sufficiently reduce the yield strength of the wire 1a to be plated to a level of about 55 MPa or less in the softening annealing process can be performed more quickly.

すなわち、加熱処理工程において、加熱処理温度を例えば、100〜300度程度よりもさらに高い温度に設定することで、加熱処理工程を、被メッキ線1aを低耐力化する上での予備焼鈍としての機能を果たすことができ、軟化焼鈍工程においての被メッキ線1aの焼鈍時間を短縮化することができる。また、太陽電池用はんだメッキ線の生産性向上のため、製造工程において被メッキ線1aの線速を高めた場合にも、軟化焼鈍炉51の長さを長尺に構成するなどの必要もなく、線速の向上の要求にもスムーズに対応することができる。   That is, in the heat treatment step, by setting the heat treatment temperature to a temperature higher than, for example, about 100 to 300 degrees, the heat treatment step is performed as pre-annealing for reducing the yield strength of the wire to be plated 1a. The function can be fulfilled, and the annealing time of the wire 1a to be plated in the softening annealing process can be shortened. Further, in order to improve the productivity of the solder plated wire for solar cells, it is not necessary to configure the length of the softening annealing furnace 51 to be long even when the wire speed of the wire to be plated 1a is increased in the manufacturing process. It is possible to respond smoothly to the demand for improvement in linear velocity.

続いて、軟化焼鈍工程において、軟化焼鈍炉51内部に供給する還元ガスGに含有する水素ガスの濃度の違いによる0.2%耐力値の影響を検証する実験として、焼鈍炉水素濃度検証実験Aと焼鈍炉水素濃度検証実験Bの2つの実験を行った。   Subsequently, in the softening annealing step, as an experiment for verifying the influence of the 0.2% proof stress due to the difference in the concentration of hydrogen gas contained in the reducing gas G supplied into the softening annealing furnace 51, the annealing furnace hydrogen concentration verification experiment A And an annealing furnace hydrogen concentration verification experiment B were conducted.

(焼鈍炉水素濃度検証実験A)
焼鈍炉水素濃度検証実験Aでは、本発明例のメッキ線1bと比較例のメッキ線とを供試体として上述した製造工程を経て作成した。
本発明例のメッキ線1bと比較例のメッキ線とは、軟化焼鈍工程のみが異なるが、その他の工程は全て同じ工程を経てそれぞれ作成している。
(Annealing furnace hydrogen concentration verification experiment A)
In the annealing furnace hydrogen concentration verification experiment A, the plating wire 1b of the example of the present invention and the plating wire of the comparative example were prepared through the above-described manufacturing steps as test specimens.
The plated wire 1b of the present invention example and the plated wire of the comparative example differ only in the softening annealing process, but all other processes are made through the same process.

本発明例のメッキ線1b、及び、比較例のメッキ線を作成するために行う軟化焼鈍工程では、いずれも軟化焼鈍炉51の内部を還元性ガス雰囲気としているが、還元ガスGの成分が異なる。   In the softening annealing process performed in order to create the plating wire 1b of the present invention example and the plating wire of the comparative example, the inside of the softening annealing furnace 51 is a reducing gas atmosphere, but the components of the reducing gas G are different. .

すなわち、比較例のメッキ線を作成する場合における還元ガスGは、窒素ガスのみからなるのに対して、本発明例のメッキ線1bを作成する場合における還元ガスGは、少なくとも窒素ガスを含有する水素ガスとの混合ガスとしている。   That is, the reducing gas G in the case of creating the plated wire of the comparative example consists of only nitrogen gas, whereas the reducing gas G in the case of creating the plated wire 1b of the present invention example contains at least nitrogen gas. It is a mixed gas with hydrogen gas.

なお、本実験では、本発明例のメッキ線1bと比較例のメッキ線の製造に際して被メッキ線1aとして無酸素銅(OFC)を用い、被メッキ線1aのサイズを0.16×2mmとし、加熱処理炉22の温度設定を200℃とし、第1送りキャプスタン91および第2送りキャプスタン92での各巻き取り線速を+1m/minとして行った。   In this experiment, oxygen-free copper (OFC) was used as the plated wire 1a in the production of the plated wire 1b of the present invention and the plated wire of the comparative example, and the size of the plated wire 1a was 0.16 × 2 mm, The temperature setting of the heat treatment furnace 22 was set to 200 ° C., and the respective winding linear speeds in the first feed capstan 91 and the second feed capstan 92 were set to +1 m / min.

また、これらメッキ線1bの製造に際して、軟化焼鈍工程の前に被メッキ線1aに対して酸洗浄工程、及び、超音波水洗浄工程を行っている。なお、酸洗浄工程では、リン酸系の洗浄液の設定温度を50℃として行った。メッキ工程では、溶融半田メッキ液63の設定温度を260℃として行い、溶融半田メッキ液63として溶融錫(Sn−3.0Ag−0.5Cu)を用いている。また、巻き取り手段71は、巻き取り張力調節機72を備えずに、ボビントラバース方式巻取り機75により直接巻き取りする構成としている。   Moreover, when manufacturing these plated wire 1b, the acid washing | cleaning process and the ultrasonic water washing | cleaning process are performed with respect to the to-be-plated wire 1a before the softening annealing process. In the acid cleaning step, the set temperature of the phosphoric acid-based cleaning liquid was set to 50 ° C. In the plating process, the set temperature of the molten solder plating solution 63 is set to 260 ° C., and molten tin (Sn-3.0Ag-0.5Cu) is used as the molten solder plating solution 63. Further, the winding means 71 does not include the winding tension adjuster 72 but is directly wound by the bobbin traverse type winding machine 75.

本発明例のメッキ線1bと比較例のメッキ線とは、それぞれ上述した設定の下、メッキ厚が20μm、30μm、40μmの3種類ずつ作成し、それぞれ0.2%耐力値について比較したところ図6に示すグラフのような結果となった。   The plating wire 1b of the present invention example and the plating wire of the comparative example were prepared with three types of plating thicknesses of 20 μm, 30 μm, and 40 μm under the above-described settings, respectively, and compared for 0.2% proof stress value, respectively. The result shown in the graph of FIG.

図6に示すグラフのように、メッキ厚が20μm、30μm、40μmのいずれの場合においても本発明例のメッキ線1bは、比較例のメッキ線と比較して、0.2%耐力値が低かった。中でもメッキ厚が40μmのとき、本発明例のメッキ線1bは、比較例のメッキ線と比較して0.2%耐力値の低下率が最も高いことが確認できた。   As shown in the graph of FIG. 6, the plated wire 1b of the example of the present invention has a 0.2% proof stress value lower than that of the comparative example regardless of whether the plating thickness is 20 μm, 30 μm, or 40 μm. It was. In particular, when the plating thickness was 40 μm, it was confirmed that the plating wire 1b of the example of the present invention had the highest rate of decrease in the 0.2% proof stress value compared to the plating wire of the comparative example.

従って、焼鈍工程において、水素ガスを含む還元性ガス雰囲気とした軟化焼鈍炉51の内部に被メッキ線1aを走行させることで、より効率的に被メッキ線1aの低耐力化を促進することができることを確認することができた。   Therefore, in the annealing process, the lowering of the yield strength of the wire to be plated 1a can be promoted more efficiently by running the wire to be plated 1a inside the softening annealing furnace 51 having a reducing gas atmosphere containing hydrogen gas. I was able to confirm that I could do it.

(焼鈍炉水素濃度検証実験B)
焼鈍炉水素濃度検証実験Bでは、軟化焼鈍炉51の内部に対して還元ガス供給部57から供給する還元ガスGを、少なくとも窒素を含有する水素との混合ガスとし、混合ガスに対して水素ガスが占める体積比率であらわれる混合率の違いによるメッキ線1b(被メッキ線1a)の0.2%耐力値の影響について検証する実験を、上述した製造装置を用いて表5に示す実験条件の下で行った。
(Annealing furnace hydrogen concentration verification experiment B)
In the annealing furnace hydrogen concentration verification experiment B, the reducing gas G supplied from the reducing gas supply unit 57 to the inside of the softening annealing furnace 51 is a mixed gas with hydrogen containing at least nitrogen, and hydrogen gas is supplied to the mixed gas. An experiment for verifying the influence of the 0.2% proof stress value of the plated wire 1b (wire to be plated 1a) due to the difference in the mixing ratio represented by the volume ratio occupied by the sample is performed under the experimental conditions shown in Table 5 using the manufacturing apparatus described above. I went there.

Figure 0005367752
焼鈍炉水素濃度検証実験Bの結果を、表6、及び、図7に示す。
Figure 0005367752
The results of the annealing furnace hydrogen concentration verification experiment B are shown in Table 6 and FIG.

Figure 0005367752
ここで、表6は、少なくとも窒素ガスからなる還元ガスに対する水素ガスの占める混合比率が0、10、20、30、40、50%のそれぞれの設定の場合において、還元ガスを4.0l/minの流量で軟化焼鈍炉51の内部に供給しながら焼鈍工程を行った場合における巻取り工程後のメッキ線1bの0.2%耐力値を測定した結果を示している。
Figure 0005367752
Here, Table 6 shows that when the mixing ratio of the hydrogen gas to the reducing gas composed of at least nitrogen gas is set to 0, 10, 20, 30, 40, and 50%, the reducing gas is 4.0 l / min. The result of having measured the 0.2% yield strength value of the plating wire 1b after the winding process in the case where the annealing process is performed while supplying the inside of the softening annealing furnace 51 at a flow rate of 3 mm is shown.

図7は、還元ガスとしての混合ガスに占める水素ガスの混合率と巻取り工程後の半田メッキ線1bの0.2%耐力値との関係を表6をもとにプロットしたグラフである。   FIG. 7 is a graph in which the relationship between the mixing ratio of hydrogen gas in the mixed gas as the reducing gas and the 0.2% proof stress value of the solder plating wire 1b after the winding process is plotted based on Table 6.

図7、及び、表6に示す結果のとおり、水素ガス混合比率を高めるに従って、0.2%耐力値は、同等、或いは、低くなった。このことから、水素ガス混合比率が高い方が、0.2%耐力値は少なくとも低くなる傾向を示すこと確認できた。   As shown in FIG. 7 and Table 6, as the hydrogen gas mixing ratio was increased, the 0.2% proof stress value was equal or decreased. From this, it was confirmed that the higher the hydrogen gas mixing ratio, the lower the 0.2% proof stress value tends to be low.

よって、水素ガスは、被メッキ線1aの表面の酸化膜を還元するという効果に留まらず、還元ガス中における水素ガスの濃度に応じて、0.2%耐力値を低下する度合いを高めることができるという効果も有することを確認できた。   Therefore, the hydrogen gas is not limited to the effect of reducing the oxide film on the surface of the wire 1a to be plated, but can increase the degree to which the 0.2% proof stress value is lowered according to the concentration of the hydrogen gas in the reducing gas. It was confirmed that it has the effect of being able to.

そして、還元ガス中における水素ガスの濃度と半田メッキ線1bの0.2%耐力値との図7に示すような関係をもとに、還元ガスに対する水素ガスの濃度を制御することにより、被メッキ線1aを低耐力化する度合いを制御することができるという可能性を見出すことができた。   Then, based on the relationship as shown in FIG. 7 between the concentration of hydrogen gas in the reducing gas and the 0.2% proof stress value of the solder plating wire 1b, the concentration of the hydrogen gas with respect to the reducing gas is controlled. It was possible to find a possibility that the degree of lowering the yield strength of the plated wire 1a can be controlled.

また、本発明の半田メッキ線の製造装置および半田メッキ線の製造方法は、上述した半田メッキ線の製造装置10および半田メッキ線の製造方法の構成に限定せず、様々な構成で構成することができる。
例えば、他の実施形態における製造装置10Aには、図8(a),(b)に示すように、超音波水洗浄槽41と軟化焼鈍炉51との間にプレ加熱炉51Pを設けることができる。
プレ加熱炉51Pは、図8(b)に示すように、被メッキ線1aの走行時間、及び、走行距離が短い場合においても、被メッキ線1aの温度を急激に高めることに特化して構成している。
The solder plating wire manufacturing apparatus and the solder plating wire manufacturing method of the present invention are not limited to the configurations of the solder plating wire manufacturing apparatus 10 and the solder plating wire manufacturing method described above, and may be configured in various configurations. Can do.
For example, in the manufacturing apparatus 10A according to another embodiment, as shown in FIGS. 8A and 8B, a preheating furnace 51P may be provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. it can.
As shown in FIG. 8 (b), the preheating furnace 51P is specially configured to rapidly increase the temperature of the wire to be plated 1a even when the travel time and travel distance of the wire to be plated 1a are short. doing.

具体的には、プレ加熱炉51Pは、プレ加熱炉本体52Pに鞘管53Lを備えている。該鞘管53Lは、被メッキ線1aの走行方向に沿って直線状に構成した中空管であり、被メッキ線1aがプレ加熱炉51Pと軟化焼鈍炉51とを通過する際に、該被メッキ線1aが空気に触れて酸化しないようにプレ加熱炉本体52Pと軟化焼鈍炉本体52とのそれぞれの内部に連通した配置形態としている。   Specifically, the preheating furnace 51P includes a sheath tube 53L in the preheating furnace body 52P. The sheath tube 53L is a hollow tube configured linearly along the traveling direction of the wire to be plated 1a, and when the wire to be plated 1a passes through the preheating furnace 51P and the softening annealing furnace 51, It is set as the arrangement | positioning form connected to each inside of the preheating furnace main body 52P and the soft annealing furnace main body 52 so that the plating wire 1a may not be oxidized by touching air.

プレ加熱炉51Pの内部には、軟化焼鈍炉51と同様に、プレ加熱炉本体52Pの内部に、鞘管53Lの長手方向に沿って複数本のヒータ54Pを備えているが、軟化焼鈍炉51において配置したヒータ54の配置間隔よりも狭ピッチで配置している。   Like the soft annealing furnace 51, the pre heating furnace 51P includes a plurality of heaters 54P along the longitudinal direction of the sheath tube 53L in the pre heating furnace main body 52P. Are arranged at a narrower pitch than the arrangement interval of the heaters 54 arranged in FIG.

これにより、線速を速めて被メッキ線1aを走行させても、軟化焼鈍工程の直前にプレ加熱工程として、プレ加熱炉51Pで被メッキ線1aを加熱することができ、加熱した状態の被メッキ線1aを軟化焼鈍炉51に供給することができる。   As a result, even if the wire to be plated 1a is run at an increased wire speed, the wire to be plated 1a can be heated in the preheating furnace 51P as a preheating step immediately before the softening annealing step, The plated wire 1a can be supplied to the softening annealing furnace 51.

よって、被メッキ線1aの線速の高速化に対応して、軟化焼鈍工程において、被メッキ線1aを確実、且つ、十分に低耐力化した状態とすることができる。   Therefore, in response to the increase in the wire speed of the wire to be plated 1a, the wire to be plated 1a can be surely and sufficiently reduced in proof stress in the softening annealing step.

また、鞘管53Lにおける軟化焼鈍炉51とプレ加熱炉51Pとの間部分には、鞘管53Lの長さ方向におけるプレ加熱炉51Pに相当する部分に還元ガスを供給するプレ還元ガス供給部57Pを構成している。   Further, a pre-reducing gas supply portion 57P that supplies a reducing gas to a portion corresponding to the pre-heating furnace 51P in the length direction of the sheath tube 53L is provided in a portion between the softening annealing furnace 51 and the pre-heating furnace 51P in the sheath tube 53L. Is configured.

上述した還元ガス供給部57では、還元ガスGとして水素と窒素との混合ガスを鞘管53Lに供給し、鞘管53Lの軟化焼鈍炉51に相当する内部空間を混合ガス雰囲気としたが、プレ還元ガス供給部57Pでは、還元ガスGとして窒素ガス、或いは、水蒸気ガス(スチームガス)を、鞘管53Lのプレ加熱炉51Pに相当する内部空間に供給し、該内部空間を窒素ガス雰囲気、或いは、水蒸気ガス雰囲気としている。   In the reducing gas supply unit 57 described above, a mixed gas of hydrogen and nitrogen is supplied as the reducing gas G to the sheath tube 53L, and the internal space corresponding to the softening annealing furnace 51 of the sheath tube 53L is used as a mixed gas atmosphere. In the reducing gas supply unit 57P, nitrogen gas or steam gas (steam gas) is supplied as the reducing gas G to the internal space corresponding to the preheating furnace 51P of the sheath tube 53L, and the internal space is filled with a nitrogen gas atmosphere or A steam gas atmosphere is used.

これにより、プレ加熱炉51Pを通過する際に被メッキ線1aの表面が酸化することを防ぐことができるとともに、プレ加熱炉51Pでは、還元ガスGとして水素ガスを用いずに、窒素ガス、或いは、水蒸気ガスを用いることで、安全であり、ガスの扱いが容易となる。   As a result, the surface of the wire to be plated 1a can be prevented from oxidizing when passing through the preheating furnace 51P, and in the preheating furnace 51P, nitrogen gas or By using water vapor gas, it is safe and easy to handle the gas.

詳述すると、被メッキ線1aの走行時の線速が通常設定の4m/minである場合には、表7(a)に示すように、いずれの平角サイズ、温度設定においても、メッキ工程を通過後において、メッキ線1bの0.2%耐力値を45Mpa以下にまで低い値とすることができることが確認できる。   More specifically, when the line speed during traveling of the wire 1a to be plated is the normal setting of 4 m / min, as shown in Table 7 (a), the plating process is performed at any rectangular size and temperature setting. After passing, it can be confirmed that the 0.2% proof stress value of the plated wire 1b can be reduced to 45 Mpa or less.

Figure 0005367752
なお、表7(a)は、サイズが0.2mm×1.0mm、0.16mm×2.0mm、0.2mm×2.0mmの3種類の平角線を被メッキ線1aとして用い、これら被メッキ線1aのそれぞれに対して、線速が4m/minであり、半田温度が240℃、260℃、280℃の3種類のそれぞれに設定の下で、メッキ線1bを作成したときの0.2%耐力値とメッキ厚との値を示す表である。
Figure 0005367752
In Table 7 (a), three types of rectangular wires having a size of 0.2 mm × 1.0 mm, 0.16 mm × 2.0 mm, and 0.2 mm × 2.0 mm are used as the plated wire 1a. For each of the plated wires 1a, the wire speed is 4 m / min, and the soldering temperatures are set to three types of 240 ° C., 260 ° C., and 280 ° C., respectively. It is a table | surface which shows the value of 2% yield strength value and plating thickness.

これに対して、被メッキ線1aの走行時の線速が高速設定である13m/minである場合には、表7(b)に示すように、いずれの平角サイズ、温度設定においても、メッキ線1bの0.2%耐力値が殆どの設定において50Mpa以上の値となり、線速が4m/minである通常設定の場合と比較して高い値となった。   On the other hand, when the line speed of the to-be-plated wire 1a is 13 m / min, which is a high speed setting, as shown in Table 7 (b), plating is performed at any rectangular size and temperature setting. The 0.2% proof stress value of the wire 1b was 50 Mpa or more in most settings, and was higher than that in the normal setting where the linear velocity was 4 m / min.

これは、被メッキ線1aの線速を高速設定にすることで、軟化焼鈍炉51において被メッキ線1aを十分に低耐力化するまでに、軟化焼鈍炉51を通過してしまい、十分に低耐力化されないメッキ線1bが作成されるという事態が生じるためである。   This is because the wire speed of the wire to be plated 1a is set to a high speed so that the wire to be plated 1a passes through the softening annealing furnace 51 before the softening annealing furnace 51 has a sufficiently low yield strength. This is because a situation occurs in which a plated wire 1b that is not proof-proof is created.

なお、表7(b)は、線速を13m/minの高速設定とし、平角サイズ、半田温度を表7(a)と同様の設定の下でメッキ線1bを作成したときの0.2%耐力値とメッキ厚との値を示す表である。   Table 7 (b) shows 0.2% when the wire speed is set to 13 m / min and the flat wire size and the solder temperature are set under the same settings as in Table 7 (a). It is a table | surface which shows the value of a proof stress value and plating thickness.

すなわち、被メッキ線1aの線速を単純に高速に設定した場合、十分に低耐力化を図ることができず、線速の高速化に対応することができないという問題があった。   That is, when the line speed of the to-be-plated wire 1a is simply set at a high speed, there is a problem in that it is not possible to sufficiently reduce the yield strength and to cope with the increase in the line speed.

これに対して、上述した製造装置10Aは、軟化焼鈍炉51と超音波水洗浄槽41との間にプレ加熱炉51Pを設けた構成である。   On the other hand, the manufacturing apparatus 10 </ b> A described above has a configuration in which a preheating furnace 51 </ b> P is provided between the softening annealing furnace 51 and the ultrasonic water cleaning tank 41.

プレ加熱炉51Pにより、被メッキ線1aが軟化焼鈍炉51に供給される直前において、該被メッキ線1aを短時間で加熱して高温にすることができ、その高温化した状態で、軟化焼鈍炉51に供給することができる。   Immediately before the wire to be plated 1a is supplied to the softening annealing furnace 51 by the preheating furnace 51P, the wire to be plated 1a can be heated to a high temperature in a short time, and the softening annealing is performed in the state of the high temperature. It can be supplied to the furnace 51.

よって、線速を前記高速走行速度とし、軟化焼鈍炉51に対して被メッキ線1aを高速で通過させた場合であっても、前記軟化焼鈍工程において、被メッキ線を確実に低耐力化することができる。   Therefore, even when the wire speed is set to the high speed and the wire to be plated 1a is passed through the soft annealing furnace 51 at a high speed, the wire to be plated is surely reduced in yield strength in the soft annealing step. be able to.

具体的には、上述したように、プレ加熱炉51Pを設置し、プレ加熱工程を行うことにより、線速を13m/minという高速設定にしても、線速が4m/minである通常設定の場合と同程度まで、被メッキ線1aの0.2%耐力値を低下させることができるため、0.2%耐力値が低い高品質のメッキ線1bを優れた生産効率で得ることができる。   Specifically, as described above, by setting the preheating furnace 51P and performing the preheating process, even if the linear speed is set to a high speed of 13 m / min, the normal setting of the linear speed of 4 m / min is set. Since the 0.2% proof stress value of the to-be-plated wire 1a can be reduced to the same extent as the case, a high quality plated wire 1b having a low 0.2% proof stress value can be obtained with excellent production efficiency.

さらに、被メッキ線1aを線速が13m/minという高速設定で走行させても、軟化焼鈍炉51において被メッキ線1aの表面の酸化層を確実に還元処理することができる。   Furthermore, even if the wire 1a to be plated is run at a high speed of 13 m / min, the oxide layer on the surface of the wire 1a can be reliably reduced in the softening annealing furnace 51.

軟化焼鈍炉51の上流側近傍に設置したプレ加熱炉51Pは、上述したように、被メッキ線1aの加熱性能に特化した構成とし、内部に、窒素ガス、或いは、水蒸気ガスを供給した安全で扱い易いガス雰囲気としているため、軟化焼鈍炉51において軟化焼鈍時間を確保する手段として、例えば、軟化焼鈍炉51を単に、長尺化した構成と比較して、設置スペースやコストが増大することがなく、既存設備を活かした設計変更レベルの簡易な構成の追加によって線速の高速化に対応できる。   As described above, the preheating furnace 51P installed in the vicinity of the upstream side of the softening annealing furnace 51 has a configuration specialized for the heating performance of the wire to be plated 1a, and is supplied with nitrogen gas or water vapor gas. As a means for ensuring the softening annealing time in the softening annealing furnace 51, for example, the installation space and cost are increased as compared with a configuration in which the softening annealing furnace 51 is simply lengthened. It is possible to respond to higher line speeds by adding a simple design change level that utilizes existing equipment.

また、他の実施形態として、加熱処理炉22は必須の構成ではなく、他の実施形態の製造装置として、図9(b)に示すように、走行方向におけるサプライヤ11と酸洗浄槽31との間に加熱処理炉22を設置しない構成としてもよい。さらにまた、加熱処理炉22は、走行方向におけるサプライヤ11と酸洗浄槽31との間に設置するに限らず、軟化焼鈍炉51よりも上流側であれば、他の部位に設置してもよい。   Further, as another embodiment, the heat treatment furnace 22 is not an essential configuration, and as a manufacturing apparatus according to another embodiment, as shown in FIG. It is good also as a structure which does not install the heat processing furnace 22 in between. Furthermore, the heat treatment furnace 22 is not limited to being installed between the supplier 11 and the acid cleaning tank 31 in the traveling direction, and may be installed in other parts as long as it is upstream of the softening annealing furnace 51. .

例えば、酸洗浄槽31の上流側に加熱処理炉22を設置せずに、上述したプレ加熱炉51Pのみを設置し、プレ加熱炉51Pの内部に供給する還元ガスとして水蒸気ガスを用いた構成としてもよい。   For example, without installing the heat treatment furnace 22 on the upstream side of the acid cleaning tank 31, only the above-described preheating furnace 51P is installed, and steam gas is used as the reducing gas supplied to the inside of the preheating furnace 51P. Also good.

この構成により、プレ加熱炉51Pでは、上述したように、軟化焼鈍炉51の直前でプレ加熱を行うという機能に加えて、上述した加熱処理炉22により行う機能の双方を兼ね備えることができる。   With this configuration, in the preheating furnace 51P, as described above, in addition to the function of performing preheating immediately before the softening annealing furnace 51, it is possible to have both of the functions performed by the heat treatment furnace 22 described above.

よって、設備コストの削減を図ることができることは勿論、被メッキ線1aの走行距離の短縮化をより一層、図ることができ、0.2%耐力値が低い高品質のメッキ線1bを生産することができる。   Therefore, not only can the equipment cost be reduced, but also the travel distance of the plated wire 1a can be further shortened, and a high quality plated wire 1b having a low 0.2% proof stress value is produced. be able to.

なお、上述したように、軟化焼鈍炉51の内部を還元ガス雰囲気としているが、この還元ガスGには、上述したように、窒素ガス、或いは、窒素ガスと水素ガスとの混合ガスに限らず、窒素ガスのみで構成したり、他の成分を含有してもよい。また、窒素ガスや水素ガス以外の還元ガスで構成してもよい。   As described above, the inside of the softening annealing furnace 51 is a reducing gas atmosphere. However, the reducing gas G is not limited to nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas as described above. Further, it may be composed of only nitrogen gas or may contain other components. Moreover, you may comprise by reducing gas other than nitrogen gas and hydrogen gas.

この発明の構成と、上述した実施形態との対応において、銅線は、この発明の被メッキ線1a、及び、メッキ線1bに対応し、以下同様に、
加熱処理炉22は、この発明の加熱処理手段に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the above-described embodiment, the copper wire corresponds to the to-be-plated wire 1a and the plated wire 1b of the present invention.
The heat treatment furnace 22 corresponds to the heat treatment means of the present invention.
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.

1a…被メッキ線
1b…メッキ線
2…メッキ前処理手段
10…メッキ線の製造装置
12…サプライヤ
22…加熱処理炉
31…酸洗浄槽
41…超音波水洗浄槽
51…軟化焼鈍炉
57…還元ガス供給部
61…メッキ手段
63…溶融半田メッキ液
71…巻取り手段
72…巻取り張力調節機
75…ボビントラバース方式巻取り機
83…引き取りキャプスタン部
G…還元ガス
DESCRIPTION OF SYMBOLS 1a ... Wire to be plated 1b ... Plating wire 2 ... Pre-plating means 10 ... Plating wire manufacturing device 12 ... Supplier 22 ... Heat treatment furnace 31 ... Acid cleaning tank 41 ... Ultrasonic water cleaning tank 51 ... Soft annealing furnace 57 ... Reduction Gas supply part 61 ... Plating means 63 ... Molten solder plating solution 71 ... Winding means 72 ... Winding tension adjuster 75 ... Bobbin traverse type winding machine 83 ... Take-up capstan part G ... Reducing gas

Claims (2)

純銅系材料で形成した銅線に対してメッキ前処理を行うメッキ前処理手段と、
銅線の表面に半田メッキを施すメッキ手段と、
表面にメッキを施した銅線を巻取る巻取り手段とで構成される半田メッキ線の製造装置であって、
前記メッキ前処理手段に、銅線を軟化焼鈍して低耐力化する軟化焼鈍手段を備え、
低耐力化した前記銅線を、該銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とし、
前記軟化焼鈍手段、前記メッキ手段、及び、前記巻取り手段を、銅線の走行方向の上流側からこの順に一連配置し、
前記メッキ前処理手段に、銅線に対して加熱処理を行う加熱処理手段と、洗浄手段とを備え、
前記加熱処理手段と前記洗浄手段とを、前記軟化焼鈍手段よりも銅線走行方向の上流側にこの順に配置し、
前記加熱処理手段を、
100〜300度の加熱処理温度に設定可能に構成するとともに、
前記軟化焼鈍手段を、
800〜900度の軟化焼鈍温度に設定可能に構成した
半田メッキ線の製造装置
Pre-plating treatment means for performing pre-plating treatment on a copper wire formed of a pure copper-based material;
Plating means for performing solder plating on the surface of the copper wire;
A solder plated wire manufacturing apparatus comprising winding means for winding a copper wire plated on the surface,
The plating pretreatment means includes a softening annealing means for softening and annealing the copper wire to reduce the strength.
The copper wire having a reduced yield strength is configured to be wound by the winding means with a winding force lower than the yield strength of the copper wire,
The softening annealing means, the plating means, and the winding means are arranged in this order from the upstream side in the traveling direction of the copper wire,
The plating pretreatment means includes a heat treatment means for performing a heat treatment on the copper wire, and a cleaning means,
The heat treatment means and the cleaning means are arranged in this order on the upstream side in the copper wire traveling direction from the softening annealing means,
The heat treatment means,
While being configured to be set at a heat treatment temperature of 100 to 300 degrees ,
The softening annealing means,
A solder plated wire manufacturing apparatus configured to be set at a softening annealing temperature of 800 to 900 degrees .
銅系材料で形成した銅線に対してメッキ前処理を行うメッキ前処理工程と、
銅線の表面に半田メッキを施すメッキ工程と、
表面にメッキを施した銅線を巻取る巻取り工程とを経て製造される半田メッキ線の製造方法であって、
前記メッキ前処理工程では、銅線を軟化焼鈍して低耐力化する軟化焼鈍工程を行い、
前記巻取り工程を、
低耐力化した前記銅線の耐力よりも低い巻取り力で巻取る工程とし、
前記巻取り工程の間、前記軟化焼鈍工程と前記メッキ工程とを連続して行い、
前記メッキ前処理工程において、
前記軟化焼鈍工程の前に銅線に対して加熱処理工程と、洗浄工程とをこの順で行い、
加熱処理工程において、100〜300度の加熱処理温度に設定するとともに、
前記軟化焼鈍工程において、800〜900度の軟化焼鈍温度に設定する
半田メッキ線の製造方法。
A pre-plating treatment step of performing plating pretreatment to copper wire formed of pure copper material,
A plating process for solder plating on the surface of the copper wire;
A method of manufacturing a solder plated wire manufactured through a winding step of winding a copper wire plated on the surface,
In the plating pretreatment process, a softening annealing process is performed in which the copper wire is softened and annealed to reduce strength.
The winding step,
As a process of winding with a lower winding strength than the strength of the copper wire having reduced strength,
During the winding process, the softening annealing process and the plating process are continuously performed,
In the plating pretreatment step,
Before the softening annealing step, the copper wire is subjected to a heat treatment step and a cleaning step in this order,
In the heat treatment step, the heat treatment temperature is set to 100 to 300 degrees ,
In the softening annealing step, a method for producing a solder plated wire, which is set to a softening annealing temperature of 800 to 900 degrees .
JP2011078949A 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus Active JP5367752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078949A JP5367752B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010133533 2010-06-11
JP2010133533 2010-06-11
JP2011078949A JP5367752B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2012017515A JP2012017515A (en) 2012-01-26
JP5367752B2 true JP5367752B2 (en) 2013-12-11

Family

ID=45098082

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2011078949A Active JP5367752B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078950A Active JP5367753B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078951A Active JP5255668B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078952A Active JP5367754B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011127089A Active JP5255673B2 (en) 2010-06-11 2011-06-07 Solder plated wire manufacturing method and manufacturing apparatus

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2011078950A Active JP5367753B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078951A Active JP5255668B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011078952A Active JP5367754B2 (en) 2010-06-11 2011-03-31 Solder plated wire manufacturing method and manufacturing apparatus
JP2011127089A Active JP5255673B2 (en) 2010-06-11 2011-06-07 Solder plated wire manufacturing method and manufacturing apparatus

Country Status (5)

Country Link
JP (5) JP5367752B2 (en)
KR (2) KR101630309B1 (en)
CN (1) CN102939402B (en)
TW (1) TWI558847B (en)
WO (1) WO2011155477A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367752B2 (en) * 2010-06-11 2013-12-11 古河電気工業株式会社 Solder plated wire manufacturing method and manufacturing apparatus
JP5889644B2 (en) * 2012-01-23 2016-03-22 三菱電線工業株式会社 Method for producing solar cell lead wire
US10391589B2 (en) 2015-03-30 2019-08-27 Senju Metal Industry Co., Ltd. Flux applying device
US20190071760A1 (en) * 2016-03-11 2019-03-07 Nisshin Steel Co., Ltd. Production method for molten-aluminum-plated copper wire
JP6750263B2 (en) * 2016-03-18 2020-09-02 富士電機株式会社 Power semiconductor module
JP2018162494A (en) * 2017-03-26 2018-10-18 日新製鋼株式会社 Method and apparatus for manufacturing plated steel wire
JP6476227B2 (en) * 2017-03-31 2019-02-27 Jx金属株式会社 Copper or copper alloy strip, traverse coil and manufacturing method thereof
CN107904367A (en) * 2017-11-29 2018-04-13 苏州金钜松机电有限公司 A kind of filament annealing component
WO2022085207A1 (en) * 2020-10-24 2022-04-28 アートビーム有限会社 Solder coating device and solder coating method
CN113930592A (en) * 2021-09-22 2022-01-14 江西腾江铜业有限公司 Annealing device is used in tinned wire processing
CN114807585A (en) * 2022-06-28 2022-07-29 常州九天新能源科技有限公司 Ultra-thin welding strip annealing equipment for laminated tile assembly
JP7409580B1 (en) 2022-07-25 2024-01-09 Jfeスチール株式会社 Furnace temperature control device, furnace temperature control method, and coke manufacturing method

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138891Y2 (en) * 1972-10-03 1976-09-24
JPS5114138A (en) * 1974-07-25 1976-02-04 Chugai Ro Kogyo Kaisha Ltd RENZOKUAENMETSUKISETSUBINIOKERU AENJOKINO JOKYOHOHOOYOBISONO SOCHI
FR2280920A1 (en) * 1974-08-03 1976-02-27 Philips Nv RADIOSCOPIC FILM CASSETTE
JPS5187436A (en) * 1975-01-30 1976-07-31 Nippon Steel Corp NETSUSEKI KINZOKUMETSUKIHO
JPS6164862A (en) * 1984-09-04 1986-04-03 Hitachi Cable Ltd Continuous wire drawing, annealing and plating method and device therefor
JPH0615709B2 (en) * 1984-11-15 1994-03-02 日立電線株式会社 Thickening method for metal materials
JPS6267124A (en) * 1985-09-18 1987-03-26 Hitachi Cable Ltd Annealing apparatus for wire rod
JPH02129355A (en) * 1988-11-08 1990-05-17 Furukawa Electric Co Ltd:The Hot dipping method for wire
JPH02185958A (en) * 1989-01-13 1990-07-20 Furukawa Electric Co Ltd:The Production of wire plated with metal by hot dipping
JPH07106412B2 (en) * 1990-03-20 1995-11-15 株式会社フジクラ High conductivity copper coated steel trolley wire manufacturing method
JPH0397841A (en) * 1989-09-11 1991-04-23 Mitsubishi Electric Corp Soldered product for copper alloy
JPH055169A (en) * 1990-09-20 1993-01-14 Totoku Electric Co Ltd Production of hot-dip coated wire
US5472739A (en) * 1990-09-20 1995-12-05 Totoku Electric Co., Ltd. Process of producing a hot dipped wire from a base wire, with the absence of iron-based, iron oxide-based and iron hydroxide-based minute particles on surfaces of the base wire
JPH04293757A (en) * 1991-03-23 1992-10-19 Totoku Electric Co Ltd Production of flat square coated wire
JPH0533109A (en) * 1991-07-30 1993-02-09 Furukawa Electric Co Ltd:The Production of hot-dipped material
JPH05115902A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for cold rolling shutter material for disk cassette
JPH05315502A (en) * 1992-05-07 1993-11-26 Hitachi Cable Ltd Method and device for plating slender rod of irregular shape
JP2973350B2 (en) * 1994-06-14 1999-11-08 東京特殊電線株式会社 Manufacturing method of hot-dip wire
JP3005742B2 (en) * 1995-01-27 2000-02-07 東京特殊電線株式会社 Method for manufacturing tin-covered rectangular copper wire
JPH11179422A (en) * 1997-12-22 1999-07-06 Nkk Corp Method for controlling shape of thin steel strip
JPH11302811A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp In-furnace atmosphere gas controller for continuous galvanizing equipment
JP2000080460A (en) 1998-06-29 2000-03-21 Totoku Electric Co Ltd Soldered wire
JP2953660B1 (en) * 1998-10-16 1999-09-27 川崎重工業株式会社 Drive structure of sink roll for hot-dip plating
JP2000282206A (en) * 1999-03-30 2000-10-10 Hitachi Cable Ltd Production of metal-plated wire rod and apparatus therefor
JP2004313881A (en) * 2003-04-14 2004-11-11 Toyobo Co Ltd Winding method for hollow fiber membrane and hollow fiber membrane
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery
JP5491682B2 (en) * 2004-08-13 2014-05-14 日立金属株式会社 Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP2006144104A (en) * 2004-11-24 2006-06-08 Nippon Steel Corp Apparatus and method for continuously annealing steel sheet for hot dip galvanizing
JP4780008B2 (en) * 2006-12-14 2011-09-28 日立電線株式会社 Plating wire for solar cell and manufacturing method thereof
JP5038765B2 (en) * 2006-12-14 2012-10-03 日立電線株式会社 Solder-plated wire for solar cell and manufacturing method thereof
JP5073386B2 (en) * 2007-07-05 2012-11-14 株式会社Neomaxマテリアル ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
KR100924317B1 (en) * 2009-03-09 2009-11-02 주식회사 월드비씨 Wire making apparatus for pv module and making method
JP5367752B2 (en) * 2010-06-11 2013-12-11 古河電気工業株式会社 Solder plated wire manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JP2012017518A (en) 2012-01-26
TWI558847B (en) 2016-11-21
JP5255673B2 (en) 2013-08-07
WO2011155477A1 (en) 2011-12-15
CN102939402B (en) 2014-12-10
KR101541790B1 (en) 2015-08-05
KR20150055098A (en) 2015-05-20
JP5255668B2 (en) 2013-08-07
JP2012017517A (en) 2012-01-26
JP2012017515A (en) 2012-01-26
JP2012017523A (en) 2012-01-26
TW201211309A (en) 2012-03-16
KR101630309B1 (en) 2016-06-14
KR20130040899A (en) 2013-04-24
JP2012017516A (en) 2012-01-26
JP5367754B2 (en) 2013-12-11
JP5367753B2 (en) 2013-12-11
CN102939402A (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5367752B2 (en) Solder plated wire manufacturing method and manufacturing apparatus
JP5976434B2 (en) Method for producing oxygen-free copper rod
CN101820000B (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
KR20170088953A (en) Thin glass sheet and system and method for forming the same
CN105448426A (en) Tinned copper wire production technology process
US20180240930A1 (en) Method and apparatus for manufacturing lead wire for solar cell
CN103214166B (en) Method and apparatus for elongating a glass preform
JPWO2012111185A1 (en) Solder-plated copper wire and manufacturing method thereof
JP2018145024A (en) Method and apparatus for manufacturing optical fiber preform for drawing
JP5831104B2 (en) Apparatus and method for removing surface deposits on roll in molten metal plating bath
CN112658050A (en) Processing technology of copper-clad aluminum wire
CN105070421A (en) Copper-clad steel contact wire production equipment and copper-clad steel contact wire production method
JP2009122229A (en) Metal coating optical fiber and manufacturing method of the same
CN216738472U (en) Annealing and tinning production line for fine copper wires
JPH08283927A (en) Production of hot dip tin coated mild copper wire
JP5055857B2 (en) CVD equipment
JP2717920B2 (en) Manufacturing method of tin-plated copper alloy spring wire
CN113201708A (en) Heat treatment furnace, heating device, wire electrode manufacturing method, and thermal diffusion treatment method
JP2013201182A (en) Method for manufacturing palladium coated copper bonding wire
WO2012063396A1 (en) Plated wire material, production method for same, and production device
JP2013000835A (en) Wire for wire saw
JPS6217160A (en) Hot dipping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R151 Written notification of patent or utility model registration

Ref document number: 5367752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250