JP5117645B2 - スペックルを減少する物体検査用の装置及び方法 - Google Patents

スペックルを減少する物体検査用の装置及び方法 Download PDF

Info

Publication number
JP5117645B2
JP5117645B2 JP2000391608A JP2000391608A JP5117645B2 JP 5117645 B2 JP5117645 B2 JP 5117645B2 JP 2000391608 A JP2000391608 A JP 2000391608A JP 2000391608 A JP2000391608 A JP 2000391608A JP 5117645 B2 JP5117645 B2 JP 5117645B2
Authority
JP
Japan
Prior art keywords
fibers
bundle
optical
optical fiber
bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000391608A
Other languages
English (en)
Other versions
JP2001274081A (ja
Inventor
ケーナン ボアズ
カルポル アヴネル
レインホーン シルヴィウ
エリアサフ エマニュエル
ヤロフ シモン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23760017&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5117645(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2001274081A publication Critical patent/JP2001274081A/ja
Application granted granted Critical
Publication of JP5117645B2 publication Critical patent/JP5117645B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • G01N2021/479Speckle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物体の検査、特に半導体デバイスの製造に関連した物体検査に関する。より詳細には、本発明は、半導体デバイスの製造中ホトリソグラフィに用いられる物体の検査に関する。
【0002】
【従来の技術】
半導体デバイスの超大規模集積に関連した高密度及び性能に対する現在の要求は、サブミクロンのフィーチャ、増大したトランジスタ及び回路速度、更にはより優れた信頼性である。このような要求は、高精度及び均一性を有するデバイスフィーチャの形成を必要とし、それには注意深いプロセスの監視を必要とする。
【0003】
注意深い検査を必要とする一つの重要なプロセスは、ホトリソグラフィであり、ここではマスク、即ち“レチクル”が回路パターンを半導体ウエハへ転写するために用いられる。このような一連の物体は、予め設定されたシーケンスにおいて、パターンをウエハ上へ投射するために用いられる。レチクルパターンのホトレジスト層への転写は、従来は、ホトレジストを露光するために、レチクルを通して光又は他の照射を行なう、例えばスキャナー又はステッパーのような露光ツールによって行なわれている。その後、このホトレジストは、ホトレジストマスクを形成するために用いられ、又下側にあるシリコン絶縁体又は金属層がこのマスクによって選択的にエッチングされて、ラインやゲートのようなフィーチャを形成する。
【0004】
上の説明から、レチクル上のあらゆる欠陥、例えば余分な、又は脱落したクローム、が繰返された方法で、製造されたウエハに転写するかも知れないことを理解する必要がある。したがって、レチクル上のあらゆる欠陥は、製造ラインの歩留まりを劇的に減少するであろう。したがって、レチクルを検査し、レチクル上のあらゆる欠陥を検出することが最も重要なことである。この検査は、一般に、光の照射、反射又は両方の形式を用いる光学システムによって行なわれる。このようなシステムの例として、アプライドマテリアルズ社のRT−8000TMシリーズのレチクル検査システムがある。
【0005】
レチクル検査用のいろいろなアルゴリズム方法がある。これらの方法は、“ダイ・ツー・ダイ”検査であり、この検査においてダイは、同じレチクル上で同じダイと比較される;あるいは“ダイ・ツー・データベース”検査であり、この検査では、与えられたダイと関係のあるデータがデータベースの情報と比較される。このデータベースは、レチクルが作られたデータベースである。他の検査方法は、“ダイ・ツー・ゴールデンダイ”である。このゴールデンダイは、ウエハを検査するための基準として選ばれたダイである。又、設計ルールに基づいた検査方法がある。この方法では、ダイはあるラインの幅と間隔の要求を満たさなければならないし、フィーチャ形状は予め定められた形状に合わせる必要がある。これらの検査方法、及びこれらの方法を実現するための公的な装置と回路は、幾つかの米国特許、例えば、USP第4,805,123号、第4,926,489号、第5,619,429号及び第5,864,394号に記載されている。これらの特許の開示は、レファレンスによって、ここにとり込まれる。
【0006】
既知の検査技術は、一般に電荷結合デバイス(CCD)カメラ上に大きな拡大率で物体をイメージして使用する。イメージ技術は、照射されるべき物体を必要とする。照射源の輝度は、カメラのインテグレーション時間を減少することによって検査をスピード化する可能性のキーファクターである。これは、物理的な解像度の限界が照射の波長に直線的に依存するという事実によるし、又検査がリソグラフプロセスに使用される波長と同じ波長で行なわれることを要求する干渉効果による。波長が小さくなるにしたがって、フィラメントランプやガス放電ランプのような、従来のインコヒーレントな光源は十分な輝度が得られないし、光源は短い波長のレーザになる。航路に沿ったパターン化された物体と同様に、表面の粗さおよび収差とともに、レーザのコヒーレント性は、物体のイメージに広がる雑音性パターンであるスペックル(speckle)として知られた人工物を形成する。
【0007】
このスペックルは、検査される物体の表面の検出に問題を生じ、検出器を打つ光パターンの不均一性のために、誤った警告をだす。検出の正確性が減じられる。又、検査された物体から除かれたイメージも減じられる。他の理由の中で、検出プロセスから生じる損失の結果として、コヒーレントな光によって与えられたパワーは本質的であるから、問題は、この形式の物体検査においては、重大なものである。
【0008】
いま説明した問題は、マスク、ホトマスク及びレチクルの検査に特有のものではない。コヒーレントな照射を用いる既知のウエハ検査技術がある。このシステムにおいて、スペックルは、生じたデバイスの歩留まりや性能に有害なインパクトを有し、したがって、非常に注意して対処しなければならない。コヒーレントな照射を用いる既知のウエハ検査システムの例は、米国特許第5,699,447号及び第5,825,482号に示されている。
【0009】
パターン化されたウエハを検査するために、これらのシステムが用いられたとき、もし、照射に用いられたスポットサイズがウエハ上のパターンの素子より非常に小さければ、スペックル現象は起きない。しかし、ある環境、例えば、斜め照射(コヒーレントな光源がウエハにある角度で向けられる)では、スポットサイズはスペックルを生じるのに十分な大きさになるであろう。このスポットサイズを減少することは、システムのスループットを減少し、例えば、リソグラフプロセス中に物体をイメージ化するために用いられた波長より小さく、異なった波長で動作する必要があるであろう。結果的に、理解されるように、スペックルを我慢することと検出感度/スループットを最適化することの間にはトレードオフがある。したがって、スペックル問題を解決することが必要であり、そうすることは、増大されたスポットサイズの使用及び改善されたスループットを可能にする。
【0010】
スペックル現象の包括的な記載は、T.S.McKechnie, Speckle Reduction, in Topics in Applied Physics, Laser Speckle and Related Phenomena, 123 (J.C. Dainty ed., 2d ed., 1984)(以下、McKechnieと言う。)に示されている。McKechnieに説明されているように、スペックルの減少は、レーザ光の時間的コヒーレンス又は空間的コヒーレンスにおける減少によって達成される。スペックルを減少又は除去するために、何年にもわたっていろいろな試みがなされている。
【0011】
上述のMcKechnieの記事を引用し、同じ問題を扱っている他の記事、即ち、B.Dingel et al., Speckle reduction with virtual incoherent laser illumination using a modified fiber array, Optik 94, at 132 (1993) (以下、Dingelと言う)は、統計的な、全体の統合に基づいて、同様に、時間統合に基づいたスペックルを減少するための、幾つかの既知の方法を述べている。イメージシステムのいろいろな面の走査を含み、及びイメージ検出器によって統合されるべき調整されないパターンを発生する時間統合方法に関して、この記事は、幾つかの可能性のある欠点、例えば、長い統合時間、又は走査プロセスを支持するために、幾つかの光学システムの導入を認めている。
【0012】
ビームのコヒーレンスの減少を含む方法の中に、DingelとMcKechnieは、光ビームの広がりにわたってランダム位相変調を生成するように、分散素子、例えばグレーチング、スクリーンメッシュ、又は、移動する拡散器を、それ自体によって又は他の回転する拡散器と組み合わせて、照射ビームの経路への導入を論じている。他の既知の技術は、カーボンダイサルファイドのセルを通して、又さらに整列されていない光の束を通して、パルス化されたレーザビームの通過、又は光ビームの通路に置かれた、電界の励起によって動かされる液晶の使用を含む。
【0013】
しかし、レチクルの大きさ及びパターン縮小が小さくなるにしたがって、細かな異常や小さな欠陥なくそれらを作るのがより困難になる。回折効果によって、検出はより複雑になる。したがって、関連したウエハの製造プロセスにおいて問題となる小さな欠陥が検出されないと言う危険性が存在する。現状に対する一つの提案された解決策は、好ましくは、物体を照射するために、深い紫外線領域の短い波長のレーザビームを放射するレーザ光源を用いることである。レーザ光源は、5〜50ナノ秒の範囲の短いパルス光を放射するのが好ましい。上述の方法およびシステムは、正確に欠陥を検出するために、短い波長のレーザビームに対して、高いレベルのスペックル減少を提供するようになっていない。又、上述の方法及びシステムは、分散する素子の不適当な移動速度のために、短いレーザパルスに対して信頼できる解決策を提供しない。
【0014】
前述のように、スペックルはウエハの検査分野では既知の現象である。米国特許第5,264,912号(その開示はレファレンスによってここにとり込まれる)は、この問題を認識し、幾つかの解決策を提案している。しかし、他の既知の、提案されたスペックル減少技術について、これらの提案された解決策は、極小さなフィーチャと共に動作する必要性、及び非常に短い波長のコヒーレントの照射源を用いる結果としての必要性から生じる特別な問題を解決していない。
【0015】
物体の表面と検出器の間の光路に配置されたスペックル減少デバイスは、高価である。例えば、上述の技術の一つによって、ファイバの束を置くことは、束にいろいろな特性、例えば長さ、を有する10,000程度の多くのファイバを必要とする。これらのファイバ束は、サイズが極端に大きくなり、結果として高価になってしまう。したがって、非常に多くのファイバを必要としない解決策を見出すことが望まれる。
【0016】
回折グレーティングを使用する場合、同様な問題がある。グレーティングのサイズが精密に、また大きくなればなる程、高価になるであろう。回折グレーティングを用いるが、しかし極端に精密なグレーティングを必要としない解決策を見出すことが望まれる。
【0017】
上記の説明から判るように、深いUV領域を含む、短い波長のパルス化されたレーザビームを用いて物体を検査するとき、スペックルを減少するための方法及びシステムに対する必要性がある。
【0018】
【発明の概要】
上述に照らして、本発明の一つの特徴は、半導体デバイスの製造に用いられる物体の検査の間、スペックルを減少するための光学システムを提供することである。
【0019】
本発明の他の特徴は、短い波長、特に深いUV領域において動作する検査システムに置いてスペックルを減少するための光学システムを提供することである。
【0020】
本発明の他の特徴は、パルス化されたレーザビーム、特に5−50ns領域のパルスを用いるシステムにおいて、スペックルを減少することである。
【0021】
以上の、及び他の特徴を提供するために、上述の従来技術における限界を克服するために、及び以下の詳細な説明を読み、理解すれば明らかになるであろういろいろな問題を解決するために、本発明は、半導体デバイス、特にウエハ、マスク、ホトマスク及びレチクルの製造に用いられる物体の検査の間、スペックルを減少するための方法及び装置を提供する。
【0022】
本発明よると、本発明の装置は、光路に沿ってコヒーレントな光ビームを出力するコヒーレント光源、例えばレーザ光源によって構成される。本発明の一つの実施の形態によれば、2つの光ファイバ束が光路に沿ってシーケンシャルに設けられる。各々の束は、その束内に配列されることができる異なる長さの所定の数のファイバを有している。第1の束は、光ビームを受け、いろいろな中間ビーム、即ち束の各々のファイバに対して一つのビームを出力する。各々の中間ビームは、第2のファイバ束の全てのファイバへイメージされる。第2の束のファイバの各々は出力ビームを出力し、その後、出力ビームは物体の検査において領域を照射するために用いられる。ビームを均質にし、ビームをフォーカスするためのいろいろな光学デバイスが、従来よく知られているように、光路に沿って適当な位置に置かれる。
【0023】
本発明の一つの変更された実施の形態として、束におけるファイバの屈折率を変更することができる。変更された屈折率を用いることによって、光路を変えることができ、ファイバの長さを変える必要性を避けることができる。
【0024】
本発明の他の一つの変更された実施の形態として、束におけるファイバは、同じか或いは異なっている非線形の特性を有することができる。異なる非線形性を用いる一つの考え方は、ファイバの長さが同じだけ変えてはならないことである。一致した長さのファイバを用いることが実施する場合有利である。
【0025】
さらに、他の実施の形態によれば、本発明の装置は、光路に沿ってシーケンシャルに設けられた一つ以上のグレーティング(格子)を用いることである。これらのグレーティングは、上述のファイバと同様に動作する。
【0026】
さらに、他の実施の形態によれば、本発明の装置は、2つより多いファイバ束によって、いずれかの順序での一つの束と一つのグレーティング、またはあらゆる要求されるシーケンスでのファイバ束とグレーティングの組み合わせで構成されることができる。
【0027】
上述の実施の形態のそれぞれの利点は、より少ない数の大きな、又は複雑な素子を有するより個々の素子が単純であるか、或いは小さいかのいずれかであり、したがって、費用が少ないことである。例えば、第2の束にあるそれぞれのファイバへ出力を与える光路に沿って第1の束にあるそれぞれのファイバを有する、それぞれの束に100のファイバを有する2つのファイバ束を用いることは、100×100=10,000の異なる変数を生じ、あたかも10,000の単一の束が用いられたと同様である。
【0028】
大きな光路長の変数を導入するのに便利である、ファイバ又は光ガイドを有する、小さな光路長の変数を導入するのに非常によい2つのグレーティングの使用について、同様の利点が適用できる。
【0029】
本発明の他の実施の形態によると、第1の入力開口及び第2の出力開口を有する球体が光路に沿って設けられ、第1の開口は光ビームを有し、又光ビームが球体内で反射されることによって変更されるその光路を有した後に、光ビームを出力する第2の開口を伴って形成される。この球体は2つの球によって構成され、一方が他方内に同心上に配置される。内部の球は球体内でさらに光を反射する。
【0030】
いま述べた実施の形態は、ある意味では前に述べた実施の形態より簡単であるが、現在利用できる反射材料に基づいて、効率に関してある欠点を有している。これは、2つの球を有する実施の形態の場合に特にそうである。これらの材料が改善されるにしたがって、球体へのアプローチがどんどん増加する魅力的な代替物になるであろうことが予期される。
【0031】
本発明の他の実施の形態は、光路に沿って設けられた電気、又は音響−光変調器によって構成され、光ビームを受けるための入力面とコヒーレントでない変調されたビームを検査されるべき領域へ送るための出力面を有している。この変調器が動作する高周波帯域は、スペックルを十分に減少または除くために、入力ビームの光学波のフロントフェーズをランダムに変える。この実施の形態は、深いUVのような短い波長に対して、光学変調器は比較的高価であるので、前の実施の形態と比較して幾らかの欠点を有している。この解決策は長いコヒーレントな長さを有するソースに対して非常によく働くので、小さな、中間のコヒーレントながさを有するソースからスペックルを減少するのによく動作する、ファイバ束又はグレーティングと組み合わせて用いることができる。
【0032】
【発明の実施の形態】
本発明の好適な実施の形態の以下の説明において、本発明の一部であり、概略によって、本発明の特定の実施の形態を示す添付図面を参照する。他の実施の形態が利用され、本発明の範囲から逸脱することなく、構造的な変更がなされることはこの技術分野における当業者によって理解される。
【0033】
図1Aは、本発明によって使用される、説明するための検査装置である。図1Aにおける検査装置は、反射モードで動作する。しかし、送信モード、或いは送信と反射モードで動作する検査装置が本発明の思想の範囲内であることが理解されるべきである。少なくとも送信の動作モードに対して、ビームがコヒーレンス減少/スペックル減少装置に入る前にビームホモジェナイザーが用いられる必要がある。
【0034】
図1Aにおいて、検査されるべき物体、例えばウエハ、マスク、ホトマスク、又はレチクルが二方向に物体1を移動するx−yステージ上に配置される。検査装置は、コヒーレントな光源4、例えば物体1の一方の側に配置されたレーザを有する。この光源4は、UV又は深いUV領域における短い波長のレーザビームを放射する連続波レーザ、又はパルス化されたレーザである。光源4によって放射されるビームは、光学系6、ビームスプリッター8、及び対物レンズ10を介して、物体1の面に向けられる。適当な構造によって規定される他の光学路を含む、ビームを物体1へ向ける他の手段を用いることができることが留意されるべきである。
【0035】
物体1の表面に当たった光ビームは、リレーレンズ18を介してイメージ検出器(センサ)20へ反射される。このイメージ検出器20は、CCDセンサであり、それは、1xMセンサ、又はNxM領域又は時間遅延積分又はCCDセンサである。このセンサー20は物体1の画像化を可能にし、物体1を運ぶステージ2が光源4に対して連続的に移動できるようにする。
【0036】
図1に示された検査装置は、さらに、光ビームの光路に沿って配置される、コヒーレンス減少光学装置30を有する。コヒーレンス減少光学装置30は、ある程度上述されたいろいろな実施の形態においては、本発明の中心点である。検査装置は、又、ビームスプリッター24を介して対物レンズ10を制御する自動焦点装置22を含み、対物レンズ10は、光ビームの光路に沿って配置され、そして接眼鏡26は、見る目的のために、ビームスプリッター28を介して反射された光ビームを受けとる。
【0037】
光源4は、光ビームを放射するために、光源4を励起する制御装置40によって制御される。
【0038】
動作において、光学系を介して光源4によって放射された光ビームは、物体1に向けられているビームスプリッタ8を打つ。この照射装置の効果は、一般に物体1に垂直な照射を駆動することである。光ビームは、コヒーレンス減少光学装置30、ビームスプリッタ24及び対物レンズ10を介して反射されながら、光路に沿って物体1へ走る。その後、光ビームは、物体1から反射され、リレーレンズ18を介してセンサ20へイメージ化される。
【0039】
反射された光ビームは、物体1上に含まれるパターンに関する情報を有し、物体1及びその表面にある全ての欠陥に関する情報を提供する。光源4のコヒーレントの性質及び動作波長は、できる限り欠陥の大きさと比較して、センサ20においてスペックルを生成することができる。スペックルは、予期しない信号の不均一性を生じ、したがって欠陥を識別することを困難にし、幾らかの微細な欠陥が検出されないままになる。したがって、光ビームのコヒーレンスを壊すことによってスペックル減少を減少する必要がある。コヒーレンス減少光学装置30は、光ビームの光路に沿って配置され、物体1の表面を打つビームのコヒーレンスを減少し、それによってスペックルを減少又は除去する。
【0040】
斜めのレーザ照射を用いるウエハ検査装置に関する好適な装置の他の実施の形態が図1Bに示されている。図示されるように、レーザ源4は、斜めの角度(グレージング角度と呼ばれるときがある)でウエハ1を照射するレーザビームを備えている。斜めの角度の結果として、照射スポット5は、照射方向に延びた長円の主軸を有する長円形を有している。このスポットの形状は、スペックルを生じる、比較的大きなスポット面積を有する。
【0041】
これらの形式の装置において、検出機構は暗いフィールド照射に基づかれる。即ち、光ビームは対物レンズ10を用いて、スポット5に焦点が結ばれる。ウエハはミラー状の表面を有しているので、光は、図に示されるように、スネルの法則にしたがって反射する。暗いフィールド検出器は、ビームの反射から離れておかれる。検出器の配置の幾つかの例として、検出器21、22および23が示されている。これらの検出器の幾つか又は全てを組み合わせることができる。しかし、スペックル現象は、これらの検出器の幾つか或いは全てに影響することが理解されるべきである。結果として、レーザビームの照射路にコヒーレンス減少光学装置30を置くことが必要である。
【0042】
本発明は、コヒーレンス減少光学装置30の幾つかの実施の形態を提供する。各々の実施の形態について、詳細に説明する。
【0043】
図2Aによると、コヒーレンス減少光学装置30の第1の実施の形態は、2つのファイバの束301と302を有し、その各々は所定の数の光ファイバ304、305を有している。これらの束は同じ数のファイバを有していてもよいし、異なった数のファイバを有していてもよい。2つより多くの束を設けることもできる。光学束301と302は、イメージビームIの光路に沿ってシーケンシャルに配置され、束301は束302の前に配置され、さらにイメージビームIを受けるための入力と第2の束302の入力に接近して出力を有している。(説明を容易にするために、2つの束301と302は、互いに若干角度がつけられて図示されているが、動作中は、それらは軸に沿って整列される。)
光ファイバ304と305は、この分野では知られている同じ形式のものであり、好ましくは、屈折率とクラッドのような所定のパラメータを有しているが、それらは異なる屈折率又は異なるクラッドを有することもできる。)ファイバ304と305は異なった長さを有しており、多くの既知の無作為化技術を用いて、それぞれの束内にランダムに設けられることができる。何れかの2つのファイバ304間の長さの差ΔLは、光源4のコヒーレンスの長さより大きくなるように選択されるのが好ましい。何れかのペア304間の長さの差は、束302の最も短いファイバと最も長いファイバ間の長さの差より大きいのが好ましい。これは、正しい結合がなされれば、結合された束の効果を最大にする。束におけるファイバ間の一般的な関係は図3に示される。
【0044】
図2に示されるように、束301内のファイバ304の一つの配列は、束301の出力におけるファイバ304の終端の全てがイメージビームの光路を実質的に横切る面に置かれようにする。同様に、束302の出力端における光ファイバ305の全ての終端は、イメージビームの光路を実質的に横切る面に置かれる。他の可能性は、図3に示されるように長さを変えて、蜜にパックされた光ガイドの束を用いることである。
【0045】
一つの例は、1mmの光学コヒーレンス長の場合である。例えば、400mmから20mm増加した長さを有する25本のファイバ、及び20mmから1mm増加した長さの36本の密にパックされた正方形の光ガイドから成る第2の束を用いると、効果は、恰も1mmの長さの増加を有する25X36=900本のファイバの束が用いられたと同様である。
【0046】
束301と302の入力もイメージビームの光路を横切る面に置くこともできる。その場合、各々の束の全てのファイバは異なる長さを有しているので、長さの差に対して、例えばそれぞれの束において幾らかのファイバをループにしたり、曲げるなりして、調整されなければならない。束301、302内のファイバ304、305の配列の例が図4に示されている。この分野の当業者は、同じ長さのファイバを有するが、異なる屈折率又はクラッドを有するファイバの束が上述の好適な実施の形態に代えて用いることができ、同様な結果を有することを認識するであろう。
【0047】
光ファイバ又は光ガイド束の実施の形態の他の変形は、各々の束におけるファイバの幾つかまたは全てが非線形の光学特性を有することである。屈折率やクラッドにおける変化、又はファイバの長さの変化と同様に、非線形光学特性の変化は、ファイバを通過する光の経路長を変えるために働き、従って、物体1へ入力されるビームのコヒーレンスを減少するように働く。
【0048】
非線形特性は、例えば、ゲルマニウムがドープされたガラスを用いることによって得られる。又、非線形特性は、単一の光ガイド又はガラスの棒において得られる。非線形の材料は高電力密度において自身の二重散乱を生成し、したがってコヒーレンス長を減少する、数100GHzへのスペクトルの広がりを可能にし、スペックルを減少する。
【0049】
イメージビームIの波頭が第1の束301の入力を打つと、それは多重光学ビームへ効率的に乱される。各々のビームは、束301内の1つのファイバ304を貫通し、ファイバ304の全長を通して進む。束301の出力において、それぞれのファイバ304から出たビームは、好ましくは、束302の全てのファイバ305へイメージ化される。したがって、各々のファイバ305は、全てのファイバ304から光を受取る。ファイバ305が束302の出力を通して光を送出した後、生じたビームは、全てが光源4のコヒーレント長より大きな光学路長差を有する。
【0050】
上記の束におけるファイバ間の長さの差と共に、束301における各々のファイバ304から束302のファイバの全てへ、光の全てをイメージすることの1つの利点は、コヒーレンスの減少効果は、乗法的であって、加法的ではない。即ち、束301のN本のファイバ及び束305のM本のファイバに対して、コヒーレンスの減少効果は、恰もNxM本のファイバが用いられたと同様であって、(N+M)本ではない。結果として、例えば、N=M=100に対して、この技術によって達成される効果は、恰もNxM=10,000本のファイバが用いられたと同様であって、200ではない。このアプローチによれば、非常に少ないファイバを使用し、非常に少ない費用でコヒーレント減少構造を得ることが可能である。ファイバの長さの他の配列も可能であり、その場合、光学経路長の効果的な数は、用いられた束のファイバの数の積であって、それらの和ではない。
【0051】
光ガイドまたはガラス棒以外の多数のファイバを用いることの利点は、コヒーレンス現象光学装置の実効長は非常に大きくすることができることである。例えば、長さが50mm増加した束における100本のファイバを用いることによって、50mの実効長が得られ、0.5mのみの箱にへパックされる。上述の技術を応用した結果、物体1へ入射するビームのコヒーレンスは減少され、それによって、検出器におけるスペックルを減少し、或いは除去する。第1の実施の形態の変形において、図2Bに示されるように、コヒーレンス減少光学装置30は、各々のファイバ304から出て束302の全てのファイバ305へいくビームをイメージするために、2つの束301、302間に設けられたイメージレンズ303を有することもできる。この分野の当業者は、本発明の他の実施の形態がイメージビームIの光路に沿ってシーケンシャルに設けられた、複数の光ファイバの束、および複数のイメージレンズまたは束の間に設けられた他の適当な光学素子を有することができることを理解するであろう。光散乱素子が束の間に挿入され、光が次ぎの束の入り口を打つ角度を均質化することができる。
【0052】
図5に示された本発明の第2の実施の形態において、コヒーレンス減少光学装置30は、イメージビームI光路に沿って設けられた球体(インテグレーティング球体)311によって構成される。この球体311は入口開口312と出口開口313を有する。開口312は、開口313より小さな直径を有するのが好ましい。開口312は、イメージビームIを受けるように配置される。球体311は、イメージビー部Iをよく反射するために、非吸収材料、例えば好ましくは酸化マグネシュウム(MgO)から作られた非吸収内面を有する。他の適当な反射被膜を用いることもできる。
【0053】
イメージビームIが球体311内で反射した後、反射ビームは開口313を通って球体を出る。より詳細には、開口313を出るビームは、球体の内側で反射したビームの集合であり、各々のビームは、他のビームと異なった距離を進む。結果的に、開口313を出るこれらのビームの集合は、元のイメージビームIと比較して、減少したコヒーレンスである。
【0054】
いま説明した実施の形態の変更について、図6に示されるように、球体311の内面と同じ非吸収材料が設けられている外側表面を有する第2の、内部球体317が設けられる。内側の球体317と外側の球体311は同心的にあるが、これは要件とされない。開口312を通して球体311へ入るイメージビームIは、内側の球体317と外側の球体311の内面によって反射されるビームの集まりへ分散される。開口313を通って物体へ送られる反射されたビームは、反射されたビームの集合であり、減少されたコヒーレンスを有している。内側の球体を設けることの効果は、入口開口312から出て出口開口313へ行くにしたがって、光の反射経路を長くすることである。
【0055】
球体311のいろいろな半径、および入口と出口開口のいろいろな直径が可能である。球体311に対して25mmの半径、1mmの入口開口および5mmの出口開口が好適である。
【0056】
図5と図6の実施の形態は、反射材料の使用に伴う損失のために、光ファイバの実施の形態より効率が低いと考えられる。特に、図6の実施の形態から生じる劣化は、全く不利であると考えられる。図5の単一の球体への入口の前にある種のバッファを設ければ、良好に動作するかもしれない。被膜の反射率を可能な限り増大すれば、これらの実施の形態はより魅力的になると考えらる。
【0057】
図7に示されるように、コヒーレンス減少光学装置の第3の実施の形態は、イメージビームIの光路に沿って配置された、第1のグレーティング321と第2のグレーティング322によって構成されている。この実施の形態におけるグレーティング321と322は、回折グレーティングであるが、反射グレーティングも同じ結果を有するものとして使用されることが理解されるべきである。これらのグレーティング321と322は、所定のピッチΛ、波長λ、および第1の回折オーダーを有していて、同じであるのが好ましいが、異なるピッチや他の特性も同様に用いることができる。
【0058】
動作では、イメージビームIは、所定の角度θ1でグレーティング321の表面を打ち、角度θ0で回折される。もし、イメージビームIが広げられて、図7に示されるように、直径Dを有するならば、イメージビームの2つのエッジ間で得られる光路差(OPD: optical path difference)は、公式:OPD=Dtanθ1+Dtanθ0/cosθ1で計算することができる。回折の関係は、sinθ0=Λ/λ−cosθ1である。回折された光ビームは続いて第2のグレーティング22に当たり、回折される。入射角は、前と同じ角度θ1であり、出ていく角度θ0も前と同じである。同じ計算を行なえば、生じたビームの光路差は2・OPDである。光源と物体間の光路差は、ビームIの光路に沿って幾つか、同じグレーティングを設けることによって大きくすることができることは、上記の計算からわかるであろう。OPDn=n・OPDが光源のコヒーレント長より大きくなるまで、同じ回転方向、例えば時計回りに光を回折するように、グレーティングが配列される。そのとき、生じるビームはインコヒーレントであり、このプロセスはスペックル現象を減少するであろう。もし、反射グレーティングが、回折グレーティングに代えて他の実施の形態として用いられるなら、上記の計算を適用することができる。
【0059】
図7の実施の形態におけるグレーティングを使用した結果、イメージビームIの光路が変わることに留意すべきである。この装置は、たとえグレーティング間において、意味のある方向の効果的な断面が非常に大きくなったとしても、入口と出口のビームは同じ断面を有しているものである。設計は、最後のグレーティング面が光の伝播方向に垂直であるようにする。これによって、例えば、その点から物体までの照射スキーム、所謂 Kohler照射の使用を可能にする。設けられたグレーティングの数に依存して、適切な光学素子が、コヒーレンスの減少したビームを物体に正しく向けるために、設けられなければならない。代わりに、光源10は、装置30からのビーム出力が物体1に正しく向けられるように、コヒーレンス現象光学装置に関して、正しく配置される。
【0060】
多くのグレーティングを使用する代わりに、例えば、図7に示される光路と同じ光路に沿って、光を再指向、即ち90度の間隔で再指向するために、適当なミラーや他の反射/回折装置を用いて、光が同じグレーティングを多数回通過することができる。他の間隔での再指向も可能である。
【0061】
コヒーレンス減少光学装置30の第4の実施の形態が図8に示されている。この装置30は、イメージビームIの光路に沿って、且つイメージレンズ333の前に配置された音響−光変調器331によって構成されている。この音響−光変調器331は、1−20GHzの範囲にある周波数を有するホワイトノイズの信号を供給する電子ホワイトノイズ源332に結合されている。イメージビームIは、所定の角度で変調器331の比較的大きな面を打つ。この面は、同じ1−20GHzの範囲にある異なる周波数を有する部分を有している。そしてイメージビームIは、変調器におけるこれらの摂動によって回折され、方向と波長が変化する。したがって、変調器331の出力において、生じた変調ビームは非コヒーレントな特性を有し、イメージレンズ333を用いて、物体上へイメージされる。また、音響−光変調器、または電気−光変調器は、グレーティングと共に用いることができ、長いコヒーレンス長と短いコヒーレンス長の双方に適用する。
【0062】
この実施の形態の一つの特徴は、パルス化されたレーザから受取ったパルス間隔を長くする能力である。その結果、パルス間隔は、イメージビームのコヒーレンス長を超え、回転するデフューザを用いる効果的な方法を可能にする。20mまでのファイバ長の差を有するファイバの束を用いることによって、パルス長は5nsから50nsまで広げられる。例えば、30,000RPMで回転する、直径が100mmの回転するすりガラスは、5分の1だけスペックル変調を減少する。
【0063】
いま説明した実施の形態のいろいろな組み合わせも可能である。例えば、ファイバの束は回折グレーティングと共に、または音響−光変調器と共に用いられることができるし、回折グレーティングは音響−光変調器と共に用いられることができる、等である。コヒーレンス減少光学装置30のいろいろな要素が置かれるオーダは必ずしも重要ではないが、前に説明した小さなファイバ束を使用することの大きな利点を確保するために、ビーム源の最も近くに配置される素子の関係についての上述の注意事項を守るのがよい。
【0064】
いろいろな好適な実施の形態を参照して本発明を説明したけれども、本発明の範囲および精神の範囲内にあるいろいろな実施の形態は、この技術分野における通常の知識を有するものには明らかであろう。例えば、好適な実施の形態が半導体の製造に用いられるレチクルについて説明したけれども、半導体製造において使用される他のパターン化された物体の検査に、或いは半導体ウエハの検査にこの簡単で、有力な技術を適用することは、本発明の意図された範囲内である。実際に、本発明の方法および装置は、ウエハばかりでなく、マスク、ホトマスク、レチクル、或いは半導体デバイスの、例えばホトリソグラフ工程による製造における同様な方法に使用される他の物体の検査に応用可能である。したがって、本発明の方法および装置に関する限り、用語“マスク”、“ホトマスク”と“レチクル”および同様な物体を規定する用語は、互換性があり、この分野の当業者によって理解されるべきである。
【0065】
更に、本発明のコヒーレンス減少技術は、検査装置への適用に限定されないが、コヒーレンス減少技術が必要であるあらゆる半導体関連製造動作に用いられることができる。
【0066】
当業者に明らかである前述および他の変更に照らして、本発明の範囲は、特許請求の範囲によってのみ制限されると考えるべきである。
【図面の簡単な説明】
【図1A】本発明にしたがって使用するための検査装置の例を示す。
【図1B】本発明にしたがって使用するための検査装置の例を示す。
【図2A】本発明の第1の実施の形態である。
【図2B】図2Aの変形である。
【図3】第1の実施の形態に関する説明図である。
【図4】第1の実施の形態に関する変形を示す。
【図5】本発明の第2の実施の形態を示す。
【図6】第2の実施の形態に関する変形を示す。
【図7】本発明の第3の実施の形態を示す。
【図8】本発明の第4の実施の形態を示す。

Claims (10)

  1. 半導体デバイスの製造に用いられるパターン化された物体の検査において、スペックルを減少する方法であって、
    照射ビームと前記パターン化された物体間の相対的移動を行なうステップ、前記照射ビームは、少なくとも部分的にコヒーレンスを乱すように、コヒーレントな光ビームを変更することによって得られ、
    前記コヒーレントな光ビームの変更は、
    照射ビーム源とパターン化された物体の間の光路に沿って、複数の光ファイバの束をシーケンシャルに設けるステップを有し、前記複数の光ファイバの束は、所定の数のファイバを有し、前記ファイバの各々は、入力と出力を有し、前記複数の束の第1の束のファイバの各々は、前記入力を通して前記コヒーレントな光ビームを受け、且つ前記複数の束の最後の束のファイバの各々は、前記出力を通して出力ビームを送り、各々の束における何れか2つのファイバ間の光路長の差は、前記コヒーレントな光ビームのコヒーレント長より大きいことを特徴とする方法。
  2. 前記パターン化された物体は、ウエハ、マスク、ホトマスク、およびレチクルから成るグループから選ばれることを特徴とする請求項1に記載の方法。
  3. 第1と第2の光ファイバの束があり、前記第2の光ファイバの束は前記最後の束であり、前記方法は、さらに、前記第1の光ファイバの束におけるファイバの各々の出力を前記第2の光ファイバの束におけるファイバの各々の入力へ与えるステップを有することを特徴とする請求項2に記載の方法。
  4. 前記第1の光ファイバの束のファイバの数が、前記第2の光ファイバの束のファイバの数と異なっていることを特徴とする請求項3に記載の方法。
  5. 前記第1の光ファイバの束のファイバの数が、前記第2の光ファイバの束のファイバの数と同じであることを特徴とする請求項3に記載の方法。
  6. 前記第1と第2の光ファイバの束のファイバの少なくとも幾つかは、異なる長さを有することを特徴とする請求項3に記載の方法。
  7. 前記第1と第2の光ファイバの束の少なくとも一方における何れか2つのファイバ間の長さの差は、前記コヒーレントな光ビームのコヒーレント長より大きいことを特徴とする請求項3に記載の方法。
  8. 前記第1と第2の光ファイバの束の少なくとも一方におけるファイバの入力端は整列されていることを特徴とする請求項3に記載の方法。
  9. 前記第1と第2の光ファイバの束の少なくとも一方におけるファイバの出力端は整列されていることを特徴とする請求項3に記載の方法。
  10. 前記第1と第2の光ファイバの束におけるファイバの少なくとも幾つかの特性は、非線形、屈折率の差、およびクラッドの差から成るグループから選ばれることを特徴とする請求項3に記載の方法。
JP2000391608A 1999-11-17 2000-11-17 スペックルを減少する物体検査用の装置及び方法 Expired - Fee Related JP5117645B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/443,247 US6369888B1 (en) 1999-11-17 1999-11-17 Method and apparatus for article inspection including speckle reduction
US09/443247 1999-11-17

Publications (2)

Publication Number Publication Date
JP2001274081A JP2001274081A (ja) 2001-10-05
JP5117645B2 true JP5117645B2 (ja) 2013-01-16

Family

ID=23760017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391608A Expired - Fee Related JP5117645B2 (ja) 1999-11-17 2000-11-17 スペックルを減少する物体検査用の装置及び方法

Country Status (4)

Country Link
US (7) US6369888B1 (ja)
EP (1) EP1102058B1 (ja)
JP (1) JP5117645B2 (ja)
DE (1) DE60030658T2 (ja)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL99823A0 (en) * 1990-11-16 1992-08-18 Orbot Instr Ltd Optical inspection method and apparatus
US6629641B2 (en) * 2000-06-07 2003-10-07 Metrologic Instruments, Inc. Method of and system for producing images of objects using planar laser illumination beams and image detection arrays
US7673803B2 (en) * 1998-03-24 2010-03-09 Metrologic Instruments, Inc. Planar laser illumination and imaging (PLIIM) based engine
JPH11326827A (ja) * 1998-05-20 1999-11-26 Sony Corp 光のコヒーレンス低減方法及びその装置、並びに、照明方法及びその装置
US6800859B1 (en) * 1998-12-28 2004-10-05 Hitachi, Ltd. Method and equipment for detecting pattern defect
US6693664B2 (en) 1999-06-30 2004-02-17 Negevtech Method and system for fast on-line electro-optical detection of wafer defects
US6369888B1 (en) * 1999-11-17 2002-04-09 Applied Materials, Inc. Method and apparatus for article inspection including speckle reduction
JP3858571B2 (ja) * 2000-07-27 2006-12-13 株式会社日立製作所 パターン欠陥検査方法及びその装置
US7401976B1 (en) * 2000-08-25 2008-07-22 Art Advanced Research Technologies Inc. Detection of defects by thermographic analysis
DE10042114A1 (de) * 2000-08-28 2002-03-14 Leica Microsystems Verfahren zur Beleuchtung eines Objekts mit Licht einer Laserlichtquelle
US8042740B2 (en) 2000-11-24 2011-10-25 Metrologic Instruments, Inc. Method of reading bar code symbols on objects at a point-of-sale station by passing said objects through a complex of stationary coplanar illumination and imaging planes projected into a 3D imaging volume
US6693930B1 (en) * 2000-12-12 2004-02-17 Kla-Tencor Technologies Corporation Peak power and speckle contrast reduction for a single laser pulse
US20020126479A1 (en) * 2001-03-08 2002-09-12 Ball Semiconductor, Inc. High power incoherent light source with laser array
JP2003042967A (ja) * 2001-07-27 2003-02-13 Hitachi Ltd パターン欠陥検査装置
US6927847B2 (en) * 2001-09-13 2005-08-09 Hitachi High-Technologies Corporation Method and apparatus for inspecting pattern defects
US6900888B2 (en) * 2001-09-13 2005-05-31 Hitachi High-Technologies Corporation Method and apparatus for inspecting a pattern formed on a substrate
JP2003130808A (ja) * 2001-10-29 2003-05-08 Hitachi Ltd 欠陥検査方法及びその装置
US20040165242A1 (en) * 2001-11-13 2004-08-26 Jean-Louis Massieu Compact optical and illumination system with reduced laser speckles
JP2003185593A (ja) * 2001-12-21 2003-07-03 Nec Electronics Corp ウェーハ外観検査装置
US6906305B2 (en) * 2002-01-08 2005-06-14 Brion Technologies, Inc. System and method for aerial image sensing
US7130039B2 (en) * 2002-04-18 2006-10-31 Kla-Tencor Technologies Corporation Simultaneous multi-spot inspection and imaging
US7359045B2 (en) * 2002-05-06 2008-04-15 Applied Materials, Israel, Ltd. High speed laser scanning inspection system
US6895149B1 (en) * 2002-05-13 2005-05-17 James Jeffery Jacob Apparatus for beam homogenization and speckle reduction
US6828542B2 (en) * 2002-06-07 2004-12-07 Brion Technologies, Inc. System and method for lithography process monitoring and control
DE10232781B4 (de) * 2002-07-18 2013-03-28 Vistec Semiconductor Systems Gmbh Vorrichtung zur Wafer-Inspektion
US6952256B2 (en) * 2002-08-30 2005-10-04 Kla-Tencor Technologies Corporation Optical compensation in high numerical aperture photomask inspection systems for inspecting photomasks through thick pellicles
US7339661B2 (en) * 2002-09-30 2008-03-04 Doron Korngut Dark field inspection system
US6807503B2 (en) 2002-11-04 2004-10-19 Brion Technologies, Inc. Method and apparatus for monitoring integrated circuit fabrication
GB2395289A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Structured light generator
US6847449B2 (en) * 2002-11-27 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing speckle in optical coherence tomography images
US7486861B2 (en) * 2003-01-15 2009-02-03 Negevtech Ltd. Fiber optical illumination system
US6892013B2 (en) * 2003-01-15 2005-05-10 Negevtech Ltd. Fiber optical illumination system
US7525659B2 (en) * 2003-01-15 2009-04-28 Negevtech Ltd. System for detection of water defects
DE60324656D1 (de) * 2003-01-15 2008-12-24 Negevtech Ltd Verfahren und Gerät zur schnellen on-line und elektro-optischen Defekterkennung an Wafern
US7142295B2 (en) * 2003-03-05 2006-11-28 Corning Incorporated Inspection of transparent substrates for defects
EP1455235A3 (en) * 2003-03-07 2009-04-22 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7053355B2 (en) 2003-03-18 2006-05-30 Brion Technologies, Inc. System and method for lithography process monitoring and control
US7365834B2 (en) * 2003-06-24 2008-04-29 Kla-Tencor Technologies Corporation Optical system for detecting anomalies and/or features of surfaces
JP4260587B2 (ja) * 2003-09-18 2009-04-30 株式会社日立ハイテクノロジーズ パターン欠陥検査装置
JP2007510963A (ja) * 2003-11-10 2007-04-26 テクノロジー イノヴェイションズ リミテッド ライアビリティ カンパニー デジタル画像化組立品、及びその方法
US20050148881A1 (en) * 2003-12-19 2005-07-07 Fomitchov Ravel A. High-frequency intensity-modulated incoherent optical source for biomedical optical imaging
US7319229B2 (en) * 2003-12-29 2008-01-15 Kla-Tencor Technologies Corporation Illumination apparatus and methods
US20050165631A1 (en) * 2004-01-28 2005-07-28 Microsoft Corporation Time management representations and automation for allocating time to projects and meetings within an online calendaring system
JP2005337851A (ja) * 2004-05-26 2005-12-08 Hitachi High-Technologies Corp 欠陥検査方法及びその装置
WO2006006148A2 (en) * 2004-07-12 2006-01-19 Negevtech Ltd. Multi mode inspection method and apparatus
US20060012781A1 (en) * 2004-07-14 2006-01-19 Negevtech Ltd. Programmable spatial filter for wafer inspection
US7397552B2 (en) * 2004-09-27 2008-07-08 Applied Materials, Israel, Ltd. Optical inspection with alternating configurations
US7586959B2 (en) * 2004-09-27 2009-09-08 Applied Materials, Israel, Ltd. Speckle reduction with transparent blocks
AU2005327903A1 (en) * 2004-10-18 2006-08-31 Macquarie University Fluorescence detection
US7391499B2 (en) * 2004-12-02 2008-06-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR100694072B1 (ko) * 2004-12-15 2007-03-12 삼성전자주식회사 레이저 반점을 제거한 조명계 및 이를 채용한 프로젝션시스템
US7375812B2 (en) * 2005-02-22 2008-05-20 Axsun Technologies, Inc. Method and system for reducing parasitic spectral noise in tunable semiconductor source spectroscopy system
US7804993B2 (en) * 2005-02-28 2010-09-28 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers including alignment of the wafer images so as to induce the same smear in all images
US7813541B2 (en) * 2005-02-28 2010-10-12 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers
WO2007016682A2 (en) * 2005-08-02 2007-02-08 Kla-Tencor Technologies Corporation Systems configured to generate output corresponding to defects on a specimen
US7535938B2 (en) * 2005-08-15 2009-05-19 Pavilion Integration Corporation Low-noise monolithic microchip lasers capable of producing wavelengths ranging from IR to UV based on efficient and cost-effective frequency conversion
US7413311B2 (en) * 2005-09-29 2008-08-19 Coherent, Inc. Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
JP4996856B2 (ja) * 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
US8031931B2 (en) * 2006-04-24 2011-10-04 Applied Materials South East Asia Pte. Ltd. Printed fourier filtering in optical inspection tools
US7659973B2 (en) * 2006-05-26 2010-02-09 Applied Materials Southeast Asia, Pte Ltd. Wafer inspection using short-pulsed continuous broadband illumination
US7728954B2 (en) * 2006-06-06 2010-06-01 Asml Netherlands B.V. Reflective loop system producing incoherent radiation
US20080037933A1 (en) * 2006-08-14 2008-02-14 Negevtech, Ltd. Speckle reduction using a fiber bundle and light guide
US7719674B2 (en) * 2006-11-28 2010-05-18 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
US7714998B2 (en) * 2006-11-28 2010-05-11 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
DE102007027083A1 (de) * 2007-06-12 2008-12-18 Carl Zeiss Sms Gmbh Mikroskopbeleuchtung
US7738092B1 (en) 2008-01-08 2010-06-15 Kla-Tencor Corporation System and method for reducing speckle noise in die-to-die inspection systems
US7843558B2 (en) 2008-06-25 2010-11-30 Applied Materials South East Asia Pte. Ltd. Optical inspection tools featuring light shaping diffusers
WO2010000033A1 (en) * 2008-07-02 2010-01-07 A.H. Beeley Pty Ltd Apparatus and method of laparoscopic port site suture
US9080991B2 (en) 2008-09-29 2015-07-14 Kla-Tencor Corp. Illuminating a specimen for metrology or inspection
WO2010037106A2 (en) * 2008-09-29 2010-04-01 Kla-Tencor Corporation Illumination subsystems of a metrology system, metrology systems, and methods for illuminating a specimen for metrology measurements
TWI392432B (zh) 2010-11-23 2013-04-01 Inventec Corp 一種伺服器機櫃
EP2535679A1 (en) 2011-06-15 2012-12-19 Lambda-X Improvements in or relating to interferometry
US8873596B2 (en) 2011-07-22 2014-10-28 Kla-Tencor Corporation Laser with high quality, stable output beam, and long life high conversion efficiency non-linear crystal
US8984453B2 (en) 2012-06-28 2015-03-17 Applied Materials Israel, Ltd. Method and system for creation of binary spatial filters
US8929406B2 (en) * 2013-01-24 2015-01-06 Kla-Tencor Corporation 193NM laser and inspection system
US9529182B2 (en) 2013-02-13 2016-12-27 KLA—Tencor Corporation 193nm laser and inspection system
US9608399B2 (en) 2013-03-18 2017-03-28 Kla-Tencor Corporation 193 nm laser and an inspection system using a 193 nm laser
US9747670B2 (en) 2013-06-26 2017-08-29 Kla-Tencor Corporation Method and system for improving wafer surface inspection sensitivity
US9804101B2 (en) 2014-03-20 2017-10-31 Kla-Tencor Corporation System and method for reducing the bandwidth of a laser and an inspection system and method using a laser
US9419407B2 (en) 2014-09-25 2016-08-16 Kla-Tencor Corporation Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US9748729B2 (en) 2014-10-03 2017-08-29 Kla-Tencor Corporation 183NM laser and inspection system
US10330530B2 (en) * 2015-03-24 2019-06-25 Otsuka Electronics Co., Ltd. Reference light source device used for calibration of spectral luminance meter and calibration method using same
US10739275B2 (en) * 2016-09-15 2020-08-11 Kla-Tencor Corporation Simultaneous multi-directional laser wafer inspection
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
WO2018187653A2 (en) * 2017-04-06 2018-10-11 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Laser speckle reduction and photo-thermal speckle spectroscopy
EP4154055A1 (en) 2020-06-15 2023-03-29 Univerza V Ljubljani A device and a method for speckle-free laser illumination
WO2022061040A1 (en) * 2020-09-21 2022-03-24 Optonomous Technologies, Inc. Laser light sources and methods

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US502418A (en) * 1893-08-01 Steam-generating apparatus
US3778785A (en) * 1972-04-20 1973-12-11 Ibm Method for writing information at nanosecond speeds and a memory system therefor
US3790280A (en) 1972-05-03 1974-02-05 Western Electric Co Spatial filtering system utilizing compensating elements
JPS5343300B2 (ja) 1972-11-02 1978-11-18
FR2325018A1 (fr) * 1975-06-23 1977-04-15 Ibm Dispositif de mesure d'intervalle pour definir la distance entre deux faces ou plus
JPS5419366A (en) 1977-07-14 1979-02-14 Nippon Jidoseigyo Ltd Device for inspecting fault of pattern
US4155630A (en) 1977-11-17 1979-05-22 University Of Delaware Speckle elimination by random spatial phase modulation
US4360799A (en) 1980-05-22 1982-11-23 Leighty Robert D Hybrid optical-digital pattern recognition apparatus and method
DE3170744D1 (en) 1980-10-17 1985-07-04 Brent Chemicals Int Method and apparatus for examining a workpiece
US4377340A (en) 1980-10-24 1983-03-22 Hamamatsu Systems, Inc. Method and apparatus for detecting particles on a material
US4360372A (en) 1980-11-10 1982-11-23 Northern Telecom Limited Fiber optic element for reducing speckle noise
US4448532A (en) 1981-03-31 1984-05-15 Kla Instruments Corporation Automatic photomask inspection method and system
EP0070017B1 (en) 1981-07-14 1986-10-29 Hitachi, Ltd. Pattern detection system
US4566757A (en) 1982-02-12 1986-01-28 University Of Dayton Holographic optical processing method and apparatus
US4478481A (en) 1982-02-12 1984-10-23 University Of Dayton Production of diffraction limited holographic images
US4598997A (en) 1982-02-15 1986-07-08 Rca Corporation Apparatus and method for detecting defects and dust on a patterned surface
JPS58147708A (ja) * 1982-02-26 1983-09-02 Nippon Kogaku Kk <Nikon> 照明用光学装置
US4513384A (en) 1982-06-18 1985-04-23 Therma-Wave, Inc. Thin film thickness measurements and depth profiling utilizing a thermal wave detection system
US4560235A (en) 1982-09-22 1985-12-24 Honeywell Inc. Fiber optic condenser for an optical imaging system
JPS59157505A (ja) 1983-02-28 1984-09-06 Hitachi Ltd パタ−ン検査装置
US4521075A (en) * 1983-03-07 1985-06-04 Obenschain Stephen P Controllable spatial incoherence echelon for laser
US4926489A (en) 1983-03-11 1990-05-15 Kla Instruments Corporation Reticle inspection system
US4589783A (en) 1984-04-04 1986-05-20 Wayne State University Thermal wave imaging apparatus
US4619508A (en) 1984-04-28 1986-10-28 Nippon Kogaku K. K. Illumination optical arrangement
JPH0792556B2 (ja) * 1984-04-28 1995-10-09 株式会社ニコン 露光装置
US5042952A (en) 1984-05-21 1991-08-27 Therma-Wave, Inc. Method and apparatus for evaluating surface and subsurface and subsurface features in a semiconductor
JPS60247643A (ja) * 1984-05-24 1985-12-07 Canon Inc 光学装置
US4598783A (en) * 1984-09-24 1986-07-08 Lesley Jerry Tippen Traction device for vehicles
US4681427A (en) * 1985-05-06 1987-07-21 Polaroid Corporation Electronic printing method
US4710030A (en) 1985-05-17 1987-12-01 Bw Brown University Research Foundation Optical generator and detector of stress pulses
US4659172A (en) 1985-05-20 1987-04-21 Insystems, Inc. Rotatable and translatable mounting mechanism for a specimen pattern in optical processing apparatus
US4627731A (en) * 1985-09-03 1986-12-09 United Technologies Corporation Common optical path interferometric gauge
FR2589022B1 (fr) 1985-10-18 1988-05-27 Thomson Csf Procede et dispositif de generation d'images a partir de signaux ultra-sonores obtenus par echographie
US4647975A (en) 1985-10-30 1987-03-03 Polaroid Corporation Exposure control system for an electronic imaging camera having increased dynamic range
US4760265A (en) 1986-01-18 1988-07-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and device for detecting defects of patterns in microelectronic devices
US4910690A (en) 1986-02-14 1990-03-20 Citizen Watch Co., Ltd. Micro-dimensional measurement apparatus
US4712851A (en) 1986-03-03 1987-12-15 Insystems, Inc. Positioning alignment apparatus and method using holographic optical elements
US4807991A (en) * 1986-04-07 1989-02-28 Electro-Organic Company Method of inspecting and repairing a structural defect in the surface of an object
US4734923A (en) 1986-05-19 1988-03-29 Hampshire Instruments, Inc Lithographic system mask inspection device
US4805123B1 (en) 1986-07-14 1998-10-13 Kla Instr Corp Automatic photomask and reticle inspection method and apparatus including improved defect detector and alignment sub-systems
JPH0623999B2 (ja) 1986-07-28 1994-03-30 株式会社日立製作所 パタ−ン欠陥検出方法
US4714516A (en) * 1986-09-26 1987-12-22 General Electric Company Method to produce via holes in polymer dielectrics for multiple electronic circuit chip packaging
US4772126A (en) 1986-10-23 1988-09-20 Inspex Incorporated Particle detection method and apparatus
JPS63110722A (ja) 1986-10-29 1988-05-16 Hitachi Ltd 露光照明装置
JPS63282640A (ja) 1987-05-14 1988-11-18 Fuji Electric Co Ltd 粉末中の異物自動検査装置
US4909615A (en) 1987-05-29 1990-03-20 Minolta Camera Kabushiki Kaisha Zoom lens system for use in an image projecting apparatus with kohler illumination
US4806774A (en) * 1987-06-08 1989-02-21 Insystems, Inc. Inspection system for array of microcircuit dies having redundant circuit patterns
US4978224A (en) 1987-07-14 1990-12-18 Sharp Kabushiki Kaisha Method of and apparatus for inspecting mounting of chip components
US4882498A (en) 1987-10-09 1989-11-21 Pressco, Inc. Pulsed-array video inspection lighting system
US4972093A (en) 1987-10-09 1990-11-20 Pressco Inc. Inspection lighting system
US5156943A (en) * 1987-10-25 1992-10-20 Whitney Theodore R High resolution imagery systems and methods
JP2536023B2 (ja) * 1988-02-29 1996-09-18 株式会社ニコン 露光装置、及び露光方法
US5307207A (en) * 1988-03-16 1994-04-26 Nikon Corporation Illuminating optical apparatus
US4896211A (en) 1988-04-26 1990-01-23 Picker International, Inc. Asynchronously triggered single field transfer video camera
JPH0617927B2 (ja) * 1988-04-28 1994-03-09 三菱レイヨン株式会社 光ファイバ式ライトガイド用受光体及び同受光体を含む光源光学系
JPH01310485A (ja) 1988-06-08 1989-12-14 Dainippon Printing Co Ltd 欠陥情報検出装置
US4978862A (en) 1988-07-13 1990-12-18 Vti, Inc. Method and apparatus for nondestructively measuring micro defects in materials
US4991968A (en) 1988-07-20 1991-02-12 Robotic Vision Systems, Inc. Three dimensional object surface determination with automatic sensor control
JP2732498B2 (ja) 1988-11-24 1998-03-30 株式会社日立製作所 縮小投影式露光方法及びその装置
JPH02170279A (ja) 1988-12-23 1990-07-02 Hitachi Ltd 被検査対象パターンの欠陥検出方法及びその装置
US5027418A (en) 1989-02-13 1991-06-25 Matsushita Electric Industrial Co., Ltd. Electro-optical inspection apparatus for printed-circuit boards with components mounted thereon
US4941980A (en) 1989-02-17 1990-07-17 Opal, Inc. System for measuring a topographical feature on a specimen
US5153773A (en) 1989-06-08 1992-10-06 Canon Kabushiki Kaisha Illumination device including amplitude-division and beam movements
US5159455A (en) 1990-03-05 1992-10-27 General Imaging Corporation Multisensor high-resolution camera
US5719704A (en) * 1991-09-11 1998-02-17 Nikon Corporation Projection exposure apparatus
IL99823A0 (en) * 1990-11-16 1992-08-18 Orbot Instr Ltd Optical inspection method and apparatus
IL96483A (en) 1990-11-27 1995-07-31 Orbotech Ltd Optical inspection method and apparatus
IL125217A (en) 1990-12-04 1999-10-28 Orbot Instr Ltd Apparatus and method for microscopic inspection of articles
US5633711A (en) 1991-07-08 1997-05-27 Massachusettes Institute Of Technology Measurement of material properties with optically induced phonons
US5563702A (en) * 1991-08-22 1996-10-08 Kla Instruments Corporation Automated photomask inspection apparatus and method
JP2908099B2 (ja) 1992-01-17 1999-06-21 キヤノン株式会社 基板の位置合わせ方法
US5233460A (en) 1992-01-31 1993-08-03 Regents Of The University Of California Method and means for reducing speckle in coherent laser pulses
JP3380868B2 (ja) * 1992-02-04 2003-02-24 株式会社日立製作所 投影露光装置
US5264912A (en) 1992-02-07 1993-11-23 Tencor Instruments Speckle reduction track filter apparatus for optical inspection of patterned substrates
JP2667940B2 (ja) * 1992-04-27 1997-10-27 三菱電機株式会社 マスク検査方法およびマスク検出装置
US5422724A (en) 1992-05-20 1995-06-06 Applied Materials, Inc. Multiple-scan method for wafer particle analysis
US5812261A (en) 1992-07-08 1998-09-22 Active Impulse Systems, Inc. Method and device for measuring the thickness of opaque and transparent films
US5355425A (en) * 1992-09-04 1994-10-11 Braiman Mark S Light coupling device for optical fibers
JPH06109647A (ja) * 1992-09-24 1994-04-22 Nikon Corp 欠陥検査装置
JP2821073B2 (ja) * 1992-12-18 1998-11-05 松下電器産業株式会社 ギャップ制御装置及びギャップ制御方法
US5629768A (en) * 1993-01-28 1997-05-13 Nikon Corporation Defect inspecting apparatus
US5825743A (en) * 1993-04-06 1998-10-20 Zen Research N.V. Illuminating multiple data tracks of an optical disk with a laser source of reduced coherence
US5757474A (en) * 1993-05-10 1998-05-26 Midwest Research Institute System for characterizing semiconductor materials and photovoltaic devices through calibration
JP3234353B2 (ja) * 1993-06-15 2001-12-04 富士写真フイルム株式会社 断層情報読取装置
US5471066A (en) * 1993-08-26 1995-11-28 Nikon Corporation Defect inspection apparatus of rotary type
US5381004A (en) 1993-08-31 1995-01-10 Applied Materials, Inc. Particle analysis of notched wafers
US5574790A (en) * 1993-09-27 1996-11-12 Angstrom Technologies, Inc. Fluorescence authentication reader with coaxial optics
IL111809A (en) * 1993-12-09 1998-12-06 Hughes Aircraft Co Integrated detector for laser sensors
JP3271425B2 (ja) * 1994-03-30 2002-04-02 ソニー株式会社 異物検査装置及び異物検査方法
US5864394A (en) 1994-06-20 1999-01-26 Kla-Tencor Corporation Surface inspection system
US5671050A (en) * 1994-11-07 1997-09-23 Zygo Corporation Method and apparatus for profiling surfaces using diffracative optics
JPH08154210A (ja) 1994-11-28 1996-06-11 Kubota Corp 撮像装置
US5546811A (en) 1995-01-24 1996-08-20 Massachusetts Instittue Of Technology Optical measurements of stress in thin film materials
US5497007A (en) 1995-01-27 1996-03-05 Applied Materials, Inc. Method for automatically establishing a wafer coordinate system
US5715345A (en) * 1995-02-27 1998-02-03 Hughes Danbury Optical Systems, Inc. Optical beam regeneration by optical fiber remapping
JPH08240525A (ja) * 1995-03-06 1996-09-17 Power Reactor & Nuclear Fuel Dev Corp 多目的光センサー
JPH08292361A (ja) 1995-04-24 1996-11-05 Olympus Optical Co Ltd プリズム固定装置
WO1996039619A1 (en) * 1995-06-06 1996-12-12 Kla Instruments Corporation Optical inspection of a specimen using multi-channel responses from the specimen
US5838709A (en) 1995-06-07 1998-11-17 Nikon Corporation Ultraviolet laser source
US6104945A (en) * 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays
US5862285A (en) * 1995-08-04 1999-01-19 Ceramoptec Industries, Inc. Multichannel optical fiber bundle with ordered structure in its sensitive probe tip
US6008906A (en) * 1995-08-25 1999-12-28 Brown University Research Foundation Optical method for the characterization of the electrical properties of semiconductors and insulating films
JPH0961132A (ja) * 1995-08-28 1997-03-07 Olympus Optical Co Ltd 3次元形状計測装置
US5652665A (en) * 1995-09-08 1997-07-29 Umax Data System Inc. Transparency adapter for flatbed scanners
US5825482A (en) 1995-09-29 1998-10-20 Kla-Tencor Corporation Surface inspection system with misregistration error correction and adaptive illumination
WO1997013370A1 (en) 1995-10-02 1997-04-10 Kla Instruments Corporation Alignment correction prior to image sampling in inspection systems
US5625451A (en) * 1995-11-27 1997-04-29 Schmitt Measurement Systems, Inc. Methods and apparatus for characterizing a surface
US5689351A (en) 1995-12-07 1997-11-18 Rockwell International Corporation Holographic memory readout with reduced speckle
JP3594384B2 (ja) 1995-12-08 2004-11-24 ソニー株式会社 半導体露光装置、投影露光装置及び回路パターン製造方法
US6175416B1 (en) * 1996-08-06 2001-01-16 Brown University Research Foundation Optical stress generator and detector
US6321601B1 (en) * 1996-08-06 2001-11-27 Brown University Research Foundation Optical method for the characterization of laterally-patterned samples in integrated circuits
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5844684A (en) 1997-02-28 1998-12-01 Brown University Research Foundation Optical method for determining the mechanical properties of a material
US5691541A (en) * 1996-05-14 1997-11-25 The Regents Of The University Of California Maskless, reticle-free, lithography
JP2720870B2 (ja) * 1996-06-28 1998-03-04 株式会社ニコン 照明光学装置および露光装置ならびに露光方法
US5859924A (en) 1996-07-12 1999-01-12 Robotic Vision Systems, Inc. Method and system for measuring object features
IL118872A (en) * 1996-07-16 2000-06-01 Orbot Instr Ltd Optical inspection method and apparatus
KR100200734B1 (ko) * 1996-10-10 1999-06-15 윤종용 에어리얼 이미지 측정 장치 및 방법
EP0882249A1 (de) 1996-11-07 1998-12-09 Jenoptik LDT GmbH Vorrichtung mit einem laser zur bilddarstellung
JPH10163096A (ja) * 1996-11-26 1998-06-19 Canon Inc 照明光学系及びそれを用いた露光装置
US5748317A (en) 1997-01-21 1998-05-05 Brown University Research Foundation Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector
US6028664A (en) 1997-01-29 2000-02-22 Inspex, Inc. Method and system for establishing a common reference point on a semiconductor wafer inspected by two or more scanning mechanisms
JP3005203B2 (ja) * 1997-03-24 2000-01-31 キヤノン株式会社 照明装置、露光装置及びデバイス製造方法
US6172349B1 (en) 1997-03-31 2001-01-09 Kla-Tencor Corporation Autofocusing apparatus and method for high resolution microscope system
WO1998053733A1 (fr) * 1997-05-26 1998-12-03 Hitachi, Ltd. Appareil d'inspection dans lequel un interferometre optique est utilise
US5854674A (en) 1997-05-29 1998-12-29 Optical Specialties, Inc. Method of high speed, high detection sensitivity inspection of repetitive and random specimen patterns
JP3647608B2 (ja) 1997-06-20 2005-05-18 株式会社ソキア 測量機の自動追尾装置
US5985680A (en) 1997-08-08 1999-11-16 Applied Materials, Inc. Method and apparatus for transforming a substrate coordinate system into a wafer analysis tool coordinate system
JP2956671B2 (ja) * 1997-11-25 1999-10-04 日本電気株式会社 レティクル検査方法および検査装置
US6236454B1 (en) * 1997-12-15 2001-05-22 Applied Materials, Inc. Multiple beam scanner for an inspection system
US6057927A (en) 1998-02-25 2000-05-02 American Iron And Steel Institute Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties
KR100841147B1 (ko) * 1998-03-11 2008-06-24 가부시키가이샤 니콘 레이저 장치, 자외광 조사 장치 및 방법, 물체의 패턴 검출장치 및 방법
US6238063B1 (en) * 1998-04-27 2001-05-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US6248988B1 (en) * 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
JPH11326826A (ja) * 1998-05-13 1999-11-26 Sony Corp 照明方法及び照明装置
US5929994A (en) * 1998-05-20 1999-07-27 Ahead Optoelectronics, Inc. Intergrating sphere ellipsometer
US6256093B1 (en) * 1998-06-25 2001-07-03 Applied Materials, Inc. On-the-fly automatic defect classification for substrates using signal attributes
US6137570A (en) * 1998-06-30 2000-10-24 Kla-Tencor Corporation System and method for analyzing topological features on a surface
US6366690B1 (en) * 1998-07-07 2002-04-02 Applied Materials, Inc. Pixel based machine for patterned wafers
US6122046A (en) 1998-10-02 2000-09-19 Applied Materials, Inc. Dual resolution combined laser spot scanning and area imaging inspection
US6103539A (en) 1998-10-23 2000-08-15 Xmr, Inc. Method and system for nondestructive layer defect detection
US6072581A (en) * 1998-10-30 2000-06-06 Zygo Corporation Geometrically-desensitized interferometer incorporating an optical assembly with high stray-beam management capability
US6587193B1 (en) * 1999-05-11 2003-07-01 Applied Materials, Inc. Inspection systems performing two-dimensional imaging with line light spot
EP1190238A1 (en) 1999-05-18 2002-03-27 Applied Materials, Inc. Method of and apparatus for inspection of articles by comparison with a master
US6366352B1 (en) * 1999-06-10 2002-04-02 Applied Materials, Inc. Optical inspection method and apparatus utilizing a variable angle design
US6693664B2 (en) 1999-06-30 2004-02-17 Negevtech Method and system for fast on-line electro-optical detection of wafer defects
US6587794B1 (en) * 1999-07-30 2003-07-01 Koninklijke Philips Electronics N.V. Method for measuring thin metal films
US6466315B1 (en) * 1999-09-03 2002-10-15 Applied Materials, Inc. Method and system for reticle inspection by photolithography simulation
US6268093B1 (en) * 1999-10-13 2001-07-31 Applied Materials, Inc. Method for reticle inspection using aerial imaging
US6369888B1 (en) 1999-11-17 2002-04-09 Applied Materials, Inc. Method and apparatus for article inspection including speckle reduction
US20080037933A1 (en) * 2006-08-14 2008-02-14 Negevtech, Ltd. Speckle reduction using a fiber bundle and light guide

Also Published As

Publication number Publication date
US20030197858A1 (en) 2003-10-23
DE60030658T2 (de) 2007-09-13
JP2001274081A (ja) 2001-10-05
EP1102058A1 (en) 2001-05-23
DE60030658D1 (de) 2006-10-26
US6798505B2 (en) 2004-09-28
US6924891B2 (en) 2005-08-02
US6587194B2 (en) 2003-07-01
EP1102058B1 (en) 2006-09-13
US20050128473A1 (en) 2005-06-16
US6429931B1 (en) 2002-08-06
US20040201842A1 (en) 2004-10-14
US6369888B1 (en) 2002-04-09
US6556294B2 (en) 2003-04-29
US20020080348A1 (en) 2002-06-27
US20020067478A1 (en) 2002-06-06
US7463352B2 (en) 2008-12-09
US20020057427A1 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
JP5117645B2 (ja) スペックルを減少する物体検査用の装置及び方法
US6895149B1 (en) Apparatus for beam homogenization and speckle reduction
US7180586B2 (en) System for detection of wafer defects
US5302999A (en) Illumination method, illumination apparatus and projection exposure apparatus
US9080991B2 (en) Illuminating a specimen for metrology or inspection
US6556290B2 (en) Defect inspection method and apparatus therefor
JP5526370B2 (ja) 照明光学系、照明方法、及び検査装置
KR20110079704A (ko) 계측 시스템의 조명 서브시스템들, 계측 시스템들 및 계측 측정들을 위한 표본을 조명하기 위한 방법들
US6775051B2 (en) Systems and methods for scanning a beam of light across a specimen
JP5847841B2 (ja) コヒーレンス低減のための方法及びシステム
JPS59216118A (ja) 弓形の発光を生じる装置
JP3986137B2 (ja) レーザ照明装置及びそれを用いた光学装置
JP4325909B2 (ja) 欠陥検査装置、欠陥検査方法、光学式走査装置、半導体デバイス製造方法
JP2001230204A (ja) 半導体集積回路パターンの投影露光方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110519

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees