JP5072837B2 - プラズマ窒化したゲート誘電体を2段階式で窒化後アニーリングするための改善された製造方法 - Google Patents

プラズマ窒化したゲート誘電体を2段階式で窒化後アニーリングするための改善された製造方法 Download PDF

Info

Publication number
JP5072837B2
JP5072837B2 JP2008518181A JP2008518181A JP5072837B2 JP 5072837 B2 JP5072837 B2 JP 5072837B2 JP 2008518181 A JP2008518181 A JP 2008518181A JP 2008518181 A JP2008518181 A JP 2008518181A JP 5072837 B2 JP5072837 B2 JP 5072837B2
Authority
JP
Japan
Prior art keywords
silicon oxynitride
annealing
film
environment
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008518181A
Other languages
English (en)
Japanese (ja)
Other versions
JP2008547220A5 (enExample
JP2008547220A (ja
Inventor
クリストファー, エス. オルセン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2008547220A publication Critical patent/JP2008547220A/ja
Publication of JP2008547220A5 publication Critical patent/JP2008547220A5/ja
Application granted granted Critical
Publication of JP5072837B2 publication Critical patent/JP5072837B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
JP2008518181A 2005-06-27 2006-05-26 プラズマ窒化したゲート誘電体を2段階式で窒化後アニーリングするための改善された製造方法 Active JP5072837B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/167,526 2005-06-27
US11/167,526 US7429538B2 (en) 2005-06-27 2005-06-27 Manufacturing method for two-step post nitridation annealing of plasma nitrided gate dielectric
PCT/US2006/020508 WO2007001709A2 (en) 2005-06-27 2006-05-26 Improved manufacturing method for two-step post nitridation annealing of plasma nitrided gate dielectric

Publications (3)

Publication Number Publication Date
JP2008547220A JP2008547220A (ja) 2008-12-25
JP2008547220A5 JP2008547220A5 (enExample) 2011-08-11
JP5072837B2 true JP5072837B2 (ja) 2012-11-14

Family

ID=37568096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008518181A Active JP5072837B2 (ja) 2005-06-27 2006-05-26 プラズマ窒化したゲート誘電体を2段階式で窒化後アニーリングするための改善された製造方法

Country Status (6)

Country Link
US (1) US7429538B2 (enExample)
JP (1) JP5072837B2 (enExample)
KR (1) KR100993124B1 (enExample)
CN (1) CN101208782B (enExample)
TW (1) TWI343604B (enExample)
WO (1) WO2007001709A2 (enExample)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281181A (ja) * 2006-04-06 2007-10-25 Elpida Memory Inc 半導体装置の製造方法
US20080274626A1 (en) * 2007-05-04 2008-11-06 Frederique Glowacki Method for depositing a high quality silicon dielectric film on a germanium substrate with high quality interface
US7910446B2 (en) * 2007-07-16 2011-03-22 Applied Materials, Inc. Integrated scheme for forming inter-poly dielectrics for non-volatile memory devices
US7638442B2 (en) * 2008-05-09 2009-12-29 Promos Technologies, Inc. Method of forming a silicon nitride layer on a gate oxide film of a semiconductor device and annealing the nitride layer
JP2010021378A (ja) * 2008-07-11 2010-01-28 Tokyo Electron Ltd シリコン酸窒化膜の形成方法および形成装置
CN101685766B (zh) * 2008-09-23 2011-09-07 中芯国际集成电路制造(上海)有限公司 增加热处理反应室利用率的方法
KR101008994B1 (ko) 2009-05-13 2011-01-17 주식회사 하이닉스반도체 듀얼 폴리 게이트의 산화막 형성 방법
WO2011097178A2 (en) * 2010-02-02 2011-08-11 Applied Materials, Inc. Methods for nitridation and oxidation
US8450221B2 (en) * 2010-08-04 2013-05-28 Texas Instruments Incorporated Method of forming MOS transistors including SiON gate dielectric with enhanced nitrogen concentration at its sidewalls
JP2012079785A (ja) * 2010-09-30 2012-04-19 Tokyo Electron Ltd 絶縁膜の改質方法
US20120270411A1 (en) * 2011-04-25 2012-10-25 Nanya Technology Corporation Manufacturing method of gate dielectric layer
KR101858524B1 (ko) 2011-05-26 2018-05-18 삼성전자주식회사 반도체 소자의 제조 방법
US8394688B2 (en) 2011-06-27 2013-03-12 United Microelectronics Corp. Process for forming repair layer and MOS transistor having repair layer
US8741784B2 (en) 2011-09-20 2014-06-03 United Microelectronics Corp. Process for fabricating semiconductor device and method of fabricating metal oxide semiconductor device
US9634083B2 (en) 2012-12-10 2017-04-25 United Microelectronics Corp. Semiconductor structure and process thereof
CN103887337A (zh) * 2012-12-21 2014-06-25 联华电子股份有限公司 半导体结构及其制作工艺
US9824881B2 (en) 2013-03-14 2017-11-21 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US9564309B2 (en) 2013-03-14 2017-02-07 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
JP2015142034A (ja) * 2014-01-29 2015-08-03 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN103943475A (zh) * 2014-02-21 2014-07-23 上海华力微电子有限公司 一种提高栅氧化物介电常数的方法
CN103855035A (zh) * 2014-03-27 2014-06-11 上海华力微电子有限公司 一种制备栅介质层的设备
US9576792B2 (en) 2014-09-17 2017-02-21 Asm Ip Holding B.V. Deposition of SiN
US9761687B2 (en) 2015-01-04 2017-09-12 United Microelectronics Corp. Method of forming gate dielectric layer for MOS transistor
US10410857B2 (en) * 2015-08-24 2019-09-10 Asm Ip Holding B.V. Formation of SiN thin films
TWI679703B (zh) * 2016-04-25 2019-12-11 聯華電子股份有限公司 閘介電層的製造方法
US10103027B2 (en) 2016-06-20 2018-10-16 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
US10510545B2 (en) 2016-06-20 2019-12-17 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
CN109003879B (zh) * 2017-06-06 2021-03-19 中芯国际集成电路制造(上海)有限公司 栅介质层的形成方法
WO2019032457A1 (en) * 2017-08-08 2019-02-14 Applied Materials, Inc. METHODS AND APPARATUSES FOR DEPOSITING LOW DIELECTRIC CONSTANT FILMS
WO2021150625A1 (en) 2020-01-23 2021-07-29 Applied Materials, Inc. Method of cleaning a structure and method of depositiing a capping layer in a structure
KR20220081905A (ko) 2020-12-09 2022-06-16 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 증착용 실리콘 전구체
CN116197739B (zh) * 2023-05-05 2023-07-14 松诺盟科技有限公司 氢压力传感器芯体弹性体的表面处理工艺、弹性体及应用
US20240405096A1 (en) * 2023-06-02 2024-12-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of manufacture

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641385B2 (ja) * 1993-09-24 1997-08-13 アプライド マテリアルズ インコーポレイテッド 膜形成方法
KR100207467B1 (ko) * 1996-02-29 1999-07-15 윤종용 반도체 장치의 커패시터 제조 방법
KR100207485B1 (ko) * 1996-07-23 1999-07-15 윤종용 반도체장치의 커패시터 제조방법
US6268267B1 (en) * 2000-01-24 2001-07-31 Taiwan Semiconductor Manufacturing Company Silicon-oxynitride-oxide (SXO) continuity film pad to recessed bird's beak of LOCOS
US6509604B1 (en) * 2000-01-26 2003-01-21 Advanced Micro Devices, Inc. Nitridation barriers for nitridated tunnel oxide for circuitry for flash technology and for LOCOS/STI isolation
US6548368B1 (en) * 2000-08-23 2003-04-15 Applied Materials, Inc. Method of forming a MIS capacitor
US6365518B1 (en) * 2001-03-26 2002-04-02 Applied Materials, Inc. Method of processing a substrate in a processing chamber
US6632747B2 (en) * 2001-06-20 2003-10-14 Texas Instruments Incorporated Method of ammonia annealing of ultra-thin silicon dioxide layers for uniform nitrogen profile
US6610614B2 (en) * 2001-06-20 2003-08-26 Texas Instruments Incorporated Method for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
US6503846B1 (en) * 2001-06-20 2003-01-07 Texas Instruments Incorporated Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
US6548366B2 (en) * 2001-06-20 2003-04-15 Texas Instruments Incorporated Method of two-step annealing of ultra-thin silicon dioxide layers for uniform nitrogen profile
KR100532409B1 (ko) * 2001-08-14 2005-11-30 삼성전자주식회사 유전체막과 상부 전극 계면에서의 누설 전류 특성이개선된 반도체 소자의 커패시터 형성 방법
US20030082884A1 (en) * 2001-10-26 2003-05-01 International Business Machine Corporation And Kabushiki Kaisha Toshiba Method of forming low-leakage dielectric layer
US20030109146A1 (en) * 2001-12-12 2003-06-12 Luigi Colombo Oxynitride device and method using non-stoichiometric silicon oxide
US20030111678A1 (en) * 2001-12-14 2003-06-19 Luigi Colombo CVD deposition of M-SION gate dielectrics
WO2003107399A2 (en) * 2002-06-12 2003-12-24 Applied Materials, Inc. Method for improving nitrogen profile in plasma nitrided gate dielectric layers
US20080090425A9 (en) * 2002-06-12 2008-04-17 Christopher Olsen Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
US6831021B2 (en) * 2002-06-12 2004-12-14 Applied Materials, Inc. Plasma method and apparatus for processing a substrate
US6858547B2 (en) * 2002-06-14 2005-02-22 Applied Materials, Inc. System and method for forming a gate dielectric
US6780720B2 (en) * 2002-07-01 2004-08-24 International Business Machines Corporation Method for fabricating a nitrided silicon-oxide gate dielectric
JP2004247528A (ja) * 2003-02-14 2004-09-02 Sony Corp 半導体装置の製造方法
US7514376B2 (en) * 2003-04-30 2009-04-07 Fujitsu Microelectronics Limited Manufacture of semiconductor device having nitridized insulating film
US7179754B2 (en) * 2003-05-28 2007-02-20 Applied Materials, Inc. Method and apparatus for plasma nitridation of gate dielectrics using amplitude modulated radio-frequency energy
JPWO2005004224A1 (ja) * 2003-07-01 2007-09-20 日本電気株式会社 半導体装置及びその製造方法
JP4261276B2 (ja) * 2003-08-15 2009-04-30 パナソニック株式会社 半導体装置の製造方法
US7291568B2 (en) * 2003-08-26 2007-11-06 International Business Machines Corporation Method for fabricating a nitrided silicon-oxide gate dielectric
US20050130448A1 (en) * 2003-12-15 2005-06-16 Applied Materials, Inc. Method of forming a silicon oxynitride layer
TW200620471A (en) * 2004-08-31 2006-06-16 Tokyo Electron Ltd Silicon oxide film forming method, semiconductor device manufacturing method and computer storage medium
JP4965849B2 (ja) * 2004-11-04 2012-07-04 東京エレクトロン株式会社 絶縁膜形成方法およびコンピュータ記録媒体
KR101005953B1 (ko) * 2004-11-04 2011-01-05 도쿄엘렉트론가부시키가이샤 절연막 형성 방법

Also Published As

Publication number Publication date
WO2007001709A3 (en) 2007-11-29
TWI343604B (en) 2011-06-11
KR20080047322A (ko) 2008-05-28
JP2008547220A (ja) 2008-12-25
US7429538B2 (en) 2008-09-30
KR100993124B1 (ko) 2010-11-08
WO2007001709A2 (en) 2007-01-04
CN101208782B (zh) 2010-05-19
TW200703514A (en) 2007-01-16
US20060292844A1 (en) 2006-12-28
CN101208782A (zh) 2008-06-25

Similar Documents

Publication Publication Date Title
JP5072837B2 (ja) プラズマ窒化したゲート誘電体を2段階式で窒化後アニーリングするための改善された製造方法
US20070169696A1 (en) Two-step post nitridation annealing for lower eot plasma nitrided gate dielectrics
JP5105627B2 (ja) 複数のアニールステップを用いた酸窒化シリコンゲート誘電体の形成
US9337046B1 (en) System and method for mitigating oxide growth in a gate dielectric
JP4895803B2 (ja) 誘電体膜及びゲートスタックの形成方法並びに誘電体膜の処理方法
US7662236B2 (en) Method for forming insulation film
US7964514B2 (en) Multiple nitrogen plasma treatments for thin SiON dielectrics
US7569502B2 (en) Method of forming a silicon oxynitride layer
US7192887B2 (en) Semiconductor device with nitrogen in oxide film on semiconductor substrate and method of manufacturing the same
US20070010103A1 (en) Nitric oxide reoxidation for improved gate leakage reduction of sion gate dielectrics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110627

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120521

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120925

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130122

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250