JP5083107B2 - 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル - Google Patents

膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル Download PDF

Info

Publication number
JP5083107B2
JP5083107B2 JP2008202314A JP2008202314A JP5083107B2 JP 5083107 B2 JP5083107 B2 JP 5083107B2 JP 2008202314 A JP2008202314 A JP 2008202314A JP 2008202314 A JP2008202314 A JP 2008202314A JP 5083107 B2 JP5083107 B2 JP 5083107B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
evaporator
branch
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008202314A
Other languages
English (en)
Other versions
JP2010038455A (ja
Inventor
健太 茅野
春幸 西嶋
悦久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008202314A priority Critical patent/JP5083107B2/ja
Publication of JP2010038455A publication Critical patent/JP2010038455A/ja
Application granted granted Critical
Publication of JP5083107B2 publication Critical patent/JP5083107B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、膨張弁及びそれを備えた蒸気圧縮式冷凍サイクルに関する。
従来の蒸気圧縮式冷凍サイクルとして、例えば特許文献1に記載されているように、放熱器で冷却された冷媒を減圧する手段としてのエジェクタと、2つの蒸発器とを備えた蒸気圧縮式冷凍サイクルが知られている。この冷凍サイクルは、圧縮機、放熱器、膨張弁、流量分配器、エジェクタ及び第1蒸発器が環状に接続されるとともに、流量分配器で分岐してエジェクタに接続される吸引用流路にキャピラリ等の固定絞り及び第2蒸発器が設けられた構成を有している。
エジェクタは、流入した冷媒を取り入れて等エントロピー的に減圧膨張させるノズル部と、ノズル部からの噴出流の吸引作用により吸引用流路の冷媒を吸引する吸引部とを有している。流量分配器で分配された一方の冷媒は、エジェクタのノズル部から高速で噴出される。流量分配器で分配された他方の冷媒は、吸引用流路を通り、固定絞りで減圧されて第2蒸発器で蒸発し、上記ノズル部からの噴出流の吸引作用により吸引部から吸引される。ノズル部から噴出される高速度の冷媒流は、吸引部から吸引された冷媒と混合部で混合され、さらに昇圧部で昇圧されて他方の蒸発器に向けて流出し、当該他方の蒸発器で蒸発した後に圧縮機に吸入される。
特開2008−8591号公報
しかしながら、上記のような冷凍サイクルでは多数の機能部品が必要となるため、開発工数が増加してしまうという問題があった。
本発明の目的は、機能部品点数を削減でき、開発工数を低減できる蒸気圧縮式冷凍サイクル及びそれに用いられる膨張弁を提供することにある。
本発明は上記目的を達成するために、以下の技術的手段を採用する。
請求項1に記載の発明は、第1蒸発器(6)及び第2蒸発器(7)と、第1蒸発器(6)に冷媒を流通させる第1流路(8)と、第1流路(8)から分岐して第2蒸発器(7)に冷媒を流通させる第2流路(9)とを備えた蒸気圧縮式冷凍サイクルに用いられる膨張弁であって、冷媒が外部から流入する流入部(31)と、流入部(31)からそれぞれ分岐して設けられた第1分岐流路(40)及び第2分岐流路(50)と、第1分岐流路(40)に設けられ、冷媒を絞り膨張させて気液二相とする第1絞り通路(41)と、前記第1絞り通路の上流端に設けられた第1弁孔(42)及び当該第1弁孔(42)に対して可動する第1弁体(43)を備え、第1絞り通路(41)を通過する冷媒の流量を調節する第1弁部(48)と、第2分岐流路(50)に設けられ、冷媒を絞り膨張させて気液二相とする第2絞り通路(51)と、前記第2絞り通路の上流端に設けられた第2弁孔(52)及び当該第2弁孔(52)に対して可動する第2弁体(53)を備え、第2絞り通路(51)を通過する冷媒の流量を調節する第2弁部(58)と、第1弁体(43)及び第2弁体(53)を同一のリフト量で連動して作動させる作動棒(65)と、作動棒(65)を駆動する駆動部(62)と、第1分岐流路(40)を流通した冷媒を第1流路(8)又は第2流路(9)の一方に流出させる第1流出口(45)と、第2分岐流路(50)を流通した冷媒を第1流路(8)又は第2流路(9)の他方に流出させる第2流出口(55)とを有することを特徴とする膨張弁である。
これにより、膨張弁が流路分岐機能を有するとともに、膨張弁内の第1分岐流路(40)及び第2分岐流路(50)にはそれぞれ絞り通路(41、51)が形成される。したがって、蒸気圧縮式冷凍サイクルにおいて流量分配器や固定絞り等の機能部品を省略できるため、蒸気圧縮式冷凍サイクルの機能部品点数を削減でき、開発工数を低減できる。
請求項2に記載の発明は、第1弁部(48)及び第2弁部(58)は、互いに異なる開弁特性を有していることを特徴としている。
これにより、第1分岐流路(40)及び第2分岐流路(50)に対し冷媒を所定の流量分配比で分配できる。
請求項3に記載の発明は、第1弁部(48)及び第2弁部(58)での流量比は、リフト量に応じて変化していることを特徴としている。
これにより、第1分岐流路(40)及び第2分岐流路(50)に対する流量分配比をリフト量に応じて制御できる。
請求項4に記載の発明は、流入部(31)は、冷媒が流入する一端部と閉塞された他端部とを備えた筒状の形状を有し、第1分岐流路(40)は、第2分岐流路(50)よりも流入部(31)の他端側で分岐していることを特徴としている。
これにより、膨張弁に流入する冷媒が気液二相の場合、気液の慣性力の差異を利用して、第1分岐流路(40)には液相リッチ側の冷媒を分配し、第2分岐流路(50)には気相リッチ側の冷媒を分配することができる。
請求項5に記載の発明は、作動棒(65)は、第1弁体(43)を作動させる第1分岐部(65b)と、第1分岐部(65b)に対して分岐して設けられ、第2弁体(53)を作動させる第2分岐部(65c)とを有することを特徴としている。
これにより、第1弁体(43)及び第2弁体(53)を連動して作動させることができる。
請求項6に記載の発明は、第1弁体(143)及び第2弁体(153)は、作動棒(165)と同軸上に配置されていることを特徴としている。
これにより、作動棒(165)を用いて第1弁体(143)及び第2弁体(153)を連動して作動させるのが容易になる。
請求項7に記載の発明は、第1蒸発器(6)及び第2蒸発器(7)の少なくとも一方に直結されていることを特徴としている。
これにより、膨張弁を第1蒸発器(6)又は第2蒸発器(7)の少なくとも一方と一体物として取り扱うことができるため、車両等への搭載が容易になる。
請求項8に記載の発明は、冷媒を圧縮する圧縮機(1)と、圧縮機(1)で圧縮された冷媒を放熱させる放熱器(2)と、放熱器(2)で放熱した冷媒のうち一部の冷媒を取り入れてノズル部(5a)から噴射させて高速度の冷媒流を形成するとともに、当該冷媒流によって冷媒を吸引部(5b)から吸引するエジェクタ(5)と、エジェクタ(5)から流出した冷媒を蒸発させ、圧縮機(1)側に流出させる第1蒸発器(6)と、放熱器(2)で放熱した冷媒のうち残余の冷媒を取り入れて蒸発させ、吸引部(5b)側に流出させる第2蒸発器(7)と、上記発明の膨張弁とを有することを特徴とする蒸気圧縮式冷凍サイクルである。
また請求項9に記載の発明は、冷媒を圧縮する圧縮機(1)と、圧縮機(1)で圧縮された冷媒を放熱させる放熱器(2)と、放熱器(2)で放熱した冷媒のうち一部の冷媒を取り入れて蒸発させて圧縮機(1)側に流出させる第1蒸発器(16)と、第1蒸発器(16)に対し並列に接続され、放熱器(2)で放熱した冷媒のうち残余の冷媒を取り入れて蒸発させて圧縮機(1)側に流出させる第2蒸発器(17)と、上記発明の膨張弁とを有することを特徴とする蒸気圧縮式冷凍サイクルである。
これらの発明により、蒸気圧縮式冷凍サイクルにおいて上記と同様の効果が得られる。
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係の一例を示している。
(第1実施形態)
本発明の第1実施形態について図1乃至図4を用いて説明する。図1は、本実施形態の蒸気圧縮式冷凍サイクルの構成を示している。この蒸気圧縮式冷凍サイクルは、車両に搭載されるものであって、圧縮機1、放熱器2、レシーバ2a、膨張弁3、エジェクタ5及び第1蒸発器6が冷媒配管によって環状に接続されるとともに、膨張弁3内で分岐してエジェクタ5に接続される吸引用流路9に第2蒸発器7が設けられて形成されている。膨張弁3と圧縮機1との間には、第2蒸発器7を経由せずに第1蒸発器6に冷媒を流通させる第1流路8と、第2蒸発器7に冷媒を流通させる第2流路(吸引用流路)9とが存在する。
圧縮機1は、図示しない制御装置によってその作動が制御されるようになっている。圧縮機1は、第1蒸発器6から流出される冷媒を吸入し、高温高圧に圧縮して放熱器2側へ吐出する流体機械であり、図示しない電磁クラッチ及びベルトを介して車両走行用エンジンにより回転駆動される。圧縮機1は、例えば、電磁式容量制御弁に制御装置からの制御信号が入力されることにより吐出容量が可変される斜板式可変容量型圧縮機となっている。本実施形態の圧縮機1では、斜板室の圧力の調整により吐出容量を100%から0%付近まで連続的に変化させることができる。したがって、吐出容量を0%付近に減少させることにより、圧縮機1を実質的に作動停止状態にすることができる。よって、圧縮機1の回転軸をプーリ及びベルトを介して車両エンジンに常時連結するクラッチレスの構成としてもよい。
放熱器2は、図示しない送風機により強制的に送風される車室外空気との熱交換により、圧縮機1から吐出された高圧冷媒を放熱させて冷却する熱交換器である。放熱器2の冷媒流出側には、冷却された冷媒の気液を分離して、液冷媒のみを膨張弁3側に流出させるレシーバ2aが設けられている。レシーバ2aは、放熱器2と一体で形成されている。
膨張弁3は、放熱器2(レシーバ2a)から流入した冷媒を減圧膨張させる絞り手段であるとともに、エジェクタ5のノズル部5a側及び第2蒸発器7側の2つの流路に冷媒を所定の分配比で分配する流量分配手段でもある。
図2は、本実施形態における膨張弁3の構成を示す模式的な断面図である。図2中の白抜き太矢印は、冷媒の流れ方向を表している。図2に示すように、膨張弁3は、アルミニウム合金等を用いて作製された略角柱形状の本体ブロック30を有している。本体ブロック30には、放熱器2側から冷媒が流入する流入部31が形成されている。流入部31は、例えば水平な一方向に延伸する筒状の形状を有している。流入部31の一端側には、冷媒配管が接続されて放熱器2側から冷媒が流入する流入口31aが形成されており、他端側は閉塞面31bにより閉塞されている。
流入部31からは、第1分岐流路40及び第2分岐流路50がそれぞれ鉛直上方に分岐している。第2分岐流路50は、流入部31のうち比較的流入口31a寄りで分岐しており、第1分岐流路40は、第2分岐流路50よりも閉塞面31b側で分岐している。
第1分岐流路40には、部分的に流路径が絞られて上下方向に延伸する第1絞り通路41が形成されている。第1絞り通路41は、流入部31を介して流入する液冷媒を絞り膨張させて気液二相とするようになっている。第1絞り通路41の上流端には、テーパ状に形成された第1弁孔42が設けられている。第1弁孔42の上流側には、当該第1弁孔42に対して可動する球状の第1弁体43が配置されている。第1弁体43は、コイルばね44によって閉弁方向に付勢されている。第1弁孔42及び第1弁体43は第1弁部48を構成しており、第1弁部48は、第1絞り通路41を通過する冷媒の流量を所定の開弁特性(流量特性)で調節するようになっている。第1絞り通路41の下流側は、水平方向に延伸する第1流出口45に接続されている。
第2分岐流路50には、部分的に流路径が絞られて上下方向に延伸する第2絞り通路51が形成されている。第2絞り通路51は、流入部31を介して流入する液冷媒を絞り膨張させて気液二相とするようになっている。第2絞り通路51の上流端には、テーパ状に形成された第2弁孔52が設けられている。第2弁孔52の上流側には、当該第2弁孔52に対して可動する球状の第2弁体53が配置されている。第2弁体53は、コイルばね54によって閉弁方向に付勢されている。第2弁孔52及び第2弁体53は第2弁部58を構成している。第2弁部58は、第2絞り通路51を通過する冷媒の流量を、第1弁部48の開弁特性とは独立して設定された所定の開弁特性で調節するようになっている。第2絞り通路51の下流側は、第1流出口45よりも上方に配置されて第1流出口45に平行に延伸する第2流出口55に接続されている。第1流出口45及び第2流出口55間には、上下方向に貫通する貫通孔46が形成されている。貫通孔46は、例えば第1絞り通路41と同軸に形成されている。
本体ブロック30において第1流出口45及び第2流出口55よりも上部には、第1蒸発器6から圧縮機1に至る冷媒流路の一部として過熱度検出通路60が形成されている。過熱度検出通路60と第2分岐流路50との間には、上下方向に貫通する貫通孔61が形成されている。
また、過熱度検出通路60において貫通孔61の開口端に対向する位置には、感温駆動部62が取り付けられている。感温駆動部62は、例えばステンレス鋼を用いて薄膜状に形成されたダイヤフラム63と、ダイヤフラム63により密閉され、過熱度検出通路60を流通する冷媒の温度が伝達される飽和状態の冷媒が封入された密閉空間64とを有している。ダイヤフラム63は、密閉空間64内外の圧力差に応じて上下方向に変形変位するようになっている。
感温駆動部62により駆動される作動棒65は、根元部65aと、根元部65aから分岐する2本の分岐部65b、65cとを備えた刺股状の分岐形状を有している。根元部65aは、貫通孔61に進退自在に挿通されており、基端側はダイヤフラム63に対して固定されている。根元部65aと分岐部65b、65cとの分岐点は第2分岐流路50内に位置している。一方の分岐部65bは、貫通孔46及び第1絞り通路41を貫通しており、その先端部が第1弁体43に当接している。分岐部65bと貫通孔46との間の隙間は、メタルシールによって進退可能にシールされている。他方の分岐部65cは、第2絞り通路51を貫通しており、その先端部が第2弁体53に当接している。作動棒65が上下方向に進退することによって、第1弁体43及び第2弁体53は互いに同一のリフト量で連動して作動するようになっている。
過熱度検出通路60を通過する冷媒の過熱度が上昇し、密閉空間64内外の圧力差が増大すると、ダイヤフラム63は下方に変位する。これにより、作動棒65が押し下げられるため、第1弁体43及び第2弁体53はコイルばね44、54の付勢力に抗してそれぞれ開弁方向に移動する。一方、過熱度検出通路60を通過する冷媒の過熱度が低下し、密閉空間64内外の圧力差が減少すると、ダイヤフラム63は上方に変位する。これにより、作動棒65を押し下げる力が弱まり、第1弁体43及び第2弁体53はコイルばね44、54の付勢力によりそれぞれ閉弁方向に移動する。したがって、第1絞り通路41を通過する冷媒の流量と、第2絞り通路51を通過する冷媒の流量とは、第1蒸発器6出口側の冷媒の過熱度が所定の値になるようにそれぞれ調節される。
図3は、膨張弁3の第1弁部48及び第2弁部58における開弁特性の一例を示すグラフである。グラフの横軸は作動棒65による第1弁体43及び第2弁体53のリフト量を表し、縦軸は冷媒の流量を表している。曲線C1は第1弁部48の開弁特性を示し、曲線C2は第2弁部58の開弁特性を示している。図3に示すように、第1弁部48及び第2弁部58の開弁特性は互いに異なるように設定されている。本例の第2弁部58の開弁特性は、第1弁部48の開弁特性と比較して、リフト量に対する流量の立上がりが遅く、かつ流量の飽和するリフト量が小さくなっている。これにより、第1弁体43及び第2弁体53が同一リフト量で作動するとき、第1弁部48及び第2弁部58の流量比(第1分岐流路40及び第2分岐流路50に対する流量分配比)はリフト量によって変化するようになっている。
図4は、第1分岐流路40及び第2分岐流路50に対する流量分配特性の一例を示すグラフである。グラフの横軸は冷房負荷(冷媒の流量)を表している。縦軸は、第1分岐流路40への流量分配比を表している。ここで、第1分岐流路40への流量分配比は、第1分岐流路40に分配される冷媒流量をQ1とし、第2分岐流路50に分配される冷媒流量をQ2とすると、Q1/(Q1+Q2)で表される。図4に示すように、第1分岐流路40への流量分配比Q1/(Q1+Q2)は、冷房負荷の増加に伴って単調に増加している。言い換えれば、第2分岐流路50への流量分配比Q2/(Q1+Q2)は、冷房負荷の増加に伴って単調に減少している。このように本実施形態では、冷房負荷に基づいて第1分岐流路40及び第2分岐流路50への流量分配比を制御できるようになっている。
第1流出口45又は第2流出口55のうち一方は、冷媒配管を介してエジェクタ5に接続されている。エジェクタ5は、冷媒を減圧する減圧手段であるとともに、高速で噴出される冷媒流の吸引作用によって冷媒の循環を行う流体輸送用の冷媒循環手段でもある。エジェクタ5には、膨張弁3から流出する冷媒を取り入れ、その通路面積を小さく絞って冷媒の圧力エネルギーを速度エネルギーに変換して等エントロピー的に減圧膨張させるノズル部5aと、ノズル部5aの冷媒噴出口と連通するように配置され、後述する第2蒸発器7からの気相冷媒を吸引する吸引部5bとが備えられている。
またエジェクタ5には、ノズル部5a及び吸引部5bの下流側で、ノズル部5aから噴出される高速度の冷媒と吸引部5bからの吸引冷媒とを混合するとともに、混合した冷媒流れを減速し、速度エネルギーを圧力エネルギーに変換して昇圧させる昇圧部5cが設けられている。昇圧部5cは、冷媒の通路断面積が徐々に大きくなるディフューザ形状に形成されることで、上記の昇圧機能を有するようになっている。
昇圧部5cの冷媒流れ方向下流側には第1蒸発器6が接続されている。第1蒸発器6は、強制的に送風される外部空気からの吸熱作用によって、内部を流通する冷媒を蒸発させる熱交換器(吸熱器)である。第1蒸発器6の冷媒流出側は、冷媒配管によって圧縮機1の吸入側に接続されている。
第1流出口45又は第2流出口55のうち他方は、吸引用流路9に接続されている。吸引用流路9には、第2蒸発器7が設けられている。第2蒸発器7は、強制的に送風される外部空気からの吸熱作用によって、内部を流通する冷媒を蒸発させる熱交換器(吸熱器)である。第2蒸発器7は、外部空気の流れにおいて第1蒸発器6の下流側に直列配置されている。
ここで、本実施形態では、第1蒸発器6及び第2蒸発器7は一体的に構成されており、膨張弁3は第1蒸発器6及び第2蒸発器7に機械的に直結されている。これにより、第1蒸発器6、第2蒸発器7及び膨張弁3を一体物として取り扱うことができるため、車両への搭載が容易になる。
また本実施形態では、第2蒸発器7に流入する冷媒の流量調整と減圧は、膨張弁3の第1弁部48又は第2弁部58により行うことができるため、膨張弁3と第2蒸発器7との間にはキャピラリ等の固定絞りが設けられていない。
図示しない制御装置は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。この制御装置には、操作パネル(図示せず)からの各種操作信号や、各種センサ群からの検出信号等が入力されるようになっている。制御装置は、これらの入力信号に基づいて各種機器(主に圧縮機1)の作動を制御する。
次に、上記構成に基づく本実施形態の作動の一例について説明する。乗員の操作により空調作動信号及び設定温度信号等が制御装置に入力されると、制御装置は、圧縮機1の電磁クラッチに通電して当該電磁クラッチを接続状態とする。これにより、車両走行用エンジンから回転駆動力が圧縮機1に伝達される。
そして、制御装置から圧縮機1の電磁式容量制御弁に制御電流(制御信号)が出力されると、圧縮機1の吐出容量が調節され、圧縮機1は第1蒸発器6から気相冷媒を吸入、圧縮して吐出する。
圧縮機1から圧縮吐出された高温高圧の気相冷媒は、放熱器2に流入する。放熱器2では高温高圧の冷媒が車室外空気により冷却されて凝縮する。放熱器2から流出した放熱後の高圧冷媒は、レシーバ2aに流入して気液二相に分離される。
そして、レシーバ2aから流出した液相冷媒は、膨張弁3に流入する。膨張弁3に流入した液相冷媒は、第1弁部48及び第2弁部58によって第1分岐流路40及び第2分岐流路50に所定の流量分配比で分配される。図4に示したように、第1分岐流路40には冷房負荷が高いほど高い流量分配比で分配され、第2分岐流路50には冷房負荷が高いほど低い流量分配比で分配される。第1分岐流路40に分配された冷媒は、第1絞り通路41で減圧されて気液二相となり、第1流出口45から流出する。第2分岐流路50に分配された冷媒は、第2絞り通路51で減圧されて気液二相となり、第2流出口55から流出する。第1流出口45から流出した冷媒又は第2流出口55から流出した冷媒の一方はエジェクタ5のノズル部5aに向かい、他方は吸入用流路9を通って第2蒸発器7に向かう。
エジェクタ5のノズル部5aに流入した冷媒は、ノズル部5aにより減圧されて膨張する。この減圧膨張時に冷媒の圧力エネルギーが速度エネルギーに変換されるので、冷媒はノズル部5aの噴出口から高速度となって噴出する。そして、この冷媒噴出流の冷媒吸引作用により、第2蒸発器7を通過した後の冷媒が吸引部5bから吸引されることになる。
ノズル部5aから噴出した冷媒と吸引部5bに吸引された冷媒は、ノズル部5aの下流側の昇圧部5cに流入する。この昇圧部5cでは通路面積の拡大により、冷媒の速度エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
昇圧部5cから流出した冷媒は、第1蒸発器6に流入する。第1蒸発器6では、低圧冷媒が外部空気から吸熱して蒸発する。つまり、外部空気が冷却されることになる。第1蒸発器6を通過後の冷媒は、圧縮機1に吸入されて再び圧縮される。
一方、吸引用流路9を通って第2蒸発器7に流入した冷媒は、第1蒸発器6で冷却された外部空気から更に吸熱して蒸発する。つまり、外部空気が更に冷却されることになる。第2蒸発器7で蒸発した冷媒は、エジェクタ5の吸引部5bから吸引されて、ノズル部5aを通過した液相冷媒と昇圧部5cで混合されて第1蒸発器6に流入していく。
本実施形態によれば、膨張弁3が流路分岐機能を有しているため、分岐を有する冷凍サイクルにおいて流量分配器を省略できる。また、膨張弁3内の第1分岐流路40及び第2分岐流路50にはそれぞれ第1絞り通路41及び第2絞り通路51が形成されるため、吸引用流路9の第2蒸発器7よりも上流側に設けられるキャピラリ等の固定絞りを省略できる。したがって、蒸気圧縮式冷凍サイクルの機能部品点数を削減でき、開発工数を低減できる。すなわち、蒸気圧縮式冷凍サイクルの部品コスト及び取付けコストを削減できる。
また本実施形態では、第1分岐流路40及び第2分岐流路50への冷媒の分配は、第1弁部48及び第2弁部58の上流側で行われる。したがって、冷媒が単相(液相)域で分配されるため、気液の偏りを考慮する必要がなく、第1弁部48及び第2弁部58の開弁特性に基づき安定した流量分配が可能となる。すなわち、第1弁部48及び第2弁部58の開弁特性が同一であれば第1分岐流路40及び第2分岐流路50に冷媒を同量ずつ安定して分配でき、第1弁部48及び第2弁部58の開弁特性を異ならせれば、冷媒を所定の流量分配比で安定して分配できる。したがって、第1蒸発器6及び第2蒸発器7やノズル部5aの能力を効率良く発揮させることができる。
さらに本実施形態では、第1分岐流路40及び第2分岐流路50への流量分配比を冷房負荷に応じて異ならせることができる。これにより、高負荷時には第1蒸発器6及び第2蒸発器7での過熱度上昇を抑制でき、低負荷時には圧縮機1への液相冷媒の流入(液バック)を抑制できる。例えば、2つの蒸発器が空気流れに対して直列に配置されている場合、冷房負荷が高いときに風下側の蒸発器に優先して冷媒を流すことによって風下側の蒸発器の過熱度上昇を抑制できる。また、低負荷時にはノズル部5a側に優先して冷媒を流すことができるため、ノズル部5aをチョークさせることが可能となる。
また本実施形態では、流入部31が筒状の形状を有し、第1分岐流路40は第2分岐流路50よりも閉塞面31b側で分岐している。したがって、膨張弁3に流入する冷媒が気液二相の場合、気液の慣性力の差異を利用して、第1分岐流路40側には乾き度の比較的低い液相リッチ側の冷媒を分配し、第2分岐流路50側には乾き度の比較的高い気相リッチ側の冷媒を分配することができる。液相冷媒と気相冷媒は密度が異なるため、このように気液の分配比を異ならせることによって、第1分岐流路40及び第2分岐流路50に所定の質量流量分配比で冷媒を分配することも可能になる。
(第2実施形態)
次に、本発明の第2実施形態について図5を用いて説明する。図5は、本実施形態における膨張弁103の構成を示す模式的な断面図である。図5に示すように、本実施形態は、第1弁体143及び第2弁体153がいずれも円錐弁であり、両弁体143、153が作動棒165と同軸上に配置されている点に特徴を有している。
筒状の流入部31からは、第1分岐流路140及び第2分岐流路150がそれぞれ上方に分岐している。第1分岐流路140は、第2分岐流路150よりも閉塞面31b側で分岐している。
第1分岐流路140には、部分的に流路径が絞られて上下方向に延伸する第1絞り通路141が形成されている。第1絞り通路141の上流端には第1弁孔142が流入部31に面して形成されている。第1弁孔142の上流側には、当該第1弁孔142に対して可動する円錐弁形状の第1弁体143が配置されている。第1弁体143は、コイルばね144によって閉弁方向に付勢されている。第1弁孔142及び第1弁体143は第1弁部148を構成している。
第2分岐流路150は、流入部31から分岐して上方に延伸し、途中で屈曲して第1絞り通路141の直上を経由している。第1分岐流路140及び第2分岐流路150間には、第1絞り通路141と同軸の貫通孔146が形成されている。また第2分岐流路150には、第1絞り通路141及び貫通孔146と同軸の第2絞り通路151が形成されている。第2絞り通路151の上流端には第2弁孔152が形成されている。第2弁孔152の上流側には、第1弁体143と連動して作動する円錐弁形状の第2弁体153が配置されている。第2弁孔152及び第2弁体153は第2弁部158を構成している。
第2弁体153は、貫通孔146に挿通された棒状の連結部材156を介して第1弁体143と連結されており、第1弁体143、第2弁体153及び連結部材156は例えば一体的に形成されている。連結部材156及び貫通孔146間の隙間は、メタルシールによって進退可能にシールされている。
感温駆動部62により駆動される作動棒165は、第1弁体143、第2弁体153及び連結部材156と同軸に配置されており、その下端部は、第2弁体153に当接している。作動棒165が上下方向に進退することによって、第1弁体143及び第2弁体153は互いに同一のリフト量で連動して作動するようになっている。
本実施形態では、上記実施形態と同様の効果が得られることに加え、流量制御性に優れる円錐弁が用いられているため、第1弁部148及び第2弁部158のそれぞれに対し所望の開弁特性を容易に設定することができる。
また本実施形態では、第1弁体143及び第2弁体153がいずれも作動棒165と同軸上に配置されているため、作動棒165を分岐させるまでもなく、第1弁体143及び第2弁体153を容易に連動させることができる。
さらに本実施形態では、作動棒165と第1弁体143、第2弁体153及び連結部材156とがいずれも分岐のない棒状の形状を有しているため、膨張弁103の組立てが容易になり製造工程が簡略化する。
(その他の実施形態)
上記実施形態では、エジェクタ5を備えた冷凍サイクルを例に挙げたが、本発明はこれに限られない。例えば図6に示すように、エジェクタを備えず、2つの蒸発器16、17が並列に接続された冷凍サイクルにも適用できる。この場合においても上記実施形態と同様に、膨張弁3によって冷媒を両蒸発器16、17に安定して分配できるようになる。
また、上記実施形態では温度式の膨張弁を例に挙げたが、電磁式の膨張弁にも適用できる。
さらに、上記実施形態では、第1弁部48及び第2弁部58が互いに異なる開弁特性を有し、かつ第1弁部48及び第2弁部58の流量比がリフト量によって変化するように設定された例を挙げたが、本発明はこれに限られない。例えば、第1弁部48及び第2弁部58の流量比はリフト量に関わらず一定であってもよいし、第1弁部48及び第2弁部58の開弁特性は同一であってもよい。
また、上記第1実施形態では、球状の第1弁体43及び第2弁体53を例に挙げたが、それぞれ円錐弁形状の弁体を用いることもできる。さらに、上記第2実施形態では、円錐弁形状の第1弁体143及び第2弁体153を例に挙げたが、それぞれ球状の弁体を用いることもできる。
また、上記実施形態では特に冷媒の種類を特定していないが、フロン系冷媒、HC系冷媒、二酸化炭素冷媒等の種々の冷媒を用いることができる。
圧縮機1は、斜板式の可変容量型圧縮機に限らず、スクロール式やロータリー式等の固定容量型のものでも良い。またレシーバ2aを廃止して、第1蒸発器6の冷媒流出側にアキュムレータを設けたものとしても良い。
また上記実施形態における蒸気圧縮式冷凍サイクルは、車両用空調装置だけでなく、家庭用の給湯器用または室内空調用のヒートポンプサイクルに適用することができる。
第1実施形態の蒸気圧縮式冷凍サイクルの構成を示す図である。 第1実施形態の膨張弁の構成を示す模式的な断面図である。 膨張弁の第1弁部及び第2弁部における開弁特性の一例を示すグラフである。 膨張弁の第1分岐流路及び第2分岐流路への流量分配特性の一例を示すグラフである。 第2実施形態の膨張弁の構成を示す模式的な断面図である。 他の実施形態の蒸気圧縮式冷凍サイクルの構成を示す図である。
符号の説明
1 圧縮機
2 放熱器
3、103 膨張弁
5 エジェクタ
5a ノズル部
5b 吸引部
6、16 第1蒸発器
7、17 第2蒸発器
31 流入部
40、140 第1分岐流路
41、141 第1絞り通路
45 第1流出口
48、148 第1弁部
50、150 第2分岐流路
51、151 第2絞り通路
55 第2流出口
58、158 第2弁部
62 感温駆動部
65、165 作動棒

Claims (9)

  1. 第1蒸発器(6)及び第2蒸発器(7)と、
    前記第1蒸発器(6)に冷媒を流通させる第1流路(8)と、
    前記第1流路(8)から分岐して前記第2蒸発器(7)に冷媒を流通させる第2流路(9)とを備えた蒸気圧縮式冷凍サイクルに用いられる膨張弁であって、
    冷媒が外部から流入する流入部(31)と、
    前記流入部(31)からそれぞれ分岐して設けられた第1分岐流路(40)及び第2分岐流路(50)と、
    前記第1分岐流路(40)に設けられ、冷媒を絞り膨張させて気液二相とする第1絞り通路(41)と、
    前記第1絞り通路の上流端に設けられた第1弁孔(42)及び当該第1弁孔(42)に対して可動する第1弁体(43)を備え、前記第1絞り通路(41)を通過する冷媒の流量を調節する第1弁部(48)と、
    前記第2分岐流路(50)に設けられ、冷媒を絞り膨張させて気液二相とする第2絞り通路(51)と、
    前記第2絞り通路の上流端に設けられた第2弁孔(52)及び当該第2弁孔(52)に対して可動する第2弁体(53)を備え、前記第2絞り通路(51)を通過する冷媒の流量を調節する第2弁部(58)と、
    前記第1弁体(43)及び前記第2弁体(53)を同一のリフト量で連動して作動させる作動棒(65)と、
    前記作動棒(65)を駆動する駆動部(62)と、
    前記第1分岐流路(40)を流通した冷媒を前記第1流路(8)又は前記第2流路(9)の一方に流出させる第1流出口(45)と、
    前記第2分岐流路(50)を流通した冷媒を前記第1流路(8)又は前記第2流路(9)の他方に流出させる第2流出口(55)とを有することを特徴とする膨張弁。
  2. 前記第1弁部(48)及び前記第2弁部(58)は、互いに異なる開弁特性を有していることを特徴とする請求項1に記載の膨張弁。
  3. 前記第1弁部(48)及び前記第2弁部(58)での流量比は、前記リフト量に応じて変化していることを特徴とする請求項2に記載の膨張弁。
  4. 前記流入部(31)は、冷媒が流入する一端部と閉塞された他端部とを備えた筒状の形状を有し、
    前記第1分岐流路(40)は、前記第2分岐流路(50)よりも前記流入部(31)の他端側で分岐していることを特徴とする請求項1乃至3のいずれか1項に記載の膨張弁。
  5. 前記作動棒(65)は、前記第1弁体(43)を作動させる第1分岐部(65b)と、前記第1分岐部(65b)に対して分岐して設けられ、前記第2弁体(53)を作動させる第2分岐部(65c)とを有することを特徴とする請求項1乃至4のいずれか1項に記載の膨張弁。
  6. 前記第1弁体(143)及び前記第2弁体(153)は、前記作動棒(165)と同軸上に配置されていることを特徴とする請求項1乃至4のいずれか1項に記載の膨張弁。
  7. 前記第1蒸発器(6)及び前記第2蒸発器(7)の少なくとも一方に直結されていることを特徴とする請求項1乃至6のいずれか1項に記載の膨張弁。
  8. 冷媒を圧縮する圧縮機(1)と、
    前記圧縮機(1)で圧縮された冷媒を放熱させる放熱器(2)と、
    前記放熱器(2)で放熱した冷媒のうち一部の冷媒を取り入れてノズル部(5a)から噴射させて高速度の冷媒流を形成するとともに、当該冷媒流によって冷媒を吸引部(5b)から吸引するエジェクタ(5)と、
    前記エジェクタ(5)から流出した冷媒を蒸発させ、前記圧縮機(1)側に流出させる第1蒸発器(6)と、
    前記放熱器(2)で放熱した冷媒のうち残余の冷媒を取り入れて蒸発させ、前記吸引部(5b)側に流出させる第2蒸発器(7)と、
    請求項1乃至7のいずれか1項に記載の膨張弁とを有することを特徴とする蒸気圧縮式冷凍サイクル。
  9. 冷媒を圧縮する圧縮機(1)と、
    前記圧縮機(1)で圧縮された冷媒を放熱させる放熱器(2)と、
    前記放熱器(2)で放熱した冷媒のうち一部の冷媒を取り入れて蒸発させて前記圧縮機(1)側に流出させる第1蒸発器(16)と、
    前記第1蒸発器(16)に対し並列に接続され、前記放熱器(2)で放熱した冷媒のうち残余の冷媒を取り入れて蒸発させて前記圧縮機(1)側に流出させる第2蒸発器(17)と、
    請求項1乃至7のいずれか1項に記載の膨張弁とを有することを特徴とする蒸気圧縮式冷凍サイクル。
JP2008202314A 2008-08-05 2008-08-05 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル Expired - Fee Related JP5083107B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202314A JP5083107B2 (ja) 2008-08-05 2008-08-05 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202314A JP5083107B2 (ja) 2008-08-05 2008-08-05 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2010038455A JP2010038455A (ja) 2010-02-18
JP5083107B2 true JP5083107B2 (ja) 2012-11-28

Family

ID=42011206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202314A Expired - Fee Related JP5083107B2 (ja) 2008-08-05 2008-08-05 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル

Country Status (1)

Country Link
JP (1) JP5083107B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0921201A2 (pt) * 2008-11-12 2016-02-23 Danfoss As válvula de expansão compreendendo meios de polarização
KR101572574B1 (ko) * 2010-08-12 2015-12-01 한온시스템 주식회사 팽창밸브 및 이를 구비한 차량용 공조장치
JP5786225B2 (ja) * 2011-03-14 2015-09-30 株式会社テージーケー 膨張弁
JP2013178060A (ja) * 2012-02-29 2013-09-09 Denso Corp 膨張弁
WO2014083627A1 (ja) * 2012-11-28 2014-06-05 株式会社日立製作所 冷媒分配器
CN103344060B (zh) * 2013-07-23 2016-05-18 合肥美的电冰箱有限公司 用于冰箱的制冷系统、冰箱及冰箱的控制方法
JP7175247B2 (ja) * 2019-08-27 2022-11-18 株式会社鷺宮製作所 絞り装置および冷凍サイクルシステム
JP7302468B2 (ja) 2019-12-24 2023-07-04 株式会社デンソー 弁装置、冷凍サイクル装置
CN112431946B (zh) * 2020-09-30 2023-05-16 三花控股集团有限公司 流体控制组件及热管理系统
CN112413938B (zh) * 2020-12-07 2021-11-30 浙江农林大学暨阳学院 一种汽车空调热力膨胀阀

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138371A (ja) * 1984-07-31 1986-02-24 株式会社 鷺宮製作所 電動式流量調節弁
JPH0311666Y2 (ja) * 1985-05-13 1991-03-20
JPH03275979A (ja) * 1990-03-26 1991-12-06 Aisan Ind Co Ltd 流量制御弁
JPH08152232A (ja) * 1994-11-25 1996-06-11 Zexel Corp 膨張弁
JP3107301B2 (ja) * 1999-03-09 2000-11-06 株式会社アサヒ・エンタープライズ 制御弁
JP2005315309A (ja) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc 冷媒流量制御弁
JP4529954B2 (ja) * 2006-06-30 2010-08-25 株式会社デンソー 蒸気圧縮式冷凍サイクル
JP4879695B2 (ja) * 2006-10-13 2012-02-22 株式会社三栄水栓製作所 混合栓および混合栓用止水栓

Also Published As

Publication number Publication date
JP2010038455A (ja) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5083107B2 (ja) 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル
JP4832458B2 (ja) 蒸気圧縮式冷凍サイクル
JP4737001B2 (ja) エジェクタ式冷凍サイクル
JP4075530B2 (ja) 冷凍サイクル
US7841193B2 (en) Refrigerant flow-amount controlling device and ejector refrigerant cycle system using the same
JP4661449B2 (ja) エジェクタ式冷凍サイクル
US10029538B2 (en) Refrigeration cycle
US9897354B2 (en) Ejector
JP6350108B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
US20160186782A1 (en) Ejector
JP4285060B2 (ja) 蒸気圧縮式冷凍機
JP2007163016A (ja) エジェクタ式冷凍サイクルおよびエジェクタ式冷凍サイクルの制御方法
US9328742B2 (en) Ejector
JP6610313B2 (ja) エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル
JP5083106B2 (ja) 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル
JP2009222255A (ja) 蒸気圧縮式冷凍サイクル
WO2019017168A1 (ja) エジェクタ式冷凍サイクル
JP2007032945A (ja) エジェクタ式サイクルおよびその流量調節弁
JP6547698B2 (ja) エジェクタ式冷凍サイクル
JP6511873B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
US10767905B2 (en) Ejector
JP6740931B2 (ja) エジェクタ式冷凍サイクル
JP2008008505A (ja) エジェクタ式冷凍サイクル
JP4259605B2 (ja) エジェクタ式冷凍サイクル
JP2017190707A (ja) エジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R151 Written notification of patent or utility model registration

Ref document number: 5083107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees