JP5026538B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP5026538B2
JP5026538B2 JP2010025444A JP2010025444A JP5026538B2 JP 5026538 B2 JP5026538 B2 JP 5026538B2 JP 2010025444 A JP2010025444 A JP 2010025444A JP 2010025444 A JP2010025444 A JP 2010025444A JP 5026538 B2 JP5026538 B2 JP 5026538B2
Authority
JP
Japan
Prior art keywords
film
substrate
polarizing layer
liquid crystal
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010025444A
Other languages
English (en)
Other versions
JP2011164269A (ja
Inventor
崇人 平塚
昌哉 足立
佐々木  洋
美晴 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to JP2010025444A priority Critical patent/JP5026538B2/ja
Priority to US13/022,774 priority patent/US8922738B2/en
Publication of JP2011164269A publication Critical patent/JP2011164269A/ja
Application granted granted Critical
Publication of JP5026538B2 publication Critical patent/JP5026538B2/ja
Priority to US14/581,530 priority patent/US9223067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、表示装置および表示装置に用いられる偏光層に関するものである。
表示装置は、情報を視覚的に人間に伝えるデバイスであり、高度な情報社会となった現代では、人間、社会にとって重要な存在となっている。特に、液晶表示装置(LCD)は、近年、性能が著しく向上しており、携帯電話からパーソナルコンピューター、さらには大画面テレビ等の表示装置として採用されている。
液晶表示装置の多くは、一対の基板の間に液晶層を設けた液晶表示パネルと、バックライトユニットとを有し、バックライトユニットからの面状光線を液晶表示パネルで変調することにより、映像や画像などの情報を視覚的に人間に伝える。このようなバックライトユニットを有する液晶表示装置の液晶表示パネルは、液晶層を挟んで配置される一対の偏光層を有する。従来の液晶表示パネルでは、偏光層としてフィルム状の偏光板(以下、フィルム偏光板と呼ぶ。)を用いることが多く、一対の基板および液晶層を挟んで配置される。また、このフィルム偏光板は、接着材(粘着材を含む。)を用いて基板に貼り付けている。
ところで、フィルム偏光板は、たとえば、光の透過量を制御する偏光層を一対の保護フィルムで挟んだ構成になっている。また、フィルム偏光板は、上記のように、接着材を用いて基板に貼り付ける必要がある。そのため、フィルム偏光板を貼り付ける液晶表示パネルの製造方法は、工程数が多く、たとえば、製造コストの低減に不利である。
したがって、近年の液晶表示パネルの製造方法では、たとえば、液晶層を挟む前記基板の表面に偏光子膜(偏光子層)を直接形成する方法が提案されている。前記基板の表面に偏光子膜を直接形成するときに使用する材料や形成方法は、たとえば、特許文献1などに記載されている。
また、本明細書で参照する先行技術文献は、下記の通りである。
特開2009-132748号公報 特開2009-199075号公報
SID2009, Digest. P-113
ところで、液晶表示パネルに用いられるフィルム偏光板は、屈折率が約1.5であり、透明なガラス基板、ポリエチレンテレフタレート(PET)樹脂などの基板の屈折率と同等である。そのため、フィルム偏光板をガラス基板に貼り付けた液晶表示パネルの場合、フィルム偏光板とガラス基板との界面における光の反射が小さい。
しかしながら、フィルム偏光板の代替として用いる偏光子膜に含まれる色素の面内屈折率は1.6〜1.9であり、ガラス基板やフィルム偏光板の屈折率(1.5)と比べて大きい。そのため、偏光子膜とガラス基板との界面における光の反射は、フィルム偏光板とガラス基板との界面における反射よりも大きくなる。また、空気の屈折率は約1.0であり、偏光子膜と空気との屈折率差は、フィルム偏光板と空気との屈折率差よりも大きい。したがって、偏光子膜と空気との界面における光の反射は、フィルム偏光板と空気との界面における反射よりも大きい。そのため、基板の表面に偏光子膜を直接形成した従来の液晶表示パネルでは、たとえば、偏光子膜の透過率および二色比の低下が大きくなる。その結果、たとえば、液晶表示装置のコントラストが低下し、視認性を低下させてしまう問題が生じる。
また、偏光子膜に入射した光は、ガラス基板と偏光子膜との界面、および偏光子膜と空気層との界面で反射と透過を繰り返し、干渉する。偏光子膜の屈折率は面内で異なることから、偏光子膜における吸収軸方向とその直交方向(透過軸方向)で光の干渉条件が異なる。そのため、偏光子膜の膜厚が変動すると、吸収軸と透過軸の光の干渉条件が異なり、偏光層の透過率はそれぞれ変動する。したがって、偏光子膜の膜厚が変動するとコントラスト比が変化する問題が生じる。またさらに、偏光子膜は色素材料によって吸収が異なることから、偏光子膜を形成するときには、必要な透過率およびコントラスト比が得られる膜厚を選択する必要がある。しかしながら、偏光子膜の膜厚を光の干渉条件に合わせながら、必要な膜厚を選択することは困難である。このようなことから、基板の表面に偏光子膜を直接形成する従来の液晶表示パネルでは、偏光子本来の特性を著しく低下させてしまうと言える。
また、基板の表面に偏光子膜を直接形成する場合、当該偏光子膜は、溶液状態の材料を基板に塗布した後、乾燥させることで形成される。このとき、偏光子膜では、色素分子がπ電子相互作用によって積層し、積層した色素の構造体が形成される。しかしながら、このとき形成される構造体の膜は、基板との結合力およびその構造体同士の相互の結合力が弱いので、偏光子膜は物理的強度が弱い。そのため、偏光子膜をフィルム偏光板の代替として適用する場合には、偏光子膜の上に保護膜を設け、物理的強度を上げる必要がある。
偏光子膜に通常用いられる有機色素等の異方性化合物は、形成時に溶媒として好適に用いられる水に対して通常可溶である。そのため、保護膜の形成時に、溶媒として、水に可溶な材料を用いると、たとえば、その溶媒が偏光子膜に侵入して色素の配向性を乱すという問題がある。このような偏光子膜の配向性の乱れも、透過率および二色比の低下につながり、その結果として、液晶表示装置のコントラストが低下し、視認性を低下させてしまう。以上の議論は、基板の上に1/4波長板を形成し、1/4波長板の上に偏光子膜を設けた表示装置においても成り立つ。
本発明の目的は、たとえば、液晶層を封入する基板に偏光子膜を直接形成した液晶表示パネルを有する液晶表示装置の透過率およびコントラスト比を向上させることが可能な技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面によって明らかになるであろう。
本願において開示される発明のうち、代表的なものの概略を説明すれば、以下の通りである。
(1)第1の基板と、第2の基板と、を有し、前記第2の基板に対して前記第1の基板が配置された側とは反対側の面に偏光層が直接形成されており、前記偏光層は、偏光子膜と、前記基板から見て前記偏光子膜の上に積層された保護膜とを有し、前記偏光子膜は、配向させたリオトロピック液晶材料でなり、前記保護膜は、屈折率が前記偏光子膜の透過軸方向の屈折率よりも小さい材料でなり、かつ、前記偏光子膜よりも薄いことを特徴とする表示装置。
(2)前記(1)の表示装置において、前記偏光層は、前記偏光子膜と前記基板との間に介在する下地膜を有し、前記下地膜は、配向性を有し、かつ、配向方向が前記リオトロピック液晶材料の配向方向と概ね平行である表示装置。
(3)第1の基板と、第2の基板と、を有し、前記第2の基板に対して前記第1の基板が配置された側とは反対側の面に偏光層が直接形成されており、前記偏光層は、偏光子膜と、前記基板から見て前記偏光子膜の上に積層された保護膜とを有し、前記偏光子膜は、配向させたリオトロピック液晶材料でなり、前記保護膜は、前記偏光子膜の透過軸と平行な第1の方向の屈折率が前記偏光子膜の透過軸方向の屈折率よりも小さく、かつ、前記偏光子膜の吸収軸方向と平行な第2の方向の屈折率が前記第1の方向の屈折率よりも大きい表示装置。
本発明の表示装置によれば、透過率およびコントラスト比を向上させることができる。
液晶表示装置における主要部の断面構成の一例を示す模式断面図である。 液晶表示パネルにおける画素の平面構成の一例を示す模式平面図である。 本発明による実施例1の偏光層の断面構成の一例を示す模式断面図である。 実施例1の偏光層における偏光子膜の適切な膜厚を説明するためのグラフ図である。 実施例1の偏光層を適用した液晶表示パネルの断面構成の一例を示す模式断面図である。 第1の基板における画素の平面構成の一例を示す模式平面図である。 図6のB−B’線の位置における液晶表示パネルの断面構成の一例を示す模式断面図である。 液晶層の配向の変化の様子を説明するための模式平面図である。 偏光層の吸収軸と配向膜の配向方向との関係の一例を示す模式図である。 実施例1の偏光層における偏光子膜の膜厚と相対反射率および相対透過率との関係を示すグラフ図である。 本発明による実施例2の偏光層の断面構成の一例を示す模式断面図である。 実施例2の偏光層における下地膜の適切な膜厚を説明するためのグラフ図である。 実施例2の偏光層を適用した液晶表示パネルの断面構成の一例を示す模式断面図である。 本発明による実施例3の偏光層の概略構成の一例を示す模式分解斜視図である。 異方膜の遅相軸方向の屈折率と相対反射率との関係を示すグラフ図である。 異方膜の遅相軸方向の屈折率と平行透過率および直交透過率との関係を示すグラフ図である。 遅相軸方向の屈折率および進相軸方向の屈折率とコントラスト比との関係を示すグラフ図である。
以下、本発明について、図面を参照して実施の形態(実施例)とともに詳細に説明する。
なお、実施例を説明するための全図において、同一機能を有するものは、同一符号を付け、その繰り返しの説明は省略する。
図1および図2は、本発明に関わる液晶表示装置における主要部の概略構成の一例を説明するための模式図である。
図1は、液晶表示装置における主要部の断面構成の一例を示す模式断面図である。図2は、液晶表示パネルにおける画素の平面構成の一例を示す模式平面図である。
なお、図1に示した液晶表示パネル1の断面は、図2に示したA−A’線の位置における断面に相当する。
本発明に関わる液晶表示装置は、たとえば、図1に示すように、液晶表示パネル1とバックライトユニット2とを有する。
液晶表示パネル1は、第1の基板3、第2の基板4、液晶層5、第1の偏光層6、および第2の偏光層7を有する。
第1の基板3は、TFT基板などと呼ばれている基板であり、第2の基板4は、対向基板またはCF基板などと呼ばれている基板である。第1の基板3および第2の基板4の構成については周知であり、種々の構成が知られている。また、第1の基板3および第2の基板4の構成と、液晶層5として用いる液晶材料との組み合わせについても周知であり、種々の組み合わせが知られている。またさらに、本発明は、第1の偏光層6および第2の偏光層7に関するものであり、第1の基板3および第2の基板4の構成や、液晶層5として用いる液晶材料などは適宜変更可能である。そのため、本明細書では、第1の基板3および第2の基板4の構成や、液晶層5として用いる液晶材料に関する詳細な説明を省略する。
第1の偏光層6および第2の偏光層7は、従来の液晶表示パネルに用いているフィルム偏光板と同等の機能を有する層である。また、本発明の液晶表示装置における第1の偏光層6および第2の偏光層7は、それぞれ、第1の基板3の表面および第2の基板4の表面に直接形成されたものである。このとき、第1の偏光層6は第1の基板3に対して第2の基板4が配置された側とは反対側に配置される。また、第2の偏光層7は第2の基板4に対して第1の基板3が配置された側とは反対側に配置される。この第1の偏光層6および第2の偏光層7に関する説明は、後述する。なお、本明細書における直接形成された偏光層というのは、フィルム偏光板のようにあらかじめ作成された偏光部材を接着材などで基板に貼り付けたものではなく、基板の表面に所定の材料を塗布して形成されたものを意味する。
バックライトユニット2は、蛍光管または発光ダイオードなどの光源が発した光を面状光線に変換して液晶表示パネル1に入射させる照明装置である。本発明の液晶表示装置におけるバックライトユニット2の構成は、適宜変更可能である。そのため、本明細書では、バックライトユニット2の構成に関する詳細な説明を省略する。
本発明に関わる液晶表示装置では、バックライトユニット2から出射した面状光線を、液晶表示パネル1で変調することにより、映像や画像などの情報を視覚的に観察者(人間)に伝える。
このとき、バックライトユニット2から液晶表示パネル1に向けて出射した光8wは、まず、第1の偏光層6に入射する。この光8wは、通常白色光であり、たとえば、ある方向と平行な直線偏光を主とする光である。そのため、第1の偏光層6の吸収軸方向を、光8wの偏光方向と概ね直交するようにしておくと、光8wの大部分が第1の偏光層6を透過し、第1の基板3および液晶層5を通過して、第2の基板4に設けられたカラーフィルタに入射する。第2の基板4には、カラーフィルタとして、たとえば、赤色系の光8rのみが通過する赤色フィルタFR、緑色系の光8gのみが通過する緑色フィルタFG、および青色系の光8bのみが通過する青色フィルタFBが設けられている。
この第2の基板4に設けられたカラーフィルタを通過した赤色系の光8r、緑色系の光8g、および青色系の光8bは、第2の偏光層7に入射する。この第2の偏光層7に入射する光8r,8g,8bの偏光状態は、それぞれ、通過した液晶層4の配向状態によって変化する。また、第2の偏光層7に入射した光8r,8g,8bの透過量は、これらの光の偏光状態と第2の偏光層7の吸収軸方向との関係によって変化する。
さて、第1の偏光層6を第1の基板3に直接形成し、第2の偏光層7を第2の基板4に直接形成する場合、通常、これらの偏光層の物理的強度を上げるために、偏光子膜の上に保護膜を形成する。しかしながら、第1の基板3や第2の基板4に偏光子膜および保護膜を直接形成する場合、従来の形成方法だと、前述のように、偏光子の特性(透過率や二色比)の低下によりコントラスト比が低下し、液晶表示装置の視認性が低下するなどの問題が生じる。
本発明は、このような問題を解決することを目的としており、保護膜を以下に説明するような構成にすることで、第1の偏光層6および第2の偏光層7の透過率や二色比の低下を抑制し、液晶表示装置のコントラスト比を向上させる。
図3は、本発明による実施例1の偏光層の断面構成の一例を示す模式断面図である。
実施例1では、図1に示した液晶表示パネル1に設けられた第1の偏光層6および第2の偏光層7のうちの第2の偏光層7、すなわちバックライトユニット2から遠いほうの偏光層に着目する。第2の偏光層7は観察者側を向いており、外光が入射する。このとき、第2の偏光層7における外光の反射率が高いと、反射した外光の影響により液晶表示装置の視認性が低下する。そのため、第2の偏光層7は、たとえば、図3に示すように、第2の基板4から見て偏光子膜9の上に、外光の反射を抑制する機能を有する保護膜10aを形成することが望ましい。以下、この外光の反射を抑制する機能を有する保護膜10aを、反射防止膜と呼ぶ。
第2の基板4は、前述のように、対向基板などと呼ばれる基板であり、たとえば、ガラス基板などの透明な基板の表面のうちの、液晶層5と対向する面に、カラーフィルタなどを有する第2の薄膜積層体が形成されている。このとき、偏光子膜9は、基板の表面のうちの、液晶層5と対向する面とは反対側の面に直接形成される。この偏光子膜9は、たとえば、以下のような方法で形成する。
まず、基板の表面に対して前処理を行う。この前処理は、偏光子膜9が均一に付着するようにするための処理であり、基板表面の洗浄と、濡れ性を向上させるための処理が行われる。
基板表面の洗浄は、基板に付着している汚れを良く溶かす、あるいは良く除去できる溶媒、洗浄剤等を用いる。ただし、基板が樹脂(たとえば、アクリルやポリカーボネート)の場合は、表面を溶解することによる曇りを発生させるような溶媒(たとえば、テトラヒドロフラン、ジオキサン等)よりもメタノール、エタノール、プロパノール、ブタノール等のアルコール系溶媒が望ましい。また、基板がガラスの場合は、塩基性の溶液(たとえば、水酸化ナトリウム水溶液等)に浸漬して表面を薄くエッチングすることで汚れも一緒に除去することも可能であり、浸漬時に加熱を併用するとエッチングが敏速に進行し好適である。しかしながら、長時間これを行うとエッチングが進行しすぎて表面に曇りを生じることもあるので、注意を要する。
基板表面の濡れ性を向上させるための処理は、塗料が均一に塗布されて膜厚のばらつきが少なくなり、良好な光学特性が得られるようにするために行う。基板表面の濡れ性を向上させる方法としては、たとえば、プラズマ照射装置等の機器による表面改質方法と、酸または塩基溶液等を用いて表面を化学的に改質する方法が挙げられる。
機器による表面改質方法としては、たとえば、酸素プラズマ照射、オゾン雰囲気に放置、UV照射等の方法が挙げられる。いずれも活性な酸素が基板表面に作用し、水酸基やカルボキシル基等を生成する。これらの基は親水性なので、これらの基が生成した表面は濡れ性が向上する。そのため、塗布により均一な厚さの膜を得やすくなる。なお、UV照射はUVによって空気中の酸素が活性な状態に変化し、これが表面を改質するものであるから、酸素プラズマ照射、オゾン雰囲気に放置と類似の効果が得られるものである。これ以外の方法としては、たとえば、アルゴンプラズマを照射する方法が挙げられる。アルゴンプラズマを照射しても濡れ性は向上する。ただし、プラズマ発生装置の高周波電源の出力が同じ場合は、酸素プラズマより照射時間を長めにする必要がある。
また、化学的に改質する方法としては、たとえば、ガラス基板を水酸化ナトリウム水溶液に浸漬する方法が挙げられる。ガラスは、水酸化ナトリウム水溶液に浸漬すると表面のケイ素−酸素の結合が切断し水酸基を生成するため濡れ性が向上する。また、アクリル板もガラスと同様塩基に浸漬すると濡れ性が向上するが、この原理は表面のエステル基が加水分解し、水酸基、あるいはカルボキシル基が露出することによって親水性が向上するというものである。
上記の前処理が済んだら、次に、基板の表面に偏光子膜9を形成する。この偏光子膜9の形成に用いる材料(以下、偏光子材料と呼ぶ。)は、リオトロピック液晶材料の一種であり、溶媒として好適に用いられる水に対して通常可溶である。また、この偏光子材料には、可視光波長領域に吸収を有する有機色素を使用することができる。可視光波長領域に吸収を有する有機色素の具体例としては、C.I.Direct Yellow 12 、C.I.Direct Yellow 34 、C.I.Direct Yellow 86 、C.I.Direct Yellow 142 、C.I.Direct Yellow 132 、C.I.Acid Yellow 25 、C.I.Direct Orange 39 、C.I.Direct Orange 72 、C.I.Direct Orange 79 、C.I.Acid Orange 28 、C.I.Direct Red 39 、C.I.Direct Red 79 、C.I.Direct Red 81 、C.I.Direct Red 83 、C.I.Direct Red 89 、C.I.Acid Red 37 、C.I.Direct Violet 9 、C.I.Direct Violet 35 、C.I.Direct Violet 48 、C.I.Direct Violet 57 、C.I.Direct Blue 1 、C.I.Direct Blue 67 、C.I.Direct Blue 83 、C.I.Direct Blue 90 、C.I.Direct Green 42 、C.I.Direct Green 51 、C.I.Direct Green 59 等が挙げられる。
なお、これらの有機色素は、1種が単独で含まれていてもよく、2種以上が任意の比率および組み合わせで含まれていてもよい。
偏光子膜9の形成には、たとえば、スリットダイコータ、バーコータ、アプリケータなどを用いるとよく、特に、スリットダイコータを用いることが望ましい。スリットダイコータは、基板とスリットの先端部分の間隔が数十μmであり、偏光子膜9の表面に傷ができにくい。また、スリットダイコータは、溶液状態の偏光子材料を塗布面に供給しつつ、当該材料へ圧力を加えながら塗布方向に引き伸ばすことができる。そのため、偏光子材料を塗布する段階で色素が配向し、その後、乾燥することで偏光子膜9が形成される。この場合、偏光子膜9の透過軸は塗布方向になり、吸収軸は塗布方向と直交する方向になる。
上記の手順で偏光子膜9を形成したら、次に、偏光子膜9の上に反射防止膜10aを形成する。この反射防止膜10aは、偏光子膜9と同様に、溶液状態の塗膜材料を塗布した後、乾燥して形成する。反射防止膜10aの形成に用いる塗膜材料は、バインダー、無機の微粒子、および溶媒からなる。
反射防止膜10aの形成に用いるバインダーとしては、たとえば、透明性の高い有機系もしくは無機系の高分子材料、または高分子化可能な材料が挙げられる。塗膜材料を用いて反射防止膜10aを形成する場合、用いる溶媒によっては偏光子膜9が溶解し、色素の配向性を乱すことがある。そのため、溶媒は、水や水酸基を持たないケトン系が望ましい。この溶媒に溶解するバインダーとしては、たとえば、熱可塑性の高分子材料があり、具体的にはアクリル樹脂、ポリカーボネート樹脂等が挙げられる。なお、当該バインダーは、たとえば、水に可溶な有機色素などの異方性膜の上に形成する保護膜などにも同様に適用できる。
また、反射防止膜10aの形成に用いる無機の微粒子としては、たとえば、フッ化マグネシウム、酸化ケイ素、酸化アルミニウム、酸化チタン等の無色、あるいは白色の微粒子が挙げられる。この微粒子の大きさは、膜の平坦性を高める点で、粒子の短軸が平均膜厚以下になることが望ましい。また、上記の微粒子の中では、低屈折率の膜が得やすいという点で、比較的屈折率の低いフッ化マグネシウム(屈折率は約1.38)、酸化ケイ素(屈折率は約1.5〜1.7)、酸化アルミニウム(屈折率は約1.7〜1.9)等が好適である。特に、フッ化マグネシウムは、酸化ケイ素や酸化アルミニウムよりも低屈折率材料であり、バインダーの中に分散させると、比較的空隙の割合が少なくても物理的強度の大きい膜が形成できる。そのため、無機の微粒子にはフッ化マグネシウムを用いることが好ましい。フッ化マグネシウムは、たとえば、CIKナノテック社製 MFMIBK15WT%-P26(フッ化マグネシウム(重量15WT%)、溶媒:メチルイソブチルケトン(重量:85WT%))が挙げられる。
またさらに、フッ化マグネシウムの微粒子は、形成された反射防止膜10aに入射した可視光(波長としては380nm〜760nm)が散乱しないよう、平均粒子径を190nm以下にするのが望ましい。これ以上になると入射した光が散乱するため膜が濁って見え、ディスプレイ関係への適用に不具合を生じる場合がある。
また、反射防止膜10aの形成に用いる溶媒は、バインダーを溶解、あるいは一様に分散できるものが有効である。また、水や水酸基を持つ溶媒を偏光子膜9に浸すと、溶媒が偏光子膜9に侵入し、色素の配向性を劣化させてしまう。このことから、水や水酸基を持つ溶媒を選択すると偏光子膜9の特性を著しく劣化させてしまう。
前述のバインダーとして好適のポリカーボネート樹脂と、無機の微粒子として好適であるフッ化マグネシウム微粒子を有する塗膜材料の場合、溶媒は、ケトン系、エーテル系などが好適である。具体的には、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
上記のようなバインダー、無機の微粒子、および溶媒からなる塗膜材料を用いて反射防止膜10aを形成するときには、偏光子膜9の上に当該塗膜材料を塗布した後、加熱して形成する。またこのとき、たとえば、加熱後に、反射防止膜10aの耐擦性を向上させるための後処理を行ってもよい。
塗膜材料の塗布方法としては、たとえば、スピンコート、ディップコート、バーコート、アプリケータによるコート、スプレーコート、フローコート等が挙げられるが、特に限定は無く、所定の厚さに均一に塗布することができればよい。すなわち、塗布方法自体は任意であるが、適切な膜厚に制御するために塗膜材料の濃度、およびそれぞれ個別の塗布方法の条件を適正化する必要がある。たとえば、スピンコートの場合は、回転数と回転時間が膜厚に影響を与え、特に回転数の影響が大きく、回転数を高めるほど膜は薄くなる傾向がある。また、ディップコートの場合は、浸漬時間と引き上げ速度が膜厚に影響を与え、特に引き上げ速度の影響が大きく、引き上げ速度を小さくするほど膜は薄くなる傾向がある。また、バーコートの場合は適切な番数、アプリケータによるコートの場合はギャップの大きさ、スプレーコートの場合はスプレーの移動速度、フローコートの場合は基板を保持する際の角度と用いる塗料の使用量などが個別の塗布条件である。
塗膜材料を塗布するときの目標膜厚は、60nm〜190nmが望ましい。理論的には、膜厚をdR、入射する光の波長をλ、光が入射する媒体(透明基板、および本発明の反射防止膜10aの屈折率)をnとしたとき、dR=λ/4nとなる場合に反射率が最小になる。
入射する光が可視光領域(380nm〜760nm)で、媒体の屈折率が空気(屈折率が約1.0)から比較的高屈折率の透明ガラス基板(屈折率が約1.7)までを部材の使用範囲と考えた場合、望ましい最小膜厚は380/(4×1.7)=56nmである。すなわち、膜厚が56nm未満であると、可視光領域の光が入射したときに、十分に反射率に影響を与えることができなくなる。そのため、塗膜を加熱して成膜したときの膜厚分布も考慮すると、最小膜厚は56nmよりやや大きめの60nmを狙うことが望ましい。一方、最大膜厚は760/(4×1.0)=190より、190nmが望ましい。以上の条件より、実施例1の偏光層における反射防止膜10aの膜厚dRは、60nm〜190nmが適切と考えられる。
塗膜材料を塗布した後は、溶媒を揮発させるために加熱を行う。加熱温度を溶媒の沸点以上にすることで塗膜内に気泡が発生し、最終的に空隙として膜中に残り、結果として膜の屈折率を低減させる。なお、このときの加熱温度は、偏光子膜9(偏光子材料)の耐熱温度以下にする必要がある。たとえば、特許文献1に記載の偏光子材料を用いる場合、好適な偏光子膜9の乾燥温度は120℃以下である。また、特許文献1の偏光子材料を用いた場合、反射防止膜10aを形成に用いる塗膜材料の溶媒としてはメチルイソブチルケトンが好適であり、その沸点は約116℃である。したがって、この組み合わせであれば、塗膜材料の溶媒を揮発させて反射防止膜10aを形成する際の偏光子膜9の劣化を抑制することができる。また、加熱温度は、偏光子膜9の耐熱温度および溶媒の沸点だけでなく、基板の耐熱温度以下にする必要があることはもちろんである。そのため、実施例1の偏光層を有する液晶表示パネル1を製造するときには、これら要求を満たすように溶媒、基板、およびバインダーの選定を行う必要がある。
上記の加熱により、実施例1の偏光層における反射防止膜10aは形成されるが、たとえば、この反射防止膜10aの表面に撥液性を有する含フッ素化合物からなる層を形成することによって、表面の防汚性が向上する。ただし、撥液性を有する含フッ素化合物からなる層の厚さは形成された反射防止膜10aの反射防止効果を低下させることがないよう、極めて薄く成膜する必要がある。また、撥液性を有する含フッ素化合物からなる層の形成方法としては、たとえば、撥液性を有する含フッ素化合物からなる塗膜を形成する方法が挙げられる。しかしながら、反射防止膜10aが低抵抗の場合、その表面を撥液性の含フッ素化合物で被覆することにより表面抵抗が高まり、結果的にチリ等の埃を付着しやすくなる。
この含フッ素化合物からなる層(塗膜)の形成に用いられる材料としては、たとえば、サイトップ(旭硝子社製)、INT304VC(INTスクリーン社製)等が挙げられる。これらを溶媒で希釈後、塗布し、加熱することにより溶媒を揮発させ、場合によっては熱硬化させることにより成膜することで反射防止膜10aの表面の撥液性が高まり、防汚性が向上する。
上記のような手順で基板の表面に偏光子膜9および反射防止膜10aを直接形成する場合、反射防止膜10aの膜厚dRについては、前述のように、60nm〜190nmが適切であることがわかった。そこで次に、偏光子膜9の膜厚dPの適切な値について考えてみる。
偏光子膜9の膜厚dPの適切な値を調べるために、本願発明者らは、ガラス基板の表面に膜厚dPが異なる偏光子膜9を形成し、偏光子膜9の膜厚dPとコントラスト比との関係、および偏光子膜9の膜厚dPと透過率との関係について調べた。なお、偏光子膜9は、いずれも、以下の手順で形成している。
まず、縦100mm、横100mm、厚さ0.7mm、屈折率1.5のガラス基板の表面に、前処理として、低圧水銀ランプにより紫外光を照射した。なお、照射光量は10mW、照射時間は5分間とした。これにより、紫外光を照射した基板表面は、水との接触角が10度以下になった。なお、紫外光を照射する前の基板表面は、水との接触角が30度〜35度であった。
次に、ガラス基板の表面に偏光子膜9を形成した。この偏光子膜9は、透過軸方向の屈折率が1.6、吸収軸方向の屈折率が1.9になるように形成した。
上記の手順で形成した偏光子膜9を有するガラス基板を用いて偏光子膜9の膜厚dPとコントラスト比との関係、および偏光子膜9の膜厚dPと透過率との関係について調べたところ、図4に示すような結果が得られた。
図4は、実施例1の偏光層における偏光子膜の適切な膜厚を説明するためのグラフ図である。
なお、図4のグラフにおいて、横軸は偏光子膜9の膜厚dP(nm)、左側の縦軸はコントラスト比CR、右側の縦軸は白透過率TRw(%)である。
また、コントラスト比CRは、白透過率TRwと黒透過率の比で表される。白透過率TRwは、2枚の偏光子膜9の吸収軸を平行にしたときの透過率であり、黒透過率は2枚の偏光子膜9の吸収軸を直交させたときの透過率である。
図4からわかるように、偏光子膜9の膜厚dPに対して、白透過率TRwとコントラスト比CRとの間にはトレードオフの関係があり、偏光子膜9の膜厚dPが厚くなると、コントラスト比CRは増加し、白透過率TRwは低下する。
現在の中小型と呼ばれる液晶表示パネル(たとえば、携帯電話端末などの携帯型電子機器に用いられる液晶表示パネル)のコントラスト比CRは、200〜1000である。また、液晶表示パネル1に入射した光の一部は、たとえば、第1の基板3や第2の基板4などで吸収または反射する。そのため、偏光子膜9のコントラスト比CRは1000以上必要である。一方、輝度の観点では、偏光子膜9の白透過率TRwは少なくとも40%以上必要である。図4を見ると、この両方の条件を満たす偏光子膜9の膜厚dPは、約690nmである。したがって、偏光子膜9の膜厚dPは、690nmとするのが望ましい。
さて、実施例1の偏光層のように、偏光子膜9と反射防止膜10aが積層された構成である場合、当該偏光層の反射率RRは、下記数式1で与えられる。
Figure 0005026538
なお、数式1において、n0は空気の屈折率、nsは基板の屈折率、n1は反射防止膜10aの屈折率、n2は基板と反射防止膜10aとの間に配置された偏光子膜9の屈折率である。
またこのとき、数式1に用いられている4つの屈折率の関係が、無反射条件と呼ばれる関係、すなわち(n2/n12=ns/n0を満たすようにすると、偏光層の反射率RRが非常に小さくなる。ガラス基板の屈折率nsが1.5、偏光子膜9の透過軸方向の屈折率n2が1.6の場合、無反射条件を満たす反射防止膜10aの屈折率n1は約1.3である。そのため、屈折率が約1.3になるような材料を用いて反射防止膜10aを形成すれば、偏光層による外光の反射を非常に小さくすることができる。
またこのとき、反射防止膜10aの膜厚dRは、たとえば、視感度の高い光の波長550nmの1/4n1であることが望ましい。これは、反射防止膜10aと偏光子膜9との界面で反射する光の位相が反射防止膜10aと空気との界面で反射した光の位相から1/2波長ずれるため、波が互いに打ち消しあい、結果として反射光が消滅するからである。550nmの1/4n1は、107.3nmであり、この値は、前述の反射防止膜10aの膜厚dRとして適切な範囲(60nm〜190nm)にある。
以上のような結果から、ガラス基板の表面に膜厚dPが約690nmの偏光子膜9と、膜厚dRが約137.5nmの反射防止膜10aを積層し、反射防止膜10a側から光を照射したときの相対反射率を調べたところ、下記表1のような結果が得られた。
Figure 0005026538
なお、表1において、COM1はガラス基板の表面に膜厚dPが約690nmの偏光子膜のみを形成した比較例1の偏光層であり、PRAC1は実施例1の偏光層、すなわちガラス基板の表面に膜厚dPが約690nmの偏光子膜9および膜厚dRが約107.3nmの反射防止膜10aを積層した偏光層である。また、RRRELは比較例1の偏光層における反射率を1としたときの相対反射率を意味しており、表1には波長550nmの光の反射率を示している。また、‖AX2は入射面が偏光子膜9の透過軸方向と平行な光の相対反射率であり、‖AX1は入射面が偏光子膜9の吸収軸方向と平行な光の相対反射率である。なお、前記入射面は、偏光層に入射する光の入射方向と、当該偏光層の法線方向とを含む平面のことである。
また、反射防止膜10aの形成に用いる塗膜材料は、バインダーとしてポリカーボネート樹脂、無機の微粒子としてフッ化マグネシウムの分散液(CIKナノテック:MFMIBK15WT%-P26、メチルイソブチルケトン85%)を調整した。そして、偏光子膜9の上にこの塗膜材料をスピンコートにより塗布した後、加熱して反射防止膜10aとしている。またこのとき、反射防止膜10aの形成に用いる塗膜材料は、形成される反射防止膜10aの屈折率が1.30になるように調整した。
表1からわかるように、反射防止膜10aを設けたときの偏光層の相対反射率は約0.09、0.16となり、反射防止膜10aを設けない場合の反射率よりも大幅に抑制できた。これにより、実施例1の偏光層は、外光の反射を抑制する効果を有し、かつ、その効果が非常に高いことが確認された。
また、上記の偏光層に光を照射したときの相対透過率および二色比を調べたところ、下記表2のような結果が得られた。
Figure 0005026538
なお、表2においても、COM1はガラス基板の表面に膜厚dPが約690nmの偏光子膜9のみを形成した比較例1の偏光層であり、PRAC1は実施例1の偏光層、すなわちガラス基板の表面に膜厚dPが約690nmの偏光子膜9および膜厚dRが約107.3nmの反射防止膜10aを積層した偏光層である。また、TRRELは比較例1の偏光層における透過率を1としたときの相対透過率を意味しており、表2には波長550nmの光の透過率を示している。また、TRは偏光子膜9の透過軸方向と平行な直線偏光を入射させたときの相対透過率(以下、平行透過率と呼ぶ。)であり、TRは偏光子膜9の吸収軸方向と平行な直線偏光を入射させたときの相対透過率(以下、直交透過率と呼ぶ。)である。また、二色比DRRELは、下記数式2で表される値である。
Figure 0005026538
表2からわかるように、実施例1の偏光層は、比較例1の偏光層と比べて、平行透過率TRが約4%高くなり、二色比DRRELが32%向上している。そのため、実施例1の偏光層は、平行透過率および実効的な二色比を向上させることができたと言える。
ところで、実施例1の偏光層に関する上記の説明は、透明な基板の表面に直接形成された偏光層のみで考えている。しかしながら、実施例1の偏光層を液晶表示パネル1に適用した場合、その液晶表示パネル1における光の透過率は、偏光層のみで決まるものではなく、液晶表示パネル1が有する種々の構成部材の影響を受ける。そこで次に、実施例1の偏光層を液晶表示パネル1に適用したときの光の透過率などについて説明する。
図5乃至図9は、実施例1の偏光層を適用した液晶表示パネルの概略構成の一例を説明するための模式図である。
図5は、実施例1の偏光層を適用した液晶表示パネルの断面構成の一例を示す模式断面図である。図6は、第1の基板における画素の平面構成の一例を示す模式平面図である。図7は、図6のB−B’線の位置における液晶表示パネルの断面構成の一例を示す模式断面図である。図8は、液晶層の配向の変化の様子を説明するための模式平面図である。図9は、偏光層の吸収軸と配向膜の配向方向との関係の一例を示す模式図である。
実施例1の偏光層を液晶表示パネル1に適用した場合、その断面構成は、たとえば、図5に示すような構成になる。
第1の基板3は、ガラス基板などの透明な第1の絶縁基板301と、当該第1の絶縁基板301の一主面に形成された第1の薄膜積層体302とを有する。この第1の基板3は、前述のようにTFT基板などと呼ばれている基板であり、第1の薄膜積層体302は、たとえば、走査信号線、映像信号線、TFT素子、画素電極、複数の絶縁層、および配向膜などを有する。また、第1の基板3は、第1の絶縁基板301と液晶層5との間に第1の薄膜積層体302がくるように配置される。そして、第1の絶縁基板301の液晶層5と対向する主面とは反対側の主面には、第1の偏光層6(偏光子膜9および反射防止膜10a)が直接形成されている。
第2の基板4は、ガラス基板などの透明な第2の絶縁基板401と、当該第2の絶縁基板401の一主面に形成された第2の薄膜積層体402とを有する。この第2の基板4は、前述のように対向基板などと呼ばれている基板であり、第2の薄膜積層体402は、たとえば、ブラックマトリクス、カラーフィルタ、平坦化層、および配向膜などを有する。また、第2の基板4は、第2の絶縁基板401と液晶層5との間に第2の薄膜積層体402がくるように配置される。そして、第2の絶縁基板401の液晶層5と対向する主面とは反対側の主面には、第2の偏光層7(偏光子膜9および反射防止膜10a)が直接形成されている。
実施例1の偏光層は、前述のように、液晶表示パネル1の画素の構成、言い換えると第1の薄膜積層体302および第2の薄膜積層体402の構成に関係なく適用することができる。そこで、実施例1では、画素の構成の一例として、図6および図7に示すような構成を挙げる。
なお、図6および図7に示した構成は、IPS(In-Plane Switching)方式と呼ばれる液晶駆動方式の画素構成の一例であり、液晶層5の駆動(配向の制御)に使用する画素電極11および共通電極12が第1の基板3(第1の薄膜積層体302)に設けられている。このとき、第1の薄膜積層体302は、下地層13、TFT素子の半導体層14、第1の絶縁層15、走査信号線16、第2の絶縁層17、映像信号線18およびTFT素子のソース-ドレイン電極19、第3の絶縁層20、共通電極12、第4の絶縁層21、画素電極11、ならびに第1の配向膜22などを有する。またこのとき、共通電極12と画素電極11とは、第4の絶縁層21を介して積層されており、液晶層5に近いほうの画素電極11は、平面形状が櫛歯状になっている。
また、第2の基板4が有する第2の薄膜積層体402は、ブラックマトリクス23(遮光膜)、カラーフィルタFR,FG,FB、平坦化層24、および第2の配向膜25などを有する。
液晶層5は、たとえば、誘電異方性が正のネマチック液晶であり、電界無印加時、すなわち画素電極11と共通電極12とが同電位のときの配向がホモジニアス配向になるように封入される。櫛歯状の画素電極11の歯の部分が、図6に示したように映像信号線18の延びる方向(y方向)に延びている場合、電界無印加時の液晶層5の配向は、たとえば、図8の(a)に示すように、液晶分子5mの長軸方向が、画素電極11の歯の部分の延びる方向に対して数度(たとえば、7度から15度)傾くようにする。また、このような画素の画素電極11と共通電極12との間に電位差を与えると、液晶層5にフリンジ電界と呼ばれるアーチ状の電界Eが印加される。このとき、フリンジ電界Eは、基板平面で見ると、たとえば、図8の(b)に示すように、画素電極11の歯の部分の延びるy方向と垂直な方向(x方向)に印加される。そのため、液晶分子5mは、印加されたフリンジ電界Eの方向と平行になるように回転する。IPS方式の画素では、この液晶分子5mの回転により生じる液晶層5の配向状態の変化を利用して、各画素における光の透過率(輝度)を制御する。
なお、櫛歯状の画素電極11の平面形状としては、種々の形状が知られており、歯の部分の延びる方向もさまざまである。歯の部分の延びる方向が図6に示したy方向とは異なる場合、電界無印加時の液晶分子5mの長軸方向は、平面で見たときのフリンジ電界Eの方向とは直交せず、かつ、フリンジ電界Eの方向とのなす角が大きくなるよう方向にする。
またこのとき、液晶層5の厚さdは、使用する液晶材料の屈折率異方性をΔnとしたときのリタデーションΔn・dが1/2波長、すなわち波長550nmの光に対してはΔn・dが275nmになる値を選択することが望ましい。ただし、実際の液晶表示パネル1では、液晶分子5mが一様な配向変化をしないので、より明るい表示を得るためにはリタデーションΔn・dが1/2波長よりも多少大きな値、たとえば、波長550nmの光に対しては275nm≦Δn・d≦400nmの範囲内の適切な値になるように液晶層5の厚さdを選択することが望ましい。
ところで、電界無印加時の液晶層5の配向は、第1の配向膜22および第2の配向膜25の配向方向によって制御される。図6乃至図8に示したような構成の画素を有する液晶表示パネル1の場合、第1の配向膜22および第2の配向膜25の配向方向AXR1,AXR2は、たとえば、図9に示すように、平面で見たときのフリンジ電界Eの方向と直交する方向に対して角度αだけ傾いた方向にする。この角度αは、一般に5度から30度の範囲内に設定されるが、配向の安定性や表示の明るさを考慮すると、7度から15度の範囲内に設定することが望ましい。
また、IPS方式では、電界無印加時を暗表示(いわゆるノーマリブラックモード)とする場合、第1の偏光層6の吸収軸方向AX1と第2の偏光層7の吸収軸方向AX1とを直交させる。またこのとき、第1の偏光層6の吸収軸AX1または第2の偏光層7の吸収軸AX1のいずれかが、第1の配向膜22および第2の配向膜25の配向方向AXR1,AXR2、すなわち電界無印加時の液晶分子5mの長軸方向と平行になるようにする。したがって、図9に示した例では、第1の偏光層6の吸収軸AX1を第1の配向膜22および第2の配向膜25の配向方向AXR1,AXR2と平行にしているが、これに限らず、第2の偏光層7の吸収軸AX1が第1の配向膜22および第2の配向膜25の配向方向AXR1,AXR2と平行になるようにしてもよい。なお、バックライトユニット2からの光の利用効率をよくするためには、第1の偏光層6の吸収軸AX1の方向を、バックライトユニット2からの光の透過量が大きくなる方向にすることがよいことは、もちろんである。
上記のような構成の液晶表示パネル1において、第1の偏光層6および第2の偏光層7として実施例1の偏光層を用いた場合と、偏光層として偏光子膜9のみを形成した場合とで、同じ条件で駆動させたときの白透過率TRwを測定したところ、反射防止膜10aを有する実施例1の偏光層を用いた場合の白透過率は、偏光子膜9のみを形成した場合よりも8%高かった。そのため、実施例1の偏光層を液晶表示パネル1に適用することで、液晶表示装置の透過率を向上させることができると言える。
以上説明したように、実施例1の偏光層を液晶表示パネル1に適用することで、バックライトユニットを有する液晶表示装置における外光の反射を抑制することができる。なお、実施例1で説明した偏光層は、液晶表示パネルのような偏光層を必要とする表示パネルに限らず、たとえば、プラズマディスプレイや有機ELディスプレイなどの偏光層が不要な自発光型の表示装置における外光の反射(映り込み)を抑制するためにも用いることができる。
また、実施例1の偏光層を液晶表示パネル1に適用することで、バックライトユニット2を有する液晶表示装置のコントラスト比を向上させることができる。
図10は、実施例1の偏光層における偏光子膜の膜厚と相対反射率および相対透過率との関係を示すグラフ図である。
なお、図10のグラフは、横軸が偏光子膜9の膜厚dP(nm)、左側の縦軸が相対反射率RRREL、右側の縦軸が相対透過率TRRELである。
また、図10に示した相対反射率RRRELおよび相対透過率TRRELは、それぞれ、人間の視感度が最も高い波長550nmの光における値である。また、偏光子膜9における光の吸収量は、膜厚dPによらず一定としている。
実施例1の偏光層における偏光子膜9の相対反射率RRRELおよび相対透過率TRRELは、それぞれ、図10に示したように、偏光子膜9の膜厚dPに依存しており、かつ、周期的に変化する。そして、実施例1で説明した偏光子膜9の膜厚dPの望ましい値、すなわちdP=690nmの付近における相対反射率RRRELおよび相対透過率TRRELを見ると、相対反射率RRRELが高く、相対透過率TRRELが小さくなっている。これは、実施例1で説明した偏光層における偏光子膜9の膜厚dP(=690nm)が、光が強めあう条件でないためである。すなわち、偏光子膜9が最大の平行透過率を得るためには、偏光子膜9の最適な膜厚dPと光が強めあう干渉条件とを一致させる必要がある。これに対する解決策を以下に述べる。
図11は、本発明による実施例2の偏光層の断面構成の一例を示す模式断面図である。
実施例2でも、図1に示した液晶表示パネル1に設けられた第1の偏光層6および第2の偏光層7のうちの第2の偏光層7、すなわちバックライトユニット2から遠いほうの偏光層に着目する。実施例2の偏光層7は、たとえば、図11に示すように、偏光子膜9および反射防止膜10aに加え、第2の基板4と偏光子膜9との間に介在する下地膜26を有する。
下地膜26には、膜厚dBを変えることで、偏光子膜9の膜厚dPがある値(たとえば、690nm)に決まっている偏光層7における、光が強めあう干渉条件を制御することができる材料を用いる。また、下地膜26は、たとえば、偏光子膜9の透過軸方向の屈折率と同等の屈折率を有する膜であることが望ましい。これは、下地膜26の透過率と偏光子膜9の透過軸方向の屈折率が異なると、下地膜26と偏光子膜9との界面で不要な反射が起こり、偏光層7の透過率低下に繋がるためである。
実施例1で挙げた偏光子膜9は、透過軸方向の屈折率が1.6であった。そのため、実施例2の偏光層における偏光子膜9としてこれを用いる場合、下地膜26の屈折率は1.6であることが望ましい。
またこのとき、下地膜26には、たとえば、配向処理を行うことができる材料を用いることが望ましい。配向処理の方法には、たとえば、基板表面に均一性の薄膜を形成後、方向性を付与する方法や、基板表面に方向性を付与しながら薄膜を形成する方法等がある。
これらの配向処理の方法のうちの、前者の方法は、たとえば、第1の配向膜22および第2の配向膜25の形成時に行う方法を適用することができる。この方法では、まず、たとえば、ポリイミドの前駆体モノマーであるポリアミック酸モノマー、光硬化性樹脂モノマー、ポリエステル等のポリマーを溶液状にて塗布し、乾燥等の後処理を行なって均一性の薄膜を形成する。その後、たとえば、この薄膜をレーヨン布等でラビングする、紫外線または電子線等の電磁線を照射する、等の方法で薄膜表面の全体または一部に方向性を付与する。
より具体的には、たとえば、ガラス基板上に、まず、ポリアミック酸(たとえば、日産化学製サンエバー610等)をスピンコート法またはスロットダイコート法等により塗布して得られる塗膜(例えば、厚さ500nm〜2000nm)を100℃〜150℃で予備加熱した後、200℃〜300℃で脱水縮合反応させてポリイミド膜を得る。その後、このポリイミド膜が形成されたガラス基板を固定し、当該基板に一定の押し込み量(たとえば、0.2mm〜1mm)でラビング布(たとえば、ポリエチレン、レーヨン、コットン等)を巻いたロール(たとえば、直径30mm〜100mm)を押し付け、ガラス基板を所定の速度(たとえば、3mm/秒〜500mm/秒)で移動させながら、ロールを所定の回転速度(たとえば、100rpm〜5000rpm)で回転させることにより、ポリイミド膜に配向処理を施す。なお、下地膜の材料としては、ポリイミドの他に、たとえば、ポリエステル、ポリビニルアルコール、ポリアセテート等を用いることも可能である。
また、後者の方法としては、たとえば、基板表面に酸化ケイ素の斜方蒸着を施す、ポリテトラフルオロエチレン等の樹脂片を基板表面に一方向へ擦って基板表面に樹脂薄膜を転写させる、ポリマー製基板を一軸方向に延伸する、等の方法が挙げられる。
図12は、実施例2の偏光層における下地膜の適切な膜厚を説明するためのグラフ図である。
なお、図12のグラフにおいて、横軸は下地膜26の膜厚dB(nm)、左側の縦軸は相対反射率RRREL、右側の縦軸は相対透過率TRRELである。
また、図12のグラフは、偏光子膜9の膜厚dPおよび透過軸方向の屈折率をそれぞれ690nmおよび1.6、反射防止膜10aの膜厚dRおよび屈折率をそれぞれ137.5nm(550nmの1/4)および1.3、基板の屈折率を1.5とし、下地膜26の屈折率を1.6としたときの相対反射率および相対透過率を示している。
図12からわかるように、実施例2の偏光層の構成(膜厚および屈折率)を上記の条件にした場合、偏光層の相対反射率RRRELおよび相対透過率TRRELは、それぞれ、下地膜26の膜厚dBに依存している。そして、下地膜26の膜厚dBが約90nmのときに、偏光層の相対反射率RRRELが最も小さくなり、相対透過率TRRELが最も大きくなる。したがって、実施例2の偏光層の構成(膜厚および屈折率)を上記の条件にした場合、下地膜26の膜厚dBを約90nmにすることで、偏光子膜9の最適な膜厚dP(=690nm)と光が強めあう干渉条件とを一致させることができる。
また、膜厚および透過率を上記の条件にした実施例2の偏光層に、反射防止膜10a側から光を照射したときの相対反射率を調べたところ、下記表3のような結果が得られた。
Figure 0005026538
なお、表3において、COM1はガラス基板の表面に膜厚dPが約690nmの偏光子膜9のみを形成した比較例1の偏光層であり、PRAC2は実施例2の偏光層、すなわちガラス基板の表面に膜厚dBが約90nmの下地膜26(屈折率は1.6)、膜厚dPが約690nmの偏光子膜9(透過軸方向の屈折率は1.6、吸収軸方向の屈折率は1.9)、および膜厚dRが約137.5nmの反射防止膜10a(屈折率は1.3)を積層した偏光層である。また、RRRELは比較例1の偏光層における反射率を1としたときの相対反射率を意味しており、表1には波長550nmの光の反射率を示している。また、‖AX2は入射面が偏光子膜9の透過軸方向と平行な光の相対反射率であり、‖AX1は入射面が偏光子膜9の吸収軸方向と平行な光の相対反射率である。
表3からわかるように、実施例2の偏光層は、透過軸方向の相対反射率がほぼ0%となり、実施例1の偏光層よりも光の反射を抑制できた。
また、この偏光層にガラス基板側から光を照射したときの相対透過率および二色比を調べたところ、下記表4のような結果が得られた。
Figure 0005026538
なお、表4においても、COM1は比較例1の偏光層であり、PRAC2は実施例2の偏光層である。また、TRRELは比較例1の偏光層における透過率を1としたときの相対透過率を意味しており、表4には波長550nmの光の透過率を示している。また、TRは平行透過率であり、TRは直交透過率である。また、二色比DRRELは、前述の数式2で表される値である。
表4からわかるように、実施例2の偏光層は、比較例1の偏光層と比べて、平行透過率TRが約4%高くなり、二色比DRRELが37%向上している。そのため、実施例2の偏光層は、平行透過率および実効的な二色比を向上させることができると言える。
ところで、実施例2の偏光層に関する上記の説明は、透明な基板の表面に直接形成された偏光層のみで考えている。しかしながら、実施例2の偏光層を液晶表示パネル1に適用した場合、その液晶表示パネル1における光の透過率は、偏光層のみで決まるものではなく、液晶表示パネル1が有する種々の構成部材の影響を受ける。そこで次に、実施例2の偏光層を液晶表示パネル1に適用したときの光の透過率などについて説明する。
図13は、実施例2の偏光層を適用した液晶表示パネルの断面構成の一例を示す模式断面図である。
実施例2の偏光層を液晶表示パネル1に適用した場合、その断面構成は、たとえば、図13に示すような構成になる。
第1の基板3は、ガラス基板などの透明な第1の絶縁基板301と、当該第1の絶縁基板の一主面に形成された第1の薄膜積層体302とを有する。このとき、第1の薄膜積層体302は、第1の絶縁基板301と液晶層5との間に配置される。そして、第1の絶縁基板301の液晶層5と対向する主面とは反対側の主面には、第1の偏光層6(下地膜26、偏光子膜9、および反射防止膜10a)が直接形成されている。
第2の基板4は、ガラス基板などの透明な第2の絶縁基板401と、当該第2の絶縁基板401の一主面に形成された第2の薄膜積層体402とを有する。このとき、第2の薄膜積層体402は、第2の絶縁基板401と液晶層5との間に配置される。そして、第2の絶縁基板401の液晶層5と対向する主面とは反対側の主面には、第2の偏光層7(下地膜26、偏光子膜9、および反射防止膜10a)が直接形成されている。
このような液晶表示パネルにおいて、画素の構成を図6乃至図8に示したような構成にし、第1の偏光層6および第2の偏光層7の構成(膜厚および屈折率)を上記の条件にした場合と、偏光層として偏光子膜9のみを形成した場合とで、同じ条件で駆動させたときの白透過率TRwを測定したところ、実施例2の偏光層を用いた場合の白透過率は、偏光子膜9のみを形成した場合よりも9%高かった。そのため、実施例2の偏光層を液晶表示パネル1に適用することで、液晶表示装置の透過率を向上させることができると言える。
以上説明したように、実施例2の偏光層を液晶表示パネル1に適用することで、液晶表示装置における外光の反射をさらに抑制することができる。
また、実施例2の偏光層を液晶表示パネル1に適用することで、バックライトユニット2を有する液晶表示装置のコントラスト比を向上させることができる。
実施例1および実施例2では、偏光子膜9の上に形成する保護膜として、バインダーにフッ化マグネシウムなどの屈折率の低い無機の微粒子を分散させた反射防止膜10aを用いることで、液晶表示装置における外光の反射を抑制するとともに、コントラスト比を向上させている。
偏光層のコントラスト比は、平行透過率を上げ、直交透過率を下げることによって向上する。平行透過率を上げるためには透過軸方向の反射率を抑制すればよく、直交透過率を下げるためには吸収軸方向の反射率を増加させればよい。そして、これを実現するには、たとえば、偏光子膜9の上に形成する保護膜として、面内で屈折率が異なる膜(以下、異方膜と呼ぶ。)を用いることが好適である。偏光子膜9の上に面内屈折率が異なる異方膜を用いれば、偏光層の透過軸方向の反射率を小さくする条件と、吸収軸方向の反射率を増加させる条件を両立できる。
図14は、本発明による実施例3の偏光層の概略構成の一例を示す模式分解斜視図である。
実施例3でも、図1に示した液晶表示パネル1に設けられた第1の偏光層6および第2の偏光層7のうちの第2の偏光層7、すなわちバックライトユニット2から遠いほうの偏光層に着目する。実施例3の偏光層7は、たとえば、図14に示すように、第2の基板4の上に直接形成された偏光子膜9、およびその上に形成された異方膜10bからなる。なお、図14において、AX1およびAX2はそれぞれ偏光子膜9の吸収軸方向および透過軸方向であり、AX3およびAX4はそれぞれ異方膜10bの遅相軸方向および進相軸方向である。
偏光子膜9は、実施例1で説明したような構成であればよいので、詳細な説明は省略する。
異方膜10bは、前述のように面内で屈折率が異なる膜であり、遅相軸方向AX3が偏光子膜9の吸収軸方向AX1と平行になるように形成する。遅相軸方向AX3は、異方膜の面内において屈折率が大きい方向である。このとき、遅相軸方向AX3と直交する方向AX4は、遅相軸方向AX3よりも屈折率が小さい方向であり、以下の説明では進相軸方向と呼ぶ。
図15乃至図17は、実施例3の偏光層における異方膜の屈折率の設定方法の一例を説明するためのグラフ図である。
図15は、異方膜の遅相軸方向の屈折率と相対反射率との関係を示すグラフ図である。図16は、異方膜の遅相軸方向の屈折率と平行透過率および直交透過率との関係を示すグラフ図である。図17は、遅相軸方向の屈折率および進相軸方向の屈折率とコントラスト比との関係を示すグラフ図である。
実施例3の偏光層における異方膜10bの進相軸方向AX4は、偏光子膜9の透過軸方向AX2と概ね平行である。そのため、偏光子膜9の透過軸方向AX2の屈折率が1.6の場合、異方膜10bの進相軸方向AX4の屈折率nAX4は、数式1から導かれる無反射条件を満たす1.3にすることが望ましい。そうすると、偏光子膜9の透過軸方向AX2の光の反射率が小さくなるので、平行透過率を上げることができる。
一方、直交透過率を下げるには、たとえば、偏光子膜9の吸収軸方向AX1と概ね平行な方向である異方膜10bの遅相軸方向AX3の屈折率nAX3を大きくすればよい。そこで、まず、異方膜10bの進相軸方向AX4の屈折率nAX4を1.3に固定し、遅相軸方向AX3の屈折率nAX3を変えながら反射率を調べたところ、図15に示すような結果が得られた。
なお、図15のグラフは、横軸が異方膜10bの遅相軸方向AX3の屈折率nAX3、縦軸が波長550nmの光の反射率RR(%)である。また、図15のグラフには、偏光子膜9の透過軸方向AX2(すなわち異方膜10bにおける進相軸方向AX4)の反射率と、偏光子膜9の吸収軸方向AX1(すなわち異方膜10bにおける遅相軸方向AX3)の反射率を示している。また、偏光子膜9は、実施例1で説明した構成であり、屈折率を1.6、膜厚dPを690nmにしている。また、異方膜10bの膜厚は、偏光層の平行透過率の低下を抑制できる膜厚、言い換えると異方膜10bの進相軸方向AX1が反射防止条件となる膜厚になるようにしており、たとえば、人間の視感度が最も高い光の波長550nmの(1/4nAX4)倍にしている。
図15からわかるように、偏光子膜9の透過軸方向AX2の反射率RRは、異方膜10bの遅相軸方向AX3の屈折率nAX3の大きさによらず概ね一定であり、かつ、非常に小さい。これに対し、偏光子膜9の吸収軸方向AX1の反射率RRは、異方膜10bの遅相軸方向AX3の屈折率nAX3が2.1〜2.2の付近に極大値を有する。このように、異方膜10bの遅相軸方向AX3の屈折率nAX3を大きくすると、偏光子膜9の吸収軸方向AX1の反射率が大きくなるので直交透過率が下がると考えられる。
そこで次に、異方膜10bの遅相軸方向AX3の屈折率nAX3と偏光層の平行透過率および直交透過率との関係を調べると、たとえば、図16に示したような結果が得られた。
なお、図16のグラフは、横軸が異方膜10bの遅相軸方向AX3の屈折率nAX3、左側の縦軸が平行透過率TR(%)、右側の縦軸が直交透過率TR(%)である。また、偏光層の構成は、図15に示した反射率を測定したときと同じ構成である。
また、図16に示した平行透過率TRおよび直交透過率TRは、それぞれ、反射率を0%と仮定したときに得られる値が90%および0.1%(すなわちコントラスト比が900)であるとし、この透過率から光の反射率分を差し引いた値である。
図16からわかるように、平行透過率TR(偏光子膜9の透過軸方向AX2の透過率)は、異方膜10bの遅相軸方向AX3の屈折率AX3の大きさによらず概ね一定であり、かつ、90%程度と大きい。これに対し、直交透過率TR(偏光子膜9の吸収軸方向AX1の透過率)は、異方膜10bの遅相軸方向AX3の屈折率nAX3が2.1〜2.2の付近に極小値を有する。そのため、実施例3の偏光層は、平行透過率の低下を抑制しつつ、直交透過率を小さくすることができると言える。したがって、実施例3の偏光層は、コントラスト比の向上を期待できる。
そこで次に、異方膜10bにおける遅相軸方向AX3の屈折率および進相軸方向AX4の屈折率とコントラスト比との関係を調べたところ、たとえば、図17に示すような結果が得られた。
なお、図17のグラフは、横軸が異方膜10bの遅相軸方向AX3の屈折率nAX3、縦軸が相対コントラスト比CRRELである。また、相対コントラスト比CRRELは、反射がない場合に得られる平行透過率および直交透過率から算出したコントラスト比(900)を1とした。また、図17には、進相軸方向AX4の屈折率nAX4を1.3にした場合、1.5にした場合、および1.6にした場合の関係を示している。
図17からわかるように、いずれの場合も、遅相軸方向AX3の屈折率nAX3を大きくしていくと偏光層の相対コントラスト比CRRELは、約1.2倍まで向上する。したがって、実施例3の偏光層は、コントラスト比を向上させることができる。
異方膜10bの材料には、たとえば、非特許文献1に記載されているような塗布型の異方性材料を用いる。なお、非特許文献1に記載された材料はリオトロピック液晶材料であり、水溶性であるため、偏光子膜9の上に形成する際に、偏光子膜9が溶解してしまう可能性がある。この偏光子膜9の溶解を抑制するためには、不溶化処理を施すことが効果的である。不溶化処理は、たとえば、特許文献2に記載されているような材料を用いるとよい。不溶化処理を行うことで、偏光子膜9は水に溶解しなくなり、耐久性、品質保持性を十分に有することができるようになる。
非特許文献1および特許文献2を参照して形成した異方膜10bは、たとえば、進相軸方向AX4の屈折率が1.5であり、遅相軸方向AX3の屈折率が1.83であった。そして、このような異方膜10bを有する実施例3の偏光層におけるコントラスト比を求めた結果、反射がない場合に得られるコントラスト比と比べて約8%増加した。そのため、偏光子膜9の上に異方膜10bを設けた偏光層は、コントラスト比を向上させることができる。したがって、実施例3の偏光層を液晶表示パネル1に適用すれば、液晶表示装置のコントラスト比を向上させることができる。
以上、本発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において、種々変更可能であることはもちろんである。
たとえば、実施例1で説明した反射防止膜10aは、水に可溶である偏光子膜などの上だけでなく、ポリカーボネート樹脂基板やアクリル樹脂基板などの透明な樹脂基板の上にも形成することができる。そのため、実施例1で説明した反射防止膜10aは、液晶表示パネルのような偏光層を必要とする表示パネルに限らず、たとえば、プラズマディスプレイや有機ELディスプレイなどの偏光層が不要な自発光型の表示装置における外光の反射(映り込み)を抑制するためにも用いることができる。
1 液晶表示パネル
2 バックライトユニット
3 第1の基板
301 第1の絶縁基板
302 第1の薄膜積層体
4 第2の基板
401 第2の絶縁基板
402 第2の薄膜積層体
5 液晶層
5m 液晶分子
6 第1の偏光層
7 第2の偏光層
8w,8r,8g,8b 光
9 偏光子膜
10a 反射防止膜
10b 異方膜
11 画素電極
12 共通電極
13 下地層
14 半導体層
15 第1の絶縁層
16 走査信号線
17 第2の絶縁層
18 映像信号線
19 ソース-ドレイン電極
20 第3の絶縁層
21 第4の絶縁層
22 第1の配向膜
23 ブラックマトリクス
24 平坦化層
25 第2の配向膜
26 下地膜

Claims (2)

  1. 第1の基板と、
    第2の基板と、を有し、
    前記第2の基板に対して前記第1の基板が配置された側とは反対側の面に偏光層が直接形成されており、
    前記偏光層は、偏光子膜と、前記基板から見て前記偏光子膜の上に積層された保護膜とを有し、
    前記偏光子膜は、配向させたリオトロピック液晶材料でなり、
    前記保護膜は、前記偏光子膜の透過軸と平行な第1の方向の屈折率が前記偏光子膜の透過軸方向の屈折率よりも小さく、かつ、前記偏光子膜の吸収軸方向と平行な第2の方向の屈折率が前記第1の方向の屈折率よりも大きく、
    (前記偏光子膜の透過軸方向の屈折率/前記保護膜の前記第1の方向の屈折率) =前記第2の基板の屈折率/空気の屈折率
    の関係を満たし、
    前記保護膜の厚さは、60nm以上、190nm以下であることを特徴とする表示装置。
  2. 前記第1の基板に対して前記第2の基板が配置された側とは反対側の面に偏光層が直接形成されており、
    前記第1の基板に形成された偏光層は、前記第2の基板に形成された前記偏光層と同じ構成であり、
    前記第1の基板に形成された前記偏光子膜の透過軸方向と、前記第2の基板に形成された前記偏光子膜の透過軸方向とは、概ね直交していることを特徴とする請求項1に記載の表示装置。
JP2010025444A 2010-02-08 2010-02-08 表示装置 Active JP5026538B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010025444A JP5026538B2 (ja) 2010-02-08 2010-02-08 表示装置
US13/022,774 US8922738B2 (en) 2010-02-08 2011-02-08 Display device and thin film polarizer used for display device
US14/581,530 US9223067B2 (en) 2010-02-08 2014-12-23 Display device and thin film polarizer used for display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025444A JP5026538B2 (ja) 2010-02-08 2010-02-08 表示装置

Publications (2)

Publication Number Publication Date
JP2011164269A JP2011164269A (ja) 2011-08-25
JP5026538B2 true JP5026538B2 (ja) 2012-09-12

Family

ID=44353465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025444A Active JP5026538B2 (ja) 2010-02-08 2010-02-08 表示装置

Country Status (2)

Country Link
US (2) US8922738B2 (ja)
JP (1) JP5026538B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888853B2 (ja) 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
KR102131117B1 (ko) * 2014-02-07 2020-07-08 삼성디스플레이 주식회사 편광자, 편광자를 갖는 표시 장치, 및 편광자 제조 방법
KR102355433B1 (ko) * 2014-06-20 2022-01-25 엘지디스플레이 주식회사 투명 디스플레이 표시장치
CN107077025B (zh) * 2014-10-30 2021-07-20 东洋纺株式会社 液晶显示装置和偏光板
WO2017188428A1 (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 偏光板、偏光板の製造方法、液晶表示装置
JP7070539B2 (ja) * 2017-02-28 2022-05-18 東洋紡株式会社 液晶表示装置
WO2018159568A1 (ja) * 2017-02-28 2018-09-07 東洋紡株式会社 液晶表示装置
JP2019101246A (ja) * 2017-12-04 2019-06-24 三菱電機株式会社 液晶表示装置および液晶表示装置の製造方法
WO2019151334A1 (ja) * 2018-01-30 2019-08-08 富士フイルム株式会社 偏光板、円偏光板、表示装置
JP7062770B2 (ja) * 2018-08-15 2022-05-06 富士フイルム株式会社 積層体および画像表示装置
WO2020213069A1 (ja) * 2019-04-16 2020-10-22 シャープ株式会社 フレキシブル表示装置、フレキシブル表示装置の製造方法及びフォルダブル表示装置
KR20220036617A (ko) * 2020-09-16 2022-03-23 현대자동차주식회사 편광 기판 및 그 편광 기판을 포함하는 투과율 가변 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100286946B1 (ko) * 1999-03-16 2001-04-16 김순택 액정표시소자 및 그 제조방법
JP2004341494A (ja) * 2003-04-24 2004-12-02 Fuji Photo Film Co Ltd 偏光膜、偏光板及び液晶表示装置
ATE496314T1 (de) * 2003-11-06 2011-02-15 Sumitomo Chemical Co Dichroitischer guest-host-polarisierer mit einem orientierten polymerfilm
JP5320660B2 (ja) * 2005-03-29 2013-10-23 三菱化学株式会社 In−Cell型偏光子用組成物、In−Cell型偏光子及びIn−Cell型積層偏光子、並びにそれらを用いた液晶素子
TWI447443B (zh) * 2006-02-28 2014-08-01 Fujifilm Corp 偏光板及液晶顯示器
JP4017656B1 (ja) * 2006-04-27 2007-12-05 日東電工株式会社 偏光膜の製造方法、及び液晶表示装置
WO2008029555A1 (fr) * 2006-09-07 2008-03-13 Sharp Kabushiki Kaisha Système de commande de polarisation et dispositif d'affichage
JP4814776B2 (ja) 2006-12-14 2011-11-16 株式会社 日立ディスプレイズ 半透過型液晶表示装置
JP4638462B2 (ja) 2007-03-26 2011-02-23 株式会社 日立ディスプレイズ 液晶表示装置
JP2009132748A (ja) 2007-11-28 2009-06-18 Mitsubishi Chemicals Corp 異方性色素膜用アゾ色素
JP2009145745A (ja) 2007-12-17 2009-07-02 Hitachi Displays Ltd 液晶表示装置およびその製造方法
JP5223695B2 (ja) 2008-01-25 2013-06-26 三菱化学株式会社 不溶化異方性膜並びに不溶化処理液及びそれを用いた不溶化異方性膜の製造方法並びにそれを用いた光学素子
JP4828557B2 (ja) 2008-03-04 2011-11-30 株式会社 日立ディスプレイズ 液晶表示装置
JP2010015019A (ja) 2008-07-04 2010-01-21 Hitachi Displays Ltd 液晶表示装置およびその製造方法
JP2010250025A (ja) 2009-04-14 2010-11-04 Hitachi Displays Ltd 偏光素子とその製造方法および液晶表示装置
JP4785956B2 (ja) 2009-06-17 2011-10-05 日本電信電話株式会社 ビデオ信号前処理方法,ビデオ信号前処理装置およびビデオ信号前処理プログラム
JP5341643B2 (ja) 2009-07-08 2013-11-13 株式会社ジャパンディスプレイ 液晶表示装置、および液晶表示装置の製造方法

Also Published As

Publication number Publication date
JP2011164269A (ja) 2011-08-25
US20150103295A1 (en) 2015-04-16
US20110194052A1 (en) 2011-08-11
US9223067B2 (en) 2015-12-29
US8922738B2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
JP5026538B2 (ja) 表示装置
JP6597742B2 (ja) 光学積層体、偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び画像表示装置の視認性改善方法
TWI798202B (zh) 光學膜及其製造方法
TWI323363B (ja)
TWI509322B (zh) Liquid crystal display device
CN103119479B (zh) 光扩散元件及带光扩散元件的偏振板
JP2007065523A (ja) 表示パネル及び表示装置とこれを備える機器
JP2011253106A (ja) 光学積層体、偏光板および表示装置
JP2007038447A (ja) 反射防止積層体、光学部材および液晶表示素子
KR100725441B1 (ko) 피막 시트의 제조방법, 광학 기능층, 광학 보상판, 광학소자 및 화상 표시 장치
WO2019146543A1 (ja) 液晶表示装置ならびに該液晶表示装置に用いられる光学部材および光学部材のセット
WO2021232481A1 (zh) 光学膜、光学膜的制备方法及应用
KR102253503B1 (ko) 광변조 소자
JP5337751B2 (ja) 偏光板および液晶表示装置
JPWO2006019086A1 (ja) N3204pct
TW201128239A (en) Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same
JP2006058322A (ja) 偏光板及び液晶表示装置
WO2019163791A1 (ja) 透明導電積層体
JP2005338165A (ja) 反射防止積層体、反射防止機能付偏光板及び光学製品
JP2006039472A (ja) 偏光板及び液晶表示装置
JP2011253092A (ja) 光学積層体、偏光板および表示装置
JP2022182619A (ja) 光学素子、積層体、表示装置、光学素子の製造方法
WO2015064568A1 (ja) 光拡散部材の製造方法および製造装置
JP2005099267A (ja) カラーフィルタ及び半透過型液晶表示装置
JP2002243904A (ja) 光吸収性反射防止積層体、及びそれを用いた液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5026538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250