JP5158027B2 - ナトリウム二次電池 - Google Patents

ナトリウム二次電池 Download PDF

Info

Publication number
JP5158027B2
JP5158027B2 JP2009153519A JP2009153519A JP5158027B2 JP 5158027 B2 JP5158027 B2 JP 5158027B2 JP 2009153519 A JP2009153519 A JP 2009153519A JP 2009153519 A JP2009153519 A JP 2009153519A JP 5158027 B2 JP5158027 B2 JP 5158027B2
Authority
JP
Japan
Prior art keywords
heat
negative electrode
secondary battery
porous layer
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009153519A
Other languages
English (en)
Other versions
JP2010034044A (ja
Inventor
智 久世
豊 鈴木
慶司 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009153519A priority Critical patent/JP5158027B2/ja
Publication of JP2010034044A publication Critical patent/JP2010034044A/ja
Application granted granted Critical
Publication of JP5158027B2 publication Critical patent/JP5158027B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ナトリウム二次電池に関する。
二次電池は、通常、正極と、負極と、該正極−負極間に配置された多孔質フィルムからなるセパレータとを有する。二次電池においては、正極−負極間の短絡等が原因で電池内に異常電流が流れた際に、電流を遮断して、過大電流が流れることを阻止する(シャットダウンする)ことが重要であり、セパレータには、通常の使用温度を越えた場合に、シャットダウンする(多孔質フィルムの微細孔を閉塞する)こと、そしてシャットダウンした後、ある程度の高温まで電池内の温度が上昇しても、その温度により破膜することなく、シャットダウンした状態を維持すること、換言すれば、耐熱性が高いことが求められる。
一方、二次電池としては、リチウム二次電池が代表的であり、携帯電話やノートパソコンなどの小型電源として既に実用化され、さらに、電気自動車、ハイブリッド自動車等の自動車用電源や分散型電力貯蔵用電源等の大型電源として使用可能であることから、その需要は増大しつつある。しかしながら、リチウム二次電池においては、その正極を構成する複合金属酸化物に、リチウム等の稀少金属元素が多く含有されており、大型電源の需要の増大に対応するための前記原料の供給が懸念されている。
これに対し、上記の供給懸念を解決することのできる二次電池として、ナトリウム二次電池の検討がなされている。ナトリウム二次電池は、資源量が豊富でしかも安価な材料により構成することができ、これを実用化することにより、大型電源を大量に供給可能になるものと期待されている。
そして、ナトリウム二次電池として、例えば、特許文献1には、正極として、Na0.7Ni0.3Co0.72を用い、負極として、ナトリウム・鉛合金を用い、セパレータとして、ポリプロピレン製マイクロポーラスフィルムを用いたナトリウム二次電池が、開示されている。
特開平3−291863号公報(実施例1)
しかしながら、従来のナトリウム二次電池は、耐熱性の観点で十分とは言えないばかりか、二次電池諸特性の観点で、種々課題がある。本発明の目的は、従来に比し、耐熱性に優れ、しかも放電容量維持率などの二次電池特性に優れるナトリウム二次電池を提供することにある。
本発明者らは、種々検討した結果、下記の発明が上記目的に合致することを見出し、本発明に至った。
すなわち本発明は、下記の発明を提供する。
<1>正極と、負極と、該正極および該負極の間に配置されたセパレータと、非水電解液とを含み、該セパレータが、耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムからなり、該耐熱多孔層が、該負極側に配置されてなることを特徴とするナトリウム二次電池。
<2>前記耐熱多孔層が、耐熱樹脂を含有する耐熱多孔層である前記<1>記載のナトリウム二次電池。
<3>前記耐熱樹脂が、含窒素芳香族重合体である前記<2>記載のナトリウム二次電池。
<4>前記耐熱樹脂が、芳香族ポリアミドである前記<2>または<3>記載のナトリウム二次電池。
<5>前記耐熱多孔層が、フィラーをさらに含有する前記<2>〜<4>のいずれかに記載のナトリウム二次電池。
<6>前記耐熱多孔層の総重量を100としたとき、前記フィラーの重量が20以上95以下である前記<5>記載のナトリウム二次電池。
<7>前記耐熱多孔層が2種以上のフィラーを含有し、該2種以上のフィラーのそれぞれにつき構成する粒子の平均粒子径を測定して得られる値のうち、1番目に大きい値をD1、2番目に大きい値をD2としたとき、D2/D1の値が0.15以下である前記<5>または<6>記載のナトリウム二次電池。
<8>前記耐熱多孔層の厚みが、1μm以上10μm以下である前記<1>〜<7>のいずれかに記載のナトリウム二次電池。
<9>前記負極が、ナトリウムイオンをドープ・脱ドープすることのできる炭素材料を含有する負極である前記<1>〜<8>のいずれかに記載のナトリウム二次電池。
<10>前記炭素材料が、難黒鉛化炭素材料である前記<9>記載のナトリウム二次電池。
<11>前記多孔質フィルムが、ポリオレフィン樹脂を含有する多孔質フィルムである前記<1>〜<10>のいずれかに記載のナトリウム二次電池。
本発明によれば、耐熱性に優れ、しかも放電容量維持率などの二次電池特性に優れ、さらには資源量が豊富で安価な材料により構成されるナトリウム二次電池を与えることができ、本発明は、極めて実用性に富む。
本発明のナトリウム二次電池は、正極と、負極と、該正極および該負極の間に配置されたセパレータと、非水電解液とを含み、該セパレータが、耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムからなり、該耐熱多孔層が、該負極側に配置されてなることを特徴とする。本発明のこの構成により、ナトリウム二次電池の耐熱性を極めて向上させることができ、しかも放電容量維持率などの二次電池特性をも向上させることができる。また、電気自動車、ハイブリッド自動車等、自動車等の用途における使用の観点において、急速充放電する際、負極−耐熱多孔層界面における微小ナトリウム金属の局所的な析出を抑制し、高い電流レートにおいて高出力とすることができる、すなわちレート特性に優れるナトリウム二次電池を得ることができる。また、このナトリウム金属の局所的発生が重なり、デンドライトに成長することで、正極−負極が短絡し得る状態になり、非水電解液の加熱を惹起したとしても、その加熱によりデンドライトは溶解する傾向にあり、結果的には、充放電を繰り返した際のサイクル特性にも優れるナトリウム二次電池を得ることができる。
本発明において、セパレータは、耐熱多孔層と多孔質フィルムと積層された積層多孔質フィルムからなる。該積層多孔質フィルムにおいて、耐熱多孔層は、多孔質フィルムよりも耐熱性の高い層であり、該耐熱多孔層は、無機粉末から形成されていてもよいし、耐熱樹脂を含有していてもよい。耐熱多孔層が、耐熱樹脂を含有することにより、塗工などの容易な手法で、耐熱多孔層を形成することができる。耐熱樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホン、ポリエーテルイミドを挙げることができ、耐熱性をより高める観点で、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホン、ポリエーテルイミドが好ましく、より好ましくは、ポリアミド、ポリイミド、ポリアミドイミドである。さらにより好ましくは、芳香族ポリアミド(パラ配向芳香族ポリアミド、メタ配向芳香族ポリアミド)、芳香族ポリイミド、芳香族ポリアミドイミド等の含窒素芳香族重合体であり、とりわけ好ましくは芳香族ポリアミド、製造面で、特に好ましいのは、パラ配向芳香族ポリアミド(以下、「パラアラミド」ということがある。)である。また、耐熱樹脂として、ポリ−4−メチルペンテン−1、環状オレフィン系重合体を挙げることもできる。これらの耐熱樹脂を用いることにより、耐熱性を高めるすなわち、熱破膜温度を高めることができる。これらの耐熱樹脂のうち、含窒素芳香族重合体を用いる場合には、その分子内の極性によるためか、非水電解液との相性、すなわち、耐熱多孔層における保液性も格段に向上し、ナトリウム二次電池製造時における非水電解液の含浸の速度も高く、また、負極と非水電解液との接触面積も増え、ナトリウム二次電池の充放電容量もより高めることもできる。また、含窒素芳香族重合体が、局所的に発生し得る微小ナトリウム金属を捉え、デンドライトへの成長をより抑制することができる。しかも、この場合、負極−耐熱多孔層間において、負極表面に電解液の分解に基づく固体層の形成を促進させることもでき、結果的に、ナトリウム二次電池における不可逆容量をより減少せしめることができる。
上記の熱破膜温度は、耐熱樹脂の種類に依存する。耐熱樹脂として、上記含窒素芳香族重合体を用いることにより、熱破膜温度を最大400℃程度にまで高めることができる。また、ポリ−4−メチルペンテン−1を用いる場合には最大250℃程度、環状オレフィン系重合体を用いる場合には最大300℃程度にまで、熱破膜温度をそれぞれ高めることができる。また、耐熱樹脂が、無機粉末からなる場合には、熱破膜温度を、例えば、500℃以上にすることも可能である。
上記パラアラミドは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドの縮合重合により得られるものであり、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、4,4’−ビフェニレン、1,5−ナフタレン、2,6−ナフタレン等のような反対方向に同軸または平行に延びる配向位)で結合される繰り返し単位から実質的になるものである。具体的には、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロ−パラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体等のパラ配向型またはパラ配向型に準じた構造を有するパラアラミドが例示される。
前記の芳香族ポリイミドとしては、芳香族の二酸無水物とジアミンの縮重合で製造される全芳香族ポリイミドが好ましい。該二酸無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’−ビス(3,4―ジカルボキシフェニル)ヘキサフルオロプロパン、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などがあげられる。該ジアミンの具体例としては、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3’−メチレンジアニリン、3,3’−ジアミノベンソフェノン、3,3’−ジアミノジフェニルスルフォン、1,5’−ナフタレンジアミンなどがあげられる。また、溶媒に可溶なポリイミドが好適に使用できる。このようなポリイミドとしては、例えば、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と、芳香族ジアミンとの重縮合物のポリイミドが挙げられる。
前記の芳香族ポリアミドイミドとしては、芳香族ジカルボン酸および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるもの、芳香族二酸無水物および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるものが挙げられる。芳香族ジカルボン酸の具体例としてはイソフタル酸、テレフタル酸などが挙げられる。また芳香族二酸無水物の具体例としては無水トリメリット酸などが挙げられる。芳香族ジイソシアネートの具体例としては、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、オルソトリランジイソシアネート、m−キシレンジイソシアネートなどが挙げられる。
本発明において、ナトリウムイオン透過性をより高める意味で、耐熱多孔層の厚みは、1μm以上10μm以下、さらには1μm以上5μm以下、特に1μm以上4μm以下という薄い耐熱多孔層であることが好ましい。また、耐熱多孔層は微細孔を有し、その孔のサイズ(直径)は通常3μm以下、好ましくは1μm以下である。
また、耐熱多孔層が、耐熱樹脂を含有する場合には、フィラーをさらに含有することもできる。フィラーは、その材質として、有機粉末、無機粉末またはこれらの混合物のいずれから選ばれるものであってもよい。フィラーを構成する粒子は、その平均粒子径が、0.01μm以上1μm以下であることが好ましい。
前記有機粉末としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単独あるいは2種類以上の共重合体、ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリビニリデンフルオライド等のフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィン;ポリメタクリレート等の有機物からなる粉末が挙げられる。該有機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの有機粉末の中でも、化学的安定性の点で、ポリテトラフルオロエチレン粉末が好ましい。
前記無機粉末としては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩等の無機物からなる粉末が挙げられ、これらの中でも、導電性の低い無機物からなる粉末が好ましく用いられる。具体的に例示すると、アルミナ、シリカ、二酸化チタン、または炭酸カルシウム等からなる粉末が挙げられる。該無機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの無機粉末の中でも、化学的安定性の点で、アルミナ粉末が好ましい。ここで、フィラーを構成する粒子のすべてがアルミナ粒子であることがより好ましく、さらにより好ましいのは、フィラーを構成する粒子のすべてがアルミナ粒子であり、その一部または全部が略球状のアルミナ粒子である実施形態である。因みに、耐熱多孔層が、無機粉末から形成される場合には、上記例示の無機粉末を用いればよく、必要に応じてバインダーと混ぜて用いればよい。
耐熱多孔層が、耐熱樹脂を含有する場合のフィラーの含有量としては、フィラーの材質の比重にもよるが、例えば、耐熱多孔層の総重量を100としたとき、フィラーの重量は、通常5以上95以下であり、20以上95以下であることが好ましく、より好ましくは30以上90以下である。これらの範囲は、フィラーを構成する粒子のすべてがアルミナ粒子である場合に、特に好適である。
フィラーの形状については、略球状、板状、柱状、針状、ウィスカー状、繊維状等が挙げられ、いずれの粒子も用いることができるが、均一な孔を形成しやすいことから、略球状粒子であることが好ましい。略球状粒子としては、粒子のアスペクト比(粒子の長径/粒子の短径)が1以上1.5以下の範囲の値である粒子が挙げられる。粒子のアスペクト比は、電子顕微鏡写真により測定することができる。
上述のように、耐熱多孔層は、2種以上のフィラーを含有することもできる。この場合、該2種以上のフィラーのそれぞれにつき構成する粒子の平均粒子径を測定して得られる値のうち、1番目に大きい値をD1、2番目に大きい値をD2としたとき、D2/D1の値が0.15以下であることが好ましい。このことにより、積層多孔質フィルムの耐熱多孔層の微細孔において、サイズが比較的小さな微細孔と、サイズが比較的大きな微細孔と、がバランス良く生じ、そのサイズが比較的小さな微細孔の構造により、積層多孔質フィルムからなるセパレータの耐熱性を高めることができ、サイズが比較的大きな微細孔の構造により、ナトリウムイオン透過性を高め、得られるナトリウム二次電池においては、高い電流レートにおいてより高出力とすることができる、すなわちレート特性により優れ、好適である。上記において、平均粒子径は、電子顕微鏡写真から測定される値を用いればよい。すなわち、積層多孔質フィルムにおける耐熱多孔層の表面または断面の走査型電子顕微鏡写真に撮影されている粒子(フィラー粒子)をそのサイズ別に分類して、各分類における平均粒子径の値のうち、1番目に大きい値をD1、2番目に大きい値をD2としたとき、D2/D1の値が0.15以下であればよい。平均粒子径は、上記の各分類において25個ずつ粒子を任意に抽出して、それぞれにつき粒子径(直径)を測定して、25個の粒子径の平均値を平均粒子径とする。なお、上記のフィラーを構成する粒子は、フィラーを構成する一次粒子のことを意味する。
積層多孔質フィルムにおいて、多孔質フィルムは、微細孔を有し、通常、シャットダウン機能を有する。多孔質フィルムにおける微細孔のサイズ(直径)は通常3μm以下、好ましくは1μm以下である。多孔質フィルムの空孔率は、通常30〜80体積%、好ましくは40〜70体積%である。ナトリウム二次電池において、通常の使用温度を越えた場合には、シャットダウン機能により、多孔質フィルムの変形、軟化により、微細孔を閉塞することができる。
本発明において、多孔質フィルムを構成する樹脂は、ナトリウム二次電池において、その非水電解液に溶解しないものを選択すればよい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、熱可塑性ポリウレタン樹脂を挙げることができ、これらの2種以上の混合物を用いてもよい。より低温で軟化してシャットダウンさせる意味で、多孔質フィルムは、ポリオレフィン樹脂を含有することが好ましく、より好ましくは、ポリエチレンを含有することである。ポリエチレンとして、具体的には、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレンを挙げることができ、超高分子量ポリエチレンを挙げることもできる。多孔質フィルムの突刺し強度をより高める意味では、それを構成する樹脂は、少なくとも超高分子量ポリエチレンを含有することが好ましい。また、多孔質フィルムの製造面において、低分子量(重量平均分子量1万以下)のポリオレフィンからなるワックスを含有することが好ましい場合もある。
また、多孔質フィルムの厚みは、通常、3〜30μmであり、さらに好ましくは3〜20μmである。また、積層多孔質フィルムの厚みとしては、通常40μm以下、好ましくは、20μm以下である。また、耐熱多孔層の厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0.1以上1以下であることが好ましい。
本発明において、積層多孔質フィルムは、イオン透過性との観点から、ガーレー法による透気度において、透気度が50〜300秒/100ccであることが好ましく、50〜200秒/100ccであることがさらに好ましい。また、積層多孔質フィルムの空孔率は、通常30〜80体積%、好ましくは40〜70体積%である。
次に、積層多孔質フィルムの製造の一例について説明する。
まず、多孔質フィルムの製造方法について説明する。多孔質フィルムの製造は特に限定されるものではなく、例えば特開平7−29563号公報に記載されたように、熱可塑性樹脂に可塑剤を加えてフィルム成形した後、該可塑剤を適当な溶媒で除去する方法や、特開平7−304110号公報に記載されたように、公知の方法により製造した熱可塑性樹脂からなるフィルムを用い、該フィルムの構造的に弱い非晶部分を選択的に延伸して微細孔を形成する方法が挙げられる。例えば、多孔質フィルムが、超高分子量ポリエチレンおよび重量平均分子量1万以下の低分子量ポリオレフィンを含むポリオレフィン樹脂から形成されてなる場合には、製造コストの観点から、以下に示すような方法により製造することが好ましい。すなわち、
(1)超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5〜200重量部と、無機充填剤100〜400重量部とを混練してポリオレフィン樹脂組成物を得る工程
(2)前記ポリオレフィン樹脂組成物を用いてシートを成形する工程
(3)工程(2)で得られたシート中から無機充填剤を除去する工程
(4)工程(3)で得られたシートを延伸して多孔質フィルムを得る工程
を含む方法、または
(1)超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5〜200重量部と、無機充填剤100〜400重量部とを混練してポリオレフィン樹脂組成物を得る工程
(2)前記ポリオレフィン樹脂組成物を用いてシートを成形する工程
(3)工程(2)で得られたシートを延伸する工程
(4)工程(3)で得られた延伸シート中から、無機充填剤を除去して多孔質フィルムを得る工程
を含む方法である。
多孔質フィルムの強度およびイオン透過性の観点から、用いる無機充填剤は、平均粒子径(直径)が0.5μm以下であることが好ましく、0.2μm以下であることがさらに好ましい。ここで、平均粒子径は、電子顕微鏡写真から測定される値を用いる。具体的には、該写真に撮影されている無機充填剤粒子から任意に50個抽出し、それぞれの粒子径を測定して、その平均値を用いる。
無機充填剤としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、酸化亜鉛、酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、硫酸カルシウム、珪酸、酸化亜鉛、塩化カルシウム、塩化ナトリウム、硫酸マグネシウムなどが挙げられる。これらの無機充填剤は酸、あるいはアルカリ溶液によりシートまたはフィルム中から除去することができる。粒子径の制御性、酸への選択的溶解性の観点から炭酸カルシウムを用いることが好ましい。
上記ポリオレフィン樹脂組成物の製造方法は特に限定されないが、ポリオレフィン樹脂や無機充填剤等のポリオレフィン樹脂組成物を構成する材料を混合装置、例えばロール、バンバリーミキサー、一軸押出機、二軸押出機などを用いて混合し、ポリオレフィン樹脂組成物を得る。材料を混合する際に、必要に応じて脂肪酸エステルや安定化剤、酸化防止剤、紫外線吸収剤、難燃剤等の添加剤を添加してもよい。
上記ポリオレフィン樹脂組成物からなるシートの製造方法は特に限定されるものではなく、インフレーション加工、カレンダー加工、Tダイ押出加工、スカイフ法等のシート成形方法により製造することができる。より膜厚精度の高いシートが得られることから、下記の方法により製造することが好ましい。
ポリオレフィン樹脂組成物からなるシートの好ましい製造方法とは、ポリオレフィン樹脂組成物に含有されるポリオレフィン樹脂の融点より高い表面温度に調整された一対の回転成形工具を用いて、ポリオレフィン樹脂組成物を圧延成形する方法である。回転成形工具の表面温度は、(融点+5)℃以上であることが好ましい。また表面温度の上限は、(融点+30)℃以下であることが好ましく、(融点+20)℃以下であることがさらに好ましい。一対の回転成形工具としては、ロールやベルトが挙げられる。両回転成形工具の周速度は必ずしも厳密に同一周速度である必要はなく、それらの差異が±5%以内程度であればよい。このような方法により得られるシートを用いて多孔質フィルムを製造することにより、強度やイオン透過、透気性などに優れる多孔質フィルムを得ることができる。また、前記したような方法により得られる単層のシート同士を積層したものを、多孔質フィルムの製造に使用してもよい。
ポリオレフィン樹脂組成物を一対の回転成形工具により圧延成形する際には、押出機よりストランド状に吐出したポリオレフィン樹脂組成物を直接一対の回転成形工具間に導入してもよく、一旦ペレット化したポリオレフィン樹脂組成物を用いてもよい。
ポリオレフィン樹脂組成物からなるシートまたは該シートから無機充填剤を除去したシートを延伸する際には、テンター、ロールあるいはオートグラフ等を用いることができる。透気性の面から延伸倍率は2〜12倍が好ましく、より好ましくは4〜10倍である。延伸温度は通常、ポリオレフィン樹脂の軟化点以上融点以下の温度で行われ、80〜115℃で行うことが好ましい。延伸温度が低すぎると延伸時に破膜しやすくなり、高すぎると得られるフィルムの透気性やイオン透過性が低くなることがある。また延伸後はヒートセットを行うことが好ましい。ヒートセット温度はポリオレフィン樹脂の融点未満の温度であることが好ましい。
本発明においては、前記したような方法で得られる熱可塑性樹脂を含有する多孔質フィルムと、耐熱多孔層とを積層して、積層多孔質フィルムを得る。ここで、耐熱多孔層は多孔質フィルムの片面に設けられていてもよく、両面に設けられていてもよい。
多孔質フィルムと耐熱多孔層とを積層する方法としては、耐熱多孔層と多孔質フィルムとを別々に製造してそれぞれを積層する方法、多孔質フィルムの少なくとも片面に、耐熱樹脂とフィラーとを含有する塗工液を塗工して耐熱多孔層を形成する方法等が挙げられるが、本発明において、耐熱多孔層は比較的薄い場合には、その生産性の面から後者の手法が好ましい。多孔質フィルムの少なくとも片面に、耐熱樹脂とフィラーとを含有する塗工液を塗布して耐熱樹脂層を形成する方法としては、具体的に以下のような工程を含む方法が挙げられる。
(a)耐熱樹脂100重量部を含む極性有機溶媒溶液に、該耐熱樹脂100重量部に対しフィラーを1〜1500重量部分散したスラリー状塗工液を調製する。
(b)該塗工液を多孔質フィルムの少なくとも片面に塗工し、塗工膜を形成する。
(c)加湿、溶媒除去あるいは耐熱樹脂を溶解しない溶媒への浸漬等の手段で、前記塗工膜から耐熱樹脂を析出させた後、必要に応じて乾燥する。
塗工液は、特開2001−316006号公報に記載の塗工装置および特開2001−23602号公報に記載の方法により連続的に塗工することが好ましい。
また、前記の極性有機溶媒溶液において、耐熱樹脂がパラアラミドである場合には、極性有機溶媒としては、極性アミド系溶媒または極性尿素系溶媒を用いることができ、具体的には、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン(NMP)、テトラメチルウレア等があげられるが、これらに限定されるものではない。
耐熱樹脂としてパラアラミドを用いる場合、パラアラミドの溶媒への溶解性を改善する目的で、パラアラミド重合時にアルカリ金属またはアルカリ土類金属の塩化物を添加することが好ましい。具体例としては、塩化リチウムまたは塩化カルシウムがあげられるが、これらに限定されるものではない。上記塩化物の重合系への添加量は、縮合重合で生成するアミド基1.0モル当たり0.5〜6.0モルの範囲が好ましく、1.0〜4.0モルの範囲がさらに好ましい。塩化物が0.5モル未満では、生成するパラアラミドの溶解性が不十分となる場合があり、6.0モルを越えると実質的に塩化物の溶媒への溶解度を越えるので好ましくない場合がある。一般には、アルカリ金属またはアルカリ土類金属の塩化物が2重量%未満では、パラアラミドの溶解性が不十分となる場合があり、10重量%を越えてはアルカリ金属またはアルカリ土類金属の塩化物が極性アミド系溶媒または極性尿素系溶媒等の極性有機溶媒に溶解しない場合がある。
また、耐熱樹脂が芳香族ポリイミドである場合には、芳香族ポリイミドを溶解させる極性有機溶媒としては、アラミドを溶解させる溶媒として例示したもののほか、ジメチルスルホキサイド、クレゾール、およびo−クロロフェノール等が好適に使用できる。
フィラーを分散させてスラリー状塗工液を得る方法としては、その装置として、圧力式分散機(ゴーリンホモジナイザー、ナノマイザー)等を用いればよい。
スラリー状塗工液を塗工する方法としては、例えばナイフ、ブレード、バー、グラビア、ダイ等の塗工方法があげられ、バー、ナイフ等の塗工が簡便であるが、工業的には、溶液が外気と接触しない構造のダイ塗工が好ましい。また、塗工は2回以上行う場合もある。この場合、上記工程(c)において耐熱樹脂を析出させた後に行うのが通常である。
また、前記の耐熱多孔層と多孔質フィルムとを別々に製造してそれぞれを積層する場合においては、接着剤による方法、熱融着による方法等により、固定化しておくのがよい。
本発明のナトリウム二次電池においては、上述の積層多孔質フィルムをセパレータとして用いることができる。次に、本発明における正極について、説明する。
本発明において、正極は、正極活物質、結合剤及び導電剤等を含む正極合剤が、正極集電体に担持されているものであり、通常、シート状である。より、具体的には、正極活物質、結合剤及び導電剤等に溶剤を添加してなる正極合剤を、正極集電体に、ドクターブレード法などで塗工、又は浸漬し乾燥する方法、正極活物質、結合剤及び導電剤等に溶剤を添加して混練、成形し、乾燥して得たシートを正極集電体表面に導電性接着剤等を介して接合した後にプレス及び熱処理乾燥する方法、正極活物質、結合剤、導電剤及び液状潤滑剤等からなる混合物を正極集電体上に成形した後、液状潤滑剤を除去し、次いで、得られたシート状の成形物を一軸又は多軸方向に延伸処理する方法などが挙げられる。正極がシート状である場合、その厚みは、通常、5〜500μm程度である。
前記正極活物質としては、ナトリウムイオンをドープ・脱ドープすることのできる正極材料を用いることができる。得られるナトリウム二次電池のサイクル性の観点では、該材料としては、ナトリウム無機化合物を用いることが好ましい。ナトリウム無機化合物としては、次の化合物を挙げることができる。すなわち、NaFeO2、NaMnO2、NaNiO2およびNaCoO2等のNaM1 a2で表される酸化物、Na0.44Mn1-a1 a2で表される酸化物、Na0.7Mn1-a1 a2.05で表される酸化物(M1は1種以上の遷移金属元素、0≦a<1);Na6Fe2Si1230およびNa2Fe5Si1230等のNab2 cSi1230で表される酸化物(M2は1種以上の遷移金属元素、2≦b≦6、2≦c≦5);Na2Fe2Si618およびNa2MnFeSi618等のNad3 eSi618で表される酸化物(M3は1種以上の遷移金属元素、3≦d≦6、1≦e≦2);Na2FeSiO6等のNaf4 gSi26で表される酸化物(M4は遷移金属元素、MgおよびAlからなる群より選ばれる1種以上の元素、1≦f≦2、1≦g≦2);NaFePO4、Na3Fe2(PO43等のリン酸塩;NaFeBO4、Na3Fe2(BO43等のホウ酸塩;Na3FeF6およびNa2MnF6等のNah56で表されるフッ化物(M5は1種以上の遷移金属元素、2≦h≦3);等が挙げられる。
本発明において、上記のナトリウム無機化合物の中では、Feを含有する化合物を好ましく用いることができる。本発明においては、耐熱多孔層が、負極側に配置しており、正極−耐熱多孔層の界面付近において、非水電解液が加熱された状態になったとしても、Feイオン等の遷移金属イオンの溶出を抑制することができ、Feイオン等の遷移金属イオンの錯体化を抑制することができ、本発明のナトリウム二次電池のサイクル性、すなわち、充放電を繰り返した際の放電容量維持率をより高めることができる。また、Feを含有する化合物を使用することは、資源量が豊富で安価な材料により、二次電池を構成する観点でも、非常に重要なことである。
また、後述の負極が、ナトリウム金属またはナトリウム合金を主としてなる場合には、正極活物質として、この負極よりも高い電位でナトリウムイオンをドープ・脱ドープすることのできる硫化物等のカルコゲン化合物を用いることもできる。硫化物としてはTiS2、ZrS2、VS2、V25、TaS2、FeS2およびNiS2等のM62で表される化合物(M6は1種以上の遷移金属元素)等が挙げられる。例示した正極活物質は、セパレータとして積層多孔質フィルムを用いていないナトリウム二次電池においても、二次電池としての作用を促すものである。
前記の正極に用いられる導電剤としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどの炭素材料などを挙げることができる。
前記の正極に用いられる結合剤としては、例えば、フッ素化合物の重合体が挙げられる。フッ素化合物としては、例えば、フッ素化アルキル(炭素数1〜18)(メタ)アクリレート、パーフルオロアルキル(メタ)アクリレート[例えば、パーフルオロドデシル(メタ)アクリレート、パーフルオロn−オクチル(メタ)アクリレート、パーフルオロn−ブチル(メタ)アクリレート]、パーフルオロアルキル置換アルキル(メタ)アクリレート[例えばパーフルオロヘキシルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート]、パーフルオロオキシアルキル(メタ)アクリレート[例えば、パーフルオロドデシルオキシエチル(メタ)アクリレート及びパーフルオロデシルオキシエチル(メタ)アクリレートなど]、フッ素化アルキル(炭素数1〜18)クロトネート、フッ素化アルキル(炭素数1〜18)マレート及びフマレート、フッ素化アルキル(炭素数1〜18)イタコネート、フッ素化アルキル置換オレフィン(炭素数2〜10程度、フッ素原子数1〜17程度)、例えばパーフロオロヘキシルエチレン、炭素数2〜10程度、及びフッ素原子の数1〜20程度の二重結合炭素にフッ素原子が結合したフッ素化オレフィン、テトラフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン又はヘキサフルオロプロピレンなどが挙げられる。
結合剤のその他の例示としては、フッ素原子を含まないエチレン性二重結合を含む単量体の付加重合体が挙げられる。かかる単量体としては、例えば、(シクロ)アルキル(炭素数1〜22)(メタ)アクリレート[例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート等];芳香環含有(メタ)アクリレート[例えば、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート等];アルキレングリコールもしくはジアルキレングリコール(アルキレン基の炭素数2〜4)のモノ(メタ)アクリレート[例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート];(ポリ)グリセリン(重合度1〜4)モノ(メタ)アクリレート;多官能(メタ)アクリレート[例えば、(ポリ)エチレングリコール(重合度1〜100)ジ(メタ)アクリレート、(ポリ)プロピレングリコール(重合度1〜100)ジ(メタ)アクリレート、2,2−ビス(4−ヒドロキシエチルフェニル)プロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等]などの(メタ)アクリル酸エステル系単量体;(メタ)アクリルアミド、(メタ)アクリルアミド系誘導体[例えば、N−メチロール(メタ)アクリルアミド、ダイアセトンアクリルアミド等]などの(メタ)アクリルアミド系単量体;(メタ)アクリロニトリル、2−シアノエチル(メタ)アクリレート、2−シアノエチルアクリルアミド等のシアノ基含有単量体;スチレン及び炭素数7〜18のスチレン誘導体[例えば、α−メチルスチレン、ビニルトルエン、p−ヒドロキシスチレン及びジビニルベンゼン等]などのスチレン系単量体;炭素数4〜12のアルカジエン[例えば、ブタジエン、イソプレン、クロロプレン等]などのジエン系単量体;カルボン酸(炭素数2〜12)ビニルエステル[例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル及びオクタン酸ビニル等]、カルボン酸(炭素数2〜12)(メタ)アリルエステル[例えば、酢酸(メタ)アリル、プロピオン酸(メタ)アリル及びオクタン酸(メタ)アリル等]などのアルケニルエステル系単量体;グリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル等のエポキシ基含有単量体;炭素数2〜12のモノオレフィン[例えば、エチレン、プロピレン、1−ブテン、1−オクテン及び1−ドデセン等]のモノオレフィン類;塩素、臭素又はヨウ素原子含有単量体、塩化ビニル及び塩化ビニリデンなどのフッ素以外のハロゲン原子含有単量体;アクリル酸、メタクリル酸などの(メタ)アクリル酸;ブタジエン、イソプレンなどの共役二重結合含有単量体などが挙げられる。
また、付加重合体として、例えば、エチレン・酢酸ビニル共重合体、スチレン・ブタジエン共重合体又はエチレン・プロピレン共重合体などの共重合体でもよい。また、カルボン酸ビニルエステル重合体は、ポリビニルアルコールなどのように、部分的又は完全にケン化されていてもよい。結合剤はフッ素化合物とフッ素原子を含まないエチレン性二重結合を含む単量体との共重合体であってもよい。
結合剤のその他の例示としては、例えば、デンプン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ニトロセルロースなどの多糖類及びその誘導体;フェノール樹脂;メラミン樹脂;ポリウレタン樹脂;尿素樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;石油ピッチ;石炭ピッチなどが挙げられる。
結合剤としては、特に、フッ素化合物の重合体が好ましく、とりわけ、テトラフルオロエチレンの重合体であるポリテトラフルオロエチレンが好ましい。また、結合剤としては上記の複数種の結合剤を使用してもよい。また、結合剤が増粘する場合には、正極集電体への塗布を容易にするために、可塑剤を使用してもよい。
前記の正極に用いられる溶剤としては、例えば、N−メチル−2−ピロリドンなどの非プロトン性極性溶媒、イソプロピルアルコール、エチルアルコール若しくはメチルアルコールなどのアルコール類、プロピレングリコールジメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン又はメチルイソブチルケトンなどのケトン類などが挙げられる。
導電性接着剤とは、導電剤と結合剤との混合物であり、特に、カーボンブラックとポリビニルアルコールとの混合物が溶剤を用いる必要もなく、調製が容易であり、さらに保存性にも優れることから好適である。
また、正極合剤において、その構成材料の配合量としては、適宜設定すればよいが、結合剤の配合量としては、正極活物質100重量部に対し、通常、0.5〜30重量部程度、好ましくは2〜30重量部程度であり、導電剤の配合量としては、正極活物質100重量部に対し、通常、1〜50重量部程度、好ましくは1〜30重量部程度であり、溶剤の配合量としては、正極活物質100重量部に対し、通常、50〜500重量部程度、好ましくは100〜200重量部程度である。
前記の正極に用いられる正極集電体としては、例えば、ニッケル、アルミニウム、チタン、銅、金、銀、白金、アルミニウム合金又はステンレス等の金属、例えば、炭素素材、活性炭繊維、ニッケル、アルミニウム、亜鉛、銅、スズ、鉛又はこれらの合金をプラズマ溶射、アーク溶射することによって形成されたもの、例えば、ゴム又はスチレン−エチレン−ブチレン−スチレン共重合体(SEBS)など樹脂に導電剤を分散させた導電性フィルムなどが挙げられる。特に、アルミニウム、ニッケル又はステンレスなどが好ましく、とりわけ、薄膜に加工しやすく、安価であるという点でアルミニウムが好ましい。正極集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチング状若しくはエンボス状であるもの又はこれらを組み合わせたもの(例えば、メッシュ状平板など)等が挙げられる。正極集電体表面にエッチング処理による凹凸を形成させてもよい。
次に、本発明における負極について、説明する。本発明において、負極としては、負極活物質、結合剤及び必要に応じて導電剤等を含む負極合剤が、負極集電体に担持されているもの、ナトリウム金属またはナトリウム合金を挙げることができ、通常、シート状である。より、具体的には、負極活物質及び結合剤等に溶剤を添加してなる負極合剤を、負極集電体に、ドクターブレード法などで塗工又は浸漬し乾燥する方法、負極活物質及び結合等に溶剤を添加して混練、成形し、乾燥して得たシートを負極集電体表面に導電性接着剤等を介して接合した後にプレス及び熱処理乾燥する方法、負極活物質、結合剤及び液状潤滑剤等からなる混合物を負極集電体上に成形した後、液状潤滑剤を除去し、次いで、得られたシート状の成形物を一軸又は多軸方向に延伸処理する方法などが挙げられる。負極がシート状である場合、その厚みは、通常、5〜500μm程度である。
前記負極活物質としては、ナトリウムイオンをドープ・脱ドープすることのできる負極材料を用いることができる。該材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素材料で、ナトリウムイオンをドープ・脱ドープすることのできる材料を用いることができる。ナトリウム二次電池のレート特性を高める意味では、難黒鉛化炭素材料を用いることが好ましい。特に、この負極における難黒鉛化炭素材料と耐熱多孔層における含窒素芳香族重合体との組み合わせは、ナトリウム二次電池のレート特性を高める意味で、優れた組み合わせである。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。結合剤及び導電剤は正極で用いられるものと同様のものを用いることができる。負極においては、炭素材料は、導電剤としての役割を果たす場合もある。
また、正極における正極活物質が、上述のナトリウム無機化合物である場合には、この正極よりも低い電位でナトリウムイオンをドープ・脱ドープすることのできる硫化物等のカルコゲン化合物を用いることもできる。ここで硫化物としてはTiS2、ZrS2、VS2、V25、TaS2、FeS2、NiS2、およびM62(ただし、M6は1種以上の遷移金属元素である。)で示される化合物等が挙げられる。
負極集電体としては、Cu、Ni、ステンレスなどを挙げることができ、ナトリウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuが好ましい。負極集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチング状若しくはエンボス状であるもの又はこれらを組み合わせたもの(例えば、メッシュ状平板など)等が挙げられる。負極集電体表面にエッチング処理による凹凸を形成させてもよい。
次に、本発明における非水電解液について、説明する。非水電解液は、通常、電解質が、有機溶媒に溶解されてなる。電解質としては、NaClO4、NaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3、NaN(SO2CF32、低級脂肪族カルボン酸ナトリウム塩、NaAlCl4などが挙げられ、これらの2種以上の混合物を使用されてもいてもよい。これらの中でもフッ素を含むNaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3およびNaN(SO2CF32からなる群から選ばれた少なくとも1種を含むものを用いることが好ましい。
非水電解液における有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物;または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。有機溶媒として、これらのうちの二種以上を混合して用いてもよい。
非水電解液における電解質の濃度は、通常、0.1モル/L〜2モル/L程度であり、好ましくは、0.3モル/L〜1.5モル/L程度である。
本発明のナトリウム二次電池は、上述の正極、セパレータおよび負極をこの順に積層および必要に応じて巻回することによって電極群を得、この電極群を電池缶等の容器内に収納し、非水電解液を電極群に含浸させることによって、製造することができる。本発明においては、セパレータは、耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムからなり、該耐熱多孔層が、該負極側に配置される。
電極群の形状としては例えば、この電極群を巻回の軸と垂直方向に切断したときの断面が、円、楕円、長方形、角がとれたような長方形等となるような形状を挙げることができる。また、二次電池の形状としては、例えば、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。
次に、実施例を用いて、本発明をさらに詳細に説明する。
製造例1(積層多孔質フィルムの製造および評価)
(1)塗工液の製造
NMP4200gに塩化カルシウム272.7gを溶解した後、パラフェニレンジアミン132.9gを添加して完全に溶解させた。得られた溶液に、テレフタル酸ジクロライド(以下、TPCと略す)243.3gを徐々に添加して重合し、パラアラミドを得て、さらにNMPで希釈して、濃度2.0重量%のパラアラミド溶液(A)を得た。得られたパラアラミド溶液100gに、アルミナ粉末(a)2g(日本アエロジル社製、アルミナC、平均粒子径0.02μm(Dに相当)、粒子は略球状で、粒子のアスペクト比は1)とアルミナ粉末(b)2g(住友化学株式会社製スミコランダム、AA03、平均粒子径0.3μm(Dに相当)、粒子は略球状で、粒子のアスペクト比は1)とをフィラーとして計4g添加して混合し、ナノマイザーで3回処理し、さらに1000メッシュの金網で濾過、減圧下で脱泡して、スラリー状塗工液(B)を製造した。パラアラミドおよびアルミナ粉末の合計重量に対するアルミナ粉末(フィラー)の重量は、67重量%となる。また、D/Dは0.07となる。
(2)積層多孔質フィルムの製造
多孔質フィルムとしては、ポリエチレン製多孔質フィルム(膜厚12μm、透気度140秒/100cc、平均孔径0.1μm、空孔率50%)を用いた。厚み100μmのPETフィルムの上に上記ポリエチレン製多孔質フィルムを固定し、テスター産業株式会社製バーコーターにより、該多孔質フィルムの上にスラリー状塗工液(B)を塗工した。PETフィルム上の塗工された該多孔質フィルムを一体にしたまま、貧溶媒である水中に浸漬させ、パラアラミド多孔層(耐熱多孔層)を析出させた後、溶媒を乾燥させて、耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルム1を得た。積層多孔質フィルム1の厚みは16μmであり、パラアラミド多孔層(耐熱多孔層)の厚みは4μmであった。積層多孔質フィルム1の透気度は180秒/100cc、空孔率は50%であった。積層多孔質フィルム1における耐熱多孔層の断面を走査型電子顕微鏡(SEM)により観察をしたところ、0.03μm〜0.06μm程度の比較的小さな微細孔と0.1μm〜1μm程度の比較的大きな微細孔とを有することがわかった。また、上記のように、積層多孔質フィルム1の耐熱多孔層には含窒素芳香族重合体であるパラアラミドが用いられており、積層多孔質フィルム1の熱破膜温度は400℃程度である。尚、積層多孔質フィルムの評価は以下の方法で行った。
(3)積層多孔質フィルムの評価
(A)厚み測定
積層多孔質フィルムの厚み、多孔質フィルムの厚みは、JIS規格(K7130−1992)に従い、測定した。また、耐熱多孔層の厚みとしては、積層多孔質フィルムの厚みから多孔質フィルムの厚みを差し引いた値を用いた。
(B)ガーレー法による透気度の測定
積層多孔質フィルムの透気度は、JIS P8117に基づいて、株式会社安田精機製作所製のデジタルタイマー式ガーレー式デンソメータで測定した。
(C)空孔率
得られた積層多孔質フィルムのサンプルを一辺の長さ10cmの正方形に切り取り、重量W(g)と厚みD(cm)を測定した。サンプル中のそれぞれの層の重量(Wi(g))を求め、Wiとそれぞれの層の材質の真比重(真比重i(g/cm3))とから、それぞれの層の体積を求めて、次式より空孔率(体積%)を求めた。
空孔率(体積%)=100×{1−(W1/真比重1+W2/真比重2+・・+Wn/真比重n)/(10×10×D)}
製造例2(正極の製造)
(1)正極活物質の合成
金属含有化合物としての、炭酸ナトリウム(Na2CO3:和光純薬工業株式会社製:純度99.8%)と酸化マンガン(IV)(MnO2:株式会社高純度化学研究所製:純度99.9%)を、Na:Mnのモル比が0.7:1.0となるように秤量し、乾式ボールミルで4時間にわたって混合して金属含有化合物の混合物を得た。得られた金属含有化合物の混合物を、アルミナボートに充填し、電気炉を用いて空気雰囲気において加熱して800℃で2時間にわたって保持することによって、正極活物質1を得た。
(2)正極の製造
正極活物質1、導電材としてのアセチレンブラック(電気化学工業株式会社製)、およびバインダーとしてのPVDF(株式会社クレハ製、PolyVinylideneDiFluoridePolyflon)を、正極活物質C1:導電材:バインダー=85:10:5(重量比)の組成となるようにそれぞれ秤量した。その後、まず正極活物質1とアセチレンブラックをメノウ乳鉢で十分に混合し、この混合物に、N−メチル−2−ピロリドン(NMP:東京化成工業株式会社製)を適量加え、さらにPVDFを加えて引き続き均一になるように分散混練し、正極用電極合剤のペーストを得た。該ペーストを、正極集電体である厚さ40μmのアルミ箔上に、アプリケータを用いて100μmの厚さで塗布し、乾燥、ロールプレスし、正極シート1を得た。この正極シート1を電極打ち抜き機で直径1.5cmに打ち抜いて正極1を得た。
製造例3(負極の製造)
(1)負極活物質の合成
四つ口フラスコに、窒素気流下でレゾルシノール200g、メチルアルコール1.5L、ベンズアルデヒド194gを入れ氷冷し、攪拌しながら36%塩酸36.8gを滴下した。滴下終了後65℃に昇温し、その後同温度で5時間保温した。得られた反応混合物に水1Lを加え、沈殿を濾取し、濾液が中性になるまで水で洗浄し、乾燥後、テトラフェニルカリックス[4]レゾルシナレーン(PCRA)294gを得た。該PCRAを、ロータリーキルン内に入れ、雰囲気を空気雰囲気として、300℃で1時間加熱し、次いでロータリーキルンの雰囲気をアルゴンに置換して、1000℃で4時間加熱した。次いで、ボールミル(メノウ製ボール、28rpm、5分間)で粉砕することによって難黒鉛化炭素材料である負極活物質1を得た。この粉末状の難黒鉛化炭素材料である負極活物質1は金属材料と接触することなく製造していることから金属分はほとんど含まれない。
(2)負極の製造
難黒鉛化炭素材料である負極活物質1とバインダーとしてのポリフッ化ビニリデン(PVDF)とを、負極活物質1:バインダー=95:5(重量比)の組成となるように秤量し、バインダーをN−メチルピロリドン(NMP)に溶解した後、これに負極活物質1を加えて均一になるように分散混錬し、負極用電極合剤のペーストを得た。該ペーストを、負極集電体である厚さ10μmの銅箔上に、アプリケータを用いて100μmの厚さで塗布し、乾燥、ロールプレスを行って負極シート1を得た。この負極シート1を電極打ち抜き機で直径1.5cmに打ち抜いて負極1を得た。
製造例4(非水電解液の製造)
(1)非水電解液の調製
非水電解液における有機溶媒としてのプロピレンカーボネート(PC)(C463:キシダ化学株式会社製:純度99.5%、水分30ppm以下)を1リットルに対して電解質としての過塩素酸ナトリウム(NaClO4:和光純薬工業株式会社製)を1モル(122g)となるように秤量して加え、室温で6時間撹拌することにより、非水電解液1を得た。この調製はアルゴン雰囲気のグローブボックス中で行ったことから、この非水電解液1に水分はほとんど含まれない。
実施例1(本発明のナトリウム二次電池の製造)
上記製造例1における積層多孔質フィルムをセパレータとして用い、さらに製造例2おける正極1、製造例3における負極1、製造例4における非水電解液1を用いて、積層多孔質フィルムにおける耐熱多孔層が、負極側になるようにして、ナトリウム二次電池1を製造した。すなわち、コインセル(宝泉株式会社製)の下側パーツの窪みに、製造例2における正極1をアルミ箔が下側に向くように(正極活物質が上側を向くように)置き、その上に製造例1における積層多孔質フィルムを耐熱多孔層が上側を向くように置き、製造例4の非水電解液1をピペットで0.5ミリリットル注入した。さらに、負極として金属ナトリウム(アルドリッチ社製)を用いて、金属ナトリウムと中蓋とを組み合わせて、これらを、積層多孔質フィルムの上側に、金属ナトリウムが下側を向くように置き、ガスケットを介して上側パーツで蓋をし、かしめ機でかしめてナトリウム二次電池1を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(ナトリウム二次電池特性評価方法)
上記のようにして得られたナトリウム二次電池1を用いて、以下の充放電条件で定電流充放電試験を実施した。
充放電条件:充電は、4.0Vまで0.1Cレート(10時間で完全充電する速度)でCC(コンスタントカレント:定電流)充電を行った。放電は、該充電速度と同じ速度で、CC放電を行い、電圧1.5Vでカットオフした。次サイクル以降の充電、放電は、該充電速度と同じ速度で行い、1サイクル目と同様に、充電電圧4.0V、放電電圧1.5Vでカットオフした。この充放電を20回繰り返した。
(本発明のナトリウム二次電池特性評価結果)
ナトリウム二次電池1について、上記の条件で放電容量の評価を行った結果、2サイクル目の放電容量に対する20サイクル目の放電容量(放電容量維持率)は、89%と高かった。
実施例2(本発明のナトリウム二次電池の製造)
負極として、製造例3における負極1を用いて、負極1と中蓋とを、負極1における銅箔が中蓋と接するように組み合わせて、これらを、積層多孔質フィルムの上側に、負極活物質が下側を向くように置いた以外は実施例1と同様にして、ナトリウム二次電池2を製造した。
(ナトリウム二次電池2の特性評価結果)
ナトリウム二次電池2について、実施例1と同じ充放電条件において放電容量の評価を行った結果、2サイクル目の放電容量に対する20サイクル目の放電容量(放電容量維持率)は、102%と極めて高かった。
比較例1(比較二次電池の製造)
セパレータとして、ポリエチレン製多孔質フィルム(膜厚12μm、透気度140秒/100cc、平均孔径0.1μm、空孔率50%)を用いた以外は、実施例1と同様にして、比較二次電池を製造した。
(比較ナトリウム二次電池特性評価結果)
比較二次電池につき、放電容量の評価を行った結果、2サイクル目の放電容量に対する20サイクル目の放電容量(放電容量維持率)は、80%と低かった。

Claims (12)

  1. 正極と、負極と、該正極および該負極の間に配置されたセパレータと、非水電解液とを含み、該セパレータが、耐熱樹脂を含有する耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムからなり、該耐熱樹脂が、含窒素芳香族重合体であり、該耐熱多孔層が、該負極側に配置されてなることを特徴とするナトリウム二次電池。
  2. 正極と、負極と、該正極および該負極の間に配置されたセパレータと、非水電解液とを含み、該セパレータが、耐熱樹脂を含有する耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムからなり、該耐熱樹脂が、芳香族ポリアミドであり、該耐熱多孔層が、該負極側に配置されてなることを特徴とするナトリウム二次電池。
  3. 前記耐熱多孔層が、フィラーをさらに含有する請求項1または2記載のナトリウム二次電池。
  4. 正極と、負極と、該正極および該負極の間に配置されたセパレータと、非水電解液とを含み、該セパレータが、耐熱樹脂およびフィラーを含有する耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムからなり、該耐熱多孔層が、該負極側に配置されてなることを特徴とするナトリウム二次電池。
  5. 前記耐熱多孔層の総重量を100としたとき、前記フィラーの重量が20以上95以下である請求項3または4記載のナトリウム二次電池。
  6. 前記耐熱多孔層が2種以上のフィラーを含有し、該2種以上のフィラーのそれぞれにつき構成する粒子の平均粒子径を測定して得られる値のうち、1番目に大きい値をD1、2番目に大きい値をD2としたとき、D2/D1の値が0.15以下である請求項3〜5のいずれかに記載のナトリウム二次電池。
  7. 前記耐熱多孔層の厚みが、1μm以上10μm以下である請求項1〜のいずれかに記載のナトリウム二次電池。
  8. 正極と、負極と、該正極および該負極の間に配置されたセパレータと、非水電解液とを含み、該セパレータが、耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムからなり、該耐熱多孔層の厚みが、1μm以上10μm以下であり、該耐熱多孔層が、該負極側に配置されてなることを特徴とするナトリウム二次電池。
  9. 前記耐熱多孔層が、耐熱樹脂を含有する耐熱多孔層である請求項8記載のナトリウム二次電池。
  10. 前記負極が、ナトリウムイオンをドープ・脱ドープすることのできる炭素材料を含有する負極である請求項1〜のいずれかに記載のナトリウム二次電池。
  11. 前記炭素材料が、難黒鉛化炭素材料である請求項10記載のナトリウム二次電池。
  12. 前記多孔質フィルムが、ポリオレフィン樹脂を含有する多孔質フィルムである請求項1〜11のいずれかに記載のナトリウム二次電池。
JP2009153519A 2008-06-30 2009-06-29 ナトリウム二次電池 Active JP5158027B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153519A JP5158027B2 (ja) 2008-06-30 2009-06-29 ナトリウム二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008170239 2008-06-30
JP2008170239 2008-06-30
JP2009153519A JP5158027B2 (ja) 2008-06-30 2009-06-29 ナトリウム二次電池

Publications (2)

Publication Number Publication Date
JP2010034044A JP2010034044A (ja) 2010-02-12
JP5158027B2 true JP5158027B2 (ja) 2013-03-06

Family

ID=41466101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153519A Active JP5158027B2 (ja) 2008-06-30 2009-06-29 ナトリウム二次電池

Country Status (5)

Country Link
US (1) US20110171513A1 (ja)
JP (1) JP5158027B2 (ja)
CN (1) CN102077389A (ja)
TW (1) TW201014016A (ja)
WO (1) WO2010002012A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225727B2 (en) 2008-11-07 2022-01-18 Lam Research Corporation Control of current density in an electroplating apparatus
CN102362386A (zh) 2009-03-27 2012-02-22 学校法人东京理科大学 钠离子二次电池
JP2012169160A (ja) * 2011-02-15 2012-09-06 Sumitomo Chemical Co Ltd ナトリウム二次電池用電極およびナトリウム二次電池
KR101806598B1 (ko) * 2011-08-31 2017-12-07 스미또모 가가꾸 가부시끼가이샤 도포액, 적층 다공질 필름 및 적층 다공질 필름의 제조 방법
JP5850687B2 (ja) * 2011-09-26 2016-02-03 日本バイリーン株式会社 電気化学素子用セパレータ及び電気化学素子
JP2013196978A (ja) * 2012-03-21 2013-09-30 National Institute Of Advanced Industrial & Technology ナトリウム二次電池用正極材料及びその製造方法、並びにナトリウム二次電池用正極、ナトリウム二次電池及びこれを用いた電気機器
JP6244679B2 (ja) * 2012-07-12 2017-12-13 株式会社Gsユアサ 蓄電素子
US8906542B2 (en) * 2012-09-01 2014-12-09 Uchicago Argonne, Llc Sodium chalcogenide electrodes for sodium batteries
US9584273B2 (en) 2012-09-28 2017-02-28 Lg Electronics Inc. Method for supporting CoMP in wireless communication system and device therefor
CN103904317A (zh) * 2012-12-25 2014-07-02 北京汉能创昱科技有限公司 钠离子电池正极材料的制备方法
KR102078831B1 (ko) 2013-03-12 2020-04-03 삼성디스플레이 주식회사 플렉서블 터치 스크린 패널을 구비한 플렉서블 표시장치
KR101563131B1 (ko) 2013-06-03 2015-10-26 (주)경인양행 청색 염료 화합물, 이를 포함하는 컬러필터용 청색 수지 조성물 및 이를 이용한 컬러필터
WO2015026111A1 (ko) 2013-08-18 2015-02-26 엘지전자 주식회사 무선 통신 시스템에서 중계기 동작 방법 및 장치
JP5920496B2 (ja) * 2014-02-18 2016-05-18 住友化学株式会社 積層多孔質フィルムおよび非水電解液二次電池
CN104262347B (zh) * 2014-08-30 2017-03-08 上海珂力恩特化学材料有限公司 含二吡唑并芘的蓝光半导体材料及其制备方法和由该材料制成的有机发光器件
WO2018155287A1 (ja) * 2017-02-23 2018-08-30 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
JP6840118B2 (ja) * 2017-10-24 2021-03-10 住友化学株式会社 非水電解液二次電池用多孔質層
WO2020137561A1 (ja) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2020137562A1 (ja) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN113678313B (zh) * 2019-05-17 2023-12-01 帝人株式会社 非水系二次电池用隔膜及其制造方法以及非水系二次电池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124372A (ja) * 1986-11-11 1988-05-27 Sharp Corp 非水電解液電池
JPH0626138B2 (ja) * 1987-11-20 1994-04-06 昭和電工株式会社 二次電池
JPH0548209U (ja) * 1991-11-29 1993-06-25 三洋電機株式会社 非水電解液電池
US5705689A (en) * 1995-06-19 1998-01-06 Associated Universities, Inc. Aza compounds as anion receptors
US6423448B1 (en) * 1997-05-22 2002-07-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP3439082B2 (ja) * 1997-07-16 2003-08-25 三洋電機株式会社 非水電解質二次電池
TWI315591B (en) * 2000-06-14 2009-10-01 Sumitomo Chemical Co Porous film and separator for battery using the same
US20030044680A1 (en) * 2001-08-24 2003-03-06 Im&T Research, Inc. Polymer materials for use in an electrode
DE10238943B4 (de) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung und Verwendung in Lithium-Batterien sowie eine Batterie, aufweisend die Separator-Elektroden-Einheit
JP5031192B2 (ja) * 2004-03-31 2012-09-19 準一 山木 非水電解質ナトリウム二次電池用正極活物質の製造方法
KR101245535B1 (ko) * 2004-03-31 2013-03-21 스미또모 가가꾸 가부시키가이샤 비수 전해질 2차 전지용 양극 활성 물질
CN1630126A (zh) * 2004-10-11 2005-06-22 湘潭大学 钠离子电池及其制备方法
US20080038631A1 (en) * 2004-12-13 2008-02-14 Kensuke Nakura Lithium Ion Secondary Battery
US8454925B2 (en) * 2006-11-17 2013-06-04 Mitsubishi Heavy Industries, Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
KR100971109B1 (ko) * 2006-11-20 2010-07-20 데이진 가부시키가이샤 비수계 이차 전지용 세퍼레이터, 및 비수계 이차 전지
JP2009135092A (ja) * 2007-11-09 2009-06-18 Sumitomo Chemical Co Ltd 複合金属酸化物およびナトリウム二次電池

Also Published As

Publication number Publication date
TW201014016A (en) 2010-04-01
WO2010002012A1 (ja) 2010-01-07
CN102077389A (zh) 2011-05-25
JP2010034044A (ja) 2010-02-12
US20110171513A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5158027B2 (ja) ナトリウム二次電池
JP5493301B2 (ja) ナトリウム二次電池
JP5286844B2 (ja) セパレータ
JP5359442B2 (ja) ナトリウムイオン電池
JP5309628B2 (ja) 多孔質フィルム
JP5286817B2 (ja) セパレータ
US20110159345A1 (en) Electrode active material and method for producing same
JP2010113804A (ja) 非水電解液二次電池
WO2009099061A1 (ja) 複合金属酸化物およびナトリウム二次電池
WO2010104202A1 (ja) 複合金属酸化物、電極およびナトリウム二次電池
WO2009099062A1 (ja) 複合金属酸化物およびナトリウム二次電池
JP5531602B2 (ja) 電極活物質、電極および非水電解質二次電池
JP2009135092A (ja) 複合金属酸化物およびナトリウム二次電池
US20100266900A1 (en) Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery
JP5515306B2 (ja) 複合金属酸化物およびナトリウム二次電池
WO2009099068A1 (ja) ナトリウム二次電池
JP2010040311A (ja) 電極活物質、電極およびナトリウム二次電池
JP2011103277A (ja) ナトリウム二次電池
JP5391709B2 (ja) 複合金属酸化物およびナトリウム二次電池
JP2011081935A (ja) ナトリウム二次電池
JP2009224320A (ja) ナトリウム二次電池
JP2009259601A (ja) ナトリウムイオン二次電池用電極活物質およびその製造方法
JP2010118161A (ja) 非水電解質二次電池
JP2009211943A (ja) 電池セパレータ用多孔質フィルム及び該フィルムを備える電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5158027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350