JP5195610B2 - 回転角度検出装置 - Google Patents
回転角度検出装置 Download PDFInfo
- Publication number
- JP5195610B2 JP5195610B2 JP2009103789A JP2009103789A JP5195610B2 JP 5195610 B2 JP5195610 B2 JP 5195610B2 JP 2009103789 A JP2009103789 A JP 2009103789A JP 2009103789 A JP2009103789 A JP 2009103789A JP 5195610 B2 JP5195610 B2 JP 5195610B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- magnet
- magnetic
- rotation angle
- intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
従来より、回転軸を中心にして回転するロータに固定された磁石を検出対象と連動して回転させ、磁石の回転により生じる磁界の変化を磁気検出素子で検出し、この磁気検出素子のセンサ出力信号に基づいて検出対象の回転角度を検出する回転角度検出装置が知られている(例えば、特許文献1参照)。
ここで、特許文献1では、磁石が、回転軸近傍に略平行で、磁束密度が略均一な磁界を形成する2つのマグネットにより構成されている。これらのマグネットは、互いに180°反対側に配置されている。
ところが、特許文献1の回転角度検出装置においては、マグネットおよびホール素子が共に2個ずつ必要となるので、部品点数が多くコストを上昇させるという不具合があった。
磁石は、プラスチックマグネットが使用されている。また、磁気センサは、リニアタイプのホール素子が使用されている。
ところが、従来の回転角度検出装置においては、プラスチックマグネットを使用しているので、コストが高いという問題がある。
また、単純に磁気センサとして1個のON−OFFタイプのホール素子を使用し、1個のフェライト磁石を使用した場合、バルブの中間固着故障、バルブの開オーバーターン(全開位置を通り越す故障)、リンクの位相ズレ等の故障検出ができないという問題がある。
回転角度検出装置(従来例1)は、図7に示したように、バルブと連動して回転するロータ100と、このロータ100における全閉位置に対応した部位(ロータ端面)に固定された1個のマグネット101と、ロータ100と連動して回転するマグネット101の磁束を検出する1個の磁気センサ103とを備えている。
ロータ100の回転中心軸線(O)を中心とする所定の回転軌跡上で、且つバルブの全閉位置に対応した位置(バルブ全閉時に磁気センサ103の感磁面と対向する部位)には、マグネット101が固定されている。マグネット101は、ロータ100の回転軸と平行な回転軸方向に着磁した直方体形状のプラスチックマグネットである。また、磁気センサ103は、ON−OFFタイプのホールICが使用されている。
ロータ100の回転軸を中心とする所定の回転軌跡上で、且つバルブの全閉位置に対応した部位(バルブ全閉時に磁気センサ103の感磁面と対向する部位)には、マグネット101が固定されている。また、ロータ100の回転軸を中心とする所定の回転軌跡上で、且つバルブの全開位置に対応した部位(バルブ全開時に磁気センサ103の感磁面と対向する部位)には、マグネット102が固定されている。
マグネット101、102は、ロータ100の回転軸と平行な回転軸方向に着磁した直方体形状のプラスチックマグネットである。また、磁気センサ103は、ON−OFFタイプのホールICが使用されている。
また、ロータ100が回転してバルブが全開位置まで開くと、マグネット102の磁極面と磁気センサ103の感磁面とが所定のギャップを隔てて対向して配置される。このとき、マグネット102から発生し、磁気センサ103を通過する磁束密度が所定値以上の高磁束密度となる。あるいは磁気センサ103の感磁面に対するマグネット102の磁力線の交差角度(入射角度)が略直角となり、磁気センサ103のセンサ出力電圧がON電圧(V1)となる。
ところが、従来の回転角度検出装置(従来例1)においては、マグネット101がバルブの全閉位置に対応した位置のみに設置されている。これにより、バルブの全閉位置を検出した以降は、磁気センサ103の感磁面に対するマグネット101の磁力線の交差角度(入射角度)が鋭角となり、磁気センサ103を通過する磁束密度が低磁束密度となるので、磁気センサ103より出力されるセンサ出力電圧が一定値(OFF電圧V2、V3)となる。このため、バルブの全開位置(V3)、バルブの開オーバーターン(全開位置を通り越す故障:V3)とバルブの中間固着故障(V2)との識別(検出)ができないという問題があった。
そして、2つの第1、第2磁石を設置したロータの回転に伴って、磁気センサを通過する磁束密度が変化する。
さらに、本発明によれば、内燃機関の燃焼室とサージタンクとを連通し、互いに吸気通路長が異なる2つの第1、第2吸気通路のうち吸気通路長が短い方の吸気通路を開閉するバルブ(可変吸気制御弁の弁体)を備えている。これにより、内燃機関の可変吸気装置に使用されるバルブの全閉位置と全開位置との判別(検出)を的確に行うことができる。また、内燃機関の可変吸気装置に使用されるバルブの開オーバーターンなのか、あるいはバルブの中間固着故障なのかの識別(検出)を容易に行うことができる。したがって、内燃機関の可変吸気装置の故障検出を容易に行うことができる。
請求項2に記載の発明によれば、バルブとロータとを連結する複数のリンクプレートと、ロータおよび複数のリンクプレートを介して、バルブを回転駆動するアクチュエータとを備えている。これにより、リンク式の吸気装置の故障検出を容易に行うことができる。
請求項4に記載の発明によれば、第2磁石の形状または第1磁石の形状と異なる形状とは、第2磁石の高さまたは第1磁石の高さと異なる形状のことである。つまり2つの第1、第2磁石として、サイズのみが異なる相似形状の磁石、すなわち、高さ寸法の異なる直方体形状の磁石が使用されている。
なお、2つの第1、第2磁石として、バルブ全閉時に第1磁石と磁気センサとの距離(ギャップ長)とバルブ全開時に第2磁石と磁気センサとの距離(ギャップ長)とが異なるように、オフセット配置された磁石を使用しても良い。
また、2つの第1、第2磁石として、サイズ、形状が同じでも磁気特性の異なる、例えば磁気の強さまたは磁力線の本数が異なる磁石を使用しても良い。
請求項6に記載の発明によれば、磁気センサは、リニアタイプの磁気検出素子を含んで構成されている。
請求項7に記載の発明によれば、2つの第1、第2磁石としてフェライト磁石が採用されている。つまりプラスチックマグネットよりも安価なフェライトマグネットを使用することにより、コストを低減することが可能となる。
本発明は、内燃機関の可変吸気装置において、吸気通路長が異なる2つの第1、第2吸気通路を有しており、バルブが2つの第1、第2吸気通路のうち吸気通路長が短い方の吸気通路を開閉する際に、バルブの全閉位置と全開位置との判別(検出)を的確に行うという目的、また、バルブの開オーバーターンなのか、あるいはバルブの中間固着故障なのかの識別(検出)を容易に行うという目的を、2つの第1、第2磁石を互いに異なる形状となるように設け、バルブの全閉位置に対応した部位に第1磁石を設置し、且つバルブの全開位置に対応した部位に第2磁石を設置することで実現した。
図1ないし図5は本発明の実施例1を示したもので、図1(a)は回転角度検出装置(バルブ開度センサ)を示した図で、図1(b)はバルブ開度に対するセンサ出力電圧の変化を示した図で、図2(a)は内燃機関の可変吸気システムを示した図で、図2(b)はエンジン制御システムを示した図で、図3はインテークマニホールドを示した図で、図4(a)はリンク機構とアクチュエータを示した図で、図4(b)はリンク機構を示した図で、図5はアダプタを示した図である。
内燃機関の吸気制御装置は、エアクリーナ(内燃機関のエアクリーナ)、電子スロットル装置(内燃機関のスロットル装置)、リンク式の可変吸気装置(内燃機関の可変吸気装置)等を備えている。
なお、バルブ1の回転軸であるシャフト2と、ロータプレート4の回転軸であるシャフト3とを連結するリンク機構は、3つのリンクプレート11〜13およびストッパレバー14等を有している。
排気ダクトは、エンジン本体24に接続するエキゾーストマニホールド等によって構成されている。排気ダクトの内部には、エンジンの各気筒毎の燃焼室より流出した排気ガスを、エキゾーストマニホールド、排気浄化装置を経由して、外部に排出するための排気通路(内燃機関の排気通路)が形成されている。
複数の吸気分岐管は、エンジンの各気筒毎の燃焼室および吸気ポートに独立して接続されて、サージタンク室25より分岐している。これらの吸気分岐管の内部には、エンジンの各気筒毎の燃焼室および吸気ポートとサージタンク22のサージタンク室25とを連通する独立吸気通路がそれぞれ形成されている。
各独立吸気通路は、互いに吸気通路長が異なる2つの分岐吸気通路(第1、第2吸気通路)31、32、およびこれらの分岐吸気通路31、32の合流部33とエンジンの各気筒毎の燃焼室および吸気ポートとを連通する共通吸気通路34を含んで構成されている。
各分岐吸気通路32は、サージタンク22のサージタンク室25の壁面(空気流方向の下流側壁面)で開口した入口ポート27から合流部33までの吸気通路長が、各分岐吸気通路31の吸気通路長よりも短くなっている。
なお、インテークマニホールド23には、2つの分岐吸気通路31、32を区画する隔壁部28、29が形成されている。また、共通吸気通路34を設けずに、2つの分岐吸気通路31、32の合流部33が、エンジンの各吸気ポート内に設けられていても構わない。
エンジンの各気筒毎に独立して接続される複数の吸気ポート(インテークポート)は、ポペット型の吸気バルブ(インテークバルブ)によって開閉される。また、エンジンの各気筒毎に独立して接続される複数の吸気ポートは、ポペット型の排気バルブ(エキゾーストバルブ)によって開閉される。
ここで、慣性過給効果とは、エンジンの各気筒毎の燃焼室に吸い込まれる吸入空気の脈動によって発生する慣性力を利用して、より多くの吸入空気をエンジンの各気筒毎の燃焼室に吸入する過給効果のことである。
インテークマニホールド23の各吸気分岐管の内部には、上述したように、2つの分岐吸気通路31、32および1つの共通吸気通路34がそれぞれ形成されている。このインテークマニホールド23の内部には、シャフト2の回転軸方向に貫通する貫通孔35が形成されている。
バルブ1は、分岐吸気通路32を開閉することで、サージタンク22のサージタンク室25の壁面で開口した入口ポート26、27から合流部33までの吸気通路長を変更するバタフライ型バルブである。これらのバルブ1は、各吸気分岐管の内部(各分岐吸気通路32)において、合流部33よりも吸気流方向の上流側に設置されている。
バルブ1は、シャフト2の周囲を取り囲むようにバルブ軸36を有している。このバルブ軸36の内部には、シャフト2の回転軸方向に貫通する貫通孔(多角孔、四角孔)37が形成されている。
シャフト2は、シャフト3の回転軸と平行な回転軸方向に真っ直ぐに延びている。
また、シャフト2には、リンクプレート11とストッパレバー14を取り付ける軸部(リンク取付部、径小部)40が設けられている。
動力伝達機構は、モータ9のモータシャフトの回転速度を所定の減速比となるように減速すると共に、モータ9のモータシャフトの駆動力(モータ出力軸トルク、モータトルク)を増大させる歯車減速機構、およびこの歯車減速機構の出力軸であるシャフト3の回転運動を、シャフト2に伝達するリンク機構等によって構成されている。
ここで、シャフト3または最終減速ギヤ41に、全てのバルブ1を閉弁作動方向または開弁作動方向に付勢するスプリングを組み付けても良い。
最終減速ギヤ41は、合成樹脂によって円弧状に形成されている。この最終減速ギヤ41の内部には、シャフト3の外周に支持固定されるストッパレバー(ギヤストッパ)42がインサート成形されている。
ストッパレバー42の折り曲げ部44の回転方向の一方側(閉弁作動方向)には、全閉ストッパ45に当接可能な全閉ストッパ部が設けられている。また、ストッパレバー42の折り曲げ部44の回転方向の他方側(開弁作動方向)には、全開ストッパ46に当接可能な全開ストッパ部が設けられている。
ここで、図5において、全閉ストッパ45に近い位置に示されているストッパレバー42の全閉ストッパ部は、リンク機構の位相ズレ等が発生していない場合、バルブ全閉位置に対応した位置で停止している。また、図5において、全開ストッパ46に近い位置に示されているストッパレバー42の全開ストッパ部は、リンク機構の位相ズレ等が発生していない場合、バルブ全開位置に対応した位置で停止している。なお、バルブ全閉位置とバルブ全開位置との位相差は、例えば80°である。また、全閉ストッパ45と全開ストッパ46との位相差は、例えば90°である。
アダプタ15の内周部には、円弧状の内周凹部47、48が一体的に形成されている。 アダプタ15の内周凹部47、48間には、閉オーバーターン故障のない場合、可変吸気制御弁のバルブ全閉時にストッパレバー42の全閉ストッパ部との間に所定の隙間を隔てて対向して配置される凸状の全閉ストッパ45が設けられている。また、アダプタ15の内周凹部47、48間には、開オーバーターン故障のない場合、可変吸気制御弁のバルブ全開時にストッパレバー42の全開ストッパ部との間に所定の隙間を隔てて対向して配置される凸状の全開ストッパ46が設けられている。
アダプタ15の内部には、シャフト3の回転軸方向に貫通する貫通孔53が形成されている。
シャフト3は、バルブ1のシャフト2の回転軸と平行な回転軸方向に真っ直ぐに延びている。また、シャフト3は、オイルシール54、ベアリング55およびボールベアリング56を介して、アダプタ15の内周部(貫通孔53の孔壁面)に回転自在に支持されている。シャフト3の回転軸方向の一端部には、リンク機構のリンクプレート13がナット等を用いて結合(締結固定)される軸部(リンク取付部、径小部)57が設けられている。また、シャフト3の回転軸方向の他端部には、座付きボルト43のボルト軸部と螺合するネジ孔が形成されている。
リンクプレート11は、バルブ1のシャフト2とリンクプレート12とを機械的に連結する第1リンク部材である。このリンクプレート11は、リンクプレート12を回転自在に軸支するピン61が固定されている。また、リンクプレート12は、リンクプレート11とリンクプレート13とを機械的に連結する第2リンク部材である。このリンクプレート12は、リンクプレート11のピン61とリンクプレート13のピン62とを連結している。また、リンクプレート13は、リンクプレート12とシャフト3とを機械的に連結する第3リンク部材である。このリンクプレート13は、リンクプレート12を回転自在に軸支するピン62が固定されている。
ストッパレバー14は、インテークマニホールド23等の固定部材に一体的に形成された全閉ストッパ63または全開ストッパ64に選択的に係止されるように構成されている。このストッパレバー14の回転方向の一端側には、全閉ストッパ63に係止される全閉ストッパ部が設けられている。また、ストッパレバー14の回転方向の他端側には、全開ストッパ64に係止される全開ストッパ部が設けられている。
ECU8には、制御処理、演算処理を行うCPU、制御プログラムまたは制御ロジックや各種データを保存する記憶装置(ROMやRAM等のメモリ)、入力回路(入力部)、出力回路(出力部)、電源回路、タイマー等の機能を含んで構成される周知の構造のマイクロコンピュータが設けられている。
また、ECU8は、クランク角度センサ、アクセル開度センサ、スロットル開度センサ、磁気センサ7を含むバルブ開度センサ(回転角度検出装置)、冷却水温センサおよびエアフローメータ等の各種センサからのセンサ出力信号が、A/D変換器によってA/D変換された後に、マイクロコンピュータに入力されるように構成されている。なお、これらのクランク角度センサ、アクセル開度センサ、スロットル開度センサ、バルブ開度センサ、冷却水温センサおよびエアフローメータ等によって、エンジンの運転状況(運転状態)を検出する運転状態検出手段が構成される。
ここで、クランク角度センサは、エンジンのクランクシャフトの回転角度を電気信号に変換するピックアップコイルよりなり、例えば30°CA(クランク角度)毎にNEパルス信号が出力される。また、マイクロコンピュータは、クランク角度センサより出力されたNEパルス信号の間隔時間を計測することによってエンジン回転数(NE)を検出(算出)するための回転速度検出手段として機能する。
そして、磁気センサ7より出力されるセンサ出力信号(センサ出力電圧:Vout)は、所定のサンプリング周期毎に繰り返しA/D変換回路を介してマイクロコンピュータに取り込まれる。
このロータプレート4は、磁気センサ7と対向する側の端面(対向面)に2つのマグネット5、6を別々に離した状態で固定している。具体的に、ロータプレート4は、バルブ全閉位置に対応した部位(ロータプレート端面)にマグネット5を合成樹脂(非磁性体)66のモールド成形により設置(固定)している。また、ロータプレート4は、バルブ全開位置に対応した部位(ロータプレート端面)にマグネット6を合成樹脂66のモールド成形により設置(固定)している。
具体的に、マグネット5の幅は、マグネット6の幅よりも小さい。これにより、図1(b)に示したように、磁気センサ7よりECU8に出力されるセンサ出力信号(センサ出力電圧、ON電圧:V1)は、バルブ全閉時とバルブ全開時との間でセンサ出力時間が異なることになる。
また、ロータプレート4の回転に伴って、バルブ全開位置に対応した部位(ロータプレート端面)に設置されたマグネット6の磁極面と磁気センサ7の感磁面とがギャップ(回転軸方向の隙間)を隔てて対向して配置された際(バルブ全開時)に、磁気センサ7よりECU8に出力されるセンサ出力電圧は、バルブ全閉時と比べてセンサ出力時間の比較的に長いON電圧(V1)となる。
磁気センサ7は、2つのマグネット5、6のうちの少なくとも一方のマグネットの磁極面から発生し、磁気センサ7自身を通過する磁束密度の変化を検出する非接触式のホール素子(磁気検出素子)と、このホール素子の出力電圧(ホール電圧)を増幅する増幅回路とを一体化したホールICである。なお、ホールICの板厚方向の両側には、感磁面が形成されている。また、ホールICの板厚方向の両側に磁性体(磁性プレート)を設置しても良い。
磁気センサ7は、バルブ全閉時(本例では全閉位置近傍も含む)に、マグネット5の磁極面との間に所定のギャップを隔てて対向して配置される。なお、磁気センサ7の感磁面の幅方向の中心位置(全閉位置)において、マグネット5の磁力線が磁気センサ7の感磁面に対して略90°の交差角度で入射するように、マグネット5の磁極面と磁気センサ7の感磁面とを対向させることが望ましい。
磁気センサ7は、ON−OFFタイプのホール素子(非接触式の磁気検出素子)を含んで構成されている。この磁気センサ7は、自身を通過する磁束密度が所定値以上の高磁束密度の時、つまり2つのマグネット5、6のうちの少なくとも一方のマグネットの磁力線と自身の感磁面との交差角度が所定角度(略直角:90°)以上の時に、磁気センサ7よりECU8に出力されるセンサ出力電圧(Vout)が最大値(ON電圧:V1)となるように構成されている。
なお、2つのマグネット5、6のうちの少なくとも一方のマグネットの磁気変化、あるいは2つのマグネット5、6のうちの少なくとも一方のマグネットの磁力線が磁気センサ7の感磁面と交差する角度を検出するホール素子を使用しても良い。
次に、本実施例の可変吸気装置(内燃機関の可変吸気システム)の作用を図1ないし図5に基づいて簡単に説明する。
ECU8は、センサ出力時間の比較的に短いON電圧(V1)を検出すると、バルブ1の開度が全閉位置に到達したと判断して、モータ9への電力の供給を停止する。つまりモータ9をOFFする。
このとき、サージタンク22のサージタンク室25から2つの分岐吸気通路31、32の合流部33までの吸気通路長は、比較的に長い通路長となる。
これにより、エンジンの慣性過給効果を利用した低回転領域における吸入空気量の充填効率を良好なものとすることができるので、エンジン出力を向上することができる。
ここで、本実施例の可変吸気装置では、分岐吸気通路31よりも分岐吸気通路32の方が吸気通路長が短く、分岐吸気通路32を通過する吸入空気の圧力損失(通風抵抗)の方が分岐吸気通路31を通過する吸入空気の圧力損失(通風抵抗)よりも小さいため、サージタンク室25内に導入される吸入空気は、分岐吸気通路31よりも分岐吸気通路32の方に流れ込み易い。
ECU8は、センサ出力時間の比較的に長いON電圧(V1)を検出すると、バルブ1の開度が全開位置に到達したと判断して、モータ9への電力の供給を停止する。つまりモータ9をOFFする。
このとき、サージタンク22のサージタンク室25から2つの分岐吸気通路31、32の合流部33までの吸気通路長は、比較的に短い通路長となる。また、サージタンク22のサージタンク室25から2つの分岐吸気通路31、32の合流部33までの吸気通路断面積は、分岐吸気通路31のみが開放されている場合と比べて広い断面積となる。
これにより、エンジンの慣性過給効果を利用した高回転領域における吸入空気量の充填効率を良好なものとすることができるので、エンジン出力を向上することができる。
次に、本実施例の内燃機関の可変吸気システムのバルブ開度(バルブ回転角度)を検出する回転角度検出装置による全閉位置、全開位置、中間固着故障および開オーバーターン故障の検出方法を図1ないし図5に基づいて簡単に説明する。
このとき、ECU8は、磁気センサ7から入力したセンサ出力電圧に基づいてバルブ1の開度を判断する。ECU8は、磁気センサ7のセンサ出力電圧が、センサ出力時間の比較的に短いON電圧(V1)であるため、内燃機関の可変吸気システムのバルブ開度が全閉位置に到達したと判断し、メモリに記憶する。
このとき、ECU8は、モータ9に電力を供給(バルブ1を開弁作動方向に駆動する側へ通電)しており、磁気センサ7の出力が、上記のON電圧(V1)から切り替わったOFF電圧(V2)であるため、内燃機関の可変吸気システムのバルブ開度(バルブ回転角度)が、全閉位置と全開位置との中間の位置(中間位置)にあると判断し、メモリに記憶する。
このとき、ECU8は、磁気センサ7から入力したセンサ出力電圧に基づいてバルブ1の開度を判断する。ECU8は、磁気センサ7のセンサ出力電圧が、センサ出力時間の比較的に長いON電圧(V1)であるため、内燃機関の可変吸気システムのバルブ開度が全開位置に到達したと判断し、メモリに記憶する。
このとき、ECU8は、磁気センサ7から入力したセンサ出力電圧がOFF電圧(V2)であり、しかもそのOFF電圧(V2)が所定時間以上継続しているため、内燃機関の可変吸気システムの故障、つまり中間固着故障であると判断し、メモリに記憶する。
この場合、磁気センサ7よりECU8に出力されるセンサ出力電圧(Vout)は、ON電圧(V1)よりも低いOFF電圧(V3)となる。
このとき、ECU8は、センサ出力時間の比較的に長いON電圧(V1)を通り越して、OFF電圧(V3)を入力することになるため、内燃機関の可変吸気システムの故障、つまり開オーバーターン故障であると判断し、メモリに記憶する。
以上のように、本実施例の可変吸気装置(内燃機関の可変吸気システム)においては、マグネット5の磁極面の幅方向の寸法(サイズ)とマグネット6の磁極面の幅方向の寸法(サイズ)とが異なっている。すなわち、2つのマグネット5、6は、ロータプレート4の回転方向に沿った幅方向の寸法(サイズ)が異なる相似形状(直方体形状)のフェライト磁石である。
具体的には、バルブ全閉位置に対応した部位(ロータプレート端面)にマグネット5を設置し、且つバルブ全開位置に対応した部位(ロータプレート端面)にマグネット6を設置している。これにより、マグネット5、6は、バルブ全閉位置からバルブ全開位置に至るまでの距離(例えば80°)だけ離れた位置に固定されている。
したがって、単純に磁気センサ7として1個のON−OFFタイプのホールICを使用し、2個のフェライト磁石(マグネット5、6)を使用した場合であっても、磁気センサ7よりECU8に出力されるON電圧(V1)のセンサ出力時間の違いに基づいてバルブ位置(実バルブ開度)を容易に特定することができるので、バルブ全閉位置とバルブ全開位置との判別(検出)を的確に行うことができる。
例えばセンサ出力時間の比較的に短いON電圧(V1)を検出した後に、バルブ1を開弁作動方向に回転駆動するようにモータ9を通電制御することで、磁気センサ7のセンサ出力電圧がON電圧(V1)よりも低いOFF電圧(V2)となったら、バルブ位置(実バルブ開度)が全閉位置と全開位置との中間位置(中間開度)であると判断できる。
したがって、単純に磁気センサ7として1個のON−OFFタイプのホールICを使用し、2個のフェライト磁石(マグネット5、6)を使用した場合であっても、バルブ1の開オーバーターン故障なのか、あるいはバルブ1の中間固着故障なのかの識別(検出)を容易に行うことができる。また、バルブ1の開オーバーターン故障を検出できるので、バルブ1のシャフト2とロータプレート4のシャフト3とを連結するリンク機構(3つのリンクプレート11〜13等)の位相ズレの検出が可能となる。
また、2つのマグネット5、6として、プラスチックマグネット(樹脂磁石)よりも安価なフェライト磁石を使用しているので、回転角度検出装置(バルブ開度センサ)の製品コストを低減することができる。また、磁気センサ7として、リニアタイプよりも安価なON−OFFタイプのホール素子を含んで構成される1個のホールICを使用しているので、回転角度検出装置(バルブ開度センサ)の製品コストを更に低減することができる。
磁気センサ7は、自身を通過する磁束密度が高磁束密度である程、あるいは磁力または磁気の強さに対応して、あるいは磁力線の本数が多い程、ECU8に出力されるセンサ出力電圧(Vout)が高くなるように構成されている。
したがって、図6(b)に示したように、磁気センサ7よりECU8に出力されるセンサ出力電圧(ON電圧V1、V3)は、バルブ全開時とバルブ全閉時との間でセンサ出力電圧のレベルが異なることになる。
また、磁気センサ7よりECU8に出力されるセンサ出力電圧は、バルブ1が全閉位置と全開位置との中間の中間開度にある場合、バルブ全閉時およびバルブ全開時と比べてセンサ出力電圧(レベル)が低いON電圧(V2)となる。また、開オーバーターン故障時には、磁気センサ7よりECU8に出力されるセンサ出力電圧が、ON電圧(V2)と同程度のON電圧(V4)となる。
また、単純に磁気センサとして1個のリニアタイプのホールICを使用し、2個のフェライト磁石(マグネット5、6)を使用した場合であっても、バルブ1の開オーバーターン故障なのか、あるいはバルブ1の中間固着故障なのかの識別(検出)を容易に行うことができる。
また、バルブ1の開オーバーターン故障を検出できるので、バルブ1のシャフト2とロータプレート4のシャフト3とを連結するリンク機構(3つのリンクプレート11〜13等)の位相ズレの検出が可能となる。
本実施例では、可変吸気制御弁の弁体であるバルブ1を回転駆動するアクチュエータを、モータ9と動力伝達機構(例えば歯車減速機構およびリンク機構等)とを含んで構成される電動アクチュエータによって構成したが、可変吸気制御弁の弁体であるバルブ1を駆動するアクチュエータを、負圧制御弁および電動バキュームポンプを備えた負圧作動式アクチュエータや、電磁式アクチュエータによって構成しても良い。
また、可変吸気制御弁の弁体であるバルブ1は、多連一体型のバルブに限定されず、内燃機関の吸気通路等の流体流路に設置されるバルブであれば、1個のバルブでも良い。
また、バルブ等の移動体として、バタフライバルブ方式の回転型バルブの他に、片開き式の回転型バルブ、ロータリー型のバルブ、ポペット型のバルブ、シャッター式のバルブ、一辺のみ支持されたドア型のバルブに適用しても良い。
また、本実施例のアクチュエータの歯車減速機構は、2段減速であるが、1段減速あるいは3段減速以上の歯車減速機構でも良い。
実施例1では、ON−OFFタイプのホール素子(磁気検出素子)を含んで構成されるホールICからなる磁気センサ7を使用しているが、リニアタイプのホール素子(磁気検出素子)を含んで構成されるホールICからなる磁気センサ7を使用しても良い。
実施例2では、リニアタイプのホール素子(磁気検出素子)を含んで構成されるホールICからなる磁気センサ7を使用しているが、ON−OFFタイプのホール素子(磁気検出素子)を含んで構成されるホールICからなる磁気センサ7を使用しても良い。
また、磁気検出素子として、ホール素子単体、磁気抵抗素子等の他の磁気検出素子を使用しても良い。
2 シャフト(バルブの回転軸)
3 シャフト(ロータの回転軸)
4 ロータプレート
5 マグネット(第1磁石)
6 マグネット(第2磁石)
7 磁気センサ
8 ECU(エンジン制御ユニット、回転速度検出手段)
9 モータ
11 リンクプレート(リンク機構、第1リンク部材)
12 リンクプレート(リンク機構、第2リンク部材)
13 リンクプレート(リンク機構、第3リンク部材)
22 サージタンク
23 インテークマニホールド
24 エンジン本体
31 分岐吸気通路(第1吸気通路)
32 分岐吸気通路(第2吸気通路)
Claims (7)
- (a)内燃機関の吸気通路を開閉するバルブの回転に連動して回転するロータと、
(b)このロータの回転方向に所定の位相差を持って設置され、前記ロータの回転軸と平行な軸方向に磁力線が向くように着磁された2つの第1、第2磁石と、
(c)前記ロータの回転に伴う磁束密度の変化に対応した信号を出力する磁気センサとを備えた回転角度検出装置において、
前記ロータは、前記バルブの全閉位置または全開位置に対応した位置に前記第1磁石を設置し、且つ前記バルブの全開位置または全閉位置に対応した位置に前記第2磁石を設置しており、
前記第1磁石または前記第2磁石は、前記第2磁石の形状または前記第1磁石の形状と異なる形状を有しており、
前記内燃機関の吸気通路は、前記内燃機関の燃焼室とサージタンクとを連通し、互いに吸気通路長が異なる2つの第1、第2吸気通路を有しており、
前記バルブは、前記2つの第1、第2吸気通路のうち吸気通路長が短い方の吸気通路を開閉することを特徴とする回転角度検出装置。 - 請求項1に記載の回転角度検出装置において、
前記バルブと前記ロータとを連結する複数のリンクプレートと、前記ロータおよび前記複数のリンクプレートを介して、前記バルブを回転駆動するアクチュエータとを備えたことを特徴とする回転角度検出装置。 - 請求項1または請求項2に記載の回転角度検出装置において、
前記第2磁石の形状または前記第1磁石の形状と異なる形状とは、
前記第2磁石の幅または前記第1磁石の幅と異なる形状のことであることを特徴とする回転角度検出装置。 - 請求項1または請求項2に記載の回転角度検出装置において、
前記第2磁石の形状または前記第1磁石の形状と異なる形状とは、
前記第2磁石の高さまたは前記第1磁石の高さと異なる形状のことであることを特徴とする回転角度検出装置。 - 請求項1ないし請求項4のうちのいずれか1つに記載の回転角度検出装置において、
前記磁気センサは、ON−OFFタイプの磁気検出素子を含んで構成されていることを特徴とする回転角度検出装置。 - 請求項1ないし請求項4のうちのいずれか1つに記載の回転角度検出装置において、
前記磁気センサは、リニアタイプの磁気検出素子を含んで構成されていることを特徴とする回転角度検出装置。 - 請求項1ないし請求項6のうちのいずれか1つに記載の回転角度検出装置において、
前記2つの第1、第2磁石は、フェライト磁石であることを特徴とする回転角度検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103789A JP5195610B2 (ja) | 2009-04-22 | 2009-04-22 | 回転角度検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103789A JP5195610B2 (ja) | 2009-04-22 | 2009-04-22 | 回転角度検出装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010256061A JP2010256061A (ja) | 2010-11-11 |
JP5195610B2 true JP5195610B2 (ja) | 2013-05-08 |
Family
ID=43317162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009103789A Expired - Fee Related JP5195610B2 (ja) | 2009-04-22 | 2009-04-22 | 回転角度検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5195610B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2496909A (en) * | 2011-11-28 | 2013-05-29 | Eaton Aerospace Ltd | Valve actuator |
JP5963189B2 (ja) * | 2012-03-21 | 2016-08-03 | 株式会社ケーヒン | 回転角度検出装置 |
JP6157850B2 (ja) * | 2012-12-25 | 2017-07-05 | 株式会社ミクニ | スロットルバルブ装置 |
CN115735097A (zh) * | 2020-07-03 | 2023-03-03 | 株式会社村田制作所 | 位置检测装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2845884B2 (ja) * | 1988-03-30 | 1999-01-13 | 株式会社日立製作所 | スロツトルセンサとその温度補償方法 |
JPH01223309A (ja) * | 1988-03-03 | 1989-09-06 | Hitachi Metals Ltd | 磁気式エンコーダ |
AU626828B2 (en) * | 1988-12-09 | 1992-08-13 | Caterpillar Inc. | Apparatus for determining the speed, angular position and direction of rotation of a rotatable shaft |
JPH03156111A (ja) * | 1989-11-11 | 1991-07-04 | Mazda Motor Corp | 多弁式エンジンの吸気装置 |
US5670886A (en) * | 1991-05-22 | 1997-09-23 | Wolf Controls Corporation | Method and apparatus for sensing proximity or position of an object using near-field effects |
JPH05272616A (ja) * | 1992-03-30 | 1993-10-19 | Shin Kobe Electric Mach Co Ltd | 樹脂製歯付プーリ |
JPH05296051A (ja) * | 1992-04-17 | 1993-11-09 | Nippondenso Co Ltd | 内燃機関の吸気制御装置 |
JP3311429B2 (ja) * | 1993-02-22 | 2002-08-05 | 株式会社デンソー | 基準位置検出装置 |
JPH09228843A (ja) * | 1996-02-20 | 1997-09-02 | Fuji Heavy Ind Ltd | エンジンの吸気制御弁の開閉制御装置 |
JP2000199717A (ja) * | 1999-01-06 | 2000-07-18 | Sony Corp | ロ―タリ―エンコ―ダ |
JP3686616B2 (ja) * | 2002-02-19 | 2005-08-24 | 株式会社巴技術研究所 | 回転弁の開度指示装置 |
DE602004027796D1 (de) * | 2003-02-21 | 2010-08-05 | Fisher Controls Int | Magnetischer positionssensor mit integriertem hall effekt schalter |
JP4640708B2 (ja) * | 2006-02-14 | 2011-03-02 | 株式会社デンソー | 回転角度検出装置 |
JP4494368B2 (ja) * | 2006-05-23 | 2010-06-30 | 愛三工業株式会社 | 電子制御スロットル装置 |
JP2008128857A (ja) * | 2006-11-22 | 2008-06-05 | Mitsubishi Electric Corp | 回転角検出装置 |
-
2009
- 2009-04-22 JP JP2009103789A patent/JP5195610B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010256061A (ja) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7980219B2 (en) | Intake controller for internal combustion engine | |
JP4380765B2 (ja) | 内燃機関の制御装置 | |
JP5299479B2 (ja) | バルブ制御装置 | |
US20090164097A1 (en) | Intake controller for internal combustion engine | |
US20130140477A1 (en) | Electric actuator and control valve including the electric actuator | |
JP5195610B2 (ja) | 回転角度検出装置 | |
EP1884636B1 (en) | Variable geometry intake manifold for an internal combustion engine | |
US10139248B2 (en) | Position sensing apparatus | |
US7112958B2 (en) | Rotational speed and position detector for supercharger | |
JP2010019209A (ja) | 内燃機関の吸気装置 | |
JP6040903B2 (ja) | 流体制御弁 | |
JP5152261B2 (ja) | バルブ制御装置 | |
JP2015200226A (ja) | バルブ制御装置 | |
US8474790B2 (en) | Valve drive apparatus in which a shaft is driven through a speed reducing mechanism to rotate a valve | |
US6945226B2 (en) | Intake manifold valve system, method, and diagnostic | |
US10060760B2 (en) | Magnetix flux position detector that detects the magnetic flux at minimum position along a magnetic circuit | |
JP5333304B2 (ja) | 内燃機関の吸気装置 | |
JP4539642B2 (ja) | 内燃機関の吸気制御装置 | |
JP2015059463A (ja) | 流体制御弁 | |
JP5810809B2 (ja) | 内燃機関の吸気装置 | |
TWI391559B (zh) | Intake vortex control system and method | |
JP4775243B2 (ja) | 可変吸入空気制御装置の異常判定方法 | |
JP5206604B2 (ja) | 内燃機関の吸気制御装置 | |
UA20002U (en) | Actuator of diesel engine bypass valve for exhaust gas | |
JP2015081510A (ja) | 吸気システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |