WO2021232481A1 - 光学膜、光学膜的制备方法及应用 - Google Patents

光学膜、光学膜的制备方法及应用 Download PDF

Info

Publication number
WO2021232481A1
WO2021232481A1 PCT/CN2020/093365 CN2020093365W WO2021232481A1 WO 2021232481 A1 WO2021232481 A1 WO 2021232481A1 CN 2020093365 W CN2020093365 W CN 2020093365W WO 2021232481 A1 WO2021232481 A1 WO 2021232481A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
material layer
optical film
electrode layer
layer
Prior art date
Application number
PCT/CN2020/093365
Other languages
English (en)
French (fr)
Inventor
窦虎
吴梓平
俞刚
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/976,826 priority Critical patent/US11442199B2/en
Publication of WO2021232481A1 publication Critical patent/WO2021232481A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present invention relates to the field of display technology, in particular to an optical film, and a preparation method and application of the optical film.
  • liquid crystal display panels have a high-resolution development trend.
  • the increase in the resolution of the liquid crystal display panel will cause a decrease in the aperture ratio of the pixel electrode, thereby reducing the light transmittance, and thereby negatively affect the display brightness of the liquid crystal display panel with a large viewing angle.
  • the viewing angle diffusion film adopts a double-layer composite optical film structure, wherein each optical film layer adopts isotropic optical materials with different refractive indexes.
  • the viewing angle diffusion film of the prior art will produce the effect of viewing angle diffusion.
  • the viewing angle diffusion film of the prior art has a positive effect, which will partially reduce the light of the positive viewing angle. Modulated to a large viewing angle (such as a 45-degree viewing angle), thereby effectively improving the display brightness of a large viewing angle; in the dark state, the liquid crystal display panel has a large viewing angle (a viewing angle above 60 degrees) and the light leakage phenomenon is more serious, and because of the large viewing angle application scene Less, so the light leakage phenomenon of the super-large viewing angle of the liquid crystal display panel is originally acceptable.
  • the dark-state light leakage of the super-large viewing angle is modulated to be emitted at the normal viewing angle, which causes the dark-state light leakage of the positive viewing angle to increase, thereby reducing the liquid crystal
  • the contrast of the display panel at the front viewing angle that is, the existing viewing angle diffusion film not only has the positive effect of increasing the display brightness of the large viewing angle in the bright state, but also has the dark state light leakage that enhances the positive viewing angle in the dark state, and reduces the liquid crystal display panel’s Negative effect of contrast at positive viewing angles.
  • the present invention provides an optical film and a preparation method and application of the optical film.
  • the optical film can be applied to a display panel as a viewing angle diffusion film, which retains the positive effect of the existing viewing angle diffusion film, and eliminates the existing viewing angle diffusion The negative effect of the membrane.
  • the present invention provides an optical film, comprising: a first electrode layer, an isotropic optical material layer, a liquid crystal material layer, and a second electrode layer stacked in sequence;
  • the material layer is provided with a plurality of groove structures, and each of the groove structures is filled with the liquid crystal material layer;
  • the o-ray refractive index value of the liquid crystal material layer is less than the o-ray refraction of the isotropic optical material layer
  • the e-ray refractive index value of the liquid crystal material layer is the same as the e-ray refractive index value of the isotropic optical material layer.
  • the first electrode layer includes a first supporting base and a first electrode that are stacked
  • the second electrode layer includes a second supporting base and a second electrode that are stacked.
  • the first electrode and the second electrode are both transparent conductive films.
  • the material of the first supporting base and the second supporting base is transparent glass or transparent plastic.
  • the optical film further includes a plurality of support pads, a support pad is provided between each adjacent groove structure, and each of the support pads is located on the isotropic optical material layer And the second electrode layer.
  • the optical film further includes a plurality of first alignment films and a second alignment film, each of the first alignment films is respectively disposed on the groove bottom surface of each of the groove structure, and the second alignment film The alignment film is laminated and arranged on the side of the second electrode layer close to the liquid crystal material layer.
  • the material of the liquid crystal material layer is nematic liquid crystal or blue phase liquid crystal.
  • the thickness of the liquid crystal material layer is 5 micrometers to 100 micrometers.
  • the material of the isotropic optical material layer is an ultraviolet photosensitive adhesive polymer material containing a resin material.
  • the thickness of the isotropic optical material layer ranges from 10 micrometers to 200 micrometers.
  • the plurality of groove structures are arranged at equal intervals.
  • the cross-section of each groove structure in the vertical direction from bottom to top, has a left-right symmetrical irregular shape, and the cross-sectional width of each groove structure gradually decreases.
  • the cross section of each of the groove structures includes a first isosceles trapezoidal surface, a second isosceles trapezoidal surface, and a third isosceles trapezoidal surface, wherein the The bottom angle of the second isosceles trapezoidal surface is greater than the bottom angle of the third isosceles trapezoidal surface, and the bottom angle of the third isosceles trapezoidal surface is greater than the bottom angle of the first isosceles trapezoidal surface.
  • the present invention provides a method for preparing an optical film, which is used to prepare the optical film in the first aspect, including the following steps:
  • a first supporting base and a second supporting base are provided, and a first electrode and a second electrode are formed on the first supporting base and the second supporting base, respectively, to obtain a first electrode layer and a second electrode layer.
  • Two electrode layer is provided, and a first electrode and a second electrode are formed on the first supporting base and the second supporting base, respectively, to obtain a first electrode layer and a second electrode layer.
  • the first electrode layer and the second electrode layer are opposed and fixed to encapsulate the liquid crystal material to form a liquid crystal material layer to obtain an optical film.
  • the method before the step of fixing the first electrode layer and the second electrode layer to encapsulate the liquid crystal material, the method further includes the step of forming a plurality of supports on the second electrode layer.
  • the position of each of the supporting pads corresponds to the position of the isotropic optical material layer between each adjacent groove structure.
  • the method before the step of injecting liquid crystal material into each of the groove structures, the method further includes the step of forming a first alignment film on the groove bottom surface of each of the groove structures, and A second alignment film is formed on the two electrode layers.
  • the present invention provides a display panel, which discloses the application of the optical film of the first aspect in the display panel.
  • a display panel comprising: an optical film arranged on a light-emitting surface of the display panel, the optical film comprising: a first electrode layer, an isotropic optical material layer, a liquid crystal material layer, and a second Electrode layer; the isotropic optical material layer is provided with a plurality of groove structures, each of the groove structures is filled with the liquid crystal material layer; the o-ray refractive index value of the liquid crystal material layer is less than the respective The o-ray refractive index value of the isotropic optical material layer, and the e-ray refractive index value of the liquid crystal material layer is the same as the e-ray refractive index value of the isotropic optical material layer.
  • the display panel is a liquid crystal display panel, including:
  • a first substrate including a plurality of pixels
  • a second substrate arranged opposite to the first substrate
  • the first polarizer is disposed on the side of the first substrate facing away from the liquid crystal layer;
  • the second polarizer is disposed on the side of the second substrate facing away from the liquid crystal layer;
  • the optical film described in the first aspect is disposed on the side of the first polarizer facing away from the first substrate, wherein the position of each groove structure in the optical film is corresponding to the position of each pixel. correspond.
  • the first substrate is a color filter substrate
  • the second substrate is a thin film transistor array substrate.
  • the display panel is in a twisted nematic display mode.
  • the optical film of the present invention changes the structure and composition of the existing viewing angle diffusion film.
  • the existing viewing angle diffusion film has a double-layer structure, and each layer uses isotropic optical materials with different refractive indexes, while the optical film of the present invention retains an isotropic For the optical material layer, another isotropic optical material layer is replaced with a liquid crystal material layer.
  • the optical film of the present invention can be applied to a display panel as a viewing angle diffusion film.
  • the optical film is located on the light-emitting surface of the display panel.
  • the display panel may be a liquid crystal display panel or a non-liquid crystal display panel, such as: Organic Light-Emitting Diode (OLED) display panels, Micro Light Emitting Diode (Micro-LED) display panels, Quantum Dot Light Emitting Diodes (QLED) display panels, etc., are reserved
  • OLED Organic Light-Emitting Diode
  • Micro-LED Micro Light Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes
  • the optical film When no driving voltage is applied to the optical film, the optical film does not have or only has a weak viewing angle modulation effect, so as to improve the dark state light leakage of the existing liquid crystal display panel and the low contrast of the positive viewing angle.
  • the optical film When a driving voltage is applied to the optical film, the optical film has a viewing angle modulation effect, and as the driving voltage increases, the viewing angle modulation effect of the optical film is stronger, so as to improve the brightness of a large viewing angle display.
  • the liquid crystal display panel to which the optical film is applied is consistent with the brightness of the liquid crystal display panel to which the conventional viewing angle diffuser film is applied at a normal viewing angle (0 degrees) to 80 degrees.
  • the liquid crystal display panel applied with the optical film has a positive viewing angle (0 degree) of about double the contrast, and the optical film has greatly improved The problem of light leakage in the dark state of the normal viewing angle and low contrast of the normal viewing angle.
  • FIG. 1 is a cross-sectional view of a viewing angle diffusion film in the prior art in the length direction.
  • Fig. 2 is a cross-sectional view of the optical film in the length direction of the embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of each of the groove structures in the embodiment of the present invention.
  • FIG. 4 is a distribution diagram of liquid crystal directors of a liquid crystal material layer under different driving voltages in an embodiment of the present invention.
  • FIG. 5 is a distribution diagram of the difference between niso and neff of the optical film under different driving voltages in an embodiment of the present invention.
  • Fig. 6 is a schematic flow chart of a method for preparing an optical film in an embodiment of the present invention.
  • FIG. 7 is a graph showing the brightness change curve of the liquid crystal display panel of the embodiment of the present invention, the liquid crystal display panel of the comparative example 1 and the liquid crystal display panel of the comparative example 2 respectively at a viewing angle of 0 degrees to 80 degrees.
  • FIG. 8 is a graph showing the contrast change curves of the liquid crystal display panel of the embodiment of the present invention, the liquid crystal display panel of the comparative example 1 and the liquid crystal display panel of the comparative example 2 respectively at a viewing angle of 0 degrees to 80 degrees.
  • an embodiment of the present invention provides an optical film.
  • the optical film has a first electrode layer 1, an isotropic optical material layer 2, a liquid crystal material layer 3, and a The second electrode layer 4; the isotropic optical material layer 2 is provided with a plurality of groove structures 21, each of the groove structures 21 is filled with the liquid crystal material layer 3; the liquid crystal material layer 3 o
  • the light (ordinary rays) refractive index (no) is smaller than the o-ray refractive index of the isotropic optical material layer 2, and the e-ray (extraordinary rays) refractive index of the liquid crystal material layer 3
  • the value (ne) is the same as the e-ray refractive index value of the isotropic optical material layer 2.
  • the material of the isotropic optical material layer 2 may be an ultraviolet photosensitive polymer material containing a resin material, and the material of the liquid crystal material layer may be a nematic liquid crystal or a blue phase liquid crystal.
  • the thickness of the isotropic optical material layer 2 ranges from 10 micrometers to 200 micrometers, and the thickness of the liquid crystal material layer 3 ranges from 5 micrometers to 100 micrometers.
  • the multiple groove structures 21 are arranged at equal intervals, that is, the gaps between adjacent groove structures 21 are equal.
  • the first electrode layer 1 and the second electrode layer 4 both include a transparent conductive film.
  • the transparent conductive film is a film that can conduct electricity and has high transparency in the visible light range.
  • the material can be a metal film. , Oxide film, polymer film, etc., such as: indium tin oxide (Indium Tin Oxides, ITO) film, aluminum doped zinc oxide film, carbon nanotube transparent conductive film, tin dioxide transparent conductive film, etc., the present invention
  • the embodiment is preferably an ITO film.
  • the first electrode layer 1 includes a first supporting substrate 11 and a first electrode 12 that are stacked
  • the second electrode layer 4 includes a second supporting substrate 41 and a second electrode 42 that are stacked;
  • the first electrode 12 and the second electrode 42 are both ITO films
  • the material of the first supporting base 11 and the second supporting base 41 may be transparent materials such as glass and plastic.
  • the deflection angle of the liquid crystal molecules in the liquid crystal material layer 3 can be changed, so as to adjust the size of neff to control the difference between niso and neff.
  • the purpose of the difference between the values is to control whether the optical film has the modulation effect of viewing angle diffusion, and to control the strength of the viewing angle diffusion modulation.
  • the optical film further includes a plurality of supporting pads 5, a supporting pad 5 is provided between each adjacent groove structure 21, and each supporting pad 5 is located in each direction. Between the same optical material layer 2 and the second electrode layer 4.
  • the configuration of the support pad 5 does not affect the filling of the liquid crystal material layer 3 in each of the groove structures 21 and does not affect the connection of the liquid crystal material in each of the groove structures 21.
  • the main component of the support pad 5 is an ultraviolet curable resin, which is in direct contact with the liquid crystal molecules of the liquid crystal material layer 3, and its cross-sectional shape can be a circle, a trapezoid, or the like.
  • the supporting pad 5 is used to maintain the thickness of the liquid crystal material layer 3 to avoid local collapse of the isotropic optical material layer 2 and cause the problem of uneven thickness of the liquid crystal material layer 3.
  • the optical film further includes a plurality of first alignment films (alignment films) 6 and a second alignment film 7, and each of the first alignment films 6 is respectively disposed on each of the groove structures 21.
  • the second alignment film 7 is stacked on the side of the second electrode layer 4 close to the liquid crystal material layer 3. That is, the second alignment film 7 adopts a whole-surface structure, and the second alignment The film 7 is disposed on a side of the second electrode 42 close to the liquid crystal material layer 3.
  • the alignment method of the liquid crystal molecules of the liquid crystal material layer 3 can adopt conventional technical means, such as rubbing alignment, light control alignment, etc., which are not specifically limited herein.
  • the material of the first alignment film 6 and the second alignment film 7 is a high molecular polymer, and the embodiment of the present invention is preferably polyimide.
  • the first alignment film 6 and the second alignment film 7 are used to sort the liquid crystal molecules of the liquid crystal material layer 3.
  • the preferred embodiment of the present invention is: The ordering direction of the liquid crystal molecules in the upper part of 3 is consistent with the ordering direction of the liquid crystal molecules in the lower part of the liquid crystal material layer 3 by the second alignment film 7.
  • the cross-section of each of the groove structures 21 is a bilaterally symmetrical irregular shape, and the cross-sectional width of each of the groove structures 21 is gradually reduced.
  • the cross section of each of the groove structures 21 includes a first isosceles trapezoidal surface, a second isosceles trapezoidal surface, and a third isosceles trapezoidal surface, wherein the second isosceles trapezoidal surface
  • the bottom angle of the isosceles trapezoidal surface is greater than the bottom angle of the third isosceles trapezoidal surface
  • the bottom angle of the third isosceles trapezoid surface is greater than the bottom angle of the first isosceles trapezoidal surface.
  • the liquid crystal molecules of the liquid crystal material layer are positive nematic liquid crystal E7, the o-ray refractive index no of the liquid crystal E7 is 1.517, and the e-ray refractive index ne is 1.741.
  • the thickness of each groove structure 21 is 18.8 microns, and each groove structure 3 is filled with liquid crystal E7. As shown in FIG. 3, the cross section of each groove structure 21 in the length direction of the optical film is bell-shaped.
  • the bottom angle of 213 is greater than the bottom angle of the first isosceles trapezoidal surface 211.
  • the bottom length b1 of the first isosceles trapezoidal surface 211 is 18.94 microns, and the height h1 is 3.51 ⁇ m;
  • the bottom length b2 of the second isosceles trapezoidal surface 212 (that is, the upper portion of the first isosceles trapezoidal surface 211)
  • the bottom length a1) is 12.62 micrometers, and the height h2 is 12.71 micrometers;
  • the bottom length b3 of the third isosceles trapezoidal surface 213 (that is, the top bottom length a2 of the second isosceles trapezoidal surface 212) is 10.26 micrometers, and the top bottom
  • the length a3 is 7.12 microns, and the height h3 is 2.58 microns.
  • the long axis directions of all liquid crystal molecules in the liquid crystal material layer 3 are sorted Consistent, that is: the long axis of all liquid crystal molecules are parallel to the width direction of the optical film.
  • the equivalent refractive index of each liquid crystal molecule is equal, that is: the liquid crystal material layer 3 is
  • the equivalent refractive index (neff) of the light wave is a fixed value and equal to the equivalent refractive index (niso) of the isotropic optical material layer 2, and the optical film does not have a viewing angle modulation effect.
  • the optical film can still greatly reduce the dark-state light leakage of the front viewing angle of the liquid crystal display panel, and improve the contrast of the liquid crystal display panel at the front viewing angle.
  • each liquid crystal molecule is deflected under the influence of the electric field.
  • Figure 4-a, Figure 4-b, Figure 4-c, and Figure 4-d are the distribution diagrams of the liquid crystal directors of the liquid crystal material layer 3 under the driving voltages of 2V, 3V, 5V and 8V, respectively.
  • the driving voltage The larger the larger, the greater the deflection angle of the liquid crystal molecules, and the more the long axis of the liquid crystal molecules tends to be parallel to the direction of the line of force.
  • the equivalent refractive index nx of each liquid crystal molecule under different driving voltages can be calculated by the following formula (1).
  • the ⁇ represents the angle between the long axis of the liquid crystal molecule and the width direction of the optical film
  • ne is the e-ray refractive index value of the liquid crystal molecule
  • no is the o-ray refractive index value of the liquid crystal molecule
  • ne is 1.741 and no is 1.517.
  • FIG. 5 the distribution diagram of the difference between niso and neff of the optical film under different driving voltages is obtained, which is shown in FIG. 5, where FIG. 5 -a, Figure 5-b, Figure 5-c, and Figure 5-d are the distribution diagrams of the difference between niso and neff of the optical film under 2V, 3V, 5V and 8V driving voltages, with the driving voltage increasing As it increases, the difference distribution between niso and neff also increases, which means that the viewing angle modulation effect of the optical film is getting stronger and stronger.
  • the viewing angle modulation effect of the optical film becomes weaker and weaker until, in an ideal state, when the driving voltage is zero (ie: no driving voltage is applied), the difference between niso and neff is Zero, the optical film has no viewing angle modulation effect.
  • the present invention provides a method for preparing an optical film for preparing the optical film described in the first aspect, as shown in FIG. 6, including the following steps:
  • a first supporting base and a second supporting base are provided, and a first electrode and a second electrode are formed on the first supporting base and the second supporting base, respectively, to obtain a first electrode layer and A second electrode layer.
  • the first electrode and the second electrode can be manufactured by conventional technical means in the art, such as a coating process or an electronic printing process, and the coating process can be spray coating, spin coating, or the like.
  • the thickness of the first electrode layer and the second electrode layer is not specifically limited, and can be selected according to actual needs.
  • the isotropic optical material layer can be produced by conventional technical means in the art, such as a coating process or an electronic printing process, and the coating process can be spray coating, spin coating, or the like.
  • the thickness of the isotropic optical material layer is 10 micrometers to 200 micrometers.
  • the groove structure can be made by conventional technical means in the art, such as an etching process.
  • the plurality of groove structures are arranged at equal intervals, and the cross section of the groove structure is a left-right symmetrical irregular shape, and in the vertical direction from bottom to top, the cross-sectional width of each groove structure gradually decreases.
  • liquid crystal material such as a liquid crystal dropping process.
  • the liquid crystal material is nematic liquid crystal or blue phase liquid crystal.
  • the first electrode layer and the second electrode layer may be fixed to each other by using conventional technical means in the art, such as a vacuum box matching process.
  • a vacuum box matching process In order to prevent liquid crystal from overflowing and water vapor intrusion, the periphery of the first electrode layer and the second electrode layer can be further sealed with frame glue.
  • the frame glue can be an existing product, such as thermosetting resin and/or ultraviolet. Curing resin.
  • the method before the step S5, the method further includes the step of fabricating and forming a plurality of support pads on the second electrode layer, and the position of each of the support pads is different from each adjacent groove structure.
  • the positions of the isotropic optical material layers correspond to each other.
  • the support pad can be manufactured by conventional technical means in the art, such as a photolithography process.
  • the main component of the supporting pad is an ultraviolet curable resin, which can be spherical, columnar, or the like.
  • the method before the step S4, further includes the step of fabricating and forming a first alignment film on the bottom surface of each of the groove structures, and fabricating and forming a second alignment film on the second electrode layer. membrane.
  • the material of the first alignment film and the second alignment film is preferably polyimide
  • the first alignment film and the second alignment film can be made by conventional technical means in the art, such as: A polyimide layer is respectively coated on the groove bottom surface of each groove structure and the second electrode layer to form a polyimide layer, and then a directional groove is rubbed on the polyimide layer through a rubbing process.
  • a polyimide layer is respectively coated on the groove bottom surface of each groove structure and the second electrode layer to form a polyimide layer, and then a directional groove is rubbed on the polyimide layer through a rubbing process.
  • the embodiments of the present invention provide the application of the optical film described in the first aspect in a display panel.
  • the optical film described in the first aspect can be applied to a display panel as a viewing angle diffusion film, that is, the optical film is located in the display panel.
  • the light-emitting surface of the display panel is not limited to, the first aspect, the second aspect, the third aspect, the embodiments of the present invention.
  • the display panel may be a liquid crystal display panel or a non-liquid crystal display panel, such as an OLED display panel, a Micro-LED display panel, a QLED display panel, and the like.
  • liquid crystal display panels it can be a conventional display mode, such as: Twisted Nematic (TN) display mode, Vertical Alignment (VA) display mode, In-Plane Switching (IPS) display
  • TN Twisted Nematic
  • VA Vertical Alignment
  • IPS In-Plane Switching
  • Embodiment a liquid crystal display panel, including:
  • a first substrate including a plurality of pixels
  • a second substrate arranged opposite to the first substrate
  • the first polarizer is disposed on the side of the first substrate facing away from the liquid crystal layer;
  • the second polarizer is disposed on the side of the second substrate facing away from the liquid crystal layer;
  • the optical film described in the first aspect is disposed on the side of the first polarizer facing away from the first substrate, wherein the position of each groove structure in the optical film is corresponding to the position of each pixel. correspond.
  • the first substrate is a color filter (CF) substrate
  • the second substrate may be a thin-film transistor (TFT) array substrate.
  • the driving voltage applied by the first electrode layer and the second electrode layer in the optical film can be provided by an external power source or by a TFT array substrate.
  • the liquid crystal display panel is in a TN display mode.
  • the pixels when no electric field is applied to the TFT array substrate, the pixels behave in a dark state; when an electric field is applied to the TFT array substrate, the pixels behave in a bright state, and the gray scale of the pixels is adjusted by adjusting the magnitude of the electric field applied by the TFT array substrate.
  • the first electrode layer and the second electrode layer do not apply a driving voltage to the liquid crystal material layer.
  • the optical film does not have viewing angle modulation Therefore, the negative effect of the existing viewing angle diffusion film is completely eliminated, that is, the dark state light leakage of the super-large viewing angle (angle of view above 60 degrees) will not be modulated to the positive viewing angle to exit, effectively avoiding the dark state light leakage of enhancing the positive viewing angle and reducing the liquid crystal The contrast of the display panel at the front viewing angle.
  • the TFT array substrate When the pixel is in a bright state, the TFT array substrate provides an electric field of corresponding intensity to the pixel according to the difference in the display gray scale.
  • the first electrode layer and the second electrode layer apply a fixed driving voltage to the liquid crystal material layer so that the value of niso is greater than the value of neff, that is, the optical film has
  • the viewing angle modulation function modulates part of the front viewing angle light into a large viewing angle (such as a 45-degree viewing angle), thereby effectively improving the display brightness of the large viewing angle, and realizing the free switching between the front viewing mode and the large viewing angle viewing mode.
  • This comparative example provides a liquid crystal display panel, which differs from the embodiment in the third aspect only in that: the first polarizer is not provided with an optical film with viewing angle modulation effect on the side of the first polarizer facing away from the color filter substrate .
  • This comparative example provides a liquid crystal display panel, which is different from the embodiment in the third aspect only in that: the first polarizer is provided with a viewing angle diffusion film in the prior art on the side facing away from the color filter substrate (As shown in Figure 1).
  • the liquid crystal display panel of the embodiment in the third aspect, the liquid crystal display panel of Comparative Example 1, and the liquid crystal display panel of Comparative Example 2 were tested for brightness and contrast at a viewing angle of 0 degrees to 80 degrees, respectively, to obtain a picture 7 and 8, the brightness test and the contrast test can use conventional technical means in the art, and will not be repeated here.
  • the liquid crystal display panel of Comparative Example 2 and the liquid crystal display panel of the third aspect of the embodiment have the same brightness at the normal viewing angle (0 degrees) to 80 degrees, and the brightness at the large viewing angle of 30 degrees to 80 degrees is significantly superior.
  • the optical film of the embodiment of the present invention and the existing viewing angle diffuser film have the same effect on the light intensity distribution in the bright state.
  • the contrast of the liquid crystal display panel in the third aspect of the embodiment at the normal viewing angle (0 degrees) is about twice as high, that is, compared with the existing viewing angle, the contrast ratio is increased.
  • the optical film of the embodiment of the present invention greatly improves the problem of light leakage in the dark state of the normal viewing angle.
  • the optical film retains the positive effect of the existing viewing angle diffuser film in improving the brightness of the large viewing angle display in the bright state, and eliminates the existing viewing angle diffusion
  • the film has the negative effect of enhancing the dark state light leakage of the normal viewing angle and reducing the contrast of the normal viewing angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明公开了一种光学膜、光学膜的制备方法及应用,所述光学膜可应用于显示面板中作为视角扩散膜。所述光学膜包括:依次层叠设置的一第一电极层、一各向同性光学材料层、一液晶材料层和一第二电极层;所述各向同性光学材料层上设有多个凹槽结构,各个所述凹槽结构内填充有所述液晶材料层。

Description

光学膜、光学膜的制备方法及应用 技术领域
本发明涉及显示技术领域,尤其涉及一种光学膜、光学膜的制备方法及应用。
背景技术
随着显示技术的迅猛发展,液晶显示面板具有高分辨率的发展趋势。液晶显示面板分辨率的提高会造成像素电极开口率的降低,从而降低光的穿透率,进而对液晶显示面板的大视角显示亮度造成负面影响。
在现有技术中,通过采用在液晶显示面板上增设视角扩散膜的方式,以达到提高液晶显示面板的大视角显示亮度的目的。如图1所示,所述视角扩散膜采用双层复合光学膜层结构,其中,各层光学膜层采用折射率不同的各向同性光学材料。
技术问题
无论在亮态画面还是暗态画面下,现有技术的视角扩散膜都会产生视角扩散的效果,其中,在亮态画面下,现有技术的视角扩散膜具有积极效果,将部分正视角的光调制至大 视角(如45度视角)中,从而有效提高大视角的显示亮度;在暗态画面下,液晶显示面板的超大视角(60度以上视角)漏光现象比较严重,而由于超大视角应用场景较少,所以液晶显示面板超大视角的漏光现象原本是可以被接受的。但是,液晶显示面板增设现有技术的视角扩散膜后,受视角扩散膜的光路调制作用,超大视角的暗态漏光被调制至正视角出射,从而导致正视角的暗态漏光增强,进而降低液晶显示面板在正视角的对比度,即:现有的视角扩散膜既具有在亮态下提高大视角显示亮度的积极效果,又具有在暗态下增强正视角的暗态漏光、降低液晶显示面板在正视角的对比度的消极效果。
因此,迫切需要开发一种新型的视角扩散膜,以保留现有视角扩散膜的积极效果,而消除现有视角扩散膜的消极效果。
技术解决方案
本发明提供了一种光学膜、光学膜的制备方法及应用,所述光学膜可应用于显示面板中作为视角扩散膜,其保留了现有视角扩散膜的积极效果,而消除现有视角扩散膜的消极效果。
第一方面,本发明提供了一种光学膜,包括:依次层叠设置的一第一电极层、一各向同性光学材料层、一液晶材料层和一第二电极层;所述各向同性光学材料层上设有多个凹槽结构,各个所述凹槽结构内填充有所述液晶材料层;所述液晶材料层的o光折射率值小于所述各向同性光学材料层的o光折射率值,而所述液晶材料层的e光折射率值与所述各向同性光学材料层的e光折射率值相同。
在一些实施例中,所述第一电极层包括层叠设置的第一承载基体和第一电极,所述第二电极层包括层叠设置的第二承载基体和第二电极。
在一些实施例中,所述第一电极和所述第二电极均为透明导电薄膜。
在一些实施例中,所述第一承载基体和所述第二承载基体的材质为透明玻璃或透明塑料。
在一些实施例中,所述光学膜还包括多个支撑衬垫,各相邻凹槽结构之间设有一所述支撑衬垫,并且各个所述支撑衬垫位于所述各向同性光学材料层与所述第二电极层之间。
在一些实施例中,所述光学膜还包括多个第一取向膜和一第二取向膜,各个所述第一取向膜分别设置于各个所述凹槽结构的槽底面上,所述第二取向膜层叠设置于所述第二电 极层靠近所述液晶材料层的一面上。
在一些实施例中,所述液晶材料层的材质为向列相液晶或蓝相液晶。
在一些实施例中,所述液晶材料层的厚度为5微米~100微米。
在一些实施例中,所述各向同性光学材料层的材质为包含树脂材料的紫外光敏胶高分子材料。
在一些实施例中,所述各向同性光学材料层的的厚度范围为10微米~200微米。
在一些实施例中,所述多个凹槽结构为等间隔设置。
在一些实施例中,在由下至上的竖直方向上,各个所述凹槽结构的截面为左右对称的不规则形状,且各个所述凹槽结构的截面宽度逐渐减小。
在一些实施例中,在由下至上的竖直方向上,各个所述凹槽结构的截面包括第一等腰梯形面、第二等腰梯形面和第三等腰梯形面,其中,所述第二等腰梯形面的底角大于所述第三等腰梯形面的底角,且所述第三等腰梯形面的底角大于所述第一等腰梯形面的底角。
第二方面,本发明提供了一种光学膜的制备方法,用于制备第一方面中所述光学膜,包括如下步骤:
提供一第一承载基体和一第二承载基体,分别在所述第一承载基体和所述第二承载基体上制作形成一第一电极和一第二电极,获得一第一电极层和一第二电极层;
在所述第一电极层上制作形成一各向同性光学材料层;
在所述各向同性光学材料层上制作多个凹槽结构;
在各个所述凹槽结构内注入液晶材料;
将所述第一电极层和所述第二电极层对向固定,以封装液晶材料,形成液晶材料层,获得光学膜。
在一些实施例中,在将所述第一电极层和所述第二电极层对向固定,以封装液晶材料的步骤之前,还包括步骤:在所述第二电极层上制作形成多个支撑衬垫,各个所述支撑衬垫的位置分别与各相邻凹槽结构之间的各向同性光学材料层的位置相对应。
在一些实施例中,在所述在各个所述凹槽结构内注入液晶材料步骤之前,还包括步骤:在各个所述凹槽结构的槽底面上制作形成一第一取向膜,在所述第二电极层上制作形成一第二取向膜。
第三方面,本发明提供了一种显示面板,揭示了第一方面所述光学膜在显示面板中的应用。
一种显示面板,包括:设置于显示面板出光面上的光学 膜,所述光学膜包括:依次层叠设置的一第一电极层、一各向同性光学材料层、一液晶材料层和一第二电极层;所述各向同性光学材料层上设有多个凹槽结构,各个所述凹槽结构内填充有所述液晶材料层;所述液晶材料层的o光折射率值小于所述各向同性光学材料层的o光折射率值,而所述液晶材料层的e光折射率值与所述各向同性光学材料层的e光折射率值相同。
在一些实施例中,所述显示面板为液晶显示面板,包括:
一第一基板,包括多个像素;
一第二基板,与所述第一基板相对设置;
一液晶层,填充于所述第一基板与所述第二基板之间;
第一偏光片,设置于所述第一基板背离所述液晶层的一面上;
第二偏光片,设置于所述第二基板背离所述液晶层的一面上;以及
第一方面中所述的光学膜,设置于所述第一偏光片背离所述第一基板的一面上,其中,所述光学膜中各个凹槽结构的位置分别与各个所述像素的位置相对应。
在一些实施例中,所述第一基板为彩膜基板,所述第二基板为薄膜晶体管阵列基板。
在一些实施例中,所述显示面板为扭曲向列型显示模式。
有益效果
本发明的光学膜改变了现有视角扩散膜的结构组成,现有视角扩散膜为双层结构,每层采用折射率不同的各向同性光学材料,而本发明的光学膜保留一各向同性光学材料层,将另一各向同性光学材料层替换为液晶材料层。
本发明的光学膜可应用于显示面板中作为视角扩散膜,所述光学膜位于所述显示面板的出光面上,所述显示面板可为液晶显示面板,也可为非液晶显示面板,如:有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板、微发光二极管(Micro Light Emitting Diode,Micro-LED)显示面板、量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示面板等,其保留了现有视角扩散膜的积极效果,并消除了现有视角扩散膜的消极效果,所述光学膜的制备方法具有操作简便、便于工业化生产的优点。
当未对所述光学膜施加驱动电压时,所述光学膜不具有或仅具有微弱的视角调制作用,以改善现有液晶显示面板暗态漏光、正视角对比度低的问题。当对所述光学膜施加驱动电压时,所述光学膜具有视角调制作用,并随着驱动电压的增大,所述光学膜的视角调制作用越强,以提高大视角显示 的亮度。
应用有所述光学膜的液晶显示面板,与应用有现有视角扩散膜的液晶显示面板在正视角(0度)~80度的亮度相一致。但是,与应用有现有视角扩散膜的液晶显示面板相比,应用有所述光学膜的液晶显示面板在正视角(0度)的对比度提高了一倍左右,所述光学膜极大地改善了正视角暗态漏光、正视角对比度低的问题。
附图说明
图1为现有技术中视角扩散膜在长度方向上的剖视图。
图2为本发明实施例中光学膜在长度方向上的剖视图。
图3为本发明实施例中各个所述凹槽结构的结构示意图。
图4为本发明实施例中在不同驱动电压下液晶材料层的液晶指向矢分布图。
图5为本发明实施例中在不同驱动电压下所述光学膜的niso与neff之间差值的分布图。
图6为本发明实施例中光学膜的制备方法的流程示意图。
图7为本发明实施例的液晶显示面板、对比例1的液晶 显示面板和对比例2的液晶显示面板分别在正视角(0度)~80度视角的亮度变化曲线图。
图8为本发明实施例的液晶显示面板、对比例1的液晶显示面板和对比例2的液晶显示面板分别在正视角(0度)~80度视角的对比度变化曲线图。
本发明的实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下。再者,本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
第一方面,本发明实施例提供了光学膜,如图2所示,所述光学膜依次层叠设置的一第一电极层1、一各向同性光学材料层2、一液晶材料层3和一第二电极层4;所述各向同性光学材料层2上设有多个凹槽结构21,各个所述凹槽结构21内填充有所述液晶材料层3;所述液晶材料层3的o光(ordinary rays,寻常光)折射率值(no)小于所述各向同性光学材料层2的o光折射率值,而所述液晶材料层3的e光(extraordinary rays,非常光)折射率值(ne)与所述各向同性光学材料层2的e光折射率 值相同。
具体的,所述各向同性光学材料层2的材质可为包含树脂材料的紫外光敏胶高分子材料,所述液晶材料层的材质可为向列相液晶或蓝相液晶。所述各向同性光学材料层2的厚度范围为10微米~200微米,所述液晶材料层3的厚度为5微米~100微米。所述多个凹槽结构21为等间隔设置,即:相邻凹槽结构21之间的间隙相等。
所述第一电极层1和所述第二电极层4均包括透明导电薄膜,所述透明导电薄膜是一种既能导电又在可见光范围内具有高透明率的薄膜,材质可为金属膜系、氧化物膜系、高分子膜系等,例如:氧化铟锡(Indium Tin Oxides,ITO)薄膜、铝掺杂氧化锌薄膜、碳纳米管透明导电薄膜、二氧化锡透明导电薄膜等,本发明实施例优选为ITO薄膜。
由于ITO薄膜具有柔韧性强、易加工的特性,所以在受热或受力作用下易发生变形,所以不能直接在ITO薄膜上制作形成所述各向同性光学材料层2和所述液晶材料层3。因此,所述第一电极层1包括层叠设置的一第一承载基体11和一第一电极12,所述第二电极层4包括层叠设置的一第二承载基体41和一第二电极42;其中,所述第一电极12和所述第二电极42均为ITO薄膜,所述第一承载基体11和所述第二承载基体 41的材质可为玻璃、塑料等透明材料。
通过调控第一电极层1和第二电极层4对所述液晶材料层3施加的电压大小,来改变液晶材料层3中液晶分子的偏转角度,从而调整neff的大小,达到控制niso与neff之间差值的目的,即:控制所述光学膜是否发生视角扩散的调制作用,以及控制视角扩散调制作用的强弱。
在一些实施例中,所述光学膜还包括多个支撑衬垫5,各相邻凹槽结构21之间设有一所述支撑衬垫5,并且各个所述支撑衬垫5位于所述各向同性光学材料层2与所述第二电极层4之间。所述支撑衬垫5的配置不影响将所述液晶材料层3填充在各个所述凹槽结构21内,以及不影响各个所述凹槽结构21内的液晶材料的连通。
具体的,所述支撑衬垫5主要成分是紫外线固化型的树脂,与所述液晶材料层3的液晶分子直接接触,其截面形状可为圆形、梯形等。所述支撑衬垫5用于保持液晶材料层3的厚度,以避免所述各向同性光学材料层2的局部出现塌陷现象,而导致液晶材料层3厚度不均的问题。
在一些实施例中,所述光学膜还包括多个第一取向膜(alignment film)6和一第二取向膜7,各个所述第一取向膜6分别设置于各个所述凹槽结构21的槽底面上,所述第二取向 膜7叠设置于所述第二电极层4靠近所述液晶材料层3的一面上,即:第二取向膜7采用整面结构,且所述第二取向膜7设置于所述第二电极42靠近所述液晶材料层3的一面上。所述液晶材料层3的液晶分子配向方式可采用常规技术手段,如:摩擦配向、光控配向等,在此不作具体限定。
所述第一取向膜6和所述第二取向膜7的材质为高分子聚合物,本发明实施例优选为聚酰亚胺。所述第一取向膜6和所述第二取向膜7用于对所述液晶材料层3的液晶分子进行排序,本发明实施例优选为:所述第一取向膜6对所述液晶材料层3上部的液晶分子排序方向,与所述第二取向膜7对所述液晶材料层3下部的液晶分子排序方向相一致。
在一些实施例中,在由下至上的竖直方向上,各个所述凹槽结构21的截面为左右对称的不规则形状,且各个所述凹槽结构21的截面宽度逐渐减小。
优选的,在由下至上的竖直方向上,各个所述凹槽结构21的截面包括第一等腰梯形面、第二等腰梯形面和第三等腰梯形面,其中,所述第二等腰梯形面的底角大于所述第三等腰梯形面的底角,且所述第三等腰梯形面的底角大于所述第一等腰梯形面的底角。
例如:所述液晶材料层的液晶分子为正性向列相液晶 E7,液晶E7的o光折射率值no为1.517,e光折射率值ne为1.741。各个所述凹槽结构21的厚度为18.8微米,各个所述凹槽结构3内填充有液晶E7。如图3所示,各个所述凹槽结构21在所述光学膜长度方向上的截面为钟形,所述截面在由下至上的竖直方向上,包括第一等腰梯形面211、第二等腰梯形面212和第三等腰梯形面213,所述第二等腰梯形面212的底角大于所述第三等腰梯形面213的底角,且所述第三等腰梯形面213的底角大于所述第一等腰梯形面211的底角。
所述第一等腰梯形面211的下底长度b1为18.94微米,高度h1为3.51微米;所述第二等腰梯形面212的下底长度b2(即为第一等腰梯形面211的上底长度a1)为12.62微米,高度h2为12.71微米;所述第三等腰梯形面213的下底长度b3(即为第二等腰梯形面212的上底长度a2)为10.26微米,上底长度a3为7.12微米,高度h3为2.58微米。
当所述第一电极层1和所述第二电极层4对所述液晶材料层3未施加驱动电压时,如图3所示,所述液晶材料层3中所有液晶分子的长轴方向排序一致,即:所有液晶分子的长轴均与所述光学膜的宽度方向相平行,在理想状态下,此时,各液晶分子的等效折射率相等,即:所述液晶材料层3 对于入射光波的等效折射率(neff)为一固定值,并且与所述各向同性光学材料层2的等效折射率(niso)相等,所述光学膜不具有视角调制作用。需要说明的是,在实际应用中,可能会存在微小的偏差,即:未施加驱动电压时,neff与niso的数值可能不相等,可能出现niso与neff之间的差值在零值左右,但所述光学膜的视角调制作用微弱,相较于现有视角扩散膜,仍能极大地降低液晶显示面板正视角的暗态漏光,提高液晶显示面板在正视角的对比度。
当所述第一电极层1和所述第二电极层4对所述液晶材料层3施加驱动电压时,受电场的影响,各液晶分子发生偏转。如图4所示,图4-a、图4-b、图4-c和图4-d分别为2V、3V、5V和8V驱动电压下液晶材料层3的液晶指向矢分布图,驱动电压越大,液晶分子的偏转角度越大,液晶分子的长轴越倾向平行于电力线方向,当电场强度足够大时,所有液晶分子的长轴均与电力线平行,即:所有液晶分子以平行于电力线方向的方式排列,所有液晶分子均直立起来。根据不同驱动电压下各液晶分子的指向矢数据,通过下述公式(1)可计算出不同驱动电压下各液晶分子的等效折射率nx。
Figure PCTCN2020093365-appb-000001
在上述公式(1)中,所述θ表示液晶分子长轴与所述光 学膜宽度方向之间的夹角,ne为液晶分子的e光折射率值,no为液晶分子的o光折射率值,对应本实施例中,ne为1.741,no为1.517。
通过各液晶分子的等效折射率,可以获得neff的数值分布,进而获得不同驱动电压下所述光学膜的niso与neff之间差值的分布图,即为图5所示,其中,图5-a、图5-b、图5-c和图5-d分别为2V、3V、5V和8V驱动电压下所述光学膜的niso与neff之间差值的分布图,随着驱动电压的增加,niso与neff之间的差值分布亦增大,代表着所述光学膜的视角调制作用越来越强。反之,随着驱动电压降低,所述光学膜的视角调制作用越来越弱,直至在理想状态下,驱动电压为零(即:不施加驱动电压)时,niso与neff之间的差值为零,所述光学膜不具有视角调制作用。
第二方面,本发明提供了一种光学膜的制备方法,用于制备第一方面中所述的光学膜,如图6所示,包括如下步骤:
S1、提供一第一承载基体和一第二承载基体,分别在所述第一承载基体和所述第二承载基体上制作形成一第一电极和一第二电极,获得一第一电极层和一第二电极层。
具体的,所述第一电极和所述第二电极可采用本领域常规技术手段制作,如:涂布工艺或电子印刷工艺,所述涂布 工艺可为喷涂、旋涂等。所述第一电极层和所述第二电极层的厚度不作具体限定,可依据实际需要自行选择。
S2、在所述第一电极层上制作形成一各向同性光学材料层。
具体的,所述各向同性光学材料层可采用本领域常规技术手段制作,如:涂布工艺或电子印刷工艺,所述涂布工艺可为喷涂、旋涂等。所述各向同性光学材料层的厚度为10微米~200微米。
S3、在所述各向同性光学材料层上制作多个凹槽结构。
具体的,所述凹槽结构的制作可采用本领域常规技术手段制作,如:刻蚀工艺等。所述多个凹槽结构为等间隔设置,凹槽结构的截面为左右对称的不规则形状,且在由下至上的竖直方向上,各个所述凹槽结构的截面宽度逐渐减小。
S4、在各个所述凹槽结构内注入液晶材料。
具体的,可采用本领域常规技术手段注入液晶材料,如:液晶滴注工艺等。所述液晶材料为向列相液晶或蓝相液晶。
S5、将所述第一电极层和所述第二电极层对向固定,以封装液晶材料,形成液晶材料层,获得光学膜。
具体的,可采用本领域常规技术手段将所述第一电极层和所述第二电极层进行对向固定,如:真空对盒工艺。为防 止液晶溢出和水汽侵入,可进一步将所述第一电极层和所述第二电极层的四周采用边框胶密封,所述边框胶可为现有产品,如:热固化树脂和/或紫外固化树脂。
在一些实施例中,在所述步骤S5之前,还包括步骤:在所述第二电极层上制作形成多个支撑衬垫,各个所述支撑衬垫的位置分别与各相邻凹槽结构之间的各向同性光学材料层的位置相对应。
具体的,所述支撑衬垫可采用本领域常规技术手段制作,如:光刻工艺。所述支撑衬垫主要成分是紫外线固化型的树脂,可为圆球状、柱状等形状。
在一些实施例中,在所述步骤S4之前,还包括步骤:在各个所述凹槽结构的槽底面上制作形成一第一取向膜,在所述第二电极层上制作形成一第二取向膜。
具体的,所述第一取向膜和所述第二取向膜的材质优选为聚酰亚胺,所述第一取向膜和所述第二取向膜可采用本领域常规技术手段制作,如:先在各个所述凹槽结构的槽底面和所述第二电极层上分别涂布形成一聚酰亚胺层,再通过摩擦工艺在聚酰亚胺层上摩擦出方向性的沟槽。又如:先在聚酰亚胺中掺入光敏单体,然后在各个所述凹槽结构的槽底面和所述第二电极层上分别涂布掺有光敏单体的聚酰亚胺材 料,固化后进行偏振紫外光照工艺,以对液晶分子完成光控配向。
第三方面,本发明实施例提供了第一方面所述光学膜在显示面板中的应用,第一方面所述光学膜可应用于显示面板中作为视角扩散膜,即:所述光学膜位于所述显示面板的出光面上。
具体的,所述显示面板可为液晶显示面板,也可为非液晶显示面板,如:OLED显示面板、Micro-LED显示面板、QLED显示面板等。对于液晶显示面板可为常规显示模式,如:扭曲向列型(Twisted Nematic,TN)显示模式、垂直配向型(Vertical Alignment,VA)显示模式、面内转换型(In-Plane Switching,IPS)显示模式等,可依据实际需要自行选择,在此不作具体限定。
实施例:一种液晶显示面板,包括:
一第一基板,包括多个像素;
一第二基板,与所述第一基板相对设置;
一液晶层,填充于所述第一基板与所述第二基板之间;
第一偏光片,设置于所述第一基板背离所述液晶层的一面上;
第二偏光片,设置于所述第二基板背离所述液晶层的一 面上;以及
第一方面中所述的光学膜,设置于所述第一偏光片背离所述第一基板的一面上,其中,所述光学膜中各个凹槽结构的位置分别与各个所述像素的位置相对应。
优选的,所述第一基板为彩膜(color filter,CF)基板,所述第二基板可为薄膜晶体管(Thin-film transistors,TFT)阵列基板。所述光学膜中第一电极层和第二电极层施加的驱动电压可由外部电源提供,也可由TFT阵列基板提供。
优选的,所述液晶显示面板为TN显示模式。特别优选的,当TFT阵列基板未施加电场时,像素表现为暗态;当TFT阵列基板施加电场时,像素表现为亮态,通过调整TFT阵列基板施加电场的大小来调控像素的灰阶程度。
当像素表现为暗态时,所述光学膜中,所述第一电极层和所述第二电极层对所述液晶材料层未施加驱动电压,理想状态下,所述光学膜不具有视角调制作用,从而完全消除了现有视角扩散膜的消极效果,即:超大视角(60度以上视角)的暗态漏光不会被调制至正视角出射,有效避免增强正视角的暗态漏光和降低液晶显示面板在正视角的对比度。
当像素表现为亮态时,针对显示灰阶程度的不同,TFT阵列基板对像素提供相应强度的电场。在所述光学膜中,所 述第一电极层和所述第二电极层对所述液晶材料层施加一固定的驱动电压,以使niso的数值大于neff的数值,即:所述光学膜具有视角调制作用,将部分正视角的光调制至大视角(如45度视角)中,从而有效提高大视角的显示亮度,实现正视角观看模式和大视角观看模式之间自由切换。
对比例1:
本对比例提供一种液晶显示面板,其与所述第三方面中实施例区别之处仅在于:所述第一偏光片背离所述彩膜基板的一面上不设置具有视角调制作用的光学膜。
对比例2:
本对比例提供一种液晶显示面板,其与所述第三方面中实施例区别之处仅在于:所述第一偏光片背离所述彩膜基板的一面上设置现有技术中的视角扩散膜(如图1所示)。
将所述第三方面中实施例的液晶显示面板、对比例1的液晶显示面板和对比例2的液晶显示面板分别在正视角(0度)~80度视角进行亮度测试和对比度测试,获得图7和图8,所述亮度测试和对比度测试可采用本领域的常规技术手段,在此不再赘述。
由图7可知,对比例2的液晶显示面板和第三方面实施例中的液晶显示面板在正视角(0度)~80度视角亮度相一 致,并且30度~80度大视角的亮度明显优越于对比例1的液晶显示面板,即:本发明实施例的光学膜与现有视角扩散膜对亮态光强度分布所起的作用相同。
由图8可知,相较于对比例2的液晶显示面板,第三方面实施例中的液晶显示面板在正视角(0度)的对比度提高了一倍左右,即:相较于现有视角扩散膜,本发明实施例的光学膜极大地改善了正视角暗态漏光的问题,所述光学膜保留现有视角扩散膜在亮态下提高大视角显示亮度的积极效果,消除了现有视角扩散膜增强正视角暗态漏光、降低正视角对比度的消极作用。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (20)

  1. 一种光学膜,其中,包括:依次层叠设置的一第一电极层、一各向同性光学材料层、一液晶材料层和一第二电极层;所述各向同性光学材料层上设有多个凹槽结构,各个所述凹槽结构内填充有所述液晶材料层;所述液晶材料层的o光折射率值小于所述各向同性光学材料层的o光折射率值,而所述液晶材料层的e光折射率值与所述各向同性光学材料层的e光折射率值相同。
  2. 根据权利要求1所述光学膜,其中,所述第一电极层包括层叠设置的第一承载基体和第一电极,所述第二电极层包括层叠设置的第二承载基体和第二电极。
  3. 根据权利要求2所述光学膜,其中,所述第一电极和所述第二电极均为透明导电薄膜。
  4. 根据权利要求2所述光学膜,其中,所述第一承载基体和所述第二承载基体的材质为透明玻璃或透明塑料。
  5. 根据权利要求1所述光学膜,其中,所述光学膜还包括多个支撑衬垫,各相邻凹槽结构之间设有一所述支撑衬垫,并且各个所述支撑衬垫位于所述各向同性光学材料层与所述第二电极层之间。
  6. 根据权利要求1所述光学膜,其中,所述光学膜还包 括多个第一取向膜和一第二取向膜,各个所述第一取向膜分别设置于各个所述凹槽结构的槽底面上,所述第二取向膜层叠设置于所述第二电极层靠近所述液晶材料层的一面上。
  7. 根据权利要求1所述光学膜,其中,所述液晶材料层的材质为向列相液晶或蓝相液晶。
  8. 根据权利要求7所述光学膜,其中,所述液晶材料层的厚度为5微米~100微米。
  9. 根据权利要求1所述光学膜,其中,所述各向同性光学材料层的材质为包含树脂材料的紫外光敏胶高分子材料。
  10. 根据权利要求9所述光学膜,其中,所述各向同性光学材料层的的厚度范围为10微米~200微米。
  11. 根据权利要求1所述光学膜,其中,所述多个凹槽结构为等间隔设置。
  12. 根据权利要求1所述光学膜,其中,在由下至上的竖直方向上,各个所述凹槽结构的截面为左右对称的不规则形状,且各个所述凹槽结构的截面宽度逐渐减小。
  13. 根据权利要求12所述光学膜,其中,在由下至上的竖直方向上,各个所述凹槽结构的截面包括第一等腰梯形面、第二等腰梯形面和第三等腰梯形面,其中,所述第二等腰梯形面的底角大于所述第三等腰梯形面的底角,且所述第三等 腰梯形面的底角大于所述第一等腰梯形面的底角。
  14. 一种光学膜的制备方法,其中,包括如下步骤:
    提供一第一承载基体和一第二承载基体,分别在所述第一承载基体和所述第二承载基体上制作形成一第一电极和一第二电极,获得一第一电极层和一第二电极层;
    在所述第一电极层上制作形成一各向同性光学材料层;
    在所述各向同性光学材料层上制作多个凹槽结构;
    在各个所述凹槽结构内注入液晶材料;
    将所述第一电极层和所述第二电极层对向固定,以封装液晶材料,形成液晶材料层,获得光学膜。
  15. 根据权利要求14所述光学膜的制备方法,其中,在将所述第一电极层和所述第二电极层对向固定,以封装液晶材料的步骤之前,还包括步骤:在所述第二电极层上制作形成多个支撑衬垫,各个所述支撑衬垫的位置分别与各相邻凹槽结构之间的各向同性光学材料层的位置相对应。
  16. 根据权利要求14所述光学膜的制备方法,其中,在所述在各个所述凹槽结构内注入液晶材料步骤之前,还包括步骤:在各个所述凹槽结构的槽底面上制作形成一第一取向膜,在所述第二电极层上制作形成一第二取向膜。
  17. 一种显示面板,其中,包括:设置于显示面板出光 面上的光学膜,所述光学膜包括:依次层叠设置的一第一电极层、一各向同性光学材料层、一液晶材料层和一第二电极层;所述各向同性光学材料层上设有多个凹槽结构,各个所述凹槽结构内填充有所述液晶材料层;所述液晶材料层的o光折射率值小于所述各向同性光学材料层的o光折射率值,而所述液晶材料层的e光折射率值与所述各向同性光学材料层的e光折射率值相同。
  18. 根据权利要求17所述显示面板,其中,所述显示面板为液晶显示面板,包括:
    一第一基板,包括多个像素;
    一第二基板,与所述第一基板相对设置;
    一液晶层,填充于所述第一基板与所述第二基板之间;
    第一偏光片,设置于所述第一基板背离所述液晶层的一面上;
    第二偏光片,设置于所述第二基板背离所述液晶层的一面上;以及
    第一方面中所述的光学膜,设置于所述第一偏光片背离所述第一基板的一面上,其中,所述光学膜中各个凹槽结构的位置分别与各个所述像素的位置相对应。
  19. 根据权利要求18所述显示面板,其中,所述第一基 板为彩膜基板,所述第二基板为薄膜晶体管阵列基板。
  20. 根据权利要求18所述显示面板,其中,所述显示面板为扭曲向列型显示模式。
PCT/CN2020/093365 2020-05-21 2020-05-29 光学膜、光学膜的制备方法及应用 WO2021232481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/976,826 US11442199B2 (en) 2020-05-21 2020-05-29 Optical film, manufacturing method, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010437443.2A CN111552107B (zh) 2020-05-21 2020-05-21 光学膜、光学膜的制备方法及应用
CN202010437443.2 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021232481A1 true WO2021232481A1 (zh) 2021-11-25

Family

ID=71999086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093365 WO2021232481A1 (zh) 2020-05-21 2020-05-29 光学膜、光学膜的制备方法及应用

Country Status (2)

Country Link
CN (1) CN111552107B (zh)
WO (1) WO2021232481A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740945A (zh) * 2021-09-03 2021-12-03 宁波东旭成新材料科技有限公司 一种高雾高透过率光扩散膜的制备方法
CN113885239A (zh) * 2021-09-22 2022-01-04 北海惠科光电技术有限公司 光学膜片、显示组件及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237435A (ja) * 1986-04-08 1987-10-17 Canon Inc 測光装置
CN1166209A (zh) * 1995-08-23 1997-11-26 菲利浦电子有限公司 用于平板图像显示装置的照明系统
WO1999018459A1 (fr) * 1997-10-02 1999-04-15 Asahi Glass Company Ltd. Tete optique et element de diffraction conçu pour cette tete optique, et procede de fabrication de l'element de diffraction et de la tete optique
CN1869741A (zh) * 2005-04-28 2006-11-29 大日本印刷株式会社 光学元件、液晶显示装置用构件以及液晶显示装置
WO2018150662A1 (ja) * 2017-02-17 2018-08-23 パナソニックIpマネジメント株式会社 光学デバイス及び光学システム
CN109633986A (zh) * 2019-01-30 2019-04-16 惠科股份有限公司 光学膜层和显示装置
CN109683381A (zh) * 2019-01-30 2019-04-26 惠科股份有限公司 光学膜层和显示装置
US10816870B2 (en) * 2017-02-23 2020-10-27 Kyungpook National University Industry-Academic Cooperation Foundation Active prism structure and fabrication method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190379B (zh) * 2013-10-01 2017-09-22 Lg化学株式会社 光学膜
US20170351130A1 (en) * 2014-12-19 2017-12-07 Merck Patent Gmbh Light modulation element
CN105607368B (zh) * 2016-01-04 2020-02-07 重庆京东方光电科技有限公司 阵列基板及其制备方法、显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237435A (ja) * 1986-04-08 1987-10-17 Canon Inc 測光装置
CN1166209A (zh) * 1995-08-23 1997-11-26 菲利浦电子有限公司 用于平板图像显示装置的照明系统
WO1999018459A1 (fr) * 1997-10-02 1999-04-15 Asahi Glass Company Ltd. Tete optique et element de diffraction conçu pour cette tete optique, et procede de fabrication de l'element de diffraction et de la tete optique
CN1869741A (zh) * 2005-04-28 2006-11-29 大日本印刷株式会社 光学元件、液晶显示装置用构件以及液晶显示装置
WO2018150662A1 (ja) * 2017-02-17 2018-08-23 パナソニックIpマネジメント株式会社 光学デバイス及び光学システム
US10816870B2 (en) * 2017-02-23 2020-10-27 Kyungpook National University Industry-Academic Cooperation Foundation Active prism structure and fabrication method therefor
CN109633986A (zh) * 2019-01-30 2019-04-16 惠科股份有限公司 光学膜层和显示装置
CN109683381A (zh) * 2019-01-30 2019-04-26 惠科股份有限公司 光学膜层和显示装置

Also Published As

Publication number Publication date
CN111552107A (zh) 2020-08-18
CN111552107B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
US9897882B1 (en) Methods of fabricating COA type liquid crystal display panels and COA type liquid crystal display panels
US9366920B2 (en) Liquid crystal display device and fabricating method thereof
US6400430B2 (en) Light control element, optical device, and electrical device having lightweight, and method of producing thereof
US8264660B2 (en) Polymer dispersed liquid crystal display with lateral light source and method of fabricating the same
WO2019157815A1 (zh) 水平电场型的显示面板、其制作方法及显示装置
US20140085574A1 (en) Flexible Transparent Liquid Crystal Display And Method For Preparing Same
JP5026538B2 (ja) 表示装置
CN1637502A (zh) 补偿膜及其制造方法和使用该补偿膜的液晶显示器
JP2012151081A (ja) 照明装置および表示装置
TW201416762A (zh) 液晶延遲面板以及具備奈米液晶層的水平電場型液晶顯示裝置
WO2016074351A1 (zh) 柔性液晶面板制作方法及柔性液晶面板
CN103543552B (zh) 液晶显示面板、其驱动方法及包含其的液晶显示器
WO2021232481A1 (zh) 光学膜、光学膜的制备方法及应用
TW201416780A (zh) 液晶顯示裝置
US20140016052A1 (en) Liquid crystal panel, driving method thereof, and liquid crystal display device containing the same
US6373541B1 (en) Reflection type liquid crystal display element
TW201310141A (zh) 液晶顯示裝置及製造其之方法
JP3240125B2 (ja) 反射型液晶表示素子
US20150310811A1 (en) Display panel
US20150309343A1 (en) Liquid crystal panel and method of manufacturing the same, display device
US9256103B2 (en) Liquid crystal display including liquid crystal with different pretilt angles and method of manufacturing the same
CN1127672C (zh) 反射型液晶显示元件
WO2021142582A1 (zh) 液晶面板及显示装置
US20130148066A1 (en) Liquid crystal panel and liquid crystal display device
WO2015137396A1 (ja) 光拡散部材、光拡散部材作製用母材、これを用いた表示装置、および光拡散部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936751

Country of ref document: EP

Kind code of ref document: A1