JP5034898B2 - 油圧システムの制御装置及びバルブタイミング制御装置 - Google Patents

油圧システムの制御装置及びバルブタイミング制御装置 Download PDF

Info

Publication number
JP5034898B2
JP5034898B2 JP2007305626A JP2007305626A JP5034898B2 JP 5034898 B2 JP5034898 B2 JP 5034898B2 JP 2007305626 A JP2007305626 A JP 2007305626A JP 2007305626 A JP2007305626 A JP 2007305626A JP 5034898 B2 JP5034898 B2 JP 5034898B2
Authority
JP
Japan
Prior art keywords
oil
viscosity characteristic
viscosity
learning
response speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007305626A
Other languages
English (en)
Other versions
JP2009127580A (ja
Inventor
衛 ▲吉▼岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007305626A priority Critical patent/JP5034898B2/ja
Publication of JP2009127580A publication Critical patent/JP2009127580A/ja
Application granted granted Critical
Publication of JP5034898B2 publication Critical patent/JP5034898B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Description

本発明は、オイルの供給を受けて動作する油圧アクチュエータを備えた油圧システムの制御装置、及び、油圧アクチュエータの一種であるバルブタイミング可変機構によって内燃機関のバルブタイミングを制御するバルブタイミング制御装置に関する。
従来、例えば下記の特許文献1,2に記載されているように、クランク軸に対するカム軸の位相角を変化させ、それにより内燃機関のバルブタイミングを可変にするバルブタイミング可変機構が知られている。一般的なバルブタイミング可変機構は、ベルトやチェーンによってクランク軸に連結されたハウジングと、カム軸に固定されたベーン体とを有している。ベーン体はハウジング内に収容され、ベーン体とハウジングとの間に油圧室が形成されている。この油圧室にオイルを供給し、その供給量を制御弁によって制御することで、ハウジングとベーン体とを相対回転させてクランク軸に対するカム軸の位相角を変化させることができる。
上記のような油圧式のバルブタイミング可変機構では、その動作特性にオイルの粘度が影響する。例えば、オイルの粘度が高いほどバルブタイミング可変機構の応答性は低下する。その一方で、摺動部のクリアランスから漏れるオイルの量は、オイルの粘度が低いほうが多くなる。このようなことを考慮すると、バルブタイミング可変機構をより的確に制御できるようにするには、オイルの粘度をバルブタイミング可変機構の制御に反映させることが望ましい。
この点に関し、特許文献1に記載のものでは、オイルの粘度がバルブタイミング可変機構の応答性に与える影響に着目し、その応答性に基づいて粘度を求めるようにしている。具体的には、粘度とバルブタイミング可変機構の応答速度との関係を求めた応答速度−粘度マップを予め作成しておき、この応答速度−粘度マップを用いて粘度を算出している。また、油温を計測し、油温と粘度との関係を温度領域毎に学習している。
特開2004−92593号公報 特開2001−164953号公報
しかしながら、特許文献1に記載のものは、オイルの粘度を計測する上で実際にバルブタイミング可変機構を動作させなければならない、という点において問題がある。オイルの粘度がバルブタイミング可変機構の動作特性に与える影響は内燃機関の冷間始動直後において特に大きい。冷間始動の直後はオイルも冷えており、オイルの粘度が高い状況にあるからである。ところが、特許文献1に記載のような方法でオイルの粘度を計測する場合には、内燃機関の冷間始動直後におけるバルブタイミング可変機構の動作に粘度を反映させることができない。
また、特許文献1に記載のものでは、バルブタイミング可変機構の制御にオイルの粘度を反映させたい場合、現時点における粘度を即座に取得することは難しい。粘度を取得するためには、その都度、バルブタイミング可変機構の応答速度を求めるという作業が必要となるからである。専用の粘度センサを追加することも考えられるが、その場合には当然のことながら製造コストの増大を招き、また、センサの数が増える分故障の原因となる可能性も高くなる。
なお、特許文献1に記載のものは温度領域毎に粘度を学習しているので、その学習値を読み出してバルブタイミング可変機構の制御に反映させることも考えられる。しかし、学習値と現時点での粘度とが必ずしも一致しているとは限らない。学習値の記録時点から時間が経過した場合には、オイルの劣化が進んでいたり、或いはオイル交換がされていたりする可能性があるためである。
本発明は、上述のような課題を解決するためになされたもので、任意の時点においてオイルの粘度を即座に且つ正確に求めることができ、その正確なオイル粘度に基づいた的確なシステム制御を実現できるようにした油圧システムの制御装置を提供することを目的とする。
また、本発明は、任意の時点においてオイルの粘度を即座に且つ正確に求めることができ、その正確なオイル粘度に基づいてバルブタイミング可変機構の動作を的確に制御できるようにしたバルブタイミング制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、オイルの供給を受けて動作する油圧アクチュエータと、前記油圧アクチュエータに接続されているオイルの供給ラインと、前記供給ラインのオイルに油圧を発生させる油圧発生源とを有する油圧システムの制御装置において、
前記油圧システムで使用されているオイルの粘性特性の学習値を記憶した記憶手段と、
前記供給ラインの油圧を計測する油圧計測手段と、
前記供給ラインの油温を計測する油温計測手段と、
前記油圧発生源による油圧発生開始時、油圧計測値の立ち上りの緩急の程度を示す指標値を取得する指標値取得手段と、
前記指標値と油圧発生開始時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第1の学習手段と、
油圧計測値の立ち上り後、オイルの供給によって前記油圧アクチュエータを動作させたときの前記油圧アクチュエータの応答速度を計測する応答速度計測手段と、
前記応答速度と応答速度計測時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第2の学習手段と、
を備えることを特徴としている。
第2の発明は、第1の発明において、
前記応答速度計測手段は、前記油圧アクチュエータを全開速度で動作させたときの前記油圧アクチュエータの応答速度を計測することを特徴としている。
第3の発明は、第1又は第2の発明において、
応答速度計測時の油温計測値が所定の上限温度を超えるときには、前記第2の学習手段による粘性特性の学習を禁止する禁止手段、
をさらに備えることを特徴としている。
第4の発明は、第1乃至第3の何れか1つの発明において、
応答速度計測時の前記油圧アクチュエータの動作量が所定の下限動作量を下回るときには、前記第2の学習手段による粘性特性の学習を禁止する禁止手段、
をさらに備えることを特徴としている。
第5の発明は、第1乃至第4の何れか1つの発明において、
前記第2の学習手段は、特定した粘性特性の指標値が粘性特性学習値よりも高粘性特性を示す場合には、粘性特性学習値を特定した粘性特性の指標値に置き換えることを特徴としている。
第6の発明は、第1乃至第5の何れか1つの発明において、
前記記憶手段に記憶されている粘性特性学習値を前記油圧システムの制御に反映させる制御手段、
をさらに備えることを特徴としている。
また、第7の発明は、上記の目的を達成するため、内燃機関のバルブタイミングを可変にする油圧式のバルブタイミング可変機構と、前記バルブタイミング可変機構に接続されているオイルの供給ラインと、前記内燃機関により駆動されて前記供給ラインのオイルに油圧を発生させるオイルポンプとを有し、オイルの給排の制御によって前記バルブタイミング可変機構の動作を制御するバルブタイミング制御装置において、
使用されているオイルの粘性特性の学習値を記憶した記憶手段と、
前記記憶手段に記憶されている粘性特性学習値を前記バルブタイミング可変機構の動作の制御に反映させる制御手段と、
前記供給ラインの油圧を計測する油圧計測手段と、
前記供給ラインの油温を計測する油温計測手段と、
前記内燃機関の始動時、油圧計測値の立ち上りの緩急の程度を示す指標値を取得する指標値取得手段と、
前記指標値と油圧発生開始時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第1の学習手段と、
油圧計測値の立ち上り後、オイルの供給によって前記バルブタイミング可変機構を動作させたときの前記バルブタイミング可変機構の応答速度を計測する応答速度計測手段と、
前記応答速度と応答速度計測時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第2の学習手段と、
を備えることを特徴としている。
第1の発明によれば、油圧を発生させてから油圧アクチュエータの動作が可能になるまでの間は、油圧の立ち上りの緩急の程度を示す指標値と油温計測値との関係に基づく学習によってオイルの粘性特性を正確に把握することができる。そして、油圧が立ち上って油圧アクチュエータの動作が可能になってからは、油圧アクチュエータの応答速度と油温計測値との関係に基づく学習によってオイルの粘性特性をより正確に把握することができる。オイルの粘性特性を正確に把握しておくことで、任意の時点におけるオイル粘度を油温から即座に且つ正確に求めることができるようになる。また、現時点の油温におけるオイル粘度だけでなく、油温が変化したときの将来のオイル粘度を正確に予測することもできる。
第2の発明によれば、油圧アクチュエータを全開速度で動作させることで、応答速度の絶対値を大きくして応答速度の計測値に占める計測誤差の割合を小さくすることができる。これにより、応答速度と油温計測値とによる粘性特性の特定精度を高めることができ、ひいては、粘性特性学習値の学習精度を高めることができる。
第3の発明によれば、オイルの粘性特性の違いが応答速度と油温との関係の違いとして表れ難い高温域での学習を禁止することによって、誤学習による粘性特性学習値の精度の低下を防止することができる。
第4の発明によれば、油圧アクチュエータの動作量が少ないために応答速度の計測精度が低下する状況での学習を禁止することによって、誤学習による粘性特性学習値の精度の低下を防止することができる。
第5の発明によれば、応答速度と油温計測値とから特定した粘性特性の指標値が粘性特性学習値よりも高粘性特性を示す場合には、粘性特性学習値を特定した粘性特性指標値に置き換えることで、粘性特性学習値を油圧システムの制御に反映させたときのシステムの動作に係る信頼性を保つことができる。
第6の発明によれば、粘性特性学習値を油圧システムの制御に反映させることで、任意の時点においてオイルの粘度を正確に判断することができ、その正確な判断に基づいた的確なシステム制御を実現することができる。
また、第7の発明によれば、内燃機関の始動後、バルブタイミング可変機構の動作が可能になるまでの間は、油圧の立ち上りの緩急の程度を示す指標値と油温計測値との関係に基づく学習によってオイルの粘性特性を正確に把握することができる。そして、油圧が立ち上ってバルブタイミング可変機構の動作が可能になってからは、バルブタイミング可変機構の応答速度と油温計測値との関係に基づく学習によってオイルの粘性特性をより正確に把握することができる。オイルの粘性特性を正確に把握することにより任意の時点においてオイルの粘度を即座に且つ正確に求めることができ、その正確なオイル粘度に基づいてバルブタイミング可変機構の動作を的確に制御することができる。
実施の形態1.
以下、図1乃至図6を参照して、本発明の実施の形態1としての内燃機関(以下、エンジンという)のバルブタイミング制御装置について説明する。
本実施の形態のバルブタイミング制御装置は、図1を用いてその構成の概略を説明することができる。図1は、本実施の形態のバルブタイミング制御装置の油圧回路を示している。この図に示すように、バルブタイミング制御装置は、油圧アクチュエータであるバルブタイミング可変機構(variable valve timing mechanism、以下、VVTという)20を備えている。VVT20は、クランク軸にベルト或いはチェーンによって連結されたハウジング22と、ハウジング22内に配置されカム軸と一体に回転するベーン体24とを備えている。
ハウジング22の内部にはベーン体24によって区画される2つの油室26,28が形成されている。VVT20によれば、これら2つの油室26,28間の容積比を変化させることでハウジング22に対してベーン体24を回転させ、クランク軸に対するカム軸の回転位相を変化させることができ、ひいては、バルブタイミングを変化させることができる。2つの油室26,28のうち、バルブタイミングの進角時に容積を拡大させる側の油室26を進角油室といい、容積を縮小させる側の油室28を遅角油室という。バルブタイミングの遅角時には、逆に遅角油室28の容積を拡大させ、進角油室26の容積を縮小させるようにする。
VVT20は、進角油室26と遅角油室28の何れ一方に選択的にオイル(作動油)を供給することで、それら油室26,28間の容積比を変化させることができる。進角油室26にオイルを供給する場合には、供給されたオイルの分だけ進角油室26が拡大するとともに、遅角油室28からは進角油室26の拡大に伴ってオイルが押し出される。逆に、遅角油室28にオイルを供給する場合には、供給されたオイルの分だけ遅角油室28が拡大し、進角油室26はオイルが押し出されることによって縮小する。
VVT20に供給されるオイルは、VVTライン8によってメインオイルギャラリ6から取り出される。メインオイルギャラリ6はオイルポンプ4を起点として延びるオイルの主流路である。メインオイルギャラリ6を流れるオイルはVVT20以外の油圧アクチュエータにも供給されるほか、エンジン2内の各摺動部に潤滑油として供給されている。VVTライン8はメインオイルギャラリ6から分岐した枝流路であって、メインオイルギャラリ6とともにオイルの供給ラインを構成している。以下、メインオイルギャラリ6とVVTライン8とを合わせてオイル供給ライン6,8と表記することもある。
オイルポンプ4はエンジン2のクランク軸にギヤ、チェーン或いはベルトによって連結されている。オイルポンプ4はエンジン2の駆動力によって回転してメインオイルギャラリ6内のオイルに油圧を発生させる。オイルポンプ4の回転によって発生した油圧は、メインオイルギャラリ6に取り付けられた油圧センサ42によって計測することができる。また、メインオイルギャラリ6には油圧センサ42と並んで油温センサ46も計測されている。
VVTライン8の先端部にはオイルコントロールバルブ(oil control valve、以下、OCVという)10が取り付けられている。OCV10とVVT20の進角油室26とは進角油室ライン34によって接続され、VVT20の遅角油室28とは遅角油室ライン32によって接続されている。OCV10は、オイルの供給先を進角油室ライン34と遅角油室ライン32とで切り換えるライン切換弁であると同時に、その開度の制御によってオイルの供給量を調整できる流量調整弁でもある。
詳しくは、OCV10は電磁駆動式のスプール弁であって、スリーブ内のスプールの位置によって進角油室ライン34及び遅角油室ライン32に対するオイルの給排を制御することができる。スプールは移動方向の一方の端部をスプリングによって支持され、他方の端部をソレノイドによって支持されている。スプールの位置はソレノイドに供給する駆動電流のデューティ比によって制御することができる。ソレノイドへの非通電時には、スプールはスプリングの付勢力によって所定の初期位置に置かれる。この初期位置では、VVTライン8は遅角油室ライン32に接続されるようになっている。
OCV10の制御は、エンジン2の全体を統合制御している電子制御ユニット(electronic control unit、以下、ECUという)40によって行われる。ECU40はOCV10に対し、ソレノイドを駆動するためのデューティ比信号を供給する。デューティ比は、例えば、バルブタイミングの目標値と実際値との偏差に基づいて決定する。バルブタイミングの実際値は、クランク軸センサ52のパルス信号とカム軸センサ54のパルス信号との位相のずれから計算することができる。ソレノイドは供給されたデューティ比信号によって駆動され、デューティ比によって決まる位置にスプールを移動させる。その結果、VVT20の2つの油室26,28のうち所望の側に所望量のオイルが供給されることとなって、目標とするバルブタイミングが実現されるようになる。ECU40はOCV10と共に、VVT20、オイルポンプ4及びオイルの供給ライン6,8からなる油圧システムの制御装置を構成している。
以上説明したように、本実施の形態のバルブタイミング制御装置は、エンジン2によってオイルポンプ4を駆動し、オイルポンプ4によって油圧を高めたオイルをVVT20に供給することでVVT20を動作させる構成になっている。このような構成では、その動作特性にオイルの粘度が影響する。例えば、オイルの粘度が高いほどVVT20の応答性は低下する。また、図1中に模式的に示すようにVVT20内の各部クリアランスから漏れるオイル(ドレン)の量は、オイルの粘度が低いほうが多くなる。そこで、本実施の形態のバルブタイミング制御装置では、以下に説明する方法によってVVT20に供給されるオイルの粘度を判定し、そのオイル粘度をVVT20の制御に反映させることとした。
まず、図2は、エンジン2の冷間始動時における油圧の挙動を高粘性オイルと低粘性オイルとで比較して示す図である。この図に示すように、エンジン2の始動後、エンジン回転数の上昇に比例してオイルポンプ4の回転数も上昇していく。そして、オイルポンプ回転数の上昇に伴ってメインオイルギャラリ6内のオイルの油圧も立ち上っていく。図2において実線で示す油圧の変化は低粘性オイルのものであり、破線で示す油圧の変化は高粘性オイルのものである。低粘性オイルにおける油圧の立ち上りは急であるのに対し、高粘性オイルにおける油圧の立ち上りは緩慢である。つまり、オイルの粘度は油圧発生後の油圧の挙動、より詳しくは、油圧の立ち上りの緩急に具現化される。
本実施の形態では、油圧の立ち上りの緩急の程度を示す指標値として、油圧の立ち上り遅れ時間を取得する。ここでは図2に示すように、エンジン回転数が所定の始動判定回転数に達してから、油圧センサ42による油圧計測値が所定の立ち上り判定油圧に達するまでの時間を油圧立ち上り遅れ時間(toil)と定義する。低粘性オイルと高粘性オイルとでは、高粘性オイルのほうが油圧立ち上り遅れ時間(toil)は長くなる。
図3は、予め粘度が既知のオイルを用いて実験し、オイル粘度毎に油圧立ち上り遅れ時間(toil)を調べた結果を示している。この図に示すように、オイル粘度と油圧立ち上り遅れ時間とは一対一に対応している。ECU40の記憶部40aには、油圧立ち上り遅れ時間(toil)とオイル粘度との関係が図3に示すようなマップの形で記憶されている。このマップを参照することによって、油圧立ち上り遅れ時間からオイル粘度を取得することが可能になる。
ただし、図3に示すマップから取得できるのは、あくまでもエンジン始動時におけるオイル粘度である。エンジン2の暖機が進んで油温が上昇すれば、それに応じてオイル粘度も変化していく。図4は、オイル粘度と油温との関係を示す図である。この図に示すように、オイルの粘度は油温が低いときには高く、油温が高くなるほど低くなるという温度依存特性を有している。また、オイル粘度の温度依存特性(以下、オイル粘性特性という)は、オイルの組成や劣化状況によって異なっている。図4中には異なる4つのオイル粘性特性を実線で例示している。このようなオイル粘性特性は実験によって求めることができる。本実施の形態では、組成や劣化度の異なる種々のオイルについて実験を行い、それらの粘性特性を調べた結果を図4に示すようなマップにしてECU40に記憶している。
現在使用しているオイルの粘性特性は、エンジン始動時における油温(stho)とオイル粘度(γ)とを取得し、それらを図4に示すマップに当てはめることで特定することができる。エンジン始動時のオイル粘度(γ)は図3に示すマップに基づいて油圧立ち上り遅れ時間(toil)から求めることができる。取得した油温(stho)とオイル粘度(γ)とに対応するオイル粘性特性のデータがマップ中に存在しない場合には、マップに存在するオイル粘性特性データを用いた補間計算によって対応するオイル粘性特性を特定する。図4には、補間計算によって特定したオイル粘性特性を破線で例示している。
以上説明した方法によってオイル粘性特性を特定することで、エンジン2の暖機が進んで油温が変化した場合であっても、任意の時点におけるオイル粘度を油温から即座に求めることが可能になる。そして、このような方法によれば、オイル粘度を求めるために実際にVVT20を動作させる必要が無いので、エンジン2の冷間始動直後におけるVVT20の動作にも正確なオイル粘度を反映させることが可能となる。
ところで、油圧立ち上り遅れ時間からオイル粘度を求める場合と、実際にVVT20を動作させたときの応答速度からオイル粘度を求める場合とでは、後者の方が精度よくオイル粘度を求めることができる。VVT20の応答速度とオイル粘度との相関は、油圧立ち上り遅れ時間とオイル粘度との相関よりもさらに高いからである。したがって、油圧が完全に立ち上ってVVT20の動作が可能になった後は、VVT20の応答速度を計測し、VVT20の応答速度に基づいてオイル粘性特性を求めるほうが、実際のオイル粘性特性をより正確に特定できるものと考えられる。
VVT20の応答速度は次のようにして計算する。まず、目標バルブタイミングと実バルブタイミングが一致している状態から目標バルブタイミングを変化させる。その際にOCV10に供給する駆動電流のデューティ比は100%若しくは0%に設定し、VVT20を全開速度で動作させるようにする。そして、目標バルブタイミングと実バルブタイミングが再び一致するまでに要した時間と、実バルブタイミングの変位角とを計測する。実バルブタイミングの変位角は、カム軸センサ54からのパルス信号とクランク軸センサ52からのパルス信号とから求めることができる。実バルブタイミングの変位角を所要時間で除算して得られる数値が、VVT20の応答速度(°CA/s)である。
図5は、VVT20の応答速度と油温との関係を示す図である。図5では、OCV10に供給する駆動電流のデューティ比を100%に設定したときのVVT20の応答速度と油温との関係を上段に示し、デューティ比を0%に設定したときのVVT20の応答速度と油温との関係を下段に示している。この図に示すように、VVT20の応答速度と油温との関係はオイル粘性特性によって決まる。図5中には異なる4つのオイル粘性特性を実線で例示している。このようなオイル粘性特性は実験によって求めることができる。本実施の形態では、組成や劣化度の異なる種々のオイルについて実験を行い、それらの粘性特性を調べた結果を図5に示すようなマップにしてECU40に記憶している。
現在使用しているオイルの粘性特性は、デューティ100%或いは0%でOCV10を制御したときのVVT20の応答速度(β)と油温(tho)とを取得し、それらを図5に示すマップに当てはめることで特定することができる。取得したVVT20の応答速度(β)と油温(tho)とに対応するオイル粘性特性のデータがマップ中に存在しない場合には、マップに存在するオイル粘性特性データを用いた補間計算によって対応するオイル粘性特性を特定する。図5には、補間計算によって特定したオイル粘性特性を破線で例示している。
このような方法によって特定したオイル粘性特性は、油圧立ち上り遅れ時間に基づき特定したオイル粘性特性よりも精度が高い。しかし、VVT20の応答速度に基づいて高い精度でオイル粘性特性を特定するためには、以下に説明するような3つの実施条件を満たす必要がある。
第1の実施条件は、前述のようにOCV10に供給する駆動電流のデューティ比が100%若しくは0%に設定されていることである。デューティ比を100%にすればVVT20は進角側に全開速度で動作し、デューティ比を0%にすればVVT20は遅角側に全開速度で動作する。VVT20を全開速度で動作させることで、応答速度の絶対値を大きくして応答速度の計測値に占める計測誤差の割合を最小限に止めることができる。
また、OCV10内のスプールの位置は駆動電流のデューティ比によって決まるが、デューティ比に対するスプールの位置には多少のばらつきが存在する。スプールの位置はVVT20に供給されるオイルの量に影響するため、スプールの位置にばらつきがあるとVVT20の応答速度を正しく評価できなくなってしまう。しかし、デューティ比が100%であればスプールは最進角位置に固定され、デューティ比が0%であればスプールは最遅角位置に固定される。したがって、デューティ比が100%若しくは0%であることを条件にすることで、デューティに対するスプールの位置のばらつきがVVT20の応答速度に与える影響を排除することもできる。
第2の実施条件は、実バルブタイミングの変位角が所定の変位角下限値(Vmin)を下回っていないことである。VVT20の応答速度は実バルブタイミングの変位角を所要時間で除算して得られる数値であるので、実バルブタイミングの変位角が小さいほど応答速度の計算誤差が大きくなってしまう。前記の変位角下限値(Vmin)は応答速度の計算誤差を許容できる限界値である。
そして、第3の実施条件は、油温が所定の油温上限値(thomax)を超えていないことである。図5から分かるように、高温域ではオイルの粘性特性の違いがVVT20の反応速度と油温との関係の違いとして表れ難い。したがって、高温域では、反応速度(β)と油温(tho)とによる粘性特性の判定精度は低下することになる。前記の油温上限値(thomax)は十分な判定精度を確保できる限界値である。
以上のように、VVT20の応答速度に基づいてオイル粘性特性を特定する方法には、油圧立ち上り遅れ時間に基づく方法に比較して正確にオイル粘性特性を特定できるという長所がある反面、第1乃至第3の実施条件の成否によっては必ずしも実施できるとは限らないという短所もある。一方、油圧立ち上り遅れ時間に基づく方法によれば、エンジン2の始動時には必然的にオイル粘度を求めることができ、その始動時オイル粘度に基づいて必ずオイル粘性特性を特定することができる。このように2つの方法にはそれぞれに長所及び短所があることから、オイルの粘性特性を常に正確に把握できるようにするためには、これら2つの方法を適宜に組み合わせて実施することが望ましい。本実施の形態では、オイル粘性特性の学習値を記憶部40aに記憶しておき、各方法にてオイル粘性特性を特定できたら、特定したオイル粘性特性に基づいて学習値を更新するようにした。
以下、本実施の形態において実施されるオイル粘性特性の学習制御について図6を用いて説明する。図6はオイル粘性特性の学習制御のルーチンを示すフローチャートであって、ECU40は図6に示すルーチンを所定の学習条件が成立したときに実行する。学習条件には、エンジン回転数がエンジン始動判定回転数を超えたことと、オイル粘度(γ)と油温(stho)とがそれぞれ取得されたことが含まれている。
図6に示すルーチンの最初のステップS102では、油圧立ち上り遅れ時間(toil)から得られたオイル粘度(γ)が取り込まれる。また、ステップS104では、エンジン始動時の油温(stho)が取り込まれる。そして、ステップS106では、図4に示すマップに基づいてオイル粘度(γ)と油温(stho)とによりオイルの粘性特性Aが特定され、その指標値が計算される。
次のステップS108では、特定したオイル粘性特性Aの指標値を用いて記憶部40aに記憶されているオイル粘性特性学習値が更新される。本実施の形態では、オイル粘性特性学習値がオイル粘性特性Aの指標値に置き換えられるようになっている。
次のステップS110では、OCV10がデューティ比100%若しくは0%で制御されたときのVVT20の応答速度が取り込まれたか否か判定される。この判定は前述の第1の実施条件に相当する。
ステップS110の条件が成立した場合には、次にステップS112の判定が行われる。この判定は前述の第2の実施条件に相当し、応答速度を計測したときの実バルブタイミングの変位角が変位角下限値(Vmin)を超えているか否か判定される。
ステップS112の条件が成立した場合には、次にステップS114及びS116の処理が行われる。まず、ステップS114では、その時点における油温(tho)が取り込まれる。続いてステップS116では、取り込んだ油温(tho)が油温上限値(thomax)よりも低いか否か判定される。この判定は前述の第3の実施条件に相当する。
ステップS110,S112及びS116の条件、すなわち、前述の第1乃至第3の実施条件の何れかが不成立であるならば、ステップS126の処理が選択される。ステップS126では、オイル粘性特性の学習値の更新が禁止される。このため、次のステップS124では、油圧立ち上り遅れ時間(toil)に基づき特定したオイル粘性特性AがVVT20の制御に使用されることになる。
ステップS116の判定の結果、油温(tho)が油温上限値(thomax)よりも低い場合には、すなわち、前述の第1乃至第3の実施条件が全て成立した場合には、ステップS118の処理が行われる。ステップS118では、図5に示すマップに基づいてVVT20の応答速度(β)と油温(tho)とによりオイルの粘性特性が特定され、その指標値Cが計算される。
次のステップS120では、ステップS118で特定したオイル粘性特性Cの指標値とオイル粘性特性学習値との大小関係が判定される。判定の結果、オイル粘性特性Cの指標値のほうがオイル粘性特性学習値よりも低粘性特性を示している場合には、ステップS126の処理が選択されてオイル粘性特性の学習値の更新が禁止される。そして、VVT20の制御には油圧立ち上り遅れ時間(toil)に基づき特定したオイル粘性特性Aが使用される(ステップS124)。
一方、オイル粘性特性Cの指標値のほうがオイル粘性特性学習値よりも高粘性特性を示している場合には、ステップS122の処理が選択される。ステップS122では、特定したオイル粘性特性Cの指標値を用いて記憶部40aに記憶されているオイル粘性特性学習値が更新される。本実施の形態では、オイル粘性特性学習値がオイル粘性特性Cの指標値に置き換えられるようになっている。これにより、VVT20の制御には応答速度(β)に基づき特定したオイル粘性特性Cが使用されることになる(ステップS124)。
以上説明したオイル粘性特性学習制御を実施することで、エンジン2の始動後、油圧が立ち上ってVVT20の動作が可能になるまでの間は、油圧立ち上り遅れ時間(toil)と始動時油温(stho)との関係に基づく学習によってオイルの粘性特性を正確に把握することができる。そして、油圧が立ち上ってVVT20の動作が可能になってからは、VVT20の応答速度(β)と油温(tho)との関係に基づく学習によってオイルの粘性特性をより正確に把握することができる。
オイルの粘性特性を学習値として正確に把握しておくことで、任意の時点におけるオイル粘度を油温から即座に且つ正確に求めることが可能になる。また、オイル粘性特性学習値を用いることで、現時点の油温におけるオイル粘度だけでなく、油温が変化したときの将来のオイル粘度を正確に予測することもできる。したがって、本実施の形態のバルブタイミング制御装置によれば、正確なオイル粘度に基づいてVVT20の動作を的確に制御することができる。具体例としては、OCV10によってVVT20の動作を制御するときの制御量(制御デューティ)に正確なオイル粘度を反映させることができる。オイル粘度が変わればOCV10の制御量に対するVVT20の応答性も変化する。正確なオイル粘度を制御量の設定に反映させることで、VVT20の応答性にばらつきが生じるのを防止することができる。
なお、実施の形態1と第1の発明及びそれに従属する各発明との対応関係は次の通りである。まず、図1において、VVT20は第1の発明の「油圧アクチュエータ」に相当し、メインオイルギャラリ6及びVVTライン8は第1の発明の「オイルの供給ライン」に相当し、オイルポンプ4は第1の発明の「油圧発生源」に相当する。また、ECU40は第6の発明の「制御手段」に相当し、ECU40の記憶部40aは第1の発明の「記憶手段」に相当する。油圧センサ42は第1の発明の「油圧計測手段」に相当し、油温センサ46は第1の発明の「油温計測手段」に相当する。
また、ECU40が図6に示すルーチンのステップS102を実行することで第1の発明の「指標値取得手段」が実現される。そして、ステップS104,S106及びS108を実行することで第1の発明の「第1の学習手段」が実現される。また、ECU40が図6に示すルーチンのステップS110を実行することで第1及び第2の発明の「応答速度計測手段」が実現される。そして、ステップS114,S118,S120及びS122を実行することで第1及び第5の発明の「第2の学習手段」が実現される。
さらに、ECU40が図6に示すルーチンのステップS116及びS126を実行することで第3の発明の「禁止手段」が実現され、また、ステップS112及びS126を実行することで第4の発明の「禁止手段」が実現される。バルブタイミングの変位角は第4の発明の「油圧アクチュエータの動作量」に相当する。
実施の形態1と第7の発明との対応関係は次の通りである。まず、図1において、VVT20は第7の発明の「バルブタイミング可変機構」に相当し、メインオイルギャラリ6及びVVTライン8は第7の発明の「オイルの供給ライン」に相当し、オイルポンプ4は第7の発明の「オイルポンプ」に相当する。ECU40は第7の発明の「制御手段」に相当し、ECU40の記憶部40aは第7の発明の「記憶手段」に相当する。油圧センサ42は第7の発明の「油圧計測手段」に相当し、油温センサ46は第7の発明の「油温計測手段」に相当する。
また、ECU40が図6に示すルーチンのステップS102を実行することで第7の発明の「指標値取得手段」が実現される。そして、ステップS104,S106及びS108を実行することで第7の発明の「第1の学習手段」が実現される。また、ECU40が図6に示すルーチンのステップS110を実行することで第7の発明の「応答速度計測手段」が実現される。そして、ステップS114,S118及びS122を実行することで第7の発明の「第2の学習手段」が実現される。
実施の形態2.
次に、図1,図7乃至図9を参照して、本発明の実施の形態2としてのバルブタイミング制御装置について説明する。
本実施の形態のバルブタイミング制御装置は、実施の形態1のものと同構成の油圧回路を備えている。したがって、以下の説明では、実施の形態1と同じく図1に示す構成を前提にして説明を行うものとする。
本実施の形態のバルブタイミング制御装置と実施の形態1のものとは、エンジン2の始動時に油圧立ち上り遅れ時間に基づいてオイル粘性特性を学習し、油圧の立ち上り後はVVT20の応答速度に基づいてオイル粘性特性を再学習する点においては共通する。しかし、応答速度に基づくオイル粘性特性の再学習の内容において、本実施の形態と実施の形態1との間には違いが有る。
実施の形態1では、VVT20の応答速度に基づき特定したオイル粘性特性Cの指標値のほうがオイル粘性特性学習値よりも高粘性特性を示していることを条件にして、オイル粘性特性学習値をオイル粘性特性Cの指標値に置き換えている。これに対し、本実施の形態では、所定の優先条件が成立している場合には、オイル粘性特性Cの指標値とオイル粘性特性学習値とを比較することなく、オイル粘性特性学習値をオイル粘性特性Cの指標値に置き換えることとした。上記所定の優先条件とは、VVT20の応答速度からオイル粘性特性を高精度で特定することができる条件であって、具体的には以下の2つの条件である。
第1の優先条件は、油温が十分に低いことである。具体的には、油温計測値が所定の油温第2上限値(thomax2)を超えていなか否かによって判断される。油温第2上限値(thomax2)は、当然のことながら、実施の形態1に係る油温上限値(thomax)よりも低い温度に設定されている。本実施の形態では、実施の形態1に係る油温上限値(thomax)を油温第1上限値(thomax1)と表記する。図7に示すように、本実施の形態では、油温第1上限値(thomax1)を超える高温域は学習禁止域とされ、油温第2上限値(thomax2)を下回る低温域は学習優先域とされる。低温域ではオイルの粘性特性の違いがVVT20の反応速度と油温との関係の違いとして顕著に表れている。
第2の優先条件は、実バルブタイミングの変位角が十分に大きいことである。変位角が大きいほど応答速度の計算誤差は小さくなるからである。具体的には、実バルブタイミングの変位角が所定の変位角第2下限値(Vmin2)を超えているか否かによって判断される。変位角第2下限値(Vmin2)は、当然のことながら、実施の形態1に係る変位角下限値(Vmin)よりも大きい変位角に設定されている。本実施の形態では、実施の形態1に係る変位角下限値(Vmin)を変位角第1下限値(Vmin1)と表記する。図8に示すように、本実施の形態では、変位角第1下限値(Vmin1)を下回る小変位角域は学習禁止域とされ、変位角第2下限値(Vmin2)を超える大変位角域は学習優先域とされる。
本実施の形態では、上記第1の優先条件と第2の優先条件とがともに成立した場合に、オイル粘性特性Cの指標値とオイル粘性特性学習値とを比較することなく、オイル粘性特性学習値をオイル粘性特性Cの指標値に置き換える。一方、上記第1の優先条件と第2の優先条件の何れかが不成立の場合には、オイル粘性特性Cの指標値のほうがオイル粘性特性学習値よりも高粘性特性を示している場合に限り、オイル粘性特性学習値をオイル粘性特性Cの指標値に置き換えることとした。
以下、本実施の形態において実施されるオイル粘性特性の学習制御について図9を用いて説明する。図9はオイル粘性特性の学習制御のルーチンを示すフローチャートであって、ECU40は図9に示すルーチンを所定の学習条件が成立したときに実行する。なお、図9において、図6に示すルーチンのものと共通する処理については同一のステップ番号を付している。また、それら共通の処理に関してはその説明を省略或いは簡略するものとする。
図9に示すルーチンでは、ステップS110,S112及びS116の条件、すなわち、前述の第1乃至第3の実施条件の全て成立した場合、ステップS202の判定が行われる。ステップS202では、ステップS114で取り込んだ油温(tho)が油温第2上限値(thomax2)よりも高いか否か判定される。この判定は前述の第1の優先条件に相当する。
ステップS202の判定の結果、油温(tho)が油温第2上限値(thomax2)よりも低い場合には、次にステップS204の判定が行われる。この判定は前述の第2の優先条件に相当し、応答速度を計測したときの実バルブタイミングの変位角が変位角第2下限値(Vmin2)を超えているか否か判定される。
ステップS202及びS204の条件、すなわち、前述の第1及び第2の優先条件の何れかが不成立であるならば、実施の形態1と同様に、ステップS118以降の処理が実施される。すなわち、VVT20の応答速度(β)と油温(tho)とによりオイルの粘性特性が特定され(ステップS118)、その指標値Cとオイル粘性特性学習値との比較が行われる(ステップS120)。比較の結果、オイル粘性特性Cの指標値のほうがオイル粘性特性学習値よりも高粘性特性を示していれば、オイル粘性特性学習値がオイル粘性特性Cの指標値に置き換えられる(ステップS122)。オイル粘性特性Cの指標値のほうがオイル粘性特性学習値よりも低粘性特性を示している場合には、オイル粘性特性の学習値の更新が禁止される(ステップS126)。
ステップS204の判定の結果、実バルブタイミングの変位角が変位角第2下限値(Vmin2)を超えている場合には、すなわち、前述の第1及び第2の優先条件がともに成立した場合には、ステップS206の処理に続けてステップS122の処理が行われる。ステップS206では、VVT20の応答速度(β)と油温(tho)とによりオイルの粘性特性が特定されてその指標値Cが計算される。そして、ステップS206で計算されたオイル粘性特性Cの指標値によって、記憶部40aに記憶されているオイル粘性特性学習値が更新される(ステップS122)。
以上説明したように、本実施の形態に係るオイル粘性特性学習制御によれば、VVT20の応答速度から極めて高精度でオイル粘性特性を特定できる場合には、応答速度から特定したオイル粘性特性の指標値がそのまま学習値として更新される。これにより、実施の形態1に係るオイル粘性特性学習制御に比較して、任意の時点におけるオイル粘度をより正確に判断することが可能となり、より正確な判断に基づいたより的確なバルブタイミング制御を実現することができる。
一方、VVT20の応答速度から特定するオイル粘性特性の精度が十分に保証できない場合には、応答速度から特定した粘性特性の指標値が粘性特性学習値よりも高粘性特性を示す場合にのみ粘性特性学習値の更新が行われる。これにより、粘性特性学習値をバルブタイミング制御に反映させたときのVVT20の動作に係る信頼性を保つことができる。
その他.
以上、本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、次のように変形して実施してもよい。
上述の実施の形態では、本発明をバルブタイミング制御装置に適用しているが、本発明は油圧を利用する油圧システムであれば広く適用することができる。その場合の油圧発生源は、電動式のポンプであってもよい。また、回転式ポンプやプランジャポンプ等その構造には限定はない。
上述の実施の形態では油圧立ち上り遅れ時間を取得しているが、油圧の立ち上りの緩急の程度を示す指標値としては油圧の上昇速度でもよい。具体的には、油圧センサ42による油圧計測値が所定の立ち上り判定油圧1に達してから、立ち上り判定油圧1よりも高い所定の立ち上り判定油圧2に達するまでの時間を計測する。低粘性オイルと高粘性オイルとでは、高粘性オイルのほうが油圧上昇速度は遅くなる。オイル粘度と油圧上昇速度とは一対一に対応しているので、油圧上昇速度から間接的にオイル粘度を判断することができる。
また、上述の実施の形態では油温を油温センサによって直接計測しているが、水温センサによって間接的に計測するのでもよい。エンジン2内のオイルの油温と冷却水の水温との間には相関があるからである。その場合、水温センサが「油温計測手段」となる。
また、オイル粘性特性学習値の更新方法としては、上述の実施の形態にて採っている方法以外のものを用いてもよい。例えば、所定の反映率(1未満)でオイル粘性特性の指標値をオイル粘性特性学習値に反映させる方法を採ってもよい。上述の実施の形態のものは反映率を1に設定した場合に相当する。その場合、オイル粘性特性を油圧立ち上り遅れ時間から特定した場合には反映率を小さく設定し、オイル粘性特性を応答速度から特定した場合には反映率を大きく設定する等、オイル粘性特性の特定方法に応じて反映率を異ならせてもよい。
本発明の実施の形態1としてのバルブタイミング制御装置の概略構成を示す図である。 冷間始動時における油圧立ち上り遅れ時間を高粘性オイルと低粘性オイルとで比較して示す図である。 油圧立ち上り遅れ時間からオイル粘度を決定するためのマップを示す図である。 エンジン始動時の油温とオイル粘度とからオイル粘性特性を特定するためのマップを示す図である。 VVTの応答速度と油温とからオイル粘性特性を特定するためのマップを示す図である。 本発明の実施の形態1において実行されるオイル粘性特性学習制御のルーチンを示すフローチャートである。 本発明の実施の形態2においてVVT応答速度に基づくオイル粘性特性の学習が禁止される油温条件と、優先される油温条件とについて示す図である。 本発明の実施の形態2においてVVT応答速度に基づくオイル粘性特性の学習が禁止される変位角条件と、優先される変位角条件とについて示す図である。 本発明の実施の形態2において実行されるオイル粘性特性学習制御のルーチンを示すフローチャートである。
符号の説明
2 エンジン
4 オイルポンプ
6 メインオイルギャラリ
8 VVTライン
10 オイルコントロールバルブ
20 バルブタイミング可変機構(VVT)
22 ハウジング
24 ベーン体
26 進角油室
28 遅角油室
32 遅角油室ライン
34 進角油室ライン
40 ECU
42 油圧センサ
46 油温センサ
52 クランク軸センサ
54 カム軸センサ

Claims (7)

  1. オイルの供給を受けて動作する油圧アクチュエータと、前記油圧アクチュエータに接続されているオイルの供給ラインと、前記供給ラインのオイルに油圧を発生させる油圧発生源とを有する油圧システムの制御装置において、
    前記油圧システムで使用されているオイルの粘性特性の学習値を記憶した記憶手段と、
    前記供給ラインの油圧を計測する油圧計測手段と、
    前記供給ラインの油温を計測する油温計測手段と、
    前記油圧発生源による油圧発生開始時、油圧計測値の立ち上りの緩急の程度を示す指標値を取得する指標値取得手段と、
    前記指標値と油圧発生開始時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第1の学習手段と、
    油圧計測値の立ち上り後、オイルの供給によって前記油圧アクチュエータを動作させたときの前記油圧アクチュエータの応答速度を計測する応答速度計測手段と、
    前記応答速度と応答速度計測時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第2の学習手段と、
    を備えることを特徴とする油圧システムの制御装置。
  2. 前記応答速度計測手段は、前記油圧アクチュエータを全開速度で動作させたときの前記油圧アクチュエータの応答速度を計測することを特徴とする請求項1記載の油圧システムの制御装置。
  3. 応答速度計測時の油温計測値が所定の上限温度を超えるときには、前記第2の学習手段による粘性特性の学習を禁止する禁止手段、
    をさらに備えることを特徴とする請求項1又は2記載の油圧システムの制御装置。
  4. 応答速度計測時の前記油圧アクチュエータの動作量が所定の下限動作量を下回るときには、前記第2の学習手段による粘性特性の学習を禁止する禁止手段、
    をさらに備えることを特徴とする請求項1乃至3の何れか1項に記載の油圧システムの制御装置。
  5. 前記第2の学習手段は、特定した粘性特性の指標値が粘性特性学習値よりも高粘性特性を示す場合には、粘性特性学習値を特定した粘性特性の指標値に置き換えることを特徴とする請求項1乃至4の何れか1項に記載の油圧システムの制御装置。
  6. 前記記憶手段に記憶されている粘性特性学習値を前記油圧システムの制御に反映させる制御手段、
    をさらに備えることを特徴とする請求項1乃至5の何れか1項に記載の油圧システムの制御装置。
  7. 内燃機関のバルブタイミングを可変にする油圧式のバルブタイミング可変機構と、前記バルブタイミング可変機構に接続されているオイルの供給ラインと、前記内燃機関により駆動されて前記供給ラインのオイルに油圧を発生させるオイルポンプとを有し、オイルの給排の制御によって前記バルブタイミング可変機構の動作を制御するバルブタイミング制御装置において、
    使用されているオイルの粘性特性の学習値を記憶した記憶手段と、
    前記記憶手段に記憶されている粘性特性学習値を前記バルブタイミング可変機構の動作の制御に反映させる制御手段と、
    前記供給ラインの油圧を計測する油圧計測手段と、
    前記供給ラインの油温を計測する油温計測手段と、
    前記内燃機関の始動時、油圧計測値の立ち上りの緩急の程度を示す指標値を取得する指標値取得手段と、
    前記指標値と油圧発生開始時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第1の学習手段と、
    油圧計測値の立ち上り後、オイルの供給によって前記バルブタイミング可変機構を動作させたときの前記バルブタイミング可変機構の応答速度を計測する応答速度計測手段と、
    前記応答速度と応答速度計測時の油温計測値とからオイルの粘性特性を特定し、特定した粘性特性に基づいて前記記憶手段に記憶されている粘性特性学習値を更新する第2の学習手段と、
    を備えることを特徴とするバルブタイミング制御装置。
JP2007305626A 2007-11-27 2007-11-27 油圧システムの制御装置及びバルブタイミング制御装置 Expired - Fee Related JP5034898B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305626A JP5034898B2 (ja) 2007-11-27 2007-11-27 油圧システムの制御装置及びバルブタイミング制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305626A JP5034898B2 (ja) 2007-11-27 2007-11-27 油圧システムの制御装置及びバルブタイミング制御装置

Publications (2)

Publication Number Publication Date
JP2009127580A JP2009127580A (ja) 2009-06-11
JP5034898B2 true JP5034898B2 (ja) 2012-09-26

Family

ID=40818749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305626A Expired - Fee Related JP5034898B2 (ja) 2007-11-27 2007-11-27 油圧システムの制御装置及びバルブタイミング制御装置

Country Status (1)

Country Link
JP (1) JP5034898B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699973A (zh) * 2016-02-23 2018-10-23 马自达汽车株式会社 发动机的机油供应控制装置
CN108699927A (zh) * 2016-02-23 2018-10-23 马自达汽车株式会社 发动机的机油供应控制装置
US10519874B2 (en) 2016-02-23 2019-12-31 Mazda Motor Corporation Oil supply control device of engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047504A (ja) * 2011-08-29 2013-03-07 Aisin Seiki Co Ltd ソレノイドバルブ及び弁開閉時期制御装置
JP6119697B2 (ja) * 2014-08-22 2017-04-26 マツダ株式会社 エンジンの制御装置
JP5895999B2 (ja) * 2014-09-24 2016-03-30 トヨタ自動車株式会社 可変動弁装置の制御装置
JP7037758B2 (ja) * 2018-03-15 2022-03-17 マツダ株式会社 エンジンのオイル粘度検出装置
JP7037759B2 (ja) * 2018-03-15 2022-03-17 マツダ株式会社 エンジンのオイル粘度検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057467B2 (ja) * 1994-02-09 2000-06-26 株式会社ユニシアジェックス エンジンの点火制御装置
JP3344922B2 (ja) * 1997-03-25 2002-11-18 株式会社ユニシアジェックス アクチュエータ制御装置
JP4061674B2 (ja) * 1997-08-28 2008-03-19 株式会社デンソー 内燃機関用バルブタイミング制御装置
JP3764813B2 (ja) * 1998-02-23 2006-04-12 株式会社日立製作所 可変動弁装置の駆動制御装置
JP2000257454A (ja) * 1999-03-04 2000-09-19 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP4096666B2 (ja) * 2002-09-03 2008-06-04 トヨタ自動車株式会社 内燃機関の可変バルブタイミング機構の制御装置
JP4317084B2 (ja) * 2004-06-10 2009-08-19 ジヤトコ株式会社 油圧制御装置及びその制御方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699973A (zh) * 2016-02-23 2018-10-23 马自达汽车株式会社 发动机的机油供应控制装置
CN108699927A (zh) * 2016-02-23 2018-10-23 马自达汽车株式会社 发动机的机油供应控制装置
US10316710B2 (en) 2016-02-23 2019-06-11 Mazda Motor Corporation Oil supply control device of engine
US10473007B2 (en) 2016-02-23 2019-11-12 Mazda Motor Corporation Oil supply control device of engine
US10519874B2 (en) 2016-02-23 2019-12-31 Mazda Motor Corporation Oil supply control device of engine
DE112017000952B4 (de) 2016-02-23 2020-06-18 Mazda Motor Corporation Ölzuleitungssteuer- bzw. Regelvorrichtung eines Motors
CN108699927B (zh) * 2016-02-23 2021-05-18 马自达汽车株式会社 发动机的机油供应控制装置
CN108699973B (zh) * 2016-02-23 2021-06-11 马自达汽车株式会社 发动机的机油供应控制装置
DE112017000951B4 (de) 2016-02-23 2022-05-25 Mazda Motor Corporation Ölzuleitungssteuer- bzw. Regelvorrichtung eines Motors

Also Published As

Publication number Publication date
JP2009127580A (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5034898B2 (ja) 油圧システムの制御装置及びバルブタイミング制御装置
JP4793369B2 (ja) 油圧システムの制御装置及びバルブタイミング制御装置
JP5278465B2 (ja) バルブタイミング制御装置
US6257184B1 (en) Apparatus and method for diagnosing of a hydraulic variable valve timing mechanism
JP4978542B2 (ja) バルブタイミング制御装置及びバルブタイミング制御システム
JP4941282B2 (ja) 内燃機関のバルブタイミング制御装置
JP5012442B2 (ja) 油圧システムの制御装置及びバルブタイミング制御装置
US20110282597A1 (en) Method for determining a viscosity parameter of a motor oil as well as a control device for an electronic engine control
JP4858340B2 (ja) 可変動弁装置の制御装置
US8096271B2 (en) System and method for determining a camshaft position in a variable valve timing engine
US8240279B2 (en) Engine valve control device
US8037855B2 (en) Valve characteristic controller and valve characteristic control system
JP5035127B2 (ja) 可変動弁機構の制御装置
JP2007315379A (ja) ベーン式の可変バルブタイミング調整機構の制御装置
CN102859157A (zh) 用于控制可变气门系统的方法和装置
JP2007332956A (ja) ベーン式の可変バルブタイミング調整機構の制御装置
JP4140437B2 (ja) エンジンの可変バルブタイミング装置
JP2008008286A (ja) ベーン式の可変バルブタイミング調整機構の制御装置
JP2005299677A (ja) 内燃機関用可変バルブタイミング機構の自己診断装置
JP2009162201A (ja) 内燃機関の可変バルブタイミングシステム
JP5182388B2 (ja) バルブ特性制御装置及びバルブ特性制御システム
JP2009150316A (ja) 可変動弁機構、可変動弁機構の制御装置及びこれを備えた内燃機関
JP2009197721A (ja) 内燃機関のバルブタイミング制御装置
JP2007315382A (ja) ベーン式の可変バルブタイミング調整機構の異常診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees