JP2010250025A - 偏光素子とその製造方法および液晶表示装置 - Google Patents

偏光素子とその製造方法および液晶表示装置 Download PDF

Info

Publication number
JP2010250025A
JP2010250025A JP2009098495A JP2009098495A JP2010250025A JP 2010250025 A JP2010250025 A JP 2010250025A JP 2009098495 A JP2009098495 A JP 2009098495A JP 2009098495 A JP2009098495 A JP 2009098495A JP 2010250025 A JP2010250025 A JP 2010250025A
Authority
JP
Japan
Prior art keywords
polarizing
layer
liquid crystal
polarizing layer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009098495A
Other languages
English (en)
Inventor
Takahito Hiratsuka
崇人 平塚
Masaya Adachi
昌哉 足立
Yoshiharu Otani
美晴 大谷
Jun Tanaka
順 田中
Chie Yoshizawa
千絵 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Displays Ltd filed Critical Hitachi Displays Ltd
Priority to JP2009098495A priority Critical patent/JP2010250025A/ja
Priority to US12/759,086 priority patent/US8570462B2/en
Publication of JP2010250025A publication Critical patent/JP2010250025A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers

Abstract

【課題】高コントラスト比の塗布型偏光層を有する偏光素子を提供すること、及び、その製造方法を提供すること、さらには、塗布型偏光層を用いる液晶表示装置の高コントラスト化を実現することを目的とする。
【解決手段】基材と、該基材の上側に透過軸が揃えられて積層された複数の偏光層によって形成される多層偏光層と、を有する偏光素子であって、偏光層のうちの少なくとも1層は、色素分子が塗布されて剪断応力によって所定の方向に配列された第1偏光層であって、第1偏光層は所定の膜厚で形成される、ことを特徴とする偏光素子。
【選択図】図1

Description

本発明は、偏光素子とその製造方法、及び、液晶表示装置に関する。
表示装置は情報を視覚的に人間に伝えるメディアであり、高度な情報社会となった現代では、人間、社会にとって重要な存在となっている。液晶表示装置は近年性能が著しく向上し、携帯電話からパーソナルコンピューターさらには大画面テレビ等の表示装置として採用されている。液晶表示装置は、液晶表示パネルと、その背面に配置されて液晶表示パネルに光を照射するバックライト(照明装置)とを含んで一般的に構成される。カラー画像を表示する場合には、1つの画素(ピクセル)が例えば赤色、青色、緑色の3原色に対応する3つの副画素(サブピクセル)から構成され、各色に対応した副画素を独立に制御することでさまざまな色を再現する。
現在、液晶表示装置は携帯電話やデジタルカメラなどのモバイル機器への用途が拡大されており、液晶表示装置の更なる薄型化、高コントラスト化が要求されている。また、現在において、量産されている中小型液晶表示パネルの薄型化は1mm前後まで達成されており、公表された最も薄い液晶表示パネルの厚さは0.56mmである。液晶表示パネルを薄型化する際には、例えば偏光板等の部材を薄型化する必要が生じ、液晶表示パネルの厚さが0.56mmの場合では偏光板の厚さは0.1〜0.2mmとなる。
現在の偏光板としては、フィルムによる偏光板と、塗布型偏光層による偏光板がある。後者の塗布型偏光層は、前者の偏光板に比べて約1/1000程度の厚さにできる。従来のフィルムによる偏光板は、PVA(ポリビニルアルコール)樹脂、ヨウ素、及び保護層などで構成されており、ヨウ素を混ぜたPVA樹脂を延伸することにより色素は一定方向に配向する。これに対し、塗布型偏光層は色素で構成する(必要に応じて保護層を含んで構成する)ため、フィルムによる偏光板よりも薄型化が可能である。塗布型偏光層の色素は、塗布する際に加わるせん断応力または下地の配向規制力により配向する。上記の塗布型偏光層の技術として、非特許文献1、非特許文献2、特許文献1、特許文献2、特許文献3が報告されている。
特開2006−146116号公報 特開2006−91393号公報 特開2008−89966号公報
Y.Ukai et al., "Current Statusand Future Prospect of In-Cell Polarizer Technology", SID 04 DIGEST,p1170-1173, 2004 Ir Gvon Khan et al., "Ultra-ThinO-Polarizers’Superiority over E-Polarizers for LCDs ", SID 04 DIGEST,p1316-1319, 2004
非特許文献1には、塗布型偏光層の平行透過率と直交透過率の比で表される一枚のコントラスト比は、膜厚を厚くすると高くなり、膜厚を薄くすると低くなることが記載されている。また、平行透過率に関しては、膜厚を厚くすると低くなり、薄くすると高くなることが記載されている。ここで、平行透過率は塗布型偏光層の吸収軸と直交方向にほぼ直線の偏光を入射した場合の透過率であり、直交透過率は塗布型偏光層の吸収軸と平行にほぼ直線の偏光を入射した場合の透過率である。また、二枚の塗布型偏光層を平行及び直交配置にした場合の透過率の比で表される二枚のコントラスト比は、膜厚が厚くなると飽和する傾向が得られる。
また、特許文献1には、基板に膜厚300〜800nmの塗布型偏光層を積層させて、高偏光度、高透過率、高コントラスト比を実現する構造が記載されている。しかし、塗布型偏光層は、その膜厚や形成条件に応じて色素分子の配向乱れが発生する。具体的には、色素分子をせん断応力により配向させた場合には、色素分子の配向乱れは基材から膜厚方向の距離に関係なくほぼ一様となる傾向にあり、色素分子を基材の配向規制力により配向させた場合には、配向乱れは基材から離れるにしたがって大きくなる傾向にある。この配向乱れに起因して、塗布型偏光層を有する偏光部材のコントラスト比が劣化させられることとなる。そして、さらには、塗布型偏光層を有する液晶表示装置の透過率、及びコントラスト比も劣化させられることとなる。
また、塗布型偏光層は補助偏光板としても機能する。しかし、一対の偏光板の間に補助偏光板を適用する際、補助偏光板として塗布型偏光層を配置すると、偏光層の色素の配向乱れに起因して、偏光層に入射した光が散乱する。この光の散乱によって、液晶表示装置の正面における黒表示時の輝度が増加し、正面コントラスト比が劣化することとなる。
本発明は、上記の課題を解決するためになされたものであり、塗布型偏光層における光学特性の膜厚依存性に着目して、高コントラスト比の塗布型偏光層を有する偏光素子を提供すること、及び、その製造方法を提供することを目的とする。さらには、塗布型偏光層を偏光板又は補助偏光板として用いる液晶表示装置の高コントラスト化を実現することを目的とする。
上記課題を解決するため、本発明に係る偏光素子は、基材と、該基材の上側に透過軸が揃えられて積層された複数の偏光層によって形成される多層偏光層と、を有する偏光素子であって、前記偏光層のうちの少なくとも1層は、色素分子が塗布されて剪断応力によって所定の方向に配列された第1偏光層であって、前記第1偏光層は、所定の膜厚で形成される、ことを特徴とする。
また、本発明に係る偏光素子の一態様では、前記基材は、配向規制力を有し、前記多層偏光層は、前記基材上に塗布されて配向規制力により前記所定の方向に配列された第2偏光層を含み、前記第2偏光層は、前記基材から上側に離れるにしたがって色素分子の配向が乱れるように積層され、前記第1偏光層は、前記第2偏光層の上側に積層されて、該第1偏光層と該第2偏光層とでは色素分子の配向乱れが異なるようにしてもよい。
また、本発明に係る偏光素子の一態様では、前記多層偏光層における前記偏光層のそれぞれは、300nm以下の膜厚で積層されるようにしてもよい。
また、本発明に係る偏光素子の一態様では、前記多層偏光層における前記偏光層のそれぞれは、100nm以上270nm以下の膜厚で積層される、ようにしてもよい。
また、本発明に係る偏光素子の一態様では、前記第1偏光層における前記色素分子は、リオトロピック液晶染料であって、前記第1偏光層は、270nm±20nmの範囲内の膜厚で形成される、ようにしてもよい。
上記課題を解決するため、本発明に係る偏光素子の製造方法は、色素分子を塗布して偏光層を積層する偏光層積層工程と、前記偏光層積層工程で積層した前記偏光層に不溶化処理を施す不溶化工程と、を含み、前記偏光層積層工程と前記不溶化工程とを複数回繰り返すことにより、複数の偏光層が積層された多層偏光層を有する偏光素子を製造するようにしたことを特徴とする。
上記課題を解決するため、本発明に係る液晶表示装置は、観察者側に位置する第1基板とバックライト側に位置する第2基板とによって液晶層が封止された液晶セルと、前記液晶層に対して前記観察者側に配置されて、所定の偏光方向の光を透過する第1偏光手段と、前記液晶層に対して前記バックライト側に配置されて、前記所定の偏光方向と直交する偏光方向の光を透過する第2偏光手段と、を有する液晶表示装置であって、前記第1偏光手段又は前記第2偏光手段の少なくとも一方は、透過軸が揃えられて積層された複数の偏光層によって形成される多層偏光層を有し、前記多層偏光層における少なくとも1層は、色素分子が塗布されてせん断応力によって配列される偏光層であって、所定の膜厚を有して形成される、ことを特徴とする。
また、本発明に係る液晶表示装置の一態様では、前記第1偏光手段は、前記第1基板の観察者側に設けられる第1偏光板を有し、前記第2偏光手段は、前記第2基板のバックライト側に設けられる第2偏光板を有し、前記第1偏光板又は前記第2偏光板は、前記多層偏光層を含んで形成される、ようにしてもよい。
また、本発明に係る液晶表示装置の一態様では、前記第1偏光手段は、前記第1基板の観察者側に設けられる第1偏光板と、該第1偏光板と平行な吸収軸を有して設けられる第1補助偏光層とを有し、前記第1補助偏光層は、前記多層偏光層を含んで形成される、ようにしてもよい。
また、本発明に係る液晶表示装置の一態様では、前記第2偏光手段は、前記第2基板のバックライト側に設けられる第2偏光板と、該第2偏光板と平行な吸収軸を有して設けられる第2補助偏光層とを有し、前記第2補助偏光層は、前記多層偏光層を含んで形成される、ようにしてもよい。
また、本発明に係る液晶表示装置の一態様では、前記第1基板は、カラーフィルター層を有し、前記第1偏光手段は、前記多層偏光層を含んで構成されて、前記カラーフィルター層と前記液晶層との間に設けられる、ようにしてもよい。
また、本発明に係る液晶表示装置の一態様では、前記第1補助偏光層は、前記第1偏光板と前記第1基板との間に配置されて、前記第1補助偏光層と前記第1基板の間には、配向膜が配置される、ことが望ましい。
また、本発明に係る液晶表示装置の一態様では、前記第2補助偏光層は、前記第2偏光板と前記第2基板との間に配置されて、前記第2補助偏光層と前記第2基板の間には、配向膜が配置される、ことが望ましい。
また、本発明に係る液晶表示装置の一態様では、前記第1補助偏光層は、前記第1偏光板の前記観察者側に、該第1偏光板に接して配置される、ようにしてもよい。
また、本発明に係る液晶表示装置の一態様では、前記第2補助偏光層は、前記第2偏光板の前記バックライト側に、該第2偏光板に接して配置される、ようにしてもよい。
本発明によれば、配向が整えられた塗布型偏光層を含む多層偏光層を有することにより、コントラスト比が高い偏光素子が実現される。
実施形態1に係る液晶表示パネルの概略構成を示す模式断面図である。 せん断応力により形成される塗布型偏光層における光学特性の膜厚依存性を示す図である。 多層型偏光層の膜厚とコントラスト比の関係を示すグラフである。 多層型偏光層の膜厚と平行透過率の関係を示すグラフである。 平行透過率40%を維持する場合の、多層偏光層において積層する各偏光層の膜厚とコントラスト比の関係を示すグラフである。 多層型偏光層の平行透過率とコントラスト比の関係を示すグラフである。 実施形態1に係る液晶表示パネルの副画素の主要部の概略構成を示す平面図である図8のA−A´断面を模式的に示す図である。 実施形態1に係る液晶表示パネルの副画素の主要部の概略構成を示す平面図である。 実施形態1に係る液晶表示パネルの全体のレイアウトを模式的に示すブロック図である。 実施形態1に係る第1偏光板の直線偏光の吸収軸と、第2偏光板の直線偏光の吸収軸と、液晶層の液晶分子長軸の配向方向と、画素電極の長手方向の関係の一例を示す説明図である。 実施形態1に係る液晶表示パネルの表示領域に構成されたアクティブマトリクスの等価回路図である。 実施形態1に係る液晶表示装置の主要部の構成を示す概略断面図である。 実施形態2に係る液晶表示パネルの概略断面図である。 実施形態2に係る第1基板(カラーフィルタ基板)の概略平面図である。 実施形態3に係る液晶表示装置の概略断面図である。 実施形態3に係る液晶表示装置の第1偏光板と第2偏光板、さらに第1補助偏光層の吸収軸の説明図である。 配向規制力を有する配向膜上に塗布された偏光層における色素分子の配向モデルを示す図である。 実施形態4に係る液晶表示装置の概略断面図である。 実施形態4に係る液晶表示装置の第1偏光板と第2偏光板、さらに第2補助偏光層の吸収軸の説明図である。 実施形態5に係る液晶表示装置の概略断面図である。 実施形態5に係る液晶表示装置の第1偏光板と第2偏光板、さらに第1補助偏光層の吸収軸の説明図である。 実施形態6に係る液晶表示装置の概略断面図である。 実施形態6に係る液晶表示装置の第1偏光板と第2偏光板、さらに第2補助偏光層の吸収軸の説明図である。
以下、本発明に係る各実施形態について、図面を参照して説明するが、種々の変更は可能であり、また、下記実施形態同士の組み合わせは本発明に包含されるものである。なお、各実施形態では、IPS方式の液晶表示パネルを用いているが、これに限定されることなく例えばTN方式やVA方式の液晶表示パネルであってもよい。また、IPS方式の液晶表示パネルは、いわゆる横電界により液晶分子が面内で回転させられるものであり、画素電極と共通電極を同一基板の異なる層に形成し、少なくとも液晶層に近い側の電極を櫛歯形状とし、フリンジ電界を形成して液晶を駆動するものについても含むものとする。
[実施形態1]
図1は実施形態1に係る液晶表示装置における液晶表示パネルの概略構成を示す模式断面図である。液晶セル15は、カラーフィルターが形成されたカラーフィルター基板(以下、第1基板110)と、マトリクス状に薄膜トランジスタが配置されたアクティブマトリクス基板(以下、第2基板111)と、よって液晶層160を封止している。また、液晶セル15の観察者側の面には第1偏光板210が、液晶セル15のバックライト3側の面には第2偏光板220が形成される。この第1偏光板210及び第2偏光板220は、以下で説明する多層型偏光層(多層偏光層)を有し、多層型偏光層における複数の偏光層の各々の吸収軸は平行となるように積層される。また、第1偏光板210の吸収軸と第2偏光板220の吸収軸は互いに直交するように形成される。
本実施形態における第1偏光板210及び第2偏光板220は、基材上に、複数の塗布型偏光層(以下、本明細書においては単に偏光層ともいう)が積層されて構成される多層偏光層が形成されている。本実施形態における塗布型偏光層は、非特許文献1に記載されているリオトロピック液晶染料であるが、非特許文献2に記載されている材料を用いてもよい。塗布型偏光層はこれらを塗布することで形成することができる。また、リオトロピック液晶染料を塗布する場合には、スリットダイコータ等を用いて色素を配向させると良い。スリットダイコータは、溶液状態の偏光層材料を塗布面に供給しつつ、当該材料へ圧力を加えながら塗布方向に引き伸ばすことができる。この工程により色素を配向することによって、多層偏光層のうちの1層となる塗布型偏光層が形成できる。また、塗布型偏光層の上層にさらに塗布型偏光層を積層する際には、下層となる塗布型偏光層に不溶化処理を施す。塗布型偏光層は、インダンスロン誘導体、ペリレンテトラカルボン酸のジベンズイミダゾール誘導体やナフタレンテトラカルボン酸誘導体をスルホン酸化したクロモニック相を発現するリオトロピック液晶相として形成される。この塗布型偏光層を塩化バリウムによって脱スルホン化することで不溶化する。これにより、上層を積層する際に、下層の偏光層において新たに生じる配向乱れを抑制することができる。本実施形態における多層偏光層は、塗布型偏光層を塗布して、スリットダイコータ等によりせん断応力をかけて配向させて積層する偏光層積層工程と、積層された偏光層を不溶化する不溶化処理工程とが繰り返されて、形成される。
本実施形態では、多層偏光層における各塗布型偏光層については、せん断応力によって自己配列されることとなる。このせん断応力によって形成される塗布型偏光層(第1偏光層)の配向性には、図2に示すような膜厚依存性がある。ここで図2は、せん断応力により形成される塗布型偏光層における光学特性の膜厚依存性を示す図であって、同図における光学特性としては、色素の配向性を表すパラメータである二色比が用いられる。同図で示すように、本実施形態で検討した偏光層材料の場合、膜厚約270nmで最大の二色比が得られ、約270nmをピークとして二色比が低下する。すなわち、本実施形態におけるリオトロピック液晶染料では、従来用いられていた300〜800nmの膜厚よりも薄い膜厚となる300nm以下において良好な二色比(良好な配向性)を有することとなる。このため、複数の偏光層を積層して多層偏光層を構成する場合には、せん断応力によって形成される塗布型偏光層の各層における膜厚を300nm以下にして積層するのが望ましく、特にニ色比がピークとなる270nmの近傍の膜厚によって多層偏光層の各偏光層が形成されるのがよい。具体的には、本実施形態における第1偏光板210及び第2偏光板220は、製造ばらつきを許容させて270nm±20nmの膜厚で2層積層した多層偏光層を有する。なお、ニ色比は、吸収軸に対して平行な方向の吸光度と垂直な方向の吸光度の比を取ったものである。
図3は、多層型偏光層の膜厚とコントラスト比の関係を示すグラフである。同図においてプロットされる各符号は、100nm、270nm、300nmの各厚みを有し、せん断応力によって自己配列された塗布型偏光層を多層に積層した多層偏光層と、単一層による従来の塗布型偏光層の場合を示している。100nm、270nm、300nmの塗布型偏光層については、それぞれ1層〜4層ずつ積層した場合が同図においてプロットされている。ここで積層する層数を4層までとしているのは、プロセスコスト上の観点から実用性を考慮したために過ぎないものであり、5層以上積層するようにしても良いのはいうまでもない。図3におけるコントラスト比(縦軸)は、ほぼ同じ膜厚を有する塗布型偏光層を二枚用いて計測される平行透過率及び直交透過率から求められる。同図で示されるように、偏光層の膜厚が500nm以上となる場合において、従来の単一層による偏光層の場合、コントラスト比は飽和するのに対し、2〜4層の塗布型偏光層が積層された多層型偏光層による偏光素子の場合では、膜厚が厚くなってもコントラスト比は向上する。なお、光学特性の膜厚依存性(コントラスト比又は平行透過率と膜厚の関係)を示す図3以降のグラフは、配向規制力を有しない基材上に塗布型偏光層を積層している場合の光学特性を示すものであって、層毎に色素分子が一様な配向で積層された塗布型偏光層による光学特性となっている。
図3においては、従来の単一層による塗布型偏光層は、膜厚が厚くなるとコントラスト比が飽和する傾向にあるのに対し、塗布型偏光層を多層に積層することで、コントラスト比は増加する傾向が得られることが示される。これは、従来の単層による偏光層では膜厚が約270nmよりも厚くなると色素の配向性が低下するのに対し、多層型偏光層は偏光層を積層することによって全体の膜厚を厚くしても、積層する各偏光層における色素分子の配向性が一様に維持されるためである。
積層する偏光層の膜厚が薄い場合に、高いコントラスト比を得るためには、偏光層の積層数を増やす必要がある。偏光層の積層数を増やすと、コストの増加が懸念されるため、多層型偏光層を作製する場合は、偏光層の積層数は三層以下が望ましい。また、現在の中小型液晶表示パネルのコントラスト比は200〜1000である。二枚の多層型偏光層を平行及び直交配置にした場合の透過率の比で表される多層型偏光層のコントラスト比を1000以上得るためには、図3に示すように、偏光層の積層数を二層以上または三層以上にして、かつ、積層する偏光層の膜厚を100nm以上とすれば実現できる。
図3において示されるように、積層する偏光層の膜厚が厚い場合よりも薄い場合の方が、膜厚に対するコントラスト比の向上効果が大きくなる。また、図4は、多層型偏光層の膜厚と平行透過率の関係を示すグラフである。同図において示されるように、積層する偏光層の膜厚が厚い場合よりも薄い場合の方が膜厚に対する平行透過率の低下が大きくなる。これは、多層型偏光層の平行透過率及び直交透過率は、偏光層を積層する回数に応じてそれぞれ低下することとなるためである。このため、偏光層を積層する回数が多いとコントラスト比の向上効果は大きいが、平行透過率の低下も大きい。また逆に、積層する回数が少ないとコントラスト比の向上効果は小さいが、平行透過率の低下も小さい。
液晶表示装置を高輝度にするには、第1偏光板210及び第2偏光板220の平行透過率を高くする必要がある。現在において、偏光板の平行透過率としては、40%以上が必要とされている。このため、多層型偏光層を有する第1偏光板210及び第2偏光板220においても、平行透過率40%となるように多層型偏光層の各偏光層における膜厚等の条件を選択する必要がある。図5は、平行透過率40%を維持する場合の、多層偏光層において積層する各偏光層の膜厚とコントラスト比の関係を示す。図5においては、膜厚100nm、270nm、300nm、500nmにおけるコントラスト比が示されている。膜厚100nmで4層、膜厚270nmで2層、膜厚300nmで2層、膜厚500nmで1層積層される場合に、平行透過率がほぼ40%となり、図5においてはこの場合のコントラスト比がそれぞれ示されている。同図で示すように、平行透過率40%時の多層型偏光層のコントラスト比は、膜厚約270nmの偏光層を積層する場合に最大となる。これは、膜厚270nmで偏光層の色素の配向性が最も高いからである。また、平行透過率40%時の多層型偏光層のコントラスト比は積層する膜厚が270〜300nmの間において急激に低下する。これは、積層する膜厚が270nmよりも薄い場合は、膜厚に対するコントラスト比の向上効果が大きいのに対し、270nmよりも厚い場合にはコントラスト比の向上効果が小さくなるためである。このため、平行透過率を40%確保してコントラスト比を向上させるように多層型偏光層を作製する場合には、積層する偏光層の膜厚を270nm以下とするのがさらに好適である。
また、図6は、多層型偏光層の平行透過率とコントラスト比の関係を示す。同図においては、単層の場合、膜厚が100nm、270nm、300nmの塗布型偏光層を複数層積層した多層型偏光層の場合における光学特性が示されており、積層数が多くなるに従って平行透過率が低下してコントラスト比が向上していく様子も示される。また、図6において鎖線で示される領域は、平行透過率が40%以上、かつ、コントラスト比が1000以上となることを示している。この鎖線で示された光学特性を有する領域内には、膜厚100nmで3層積層された多層型偏光層と、膜厚270nmで2層積層された多層型偏光層とが該当することとなる。したがって、膜厚100nm〜270nmにおける偏光層を用いることで、積層数が3層以下の低コストで、平行透過率の低下を抑制しつつ高コントラスト比の偏光部材を実現できる。
なお、本実施形態では、配向規制力を特に有していない基材上に、例えば270nm±20nmの膜厚で、せん断応力によって色素を自己配列させた複数の塗布型偏光層によって多層偏光層を形成している。このため、多層偏光層における各偏光層においては一様に色素分子が配向されることとなる。しかし、この多層偏光層は、配向規制力を有する基材上に形成してもよい。
配向規制力は、基材に配向膜を設けることによって付与される。この配向膜としては、第1基板110や第2基板111に形成される液晶層のラビング用の配向膜と同様に、ポリイミド系高分子、あるいはダイヤモンドライクカーボンなどを用いてよい。配向規制力を有する部材を用いる場合には、基材に接して上側に積層される塗布型偏光層は、配向規制力によって色素分子が配列される塗布型偏光層(第2偏光層)であって、上述したように、基材から上側に離れるにしたがって配向規制力が弱くなって配向乱れが生ずる。一方、多層偏光層における2層目以降の塗布型偏光層(第1偏光層)については、配向規制力を有した基材に接していないことから、せん断応力によって一様に色素分子が配向されることとなる。後者の塗布型偏光層における光学特性の膜厚依存性は、上述の図2のようになるが、前者の塗布型偏光層における光学特性の膜厚依存性については、膜厚が薄いほうが色素の配向性が高くなる傾向にある。したがって、例えば、配向規制力が付与された基材を用いて、これに接する塗布型偏光層の膜厚を300nm以下で形成し、さらに、せん断応力によって自己配列される2層目以降の塗布型偏光層の膜厚を270nm±20nmで形成することで、全ての塗布型偏光層がせん断応力によって自己配列される場合よりもコントラストや透過率が向上することとなる。配向規制力が付与された基材に接する塗布型偏光層は、他の2層目以降の塗布型偏光層と同様の膜厚で積層して良い。
なお、積層する偏光層の膜厚が薄い場合に、高いコントラスト比を得るためには、偏光層の積層数を増やす必要がある。偏光層の積層数を増やすと、コストの増加が懸念される。このため、偏光層のうちの1層を配向膜に接して形成する場合においても、偏光層の積層数は三層以下が望ましい。このため、配向膜上に偏光層を形成する場合においても、偏光層の膜厚100〜270nmを積層することで、せん断応力で多層型偏光層を形成する場合よりも高コントラスト比、高透過率、低コストを実現できる。
なお、本実施形態では、多層偏光層における膜厚がほぼ同様の寸法で形成されるようにしているが、各偏光層の膜厚が異なるように形成されてもよい。また、本実施形態における各偏光層は、リオトロピック液晶染料で形成されているが、偏光層毎に異なる材料が用いられても良い。なお、本実施形態では、第1偏光板210及び第2偏光板220の双方が、多層偏光層を有する偏光素子で形成されるようにしているが、いずれか一方の偏光板を当該多層偏光層を有する偏光素子で形成して、他方の偏光板をヨウ素を混ぜたPVA樹脂を延伸して形成してもよい。
図7は、本実施形態に係る液晶表示パネル1(第1基板110、液晶層160、第2基板111、第1偏光板210、第2偏光板220を主に含んで構成される)の副画素100の主要部の概略構成を示す断面図である。尚、図7は図8のA-A’線に沿った断面構造を模式的に示す図である。また、図9は本実施形態に係る液晶表示パネル1の全体のレイアウトの一例を模式的に示すブロック図であり、図9に示すように,液晶表示パネル1は第2基板111の中央部を含む領域に表示領域5が設けられる。表示領域5の上側には,データ線(信号線)7に対して画像信号を出力するデータ駆動回路2、左側にはゲート線(走査線)8に対して走査信号を出力する走査駆動回路4が設置されている。これらの駆動回路2、4はNチャネル型とPチャネル型の薄膜トランジスタ(TFT:Thin Film Transistor )による相補型回路から構成されるシフトレジスタ回路、レベルシフタ回路、アナログスイッチ回路などから構成される。液晶表示パネル1は従来のアクティブマトリクス駆動型の液晶表示パネルと同様、複数のゲート線8と、該ゲート線8の延在方向に対して交差する方向に延在させた複数のデータ線7が設けられており、ゲート線8とデータ線7とが交差するところにマトリクス状に副画素が配置される。
図7に示すとおり、本実施形態に係る液晶表示パネルは、絶縁性を有して平坦かつ透明で光学的に等方な透明体からなる第1基板110および第2基板111を有する。第1基板110および第2基板111としては、ガラスが一般的であり、上記要件を満たし、さらに耐熱性や耐久性を改良した高分子フィルムを用いることができる。
第1基板110には、カラーフィルター層やラビング配向膜(いずれも図7において不図示)が積層されている。第1基板110上には、カラーフィルター層が形成されて、当該第1基板110をカラーフィルター基板と呼ぶ。カラーフィルター層は個々の副画素が担当する色、例えば赤色、緑色、青色などの加法混色の3原色、あるいは、黄色、マゼンタ色、シアン色など減法混色の3原色、あるいは青緑色や黄緑色など、その副画素に所望の色を透過するものを用いる。ラビング配向膜としてはポリイミド系高分子、あるいはダイヤモンドライクカーボンなどを用いる。
第2基板111は、スイッチング素子120を備える。第2基板111上には、マトリクス状にTFTが配置されて、当該第2基板111をアクティブマトリクス基板と呼ぶ。スイッチング素子120はポリシリコンやアモルファスシリコンあるいは有機物からなる半導体層を備える薄膜トランジスタから構成される。ここでは1例として、ポリシリコンからなる薄膜トランジスタの場合を説明するが、本発明はこれに限定されるものではない。ポリシリコン薄膜トランジスタからなるスイッチング素子120は、ソース・ドレイン領域やチャネル領域となる半導体層121などを含むポリシリコン層の上にゲート絶縁層122、ゲート電極123、第1の層間絶縁層124、電極層125A、電極層125B、第2の層間絶縁層126を有する。
ゲート絶縁層122、第1の層間絶縁層124は、例えばSiOx(酸化シリコン)からなり、第2の層間絶縁層126は例えばSiNx(窒化シリコン)からなる。電極層125Aおよび電極層125Bとしては金属電極材料を用いればよく、例えばアルミニウム層の上下をチタン(Ti)やタングステン(W)などでサンドイッチした三層積層構造の膜を用いることができるがこれに限定されるものではない。電極層125Aおよび電極層125Bは第1の層間絶縁層124に形成した開口を通して、半導体層121のソース領域とドレイン領域とそれぞれ接続する。
尚、スイッチング素子120と第2基板111との間には第2基板111から半導体層121やゲート絶縁層122へのNaやKなどのイオンの混入をブロックするために下地膜113を設けると良い。下地膜113は第2基板111側から順に、SiNxなどからなる層とSiOxなどからなる層とを積層した構造とする。
スイッチング素子120の上には絶縁層127が設けられる。この絶縁層127はスイッチング素子120や配線などによる段差を平坦化する機能を有する。段差を平坦化するには溶液状態で層形成可能な材料が望ましい。従って、絶縁層127としては有機系の材料、あるいは溶剤に分散させ塗布成膜を可能とした無機材料を用いることができる。また、絶縁層127はバックライトからの光を効率よく通過させるために可視光に対する吸収が小さい透明な材料が望ましい。従って、絶縁層127としては感光性のポリイミド系やアクリル系樹脂などの有機材料が望ましい。
絶縁層127の上層には共通電極130を形成する。共通電極130の上層には絶縁膜140を形成し、さらにその上に画素電極150を形成する。絶縁膜140を形成する場合、可視光に対して透明な絶縁材料が良く、ポリイミド系やアクリル系などの透明樹脂材料、あるいはSiOx(酸化シリコン)やSiNx(窒化シリコン)などの透明な無機材料が使用できる。画素電極150は透明な導電材料で構成することが望ましく、共通電極130と同様、例えばITO(Indium tin oxide)が好適であり、InZnOなどその他の透明な導電材料を使用することも出来る。また、画素電極150は絶縁膜140、共通電極130、絶縁層127、第2の層間絶縁層126を貫通する開口(スルーホール)195を介して、スイッチング素子120を構成する電極層125Aと接続する。スルーホール195は直接、画素電極150と同じ導電材料で充填する、或いは、電極層125Aと画素電極150を構成する電極材料の接触性を高めるために図示しない中間層を設けても良い。
尚、共通電極130はスルーホール195の部分に画素電極150と接触することがないような十分な大きさの開口を設け、絶縁層を介して完全に分離する。
図8は、本実施形態に係る液晶表示パネル1の副画素100の主要部の概略構成を示す平面図である。画素電極150は、図8に例示するとおり、櫛歯状に形成する。また、図7に示すとおり、電極層125Bはデータ線7と接続し、ゲート電極123はゲート線8と接続するが、それぞれデータ線7を引き出して電極層125Bとし、ゲート線8を引き出してゲート電極123としても良い。
また、絶縁膜140及び画素電極150の上にはこれらを被覆する配向膜(図7において不図示)を形成する。配向膜は第1基板110に形成する配向膜と同様、ポリイミド系高分子、あるいはダイヤモンドライクカーボンなどを用いる。
第1基板110と第2基板111は配向膜形成面を向かい合わせ、図示しないスペーサーにより、一定の間隙を設けた状態で枠状のシール材で周囲を接着することで内部に空間を形成する。この空間に誘電異方性が正のネマチック液晶を封入し、封止することで液晶層160が設けられる。液晶層160は第1基板110と第2基板111上に形成された配向膜に施される配向処理により、その液晶分子長軸の配向方向が規定される。液晶層160の液晶配向方向は、2枚の透明基板(第1基板110,第2基板111)間で捩じれのない、いわゆるホモジニアス配向とする。
液晶層160の厚さdは、液晶材料の屈折率異方性をΔnとすると、リタデーションΔndが1/2波長、つまり、波長550nmの光に対してはΔndが275nmとなる厚さdを選択すると良い。但し、実際の液晶表示パネル1では液晶分子は一様に配向変化しないため、より明るい表示を得るためには液晶層160のリタデーションΔndは1/2波長よりも多少多め、例えば、波長550nmの光に対しては275nm≦Δnd≦400nmの範囲内から適切な厚さdを選択するとよい。
図10は第1偏光板210の直線偏光の吸収軸210Aと、第2偏光板220の直線偏光の吸収軸220Aと、液晶層160の液晶分子長軸の配向方向160Aと、画素電極150の長手方向150Aの関係の一例を示す説明図である。本実施形態では、液晶層160を挟んで互いに吸収軸が直交するように、第1偏光手段と第2偏光手段が配置されて、第1偏光手段は第1偏光板210によって構成され、第2偏光手段は第2偏光板220によって構成される。
本実施形態におけるIPS方式では、液晶層160の液晶分子長軸の配向方向(液層配向方向)160Aは画素電極の長手方向150Aに対し、角度αだけ傾ける。この角度αは±5度から±30度の範囲内に設定され、配向の安定性や表示の明るさを考慮すると角度αは±7度から15度とすることが望ましい。また、第1偏光板210の吸収軸210Aと第2偏光板220の吸収軸220Aは互いに直交し、液晶層160の液晶分子長軸の配向方向(液層配向方向)160Aは第1偏光板の吸収軸210Aと平行または直交となるようにする。
ここでは図10で示す通り、画素電極150の長手方向150Aはデータ線7が伸びる方向(延在方向)と平行とし、第1偏光板210の吸収軸210Aと液晶配向方向160Aはともに画素電極150の長手方向150Aに対して角度α(例えば15度)だけ傾ける。また、第2偏光板220の吸収軸220Aはともに第1偏光板210の吸収軸210A及び液晶配向方向160Aに対し直交させる。
図11は本実施形態に係る液晶表示パネル1の表示領域2に構成されたアクティブマトリクスの等価回路図である。液晶表示パネル1は従来のアクティブマトリクス駆動型の液晶表示パネルと同様に、複数のゲート線8と、該ゲート線8の延在方向に対して交差する方向に延在させた複数のデータ線7が設けられており、図11に示すようにm本のゲート線G1,G2,・・・,Gmとn本のデータ線D1,D2,・・・,Dnとの交差するところにマトリクス状に副画素100が配置される。また、共通電極は少なくともゲート線と同じ方向に延在するように形成すればよく、図11では便宜上、m本の共通電極CT1,CT2, ・・・,CTmと表記している。あるいはゲート線8と同じ方向に延在する共通電位配線をm本設けて、各副画素に形成する共通電極を接続するようにしても良い。あるいは、共通電極はスルーホールなど不要な部分を除いて表示領域を全域を覆うように形成しても良い。いずれにしても共通電極は所定の電位に制御できるように接続する。
各副画素は等価回路図では画素電極と共通電極とこれら電極に挟まれた絶縁膜140により形成される容量素子(蓄積容量)Cstと、液晶層により形成される容量素子Clcと、スイッチング素子120を有する。
副画素の駆動は1行目のゲート線G1からターンオン電圧を順次供給し、1フレーム期間内にm行のゲート線に対して順次この電圧(走査信号)を供給する。走査信号によってスイッチング素子120がオン状態になると、データ線7から画像信号に応じた電圧がスイッチング素子120を介して画素電極に供給される。つまり、あるゲート線8にターンオン電圧が供給されている間はそのデータ線7に接続されたスイッチング素子120は全てオン状態となり、それに同期してn列のデータ線Dnにデータ電圧が供給される。すなわち、液晶表示パネル1の駆動方法は従来のアクティブマトリクス駆動型のIPS方式の液晶表示装置と同じであるので詳細な説明は省略する。
図12は、本実施形態に係る液晶表示装置の主要部の構成を示す概略断面図である。この液晶表示装置は液晶表示パネル1と、その背面に配置するバックライト3とから構成される。
液晶表示パネル1は上記説明の通り、第1基板110と第2基板111を有する。
一般に第2基板111は第1基板110よりも大きな基板とし、第2基板111の第1基板110側の面上であって、第1基板110に覆われない領域に画像信号などの映像情報を電気的信号として外部と接続する領域を有する。つまり、液晶表示パネル1は第2基板111上であって、第1基板110が重なっていない領域にフレキシブルプリント回路板(FPC)50を備え、このFPC50を介して外部と電気的に接続する。また、この領域には必要に応じてドライバとして機能する半導体チップ(不図示)を実装してもよい。
バックライト3は液晶表示パネル1の表示領域をその背面側から照明するものである。バックライト3としてはエッジライト方式(導光体方式)、直下方式(反射板方式)、面状光源方式などがある。バックライト3はこれらの方式やその他の方式の中から用途や目的、表示領域の大きさに合わせて最適な方式を選べばよい。ここでは、エッジライト方式のバックライトについて説明するが、本発明はこれに限定されるものではない。
バックライト3は、裏面に白色顔料によるドット印刷、或いは微細な凹凸形状やレンズ形状等の光の進行方向を変える手段を形成した透明な樹脂からなる導光体60と、導光体60の端面に配置した光源61と、導光体60の裏面側に配置した反射シート62と、導光体60の表面側に配置したプリズムシートや、拡散シートなどの光学フィルム類63とを有する。
光源61としては冷陰極管や熱陰極管などの線状光源や発光ダイオード(LED)などの点状光源を使用することができる。ここでは以下、光源61としてLEDを使用する場合を説明するが本発明はこれに限定されるものではない。光源61としてLEDを用いる場合は、光源からの光を導光体60に効率よく入射させるため、図示しない反射体を設けたり、LEDの発光部の周囲に形成するモールド樹脂の形状を工夫すると良い。
この構成において、光源61から出射し、導光体60に入射する光は全反射しながら導光体60内を伝播する。導光体60内を伝播する光のうち導光体裏面に施された、光の進行方向を変える手段に至った光は、その進行方向が変わり、導光体60の表面側から出射する。導光体60から出射する光は、プリズムシートや拡散シートなどの光学フィルム類63により出射角度の分布や、面内での輝度分布が調整された後、液晶表示パネル1に照射される。
バックライト3から出射し、液晶表示パネル1に照射される光は第2偏光板220を通過した後、液晶層160を通過して第1偏光板210に入射する。この際、映像情報発生部(不図示)から伝えられる映像情報に対応した駆動電圧を画素電極に印加し、画素電極と共通電極との間に電位差を生じさせ電界を形成することで液晶分子の配向方向を変えることが出来る。この作用により液晶層160を通過する光の偏光状態を変化させて、第1偏光板210を透過する光の量が制御され、観察者20に透過光が到達する。
例えば、駆動電圧が0V、つまり、画素電極150と共通電極130とに電位差がなく電界が形成されない場合、液晶分子の配向方向は変わらないので液晶層160を通過する光の偏光状態は維持される。このため、液晶層160を通過する光は第1偏光板210で吸収されて黒(暗)表示となる。一方、所定の駆動電圧を画素電極150に印加し、共通電極130との間に所定の電界を形成すると、液晶の配向方向が変わり、液晶層160を通過する光の偏光状態は変化する。このため、液晶層160を通過する光はその偏光状態の変化に応じて第1の多層型偏光層21を透過して所定の明るさの表示となる。つまり、駆動電圧が零の場合に黒(暗)表示となり、所定の駆動電圧が印加されると明表示となる、所謂、ノーマリーブラック型となる。
[実施形態2]
以下、実施形態2に係る液晶表示装置について図面を参照して説明する。上記の実施形態1では、互いに直交する偏光方向の光を透過させる第1偏光手段及び第2偏光手段が、液晶層160を挟む様にして配置されており、第1基板110の観察者側に第1偏光板210が第1偏光手段として、第2基板111のバックライト側に第2偏光板220が第2偏光手段として配置されている。一方、実施形態2では、第1偏光手段として、カラーフィルター基板である第1基板110と液晶層160との間に多層型偏光層が配置されている点で第1実施形態と異なっている。この点以外については、実施形態1と略同様となっており説明を省略する。
実施形態2における、第1基板110に配置された第1偏光板210について、図13、図14を用いて説明する。図13は、実施形態2に係る液晶表示パネルの概略断面図を示す。また、図14は、実施形態2に係る第1基板(カラーフィルタ基板)110の概略平面図を示す。実施形態2では、第1基板110の一絵素は、R、G、Bの三原色構成とする。図13に示すように、第1基板110上には、フォトリソグラフィ法により、塗布、プリベーク、露光、現像、リンス、ポストベークの工程を経て、ブラックマトリクス190が形成される。実施形態2では、ブラックマトリクス190の膜厚を1.5μmとしたが、膜厚は光学濃度が概ね3以上になるように、用いるブラックレジストに合わせて設定すればよい。次に、各色カラーレジストを用いて、フォトリソグラフィ法に従い、塗布、現像、リンス、ポストベークの工程を経てカラーフィルター層180を形成する。実施形態2では、Bが3.0μm、Gが2.8μm、Rが2.7μmとしたが、膜厚は所望の色純度、もしくは液晶層厚に対して適宜合わせればよい。さらに次に、表面の平坦化及びカラーフィルター180の保護を目的として、カラーフィルター層180上にオーバーコート膜170を形成する。露光には、高圧水銀ランプのI線により200mJ/cm2の光量を照射し、200℃、30分加熱することでオーバーコート膜170を形成する。
そして、オーバーコート膜170の上側(図13において図中下側)に、このオーバーコート膜170を基材として多層型偏光層210が形成されることにより、液晶層160とカラーフィルター層180との間に第1偏光手段が設けられることとなる。この多層型偏光層210は、実施形態1における第1偏光板210に相当するものであり、第2偏光板220と透過軸が直行して設けられる。これにより、第2偏光板220と多層型偏光層210とが対になって、バックライト3から液晶層160を経て観察者側に透過する透過光を制御する役割を果たす。実施形態2における多層型偏光層210には、リオトロピック液晶染料により、高い配向性が得られる膜厚約270nmで二層積層されたものを用いられるが、所望のコントラスト比及び透過率が得られる膜厚で二層以上積層したものを用いても良いし、他の材料を用いて多層型偏光層210を形成してもよい。多層型偏光層210を形成する際には、一層目の偏光層を積層した後、当該一層目の偏光層に不溶化処理を施す。この処理を施すことで、偏光層を積層することによる下層の色素の配向乱れを抑制することができる。更に、一層目の偏光層を積層・不溶化した後には、二層目の偏光層が積層されて不溶化処理が施され、2層目の上側に保護層230が積層される際に発生しうる配向乱れが抑制される。
また、実施形態2では、多層型偏光層210を形成した上側には、保護層230が形成されるが、この保護層230は必要に応じて形成されるようにすればよい。保護層230としては、バックライトからの光を効率よく通過させるために可視光に対する吸収が小さい透明な材料が望ましい。従って、保護層230としては感光性のポリイミド系やアクリル系樹脂などの有機材料が望ましい。また、保護層230上には、液晶層160をラビングするための配向膜(図13において不図示)が形成される。このラビング用の配向膜は、第2基板111に形成する配向膜と同様、ポリイミド系高分子、あるいはダイヤモンドライクカーボンなどを用いる。
次に、第1基板110と第2基板111は、配向膜形成面を互いに向かい合わせ、図示しないスペーサーにより一定の間隔を設けた状態で枠状のシール材で周囲を接着することで内部に空間を形成する。この空間に誘電異方性が正のネマチック液晶を封入し、封止することで液晶層160が設けられる。
実施形態2のように、多層型偏光層を液晶層160とカラーフィルター層180との間に第1偏光手段を内蔵することで、実施形態1と同様に、平行透過率の低下を抑制しつつ高いコントラスト比を実現することができる。そしてさらに、カラーフィルター層180には偏光を解消する消偏性があるため、実施形態2のように、カラーフィルター層180が形成された第1基板110よりも液晶層160側に多層型偏光層210を配置することで、液晶層160を透過して観察者に提供される透過光の、カラーフィルター層180による偏光解消の影響を低減することができ、さらにコントラスト比や透過率を向上することができる。
なお、実施形態2では、第2偏光板220は、実施形態1と同様に多層偏光層を有する第2偏光手段として形成されるが、ヨウ素を延伸することにより形成した偏光板で形成されていてもよい。
なお、実施形態2では、第1基板110のオーバーコート膜170を基材として、第1基板110に多層型偏光層を形成している。実施形態2においては、このオーバーコート膜170には配向規制力を付与されないが、付与するようにしてもよい。
[実施形態3]
次に、実施形態3にかかる液晶表示装置について図面を参照して説明する。上記の実施形態1及び2では、第1偏光手段として多層型偏光層を有する第1偏光板210、又は第1偏光板210に相当する多層型偏光層210が設けられていたが、実施形態3では、第1基板110の観察者側に配置された第1偏光板210と、第1基板110との間にさらに第1補助偏光層13A及び配向膜14Aが設けられる点で異なっている。すなわち、実施形態3においては、第1偏光板210と第1補助偏光層13Aと配向膜14Aとを含んで第1偏光手段が構成されている。なお、実施形態3における第1偏光板210及び第2偏光板220は、ヨウ素が延伸されることにより形成されているが、リオトロピック液晶染料等の色素が塗布されることにより偏光層が多層に積層された多層偏光層を有して構成されても良い。
図15は、実施形態3に係る液晶表示装置の概略断面図を示す。また、図16は、実施形態3に係る液晶表示装置の第1偏光板210と第2偏光板220、さらに第1補助偏光層13Aの吸収軸の説明図を示す。図15に示すように、第1基板110の観察者側の面には、配向膜14A及び第1補助偏光層13Aが形成される。配向膜14Aは第1基板110に形成されて、配向処理が施された配向膜14A上には第1補助偏光層13Aが形成される。配向膜14Aは、第1基板110に形成される液晶層160のラビング用の配向膜(不図示)と同様に、ポリイミド系高分子、あるいはダイヤモンドライクカーボンなどを用いて形成されてよいし、また、配向膜14Aは、光照射により配向機能が付与される材料で形成されてもよい。
また、図16に示すように第1補助偏光層13Aは、その吸収軸と第2の偏光板220の吸収軸がほぼ直交の関係になるように形成する。また、実施形態3における第1補助偏光層13Aは、リオトロピック液晶染料によって形成され、第1補助偏光層13Aに不溶化処理を施すことで第1補助偏光層13Aの色素が安定化する。さらに、第1偏光板210は、第1補助偏光層13Aに直接貼付けられる。第1偏光板210と第1補助偏光層13Aの吸収軸は、互いに略平行の関係となる。
ここで、実施形態3における第1補助偏光層13Aを設ける理由を述べる。一対の偏光板を有する液晶表示装置を、斜め方向からを観察すると、第1の偏光板210の吸収軸と第2の偏光板220の透過軸がずれる。この軸ずれによって、光漏れが発生し、正面から見た場合よりも斜め方向のコントラスト比が低下する。これに対して、第1の偏光板210と第2の偏光板220の間に第1補助偏光層13Aを設けることが有効である。この際、第1補助偏光層13AはE型偏光板であることが望ましい。第1補助偏光層13Aを設けることによって、斜め方向から観察した際の、第2の偏光板220の透過軸と第1補助偏光層13Aの吸収軸を一致させることができる。すなわち、斜め方向の光漏れを抑制できるため、視野角特性が改善される。この点に関しては、実施形態4においても同様である。
配向膜14Aは液晶層160と偏光層13Aとの間に形成することが望ましい。また、実施形態3における配向膜14Aは、第1基板110と第1補助偏光層13Aとの間に配置される。ここで、図17は、配向規制力を有する配向膜上に塗布された偏光層における色素分子の配向モデルを示す図である。図17に示すように、第1補助偏光層13Aは配向膜14Aの上側に形成されており、配向膜14Aから膜厚方向に離れるにつれて偏光層の色素分子の配向性が乱れることとなる。実施形態3の構成のように、第1基板110と第1補助偏光層13Aとの間に配向膜14Aを配置すると、液晶層160から出射した偏光は配向膜14A側から第1補助偏光層13Aに入射し、第1補助偏光層13Aを膜厚方向に通過する。この際、第1補助偏光層13Aの色素の配向乱れに起因して、第1補助偏光層13Aを出射する際に偏光が崩れることとなる。全方向に散乱される光のうち、偏光板210の吸収軸方向に散乱した光は偏光板210の吸収軸で吸収されるため、ほぼ直線偏光となる。すなわち、第1基板110と第1補助偏光層13Aとの間に配向膜14Aを配置することで、第1補助偏光層13Aの色素の配向乱れによる光の散乱を抑制することができる。したがって、第1補助偏光層13Aを設けることによって、液晶表示装置の斜め方向から観察した場合のコントラスト比の低下を抑制しつつ、正面コントラスト比の低下も抑制できる。
上記の実施形態3に係る液晶表示装置に対して、第1基板110に対して第1偏光板210の側に第1補助偏光層13Aを設けるとともに、第1偏光板210と第1補助偏光層13Aとの間に配向膜14Aを設けて、この点以外の他の部分の構成を実施形態3と略同様にした液晶表示装置を比較例1として作成した。すなわち、比較例1と実施形態3とでは、配向膜14Aの位置と第1補助偏光層13Aの位置を逆転させている。比較例1及び実施形態3の液晶表示装置の直交透過率を測定すると、相対的な直交透過率は、比較例1において1.0であるのに対し、実施形態3において0.5であった。このため、実施形態3は、光の散乱を抑制し、正面コントラスト比の低下を抑制できる構造であることを確認した。これにより実施形態3の液晶表示装置は、比較例1の液晶表示装置よりも光の散乱が抑制されて、正面コントラスト比の低下が抑制される。
[実施形態4]
上記の実施形態3では、第1補助偏光層13A及び配向膜14Aが液晶層160の観察者側に形成されていたが、実施形態4では、第2補助偏光層13B及び配向膜14Bがバックライト側に配置される点で異なっている。すなわち、実施形態4では、第2偏光板220と第2補助偏光層13Bと配向膜14Bを含んで第2偏光手段が構成されている。なお、実施形態4における第1偏光板210及び第2偏光板220は、ヨウ素が延伸されることにより形成されているが、リオトロピック液晶染料等の色素が塗布されることにより偏光層が多層に積層された多層型偏光層を有して構成されても良い。実施形態4は、上記の点以外については実施形態3と略同様であり、この同様となる点については説明を省略する。
図18は、実施形態4に係る液晶表示パネルの概略断面図を示す。また図19は、実施形態4に係る液晶表示装置の第1偏光板210と第2偏光板220、さらに第2補助偏光層13Bの吸収軸の説明図を示す。図18に示すように、第2基板111のバックライト3側に配向膜14B及び第2補助偏光層13Bが形成される。配向膜14Bは、第2基板111に形成されて、配向処理が施された配向膜14B上には第2補助偏光層13Bが形成される。配向膜14Bは、第2基板111に形成される液晶層160のラビング用の配向膜(不図示)と同様に、ポリイミド系高分子、あるいはダイヤモンドライクカーボンなどを用いて形成されてよいし、また、配向膜14Aは、光照射により配向機能が付与される材料で形成されてもよい。
また、図19に示すように第2補助偏光層13Bは、その吸収軸と第1偏光板210の吸収軸がほぼ直交の関係になるように形成する。また、実施形態4における第2補助偏光層13Bは、リオトロピック液晶染料によって形成され、第2補助偏光層13Bに不溶化処理を施すことで第2補助偏光層13Bの色素が安定化する。さらに、第2偏光板220は、第2補助偏光層13Bに直接貼付けられる。第2偏光板220と第2補助偏光層13Bの吸収軸は、互いに略平行の関係となる。
また、実施形態4における配向膜14Bは、第2基板111と第2補助偏光層13Bとの間に配置される。実施形態4では、第2基板111と第2補助偏光層13Bとの間に配向膜14Bを配置すると、バックライト3から出射した光は、第2偏光板220によってほぼ直線偏光となり、第2補助偏光層13Bを通過する。この際、第2補助偏光層13Bに入射した偏光は配向膜14Bから膜厚方向に離れた部分で偏光が崩れる。全方向に散乱した光のうち、第2補助偏光層13Bの吸収軸方向の光は、第2補助偏光層13Bによって吸収されるため、第2補助偏光層13Bを出射する光はほぼ直線偏光となる。すなわち、第2補助偏光層13Bの色素の配向乱れによる光の散乱を抑制することができる。したがって、第2補助偏光層13Bを設けることによって、液晶表示装置を斜め方向から観察した場合のコントラスト比の低下を抑制しつつ、正面コントラスト比の低下も抑制できる。
上記の実施形態4に係る液晶表示装置に対して、第2基板111に対して第2偏光板220の側に第2補助偏光層13Bを設けるとともに、第2偏光板220と第2補助偏光層13Bとの間に配向膜14Aを設けて、この点以外の他の部分の構成を実施形態4と略同様にした液晶表示装置を比較例2として作成した。すなわち、比較例2と実施形態4とでは、配向膜14Bの位置と第2補助偏光層13Bの位置を逆転させている。比較例2及び実施形態4の液晶表示装置の直交透過率を測定すると、相対的な直交透過率は、比較例2において1.0であるのに対し、実施形態4において0.5であった。このため、実施形態4は、光の散乱を抑制し、正面コントラスト比の低下を抑制できる構造であることを確認した。これにより実施形態4の液晶表示装置は、比較例2の液晶表示装置よりも光の散乱が抑制されて、正面コントラスト比の低下が抑制される。
[実施形態5]
次に、実施形態5にかかる液晶表示装置について図面を参照して説明する。上記の実施形態3では、第1基板110の観察者側に配置された第1偏光板210と、第1基板110との間にさらに第1補助偏光層13A及び配向膜14Aが設けられるが、実施形態5では、第1基板110の観察者側に配置された第1偏光板210と、第1偏光板210のさらに観察者側に第1補助偏光層13Cが配置される点で、実施形態3と異なっている。すなわち、実施形態5においては、第1偏光板210と第1補助偏光層13Cとを含んで第1偏光手段が構成されている。なお、実施形態5における第1偏光板210及び第2偏光板220は、ヨウ素が延伸されることにより形成されているが、リオトロピック液晶染料等の色素が塗布されることにより偏光層が多層に積層された多層偏光層を有して構成されても良い。実施形態5は、上記の点以外については実施形態3と略同様であり、この同様となる点については説明を省略する。
図20は、実施形態5に係る液晶表示装置の概略断面図を示す。図21は、実施形態5に係る液晶表示装置の第1偏光板210と第2偏光板220、さらに第1補助偏光層13Cの吸収軸の説明図を示す。図20に示すように、第1補助偏光層13Cが、液晶セル15の観察者側の第1偏光板210表面に配置される。第1補助偏光層13Cは偏光板210に直接形成される。第1補助偏光層13Cの表面には、必要に応じて保護層が形成されてよい。この保護層には、バックライトからの光を効率よく通過させるために可視光に対する吸収が小さい透明な材料が望ましい。従って、保護層としては感光性のポリイミド系やアクリル系樹脂などの有機材料が望ましい。
また、図21に示す通り、第1偏光板210と第2偏光板220の吸収軸はほぼ直交の関係になるように配置する。さらに、第1補助偏光層13Cの吸収軸は第1偏光板210の吸収軸とほぼ平行の関係になるように形成する。第1補助偏光層13Cは、配向膜上に形成されていないため、色素分子がせん断応力によって配列されるので膜厚方向に一様な配向となる。このため、第1偏光板210から出射した直線偏光は、第1補助偏光層13Cに入射することで、膜厚方向に一様に生じている配向乱れに起因して崩れることとなる。しかし、第1補助偏光層13Cの配向乱れにより偏光が崩れたとしても、観察者30に提供する表示画像への影響は少ない。このため、第1補助偏光層13Cを第1偏光板210表面に形成することで、光の散乱の影響がなく、正面における高コントラスト化を実現できる。
[実施形態6]
次に、実施形態6にかかる液晶表示装置について図面を参照して説明する。上記の実施形態4では、第2基板111のバックライト3側に配置された第2偏光板220と、第2基板111との間にさらに第2補助偏光層13B及び配向膜14Bが設けられる。一方、実施形態6では、第2基板111のバックライト3側に配置された第2偏光板220と、第2偏光板220のさらにバックライト3側に第2補助偏光層13Dが配置される点で、実施形態4と異なっている。すなわち、実施形態6においては、第2偏光板220と第2補助偏光層13Dとを含んで第2偏光手段が構成されており、第2補助偏光層13Dは多層型偏光層を有している。なお、実施形態6における第1偏光板210及び第2偏光板220は、ヨウ素が延伸されることにより形成されているが、リオトロピック液晶染料等の色素が塗布されることにより偏光層が多層に積層された多層偏光層を有して構成されても良い。実施形態6は、上記の点以外については実施形態4と略同様であり、この同様となる点については説明を省略する。
図22は実施形態6に係る液晶表示装置の概略断面図を示す。図23は、実施形態6に係る液晶表示装置の第1偏光板210と第2偏光板220、さらに第2補助偏光層13Dの吸収軸の説明図を示す。図22に示すように、第2補助偏光層13Dが、液晶セル15におけるバックライト3側の第2偏光板220表面に配置される。第2補助偏光層13Dは第2偏光板220に直接形成される。第2補助偏光層13Dの表面には、必要に応じて保護層が形成されてよい。この保護層には、バックライト3からの光を効率よく通過させるために可視光に対する吸収が小さい透明な材料が望ましい。従って、保護層としては感光性のポリイミド系やアクリル系樹脂などの有機材料が望ましい。
また、図23に示す通り、第1偏光板210と第2偏光板220の吸収軸はほぼ直交の関係になるように配置する。さらに、第2補助偏光層13Dの吸収軸は第2偏光板220の吸収軸とほぼ平行の関係になるように形成する。第2補助偏光層13Dにおける多層偏光層は、配向膜上に形成されていないため、多層偏光層における各偏光層は、色素分子がせん断応力によって配列されるので膜厚方向に一様な配向となる。そして、バックライト3から出射した光は、第2補助偏光層13Dの吸収軸によりほぼ直線偏光となるが、第2補助偏光層13Dの色素の配向乱れに起因して光が全方向に散乱することとなる。この全方向に散乱された光は、第2の偏光板220によりさらに偏光度が高められた直線偏光となる。このため、観察者30に提供される表示画像において、第2補助偏光層13Dによる光の散乱の影響は少なくすることができる。第2補助偏光層13Dを液晶セル15のバックライト3側の第2の偏光板220表面に形成することで、光の散乱の影響がなく、正面における高コントラスト比を実現できる。
1 液晶表示パネル、2 データ駆動回路、3 バックライト、4 走査駆動図、5 表示領域、7 データ線、13A,13C 第1補助偏光層、13B,13D 第2補助偏光層、14A,14B 配向膜、15 液晶セル、20 観察者、21 第1の多層型偏光層、21A 第1の多層型偏光層の吸収軸、22 第2の多層型偏光層、22A 第2の多層型偏光層の吸収軸、30 観察者、50 フレキシブルプリント回路板、60 導光体、61 光源、62 反射シート、63 光学フィルム類、100 副画素、110 第1基板(カラーフィルター基板)、111 第2基板(アクティブマトリクス基板)、113 下地膜、120 スイッチング素子、121 半導体層、122 ゲート絶縁層、123 ゲート電極、124 第1の層間絶縁層、125A 電極層、125B 電極層、126 第2の層間絶縁層、127 絶縁層、130 共通電極、140 絶縁膜、150 画素電極、150A 画素電極の長手方向、160 液晶層、160A 液晶分子長軸の配向方向、170 オーバーコート膜、180 カラーフィルター層、190 ブラックマトリクス、195 スルーホール、210 第1偏光板(実施形態2では、多層偏光層)、220 第2偏光板、230 保護層。

Claims (15)

  1. 基材と、該基材の上側に透過軸が揃えられて積層された複数の偏光層によって形成される多層偏光層と、を有する偏光素子であって、
    前記偏光層のうちの少なくとも1層は、色素分子が塗布されて剪断応力によって所定の方向に配列された第1偏光層であって、
    前記第1偏光層は、所定の膜厚で形成される、
    ことを特徴とする偏光素子。
  2. 請求項1に記載の偏光素子であって、
    前記基材は、配向規制力を有し、
    前記多層偏光層は、前記基材上に塗布されて配向規制力により前記所定の方向に配列された第2偏光層を含み、
    前記第2偏光層は、前記基材から上側に離れるにしたがって色素分子の配向が乱れるように積層され、
    前記第1偏光層は、前記第2偏光層の上側に積層されて、該第1偏光層と該第2偏光層とでは色素分子の配向乱れが異なる、
    ことを特徴とする偏光素子。
  3. 請求項1又は2に記載の偏光素子であって、
    前記多層偏光層における前記偏光層のそれぞれは、300nm以下の膜厚で積層される、
    ことを特徴とする偏光素子。
  4. 請求項3に記載の偏光素子であって、
    前記多層偏光層における前記偏光層のそれぞれは、100nm以上270nm以下の膜厚で積層される、
    ことを特徴とする偏光素子。
  5. 請求項3に記載の偏光素子であって、
    前記第1偏光層における前記色素分子は、リオトロピック液晶染料であって、
    前記第1偏光層は、270nm±20nmの範囲内の膜厚で形成される、
    ことを特徴とする偏光素子。
  6. 色素分子を塗布して偏光層を積層する偏光層積層工程と、
    前記偏光層積層工程で積層した前記偏光層に不溶化処理を施す不溶化工程と、を含み、
    前記偏光層積層工程と前記不溶化工程とを複数回繰り返すことにより、複数の偏光層が積層された多層偏光層を有する偏光素子を製造するようにしたことを特徴とする偏光素子の製造方法。
  7. 観察者側に位置する第1基板とバックライト側に位置する第2基板とによって液晶層が封止された液晶セルと、
    前記液晶層に対して前記観察者側に配置されて、所定の偏光方向の光を透過する第1偏光手段と、
    前記液晶層に対して前記バックライト側に配置されて、前記所定の偏光方向と直交する偏光方向の光を透過する第2偏光手段と、を有する液晶表示装置であって、
    前記第1偏光手段又は前記第2偏光手段の少なくとも一方は、
    透過軸が揃えられて積層された複数の偏光層によって形成される多層偏光層を有し、
    前記多層偏光層における少なくとも1層は、色素分子が塗布されてせん断応力によって配列される偏光層であって、所定の膜厚を有して形成される、
    ことを特徴とする液晶表示装置。
  8. 請求項7に記載の液晶表示装置であって、
    前記第1偏光手段は、前記第1基板の観察者側に設けられる第1偏光板を有し、
    前記第2偏光手段は、前記第2基板のバックライト側に設けられる第2偏光板を有し、
    前記第1偏光板又は前記第2偏光板は、前記多層偏光層を含んで形成される、
    ことを特徴とする液晶表示装置。
  9. 請求項7に記載の液晶表示装置であって、
    前記第1偏光手段は、前記第1基板の観察者側に設けられる第1偏光板と、該第1偏光板と平行な吸収軸を有して設けられる第1補助偏光層とを有し、
    前記第1補助偏光層は、前記多層偏光層を含んで形成される、
    ことを特徴とする液晶表示装置。
  10. 請求項7に記載の液晶表示装置であって、
    前記第2偏光手段は、前記第2基板のバックライト側に設けられる第2偏光板と、該第2偏光板と平行な吸収軸を有して設けられる第2補助偏光層とを有し、
    前記第2補助偏光層は、前記多層偏光層を含んで形成される、
    ことを特徴とする液晶表示装置。
  11. 請求項7に記載の液晶表示装置であって、
    前記第1基板は、カラーフィルター層を有し、
    前記第1偏光手段は、前記多層偏光層を含んで構成されて、前記カラーフィルタ層と前記液晶層との間に設けられる、
    ことを特徴とする液晶表示装置。
  12. 請求項9に記載の液晶表示装置であって、
    前記第1補助偏光層は、前記第1偏光板と前記第1基板との間に配置されて、
    前記第1補助偏光層と前記第1基板の間には、配向膜が配置される、
    ことを特徴とする液晶表示装置。
  13. 請求項10に記載の液晶表示装置であって、
    前記第2補助偏光層は、前記第2偏光板と前記第2基板との間に配置されて
    前記第2補助偏光層と前記第2基板の間には、配向膜が配置される、
    ことを特徴とする液晶表示装置。
  14. 請求項9に記載の液晶表示装置であって、
    前記第1補助偏光層は、前記第1偏光板の前記観察者側に、該第1偏光板に接して配置される、
    ことを特徴とする液晶表示装置。
  15. 請求項10に記載の液晶表示装置であって、
    前記第2補助偏光層は、前記第2偏光板の前記バックライト側に、該第2偏光板に接して配置される、
    ことを特徴とする液晶表示装置。
JP2009098495A 2009-04-14 2009-04-14 偏光素子とその製造方法および液晶表示装置 Pending JP2010250025A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009098495A JP2010250025A (ja) 2009-04-14 2009-04-14 偏光素子とその製造方法および液晶表示装置
US12/759,086 US8570462B2 (en) 2009-04-14 2010-04-13 Polarization element, method for manufacturing the same, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098495A JP2010250025A (ja) 2009-04-14 2009-04-14 偏光素子とその製造方法および液晶表示装置

Publications (1)

Publication Number Publication Date
JP2010250025A true JP2010250025A (ja) 2010-11-04

Family

ID=42934103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098495A Pending JP2010250025A (ja) 2009-04-14 2009-04-14 偏光素子とその製造方法および液晶表示装置

Country Status (2)

Country Link
US (1) US8570462B2 (ja)
JP (1) JP2010250025A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137550A1 (ja) 2011-04-01 2012-10-11 日本発條株式会社 識別媒体
US8922738B2 (en) 2010-02-08 2014-12-30 Japan Display Inc. Display device and thin film polarizer used for display device
JP2018004862A (ja) * 2016-06-30 2018-01-11 東京エレクトロン株式会社 光学膜形成方法、プログラム、コンピュータ記憶媒体及び光学膜形成装置
JP2020129111A (ja) * 2016-09-13 2020-08-27 スリーエム イノベイティブ プロパティズ カンパニー 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027107A (ja) * 2010-07-21 2012-02-09 Hitachi Displays Ltd 表示装置
JP2014182280A (ja) * 2013-03-19 2014-09-29 Toshiba Corp 表示装置
CN108735104B (zh) * 2018-06-01 2020-11-03 京东方科技集团股份有限公司 显示面板、显示装置和制作显示面板的方法
CN111435185A (zh) * 2019-01-11 2020-07-21 北京小米移动软件有限公司 偏光片、显示屏、终端及偏光片的制造方法
CN112859427A (zh) 2021-03-12 2021-05-28 武汉华星光电技术有限公司 偏光片及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344653A (ja) * 2002-05-22 2003-12-03 Seiko Epson Corp 偏光層、偏光層の製造方法、液晶表示装置、電子機器
JP2006330215A (ja) * 2005-05-25 2006-12-07 Hitachi Displays Ltd 液晶表示装置
JP2007041534A (ja) * 2005-07-01 2007-02-15 Hitachi Displays Ltd 液晶表示装置
JP2008209456A (ja) * 2007-02-23 2008-09-11 Hitachi Displays Ltd 液晶表示装置
JP2008268778A (ja) * 2007-04-25 2008-11-06 Hitachi Displays Ltd 液晶表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574044B1 (en) * 1999-10-25 2003-06-03 3M Innovative Properties Company Polarizer constructions and display devices exhibiting unique color effects
JP4292132B2 (ja) 2004-09-24 2009-07-08 株式会社 日立ディスプレイズ 液晶表示装置
TWI266908B (en) 2004-11-16 2006-11-21 Taiwan Tft Lcd Ass Multifunctional integrated polarizing film/optic film structure, and production process method thereof
EP1826605A1 (en) * 2006-02-24 2007-08-29 Semiconductor Energy Laboratory Co., Ltd. Display device
US20080088759A1 (en) * 2006-10-02 2008-04-17 Yuka Utsumi Liquid Crystal Display Device
JP4948957B2 (ja) 2006-10-02 2012-06-06 株式会社 日立ディスプレイズ 液晶表示装置
JP4814776B2 (ja) * 2006-12-14 2011-11-16 株式会社 日立ディスプレイズ 半透過型液晶表示装置
JP4638462B2 (ja) * 2007-03-26 2011-02-23 株式会社 日立ディスプレイズ 液晶表示装置
JP2009145745A (ja) * 2007-12-17 2009-07-02 Hitachi Displays Ltd 液晶表示装置およびその製造方法
JP4828557B2 (ja) * 2008-03-04 2011-11-30 株式会社 日立ディスプレイズ 液晶表示装置
JP2010015019A (ja) 2008-07-04 2010-01-21 Hitachi Displays Ltd 液晶表示装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344653A (ja) * 2002-05-22 2003-12-03 Seiko Epson Corp 偏光層、偏光層の製造方法、液晶表示装置、電子機器
JP2006330215A (ja) * 2005-05-25 2006-12-07 Hitachi Displays Ltd 液晶表示装置
JP2007041534A (ja) * 2005-07-01 2007-02-15 Hitachi Displays Ltd 液晶表示装置
JP2008209456A (ja) * 2007-02-23 2008-09-11 Hitachi Displays Ltd 液晶表示装置
JP2008268778A (ja) * 2007-04-25 2008-11-06 Hitachi Displays Ltd 液晶表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922738B2 (en) 2010-02-08 2014-12-30 Japan Display Inc. Display device and thin film polarizer used for display device
US9223067B2 (en) 2010-02-08 2015-12-29 Japan Display Inc. Display device and thin film polarizer used for display device
WO2012137550A1 (ja) 2011-04-01 2012-10-11 日本発條株式会社 識別媒体
JP2018004862A (ja) * 2016-06-30 2018-01-11 東京エレクトロン株式会社 光学膜形成方法、プログラム、コンピュータ記憶媒体及び光学膜形成装置
JP2020129111A (ja) * 2016-09-13 2020-08-27 スリーエム イノベイティブ プロパティズ カンパニー 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子
JP7012113B2 (ja) 2016-09-13 2022-01-27 スリーエム イノベイティブ プロパティズ カンパニー 斜角における色抑制のために調整された厚さプロファイルを有する単一パケット反射型偏光子

Also Published As

Publication number Publication date
US8570462B2 (en) 2013-10-29
US20100259708A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP4814776B2 (ja) 半透過型液晶表示装置
JP4799505B2 (ja) 液晶表示装置
JP4828557B2 (ja) 液晶表示装置
JP5219971B2 (ja) 液晶表示装置
JP4638462B2 (ja) 液晶表示装置
US8570462B2 (en) Polarization element, method for manufacturing the same, and liquid crystal display device
US8319922B2 (en) Liquid crystal display and electronic apparatus
WO2009139199A1 (ja) 液晶表示装置
JP7204550B2 (ja) 表示装置
WO2009139198A1 (ja) 液晶表示装置
JP2008276156A (ja) 表示装置
US9280016B2 (en) Liquid crystal display device
US9341906B2 (en) Liquid crystal display device
WO2012124699A1 (ja) 液晶表示装置
JP2007256936A (ja) 表示装置
WO2018020724A1 (ja) 液晶表示装置
US8742416B2 (en) Display panel, method of manufacturing display panel, display device, and electronic apparatus
JP2010128123A (ja) 液晶表示装置
JP5222477B2 (ja) 表示装置
US20130114033A1 (en) Liquid crystal display device
JP5041436B2 (ja) 液晶表示装置
JP5178018B2 (ja) 表示装置
JP2007183584A (ja) 液晶表示装置
JP2009116060A (ja) 液晶装置の製造方法、液晶装置及び電子機器
JP2009139790A (ja) 液晶装置及び電子機器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108