WO2019163791A1 - 透明導電積層体 - Google Patents

透明導電積層体 Download PDF

Info

Publication number
WO2019163791A1
WO2019163791A1 PCT/JP2019/006159 JP2019006159W WO2019163791A1 WO 2019163791 A1 WO2019163791 A1 WO 2019163791A1 JP 2019006159 W JP2019006159 W JP 2019006159W WO 2019163791 A1 WO2019163791 A1 WO 2019163791A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
laminate
substrate
transparent
cured resin
Prior art date
Application number
PCT/JP2019/006159
Other languages
English (en)
French (fr)
Inventor
伊藤 晴彦
今村 公一
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US16/970,668 priority Critical patent/US20200381138A1/en
Priority to JP2020500975A priority patent/JPWO2019163791A1/ja
Publication of WO2019163791A1 publication Critical patent/WO2019163791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Definitions

  • the present invention relates to a transparent conductive laminate.
  • the present invention relates to a transparent conductive laminate for flat panel displays, touch panels, solar cells and the like.
  • Transparent conductive laminates are used in many applications that require transparent electrodes, for example, as transparent electrodes for flat panel displays (eg, liquid crystal displays and plasma displays), touch panels, solar cells, and the like.
  • a transparent conductive metal oxide particularly indium tin oxide (ITO) is used.
  • the inventors of the present invention When forming a transparent conductive layer using a fibrous conductive material such as silver nanowires, the inventors of the present invention have good color tone and transmittance due to surface plasmon resonance inherent to the fibrous conductive material. I found the problem that it was difficult to achieve both.
  • an object of the present invention is to provide a transparent conductive laminate capable of achieving both good color tone and transmittance.
  • a transparent conductive laminate having a substrate laminate, and a transparent conductive layer laminated on the substrate laminate,
  • the substrate laminate has a transparent substrate and a cured resin layer laminated on the transparent substrate,
  • the substrate laminate has a transmission spectrum top peak and a reflection spectrum bottom peak in the range of 385 nm to 485 nm, and the substrate laminate has a transmission spectrum bottom peak and a reflection spectrum top peak.
  • the transparent conductive layer has a fibrous conductive material, and the refractive index of the cured resin layer is smaller than the refractive index of the transparent substrate; Transparent conductive laminate.
  • the substrate laminate is in the range of 650 nm to 850 nm, No bottom peak in the transmission spectrum and one or no top peak and / or no top peak in the reflection spectrum and one or no bottom peak,
  • ⁇ Aspect 8> The transparent conductive laminate according to any one of Embodiments 1 to 7, wherein the total light transmittance is 90% or more.
  • ⁇ Aspect 9> The transparent conductive laminate according to any one of Embodiments 1 to 8, wherein the haze value is 1.00% or less.
  • ⁇ Aspect 10> The transparent conductive laminate according to any one of Embodiments 1 to 9, wherein the absolute value of the b * value in the L * a * b * color system is 0.80 or less.
  • the transparent conductive laminate of the present invention can achieve both good color tone and transmittance. Moreover, thereby, the transparent conductive laminate of the present invention can be used in many applications that require a transparent electrode such as a touch panel.
  • FIG. 1 is a schematic view showing an example of the configuration of the substrate laminate of the present invention.
  • FIG. 2 is a diagram showing (a) a transmission spectrum and (b) a reflection spectrum of the transparent substrate and the transparent substrate with a transparent conductive layer used in Reference Example 1.
  • FIG. 3 is a diagram showing (a) a transmission spectrum and (b) a reflection spectrum of the substrate laminate used in Example 1.
  • FIG. 4 is a diagram showing (a) a transmission spectrum and (b) a reflection spectrum of the substrate laminate used in Example 2.
  • FIG. 5 is a diagram showing (a) a transmission spectrum and (b) a reflection spectrum of the substrate laminate used in Comparative Example 1.
  • 6 is a diagram showing (a) a transmission spectrum and (b) a reflection spectrum of the substrate laminate used in Comparative Example 2.
  • FIG. FIG. 7 is a diagram showing (a) a transmission spectrum and (b) a reflection spectrum of the transparent substrate and the transparent substrate with a transparent conductive layer used in Reference Example 2.
  • FIG. 8 is a diagram showing (a) the transmission spectrum and (b) the reflection spectrum of the substrate laminate used in Example 3.
  • FIG. 9 is a diagram showing (a) a transmission spectrum and (b) a reflection spectrum of the substrate laminate used in Example 4.
  • FIG. 10 is a diagram showing (a) the transmission spectrum and (b) the reflection spectrum of the substrate laminate used in Example 5.
  • FIG. 11 is a diagram showing (a) the transmission spectrum and (b) the reflection spectrum of the substrate laminate used in Example 6.
  • FIG. 12 is a diagram showing (a) transmission spectrum and (b) reflection spectrum of the substrate laminate (both sides) used in Example 7.
  • FIG. 13 is a diagram showing (a) the transmission spectrum and (b) the reflection spectrum of the substrate laminate used in Comparative Example 3.
  • FIG. 14 is a diagram showing (a) the transmission spectrum and (b) the reflection spectrum of the substrate laminate used in Comparative Example 4.
  • the transparent conductive laminate of the present invention has a substrate laminate and a transparent conductive layer laminated on the substrate laminate.
  • this base material laminated body has the cured resin layer laminated
  • examples of the configuration of the transparent conductive laminate include the following: Transparent substrate / cured resin layer / transparent conductive layer cured resin layer / transparent substrate / cured resin layer / transparent conductive layer transparent conductive layer / cured resin layer / transparent substrate / cured resin layer / transparent conductive layer.
  • the substrate laminate has a transmission spectrum top peak and a reflection spectrum bottom peak in the range of 385 nm to 485 nm, and the substrate laminate has a transmission spectrum bottom peak and a reflection spectrum top peak, It is not in the range of 385 nm to 485 nm.
  • the refractive index of the cured resin layer is smaller than the refractive index of the transparent substrate.
  • the transparent conductive laminate of the present invention the problem in forming a transparent conductive layer using a fibrous conductive material such as silver nanowires, that is, surface plasmon resonance inherent to the fibrous conductive material,
  • the transparent conductive laminate having such a transparent conductive layer can solve the problem that it is difficult to achieve both good color tone and transmittance.
  • the change in color tone due to surface plasmon resonance of the fibrous conductive material is represented by the color tone represented by the transmission spectrum and the reflection spectrum. By canceling out, it is considered that both good color tone and transmittance can be achieved.
  • the transparent conductive laminate of the present invention may have a total light transmittance of 90% or more, 91% or more, 92% or more, or 93% or more.
  • the total light transmittance may be 98% or less, 97% or less, 96% or less, 95% or less, or 94% or less.
  • the transparent conductive laminate of the present invention may have a haze value of 1.00% or less, 0.90% or less, 0.80% or less, or 0.70% or less.
  • the haze value may be 0.10% or more, 0.20% or more, 0.30% or more, 0.40% or more, 0.50% or more, or 0.60% or more.
  • the haze value is defined according to JIS K7136.
  • the transparent conductive laminate of the present invention has, for example, an absolute value of b * value in the L * a * b * color system of 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, It may be 0.40 or less, 0.30 or less, 0.20 or less, or 0.10 or less.
  • L * a * b * L * values in a color system a * value, b * value is in accordance with No. JIS Z8722, is a value measured by a transmission mode.
  • standard light D65 defined in Japanese Industrial Standard Z8720 is adopted as a light source, and measurement is performed under conditions of a two-degree field of view.
  • FIG. 1 is a schematic view of the transparent conductive laminate of the present invention.
  • the transparent conductive laminate 100 of the present invention has a base laminate 50 and a transparent conductive layer 10 laminated on the base laminate.
  • the substrate laminate 50 has a transparent substrate 30 and a cured resin layer 20 laminated on the transparent substrate, and the transparent conductive layer 10 is a fibrous conductive material having an average fiber diameter of 100 nm or less. Have material.
  • the substrate laminate used in the transparent conductive laminate of the present invention has a transparent substrate and a cured resin layer laminated on the transparent substrate.
  • the refractive index of the cured resin layer is smaller than the refractive index of the transparent substrate, thereby suppressing reflection on the surface of the cured resin layer.
  • the substrate laminate has a transmission spectrum top peak and a reflection spectrum bottom peak in the range of 385 nm to 485 nm, and a transmission spectrum bottom peak and a reflection spectrum top peak in the range of 385 nm to 485 nm. I don't have it.
  • the substrate laminate has a bottom peak of the transmission spectrum and one or no top peak in the range of 650 nm to 850 nm; and / or a top peak of the reflection spectrum. And may have one or no bottom peak.
  • the substrate laminate may have no bottom peak and top peak of the transmission spectrum and no top peak and bottom peak of the reflection spectrum in the range of 650 nm to 850 nm. It is preferable to achieve a good color tone and transmittance of the transparent conductive laminate having the above.
  • the b * value in the L * a * b * color system is ⁇ 0.40 or less, ⁇ 0.50 or less, or ⁇ 0. .60 or less, or -1.00 or more, -0.90 or more, -0.80 or more, or -0.70 or more.
  • the reflection on the surface of the cured resin layer is caused by the difference between the refractive index of the cured resin layer and the refractive index of the transparent substrate. And the reflection at the interface between the cured resin layer and the transparent substrate can be caused.
  • the difference between the refractive index of the cured resin layer and the refractive index of the polymer film is 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, or 0.10 or more. It may be. Also, this difference may be 0.20 or less, 0.19 or less, 0.18 or less, 0.17 or less, 0.16 or less, or 0.15 or less.
  • the refractive index n1 of the transparent substrate and the refractive index n2 of the cured resin layer on the transparent substrate is n1> n2
  • the light incident from the cured resin layer side is the cured resin layer.
  • the phase is shifted by a half wavelength. Therefore, the difference between the optical path lengths of these paths is approximately n times the wavelength of light between 385 nm and 485 nm, where n is intended to reduce reflection, where n is a positive integer, and the top peak and reflection of the transmission spectrum.
  • the bottom peak of the spectrum may be in the range of 385 nm to 485 nm, and the bottom peak of the transmission spectrum and the top peak of the reflection spectrum may not be in the range of 385 nm to 485 nm.
  • the difference in optical path length is, for example, 435 nm ⁇ n ⁇ 100 nm, 435 nm ⁇ n ⁇ 70 nm, 435 nm ⁇ n ⁇ 50 nm, or It may be 435 nm ⁇ n ⁇ 30 nm (n is a positive integer, especially a positive number of 1 to 10).
  • the transparent base material constituting the base material laminate may be any transparent base material on which a cured resin layer can be laminated to constitute the base material laminate.
  • a transparent substrate may be an organic material such as a polymer or an inorganic material such as glass.
  • a polymer substrate can be used in particular.
  • a polymer substrate include polyacrylate, polyolefin, polycarbonate, polyethersulfone, and polyamideimide films.
  • a cycloolefin polymer film can be used as the polyolefin film.
  • one having optically low birefringence, or one having a phase difference which is the product of birefringence and film thickness controlled to about 1/4 or 1/2 of the wavelength of visible light (“ ⁇ / 4 film ”or“ ⁇ / 2 film ”), or a film whose birefringence is not controlled at all can be appropriately selected depending on the application.
  • it when selecting appropriately according to the application, for example, it incorporates functions such as polarizing plates and retardation films used in liquid crystal displays, anti-reflection polarizing plates and retardation films for organic EL displays, etc.
  • the transparent conductive laminate of the present invention is used as a display member that exhibits a function by polarized light such as linearly polarized light, elliptically polarized light, and circularly polarized light, as in a so-called inner-type touch panel.
  • the thickness of the transparent substrate can be determined as appropriate, but in general, it may be 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, or 50 ⁇ m or more from the viewpoint of workability such as strength and handleability, It may be 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less.
  • the cured resin layer constituting the substrate laminate may be any cured resin layer that can be laminated on the transparent substrate to constitute the substrate laminate.
  • the cured resin layer can be formed from a curable resin such as a thermosetting resin or a photocurable resin.
  • a curable resin such as a thermosetting resin or a photocurable resin.
  • the photocurable resin include an ultraviolet curable resin and an electron beam curable resin.
  • Materials for forming the cured resin layer include organosilane thermosetting resins such as methyltriethoxysilane and phenyltriethoxysilane, melamine thermosetting resins such as etherified methylolmelamine, polyol acrylate, polyester acrylate And resins having urethane acrylate as a monomer, and polyfunctional acrylate ultraviolet curable resins such as epoxy acrylate.
  • organosilane thermosetting resins such as methyltriethoxysilane and phenyltriethoxysilane
  • melamine thermosetting resins such as etherified methylolmelamine
  • polyol acrylate polyol acrylate
  • polyester acrylate And resins having urethane acrylate as a monomer polyester acrylate
  • polyfunctional acrylate ultraviolet curable resins such as epoxy acrylate.
  • the thickness and refractive index of the cured resin layer can be adjusted so that the reflection spectrum as described above is obtained in consideration of the difference in optical path length as described above.
  • particles having a refractive index different from that of the curable resin constituting the cured resin layer can be dispersed in the cured resin layer.
  • particles selected from the group consisting of metal oxides, metal nitrides, and metal fluorides are preferably used.
  • the metal oxide particles include Al 2 O 3 , Bi 2 O 3 , CaF 2 , In 2 O 3 , In 2 O 3 .SnO 2 , HfO 2 , La 2 O 3 , Sb 2 O 5 , and Sb 2 O 5.
  • SnO 2, SiO 2, TiO 2, Y 2 O 3 it is possible to use at least one selected from ZnO and the group consisting of ZrO 2, in particular can be used Al 2 O 3, SiO 2, TiO 2.
  • MgF 2 can be used as the metal fluoride particles. In particular, SiO 2 and MgF 2 that can lower the refractive index of the cured resin layer are preferable.
  • the particle size of such particles may be 1 nm or more, 5 nm or more, or 1 nm or more, and may be 100 nm or less, 70 nm or less, or 50 nm or less. If the particle size of the ultra particle is too large, light scattering tends to occur, which is not preferable. In addition, if the particle size is too small, the particle surface area is increased to promote the activation of the particle surface, and the cohesiveness between particles becomes remarkably high, thereby making it difficult to adjust and store the solution. Therefore, it is not preferable.
  • this particle size is obtained by directly measuring a projected area circle equivalent diameter based on a photographed image by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the number average primary particle diameter can be obtained by analyzing the particle group.
  • a liquid phase method, a gas phase method, or the like can be used, but there are no particular restrictions on these production methods.
  • the compounding ratio for dispersing the particles in the cured resin layer may be 5 parts by mass or more, 10 parts by mass or more, 30 parts by mass or more, 50 parts by mass or more with respect to 100 parts by mass of the cured resin component. Also, it may be 500 parts by mass or less, 400 parts by mass or less, 300 parts by mass or less, 200 parts by mass or less, or 100 parts by mass or less. If the number of particles is too small, the refractive index adjustment effect may not be sufficient. When there are too many particles, it may be difficult to uniformly disperse in the cured resin layer.
  • the thickness of the cured resin layer may be 50 nm or more and 80 nm or more, and may be 3,000 nm or less, 1,000 nm or less, or 500 nm or less.
  • the cured resin layer may be performed by adding a color material for color tone adjustment, and the addition of the color material to the cured resin layer may be performed in combination with the adjustment of the thickness and refractive index of the cured resin layer, It may be performed alone.
  • the coloring material to be used includes dyes and pigments. In consideration of reliability and the like, inorganic pigments are preferable.
  • the color material it is possible to adjust the color tone by making the entire wavelength region or visible light region absorb.
  • the addition amount of the color material the reduction rate of the transmittance in the wavelength region of the absorption wavelength of the color material may be, for example, 0.5% or more, compared to the transmittance before the color material addition, and 5. The amount may be 0% or less, 3.0% or less, or 1.0% or less.
  • the transmittance of the transparent conductive laminate of the present invention decreases due to light absorption by the color material. Therefore, in order to increase the transmittance of the transparent conductive laminate of the present invention, the color material It is preferable that the amount is relatively small or no colorant is used.
  • the cured resin layer can be formed by a coating method.
  • a coating method As an actual coating method, the above compound is dissolved in various organic solvents, and after coating on a retardation film using a coating solution with adjusted concentration and viscosity, the layer is cured by irradiation or heat treatment.
  • the coating method include micro gravure coating method, Mayer bar coating method, direct gravure coating method, reverse roll coating method, curtain coating method, spray coating method, comma coating method, die coating method, knife coating method, spin coating method, etc. These various coating methods are used.
  • the cured resin layer can be laminated on the transparent substrate directly or via a suitable anchor layer.
  • an anchor layer for example, a layer having a function of improving the adhesion between the cured resin layer and the transparent substrate, a layer having a function of preventing permeation of moisture and air, a layer having a function of absorbing moisture and air, Examples thereof include a layer having a function of absorbing ultraviolet rays and infrared rays, and a layer having a function of reducing the chargeability of the transparent substrate.
  • the transparent conductive layer used in the transparent conductive laminate of the present invention has a fibrous conductive material.
  • the average fiber diameter of the fibrous conductive material may be 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm or less, 40 nm or less, and 5 nm or more, 10 nm or more, 20 nm or more. Or 30 nm or more.
  • the average fiber length of the fibrous conductive material may be 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, and 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less. It may be.
  • the average fiber diameter is determined by directly measuring the fiber diameter of individual fibers based on a photographed image by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and the like. By analyzing the fiber group consisting of the above, the number average fiber diameter can be obtained.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the surface resistance value of the transparent conductive layer may be, for example, 1,000 ⁇ / ⁇ or less, 500 ⁇ / ⁇ or less, 300 ⁇ / ⁇ or less, 200 ⁇ / ⁇ or less, or 100 ⁇ / ⁇ or less, and 1 ⁇ / ⁇ or more and 10 ⁇ or less. / ⁇ or more, 20 ⁇ / ⁇ or more, or 30 ⁇ / ⁇ or more. In order to reduce the surface resistance value, it is preferable to increase the amount of fibrous conductive material added or to increase the average fiber length appropriately.
  • examples of the fibrous conductive material include metal wires such as silver nanowires and fibrous conductive materials such as carbon nanotubes.
  • Such fibrous conductive materials, particularly metal nanowires, and more particularly silver nanowires have a flex resistance required for bendable displays that are expected to be realized in the future using conductive metal oxides such as ITO. It is preferable at the point which is superior to the transparent conductive layer obtained. It is also known that such a fibrous conductive material is excellent in other properties such as optical characteristics and conductivity.
  • a wet process such as a spraying method or a coating method can be used.
  • a resin material as a binder for bonding and fixing the fibrous conductive materials to each other.
  • a resin material a thermoplastic resin or a curable resin can be used, and the curable resin may be a curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
  • this resin material it is particularly preferable to use an ultraviolet curable resin.
  • an additive intended to prevent deterioration of the metal due to light and heat of the fibrous conductive material for example, An ultraviolet absorber, an antioxidant, etc. can be used.
  • the fibrous conductive material has a refractive index in order to suppress milky feeling and white turbidity due to reflection and scattering of light from the outside. It can be coated with other different materials to reduce reflectivity. The material for such a coating can be selected so as not to impair the conductivity of the fibrous conductive material.
  • a colorant can be added to the overcoat to adjust the color tone of the transparent conductive layer.
  • the description regarding the cured resin layer can be referred to.
  • an overcoat can be provided on this layer after forming the fibrous conductive material layer.
  • This overcoat impregnates and cures the layer of fibrous conductive material, thereby providing a portion of the fibrous conductive material exposed from the surface, thereby providing a transparent conductive layer.
  • the strength of the transparent conductive layer can be further increased while keeping the surface resistance small.
  • the overcoat in the present invention those described later as the cured resin layer can be used.
  • examples of the overcoat in the present invention include those made of a thermosetting resin, those made of an ultraviolet (UV) curable resin, and those made of an electron beam (EB) curable resin.
  • UV ultraviolet
  • EB electron beam
  • an overcoat formed from at least one condensation reaction product after hydrolysis selected from the group consisting of metal alkoxides and metal acetoxides is applied. It is preferable.
  • the thickness of the overcoat may be, for example, 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more, 50 nm or more, and 150 nm or less, 140 nm or less, 130 nm or less, 120 nm from the viewpoint of excellent coating strength and solvent resistance.
  • it may be 110 nm or less, or 100 nm or less.
  • the overcoat is too thin, sufficient coating strength cannot be obtained, which may be disadvantageous in the post-processing step, and solvent resistance tends to be low. On the other hand, if the overcoat is too thick, the surface resistance tends to increase.
  • Reference Example 1 Examples 1-2, and Comparative Examples 1-2
  • a cycloolefin polymer film manufactured by Zeon Corporation, ZF14
  • a cured resin is formed on the transparent substrate.
  • a transparent conductive layer is formed using a dispersion of silver nanowires directly (Reference Example 1) without a layer or via a cured resin layer (Examples 1 and 2 and Comparative Examples 1 and 2).
  • Reference Example 1 a dispersion of silver nanowires directly
  • Examples 1 and 2 and Comparative Examples 1 and 2 Comparative Examples 1 and 2
  • ⁇ Reference Example 1> A silver nanowire dispersion was applied directly onto a cycloolefin polymer (COP) film as a transparent substrate to form a transparent conductive layer having a surface resistance of 50 ⁇ / ⁇ . Silver nanowires having an average fiber diameter of 25 nm and an average fiber length of 40 ⁇ m were used, water (ion-exchanged water) was used as a dispersion medium, and the solid content concentration of the dispersion was 0.2 wt%.
  • COP cycloolefin polymer
  • Table 1 below shows the optical properties of the transparent substrate and the optical properties of the transparent conductive laminate obtained by forming the transparent conductive layer on the transparent substrate.
  • Example 1 (Formation of substrate laminate)
  • a urethane acrylate-based ultraviolet curable resin (Arakawa Chemical Industries, Ltd., beam set 575, cured film refractive index 1.51), and MgF 2 nanoparticle dispersion (CIK Nanotech Co., Ltd.) have a solid content mass ratio of 100: 300.
  • the resulting mixture was diluted with an organic solvent (1-methoxy-2-propanol) to a solid content concentration of 10 wt% to obtain a cured resin coating solution.
  • the refractive index of the ultraviolet curable resin was 1.49
  • the refractive index of the MgF 2 nanoparticles was 1.39.
  • the obtained cured resin coating solution is applied on the same transparent substrate as in Reference Example 1, dried, and cured by ultraviolet irradiation to obtain a substrate laminate having a cured resin layer on the transparent substrate. It was.
  • Table 1 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • Example 2 (Formation of substrate laminate) A substrate laminate having a cured resin layer on a transparent substrate was obtained in the same manner as in Example 1 except that the thickness of the cured resin layer formed on the transparent substrate was changed.
  • Table 1 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • Table 1 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • Table 1 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • the transmission spectrum and reflection spectrum are measured under the following conditions.
  • the measurement wavelength range is 340 to 850 nm
  • the scan speed is 600 nm / min
  • the sampling interval is 1 nm
  • the reflection spectrum is the integrating sphere measurement mode with an incident angle of 5 ° to the sample
  • the transmission spectrum is the integrating sphere measurement mode with normal incidence to the sample. And measured.
  • transmission top refers to the top peak in the transmission spectrum
  • transmission bottom refers to the bottom peak in the transmission spectrum
  • reflection top refers to the top peak in the reflection spectrum
  • bottom refers to the bottom peak in the reflection spectrum.
  • the transparent conductive laminate obtained by forming a transparent conductive layer composed of silver nanowires on this transparent substrate had a yellowish color.
  • the b * value of the transparent conductive laminate of Reference Example 1 is a relatively large positive value, and in FIG. This corresponds to the fact that the bottom peak of the transmission spectrum of the layer and the top peak of the reflection spectrum are in the range of 350 nm to less than 385 nm.
  • Examples 1 and 2 The substrate laminates of Examples 1 and 2 have a transmission spectrum top peak and a reflection spectrum bottom peak in the range of 385 nm to 485 nm, and a transmission spectrum bottom peak and a reflection spectrum top peak from 385 nm to 385 nm. It was not in the range of 485 nm. Moreover, the base material laminated body of Example 1 and 2 had the refractive index of the cured resin layer smaller than the refractive index of a transparent base material.
  • the transparent conductive laminates of Examples 1 and 2 were almost colorless and transparent. This corresponds to the small absolute value of the b * value of the transparent conductive laminates of Examples 1 and 2 in Table 1.
  • Comparative Example 1 In the base material laminate of Comparative Example 1, although the refractive index of the cured resin layer was smaller than the refractive index of the transparent base material, any of the top peak and bottom peak of the transmission spectrum, and the top peak and bottom peak of the reflection spectrum was not present in the range of 385 nm to 485 nm.
  • the transparent conductive laminate of Comparative Example 1 had a yellowish color. This corresponds to the fact that in Table 1, the b * value of the transparent conductive laminate of Comparative Example 1 is a relatively large positive value.
  • Comparative Example 2 Although the refractive index of the cured resin layer was smaller than the refractive index of the transparent substrate, the substrate laminate of Comparative Example 2 was able to exhibit all of the top peak and bottle of the transmission spectrum and the top peak and bottom peak of the reflection spectrum. It was in the range of 385 nm to 485 nm.
  • the transparent conductive laminate of Comparative Example 2 had a yellowish color. This corresponds to the fact that in Table 1, the b * value of the transparent conductive laminate of Comparative Example 2 is a relatively large positive value.
  • Reference Example 2 Examples 3 to 6 and Comparative Examples 3 to 4 >>
  • a polycarbonate film Teijin Ltd., Pure Ace C110-100
  • a transparent conductive layer is formed using a dispersion of silver nanowires directly without using a resin layer (Reference Example 2) or through a cured resin layer (Examples 3 to 6 and Comparative Examples 3 to 4).
  • a transparent conductive laminate was obtained.
  • ⁇ Reference Example 2> As in Reference Example 1, a silver nanowire dispersion was applied directly onto a polycarbonate (PC) film as a transparent substrate to form a transparent conductive layer having a surface resistance of 50 ⁇ / ⁇ .
  • PC polycarbonate
  • Table 2 below shows the optical properties of the transparent substrate and the optical properties of the transparent conductive laminate obtained by forming the transparent conductive layer on the transparent substrate.
  • Example 3 (Formation of substrate laminate) Urethane acrylate-based ultraviolet curable resin (Arakawa Chemical Industries, Ltd., beam set 575, cured film refractive index 1.51), and MgF 2 nanoparticle dispersion (CIK Nanotech Co., Ltd.) with a solids mass ratio of 100: 200 The resulting mixture was diluted with an organic solvent (1-methoxy-2-propanol) to give a solid content concentration of 15 wt% to obtain a cured resin coating solution.
  • the refractive index of the ultraviolet curable resin was 1.49
  • the refractive index of the MgF 2 nanoparticles was 1.39.
  • the obtained cured resin coating solution is applied on the same transparent substrate as in Reference Example 2, dried, and cured by ultraviolet irradiation to obtain a substrate laminate having a cured resin layer on the transparent substrate. It was.
  • Table 2 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • Example 4 (Formation of substrate laminate)
  • the solid content mass ratio of the urethane acrylate UV curable resin and the MgF 2 nanoparticle dispersion was changed from 100: 200 to 100: 100, and the thickness of the cured resin layer was changed.
  • a base material laminate having a cured resin layer on a transparent base material was obtained in the same manner as Example 3 except for the above.
  • the transparent conductive material with an overcoat on the substrate laminate A transparent conductive laminate having a layer was obtained.
  • an acrylic ultraviolet curable resin manufactured by Shin-Nakamura Chemical Co., Ltd., A-DHP
  • an organic solvent (1-methoxy-2-propanol and diacetone alcohol in a volume ratio of 2: 1).
  • the overcoat coating solution having a solid content concentration of 2.0 wt% was diluted with the above mixture.
  • Table 2 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • Example 5 (Formation of substrate laminate)
  • the base material laminated body which has a cured resin layer on a transparent base material was obtained.
  • Table 2 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • Example 6> (Formation of substrate laminate)
  • the solid content mass ratio of the urethane acrylate UV curable resin and the MgF 2 nanoparticle dispersion was changed from 100: 200 to 100: 10, and the thickness of the cured resin layer was changed.
  • a base material laminate having a cured resin layer on a transparent base material was obtained in the same manner as Example 3 except for the above.
  • Table 2 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • Example 7 In Example 4, the thickness of the cured resin layer is as shown in the table, the cured resin layer is formed on both surfaces of the transparent substrate, the transparent conductive layer is formed on both cured resin layers, and both transparent conductive layers are formed. A transparent conductive laminate was obtained in the same manner except that an overcoat was applied.
  • Table 2 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • ⁇ Comparative example 4> (Formation of substrate laminate)
  • a TiO 2 nanoparticle dispersion manufactured by CIK Nanotech
  • the thickness of the cured resin layer was changed.
  • a substrate laminate having a cured resin layer on a transparent substrate was obtained.
  • the refractive index of the TiO 2 nanoparticles was 2.55.
  • Table 2 shows the optical properties of the substrate laminate and the transparent conductive laminate obtained as described above.
  • the transparent conductive laminate obtained by forming a transparent conductive layer composed of silver nanowires on this transparent substrate had a yellowish color.
  • the b * value of the transparent conductive laminate of Reference Example 2 is a relatively large positive value, and in FIG. This corresponds to the fact that the bottom peak of the transmission spectrum of the layer and the top peak of the reflection spectrum are in the range of 350 nm to less than 385 nm.
  • Examples 3 to 6 The substrate laminates of Examples 3 to 6 have a transmission spectrum top peak and a reflection spectrum bottom peak in the range of 385 nm to 485 nm, and a transmission spectrum bottom peak and a reflection spectrum top peak from 385 nm to It was not in the range of 485 nm.
  • the refractive index of the cured resin layer was smaller than the refractive index of the transparent base.
  • the transparent conductive laminates of Examples 3 to 6 were almost colorless and transparent. This corresponds to the fact that in Table 2, the absolute value of the b * value of the transparent conductive laminates of Examples 3 to 6 is small. Moreover, although the transparent conductive laminated body of Example 7 has a cured resin layer, a transparent conductive layer, and an overcoat on both surfaces of a transparent base material, a cured resin layer and a transparent surface are provided on one side of the transparent base material. It had a smaller b * value than the transparent conductive laminate of Comparative Example 3 having a conductive layer, and therefore the yellowness was relatively small.
  • Comparative Example 3 The base material laminate of Comparative Example 3 has a top peak of the transmission spectrum and a bottom peak of the reflection spectrum in the range of 385 nm to 485 nm, although the refractive index of the cured resin layer is smaller than the refractive index of the transparent base material. And had a bottom peak in the transmission spectrum and a top peak in the reflection spectrum in the range of 385 nm to 485 nm.
  • the transparent conductive laminate of Comparative Example 3 had a yellowish color. This corresponds to the fact that in Table 2, the b * value of the transparent conductive laminate of Comparative Example 3 is a relatively large positive value.
  • Comparative Example 4 The substrate laminate of Comparative Example 2 has a transmission spectrum top peak and a reflection spectrum bottom peak in the range of 385 nm to 485 nm, and a transmission spectrum bottom peak and a reflection spectrum top peak of 385 nm to 485 nm. Did not have in range. However, in the substrate laminates of Examples 3 to 6, the refractive index of the cured resin layer was larger than the refractive index of the transparent substrate.
  • the transparent conductive laminate of Comparative Example 4 had a blueish color. This corresponds to the fact that in Table 2, the a * value and b * value of the transparent conductive laminate of Comparative Example 4 are relatively large negative values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

銀ナノワイヤー等の繊維状の導電性材料を用いて透明導電層を形成する場合の問題、すなわちこのような透明導電層を有する透明導電積層体では良好な色調と透過率を両立させることが困難であるという問題を解決する。 本発明の透明導電積層体100は、基材積層体50、及び基材積層体50上に積層されている透明導電層10を有する。ここで、この基材積層体50は、透明基材30及び透明基材上に積層されている硬化樹脂層20を有し、かつ透明導電層10は、繊維状の導電性材料を有する。更に、基材積層体は、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ基材積層体が、透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有さない。また、硬化樹脂層の屈折率は、透明基材の屈折率よりも小さい。

Description

透明導電積層体
 本発明は、透明導電積層体に関する。特に本発明は、フラットパネルディスプレイ、タッチパネル、太陽電池等のための透明導電積層体に関する。
 透明導電積層体は、透明電極を必要とする多くの用途で使用されており、例えばフラットパネルディスプレイ(例えば液晶ディスプレイ及びプラズマディスプレイ)、タッチパネル、太陽電池等のための透明電極として使用されている。このような透明導電積層体の透明導電性膜を形成するための具体的な材料としては、透明導電性金属酸化物、特に酸化インジウム-スズ(ITO)が用いられている。
 これに対して、近年、透明導電積層体の透明導電性層を形成するための具体的な材料として、銀ナノワイヤー等の繊維状の導電性材料を用いることが提案されている。
特開2017-082305号公報
 本件発明者らは、銀ナノワイヤー等の繊維状の導電性材料を用いて透明導電層を形成する場合には、繊維状の導電性材料に固有の表面プラズモン共鳴によって、良好な色調と透過率を両立させることが困難であるという問題を見いだした。
 これに対して、本発明は、良好な色調と透過率を両立させることができる透明導電積層体を提供することを目的とする。
 上記課題を解決するための手段は、下記のとおりである。
 〈態様1〉
 基材積層体、及び基材積層体上に積層されている透明導電層を有する透明導電積層体であって、
 上記基材積層体が、透明基材及び上記透明基材上に積層されている硬化樹脂層を有し、
 上記基材積層体が、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ
 上記基材積層体が、透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有さず、
 上記透明導電層が、繊維状の導電性材料を有し、かつ
 上記硬化樹脂層の屈折率が、上記透明基材の屈折率よりも小さい、
透明導電積層体。
 〈態様2〉
 上記硬化樹脂層の屈折率と上記高分子フィルムの屈折率とが、0.05以上異なっている、態様1に記載の透明導電積層体。
 〈態様3〉
 上記硬化樹脂層が、硬化性樹脂、及び上記硬化性樹脂中に分散している粒子から形成されてなる、態様1又は2に記載の透明導電積層体。
 〈態様4〉
 上記粒子が、金属酸化物、金属窒化物、及び金属フッ化物からなる群より選択される、態様3に記載の透明導電積層体。
 〈態様5〉
 上記基材積層体が、650nm~850nmの範囲に、
 透過スペクトルのボトムピークを有さず、かつトップピークを1つ有するか若しくは有さない、かつ/又は
 反射スペクトルのトップピークを有さず、ボトムピークを1つ有するか若しくは有さない、
態様1~4のいずれか一項に記載の透明導電積層体。
 〈態様6〉
 上記基材積層体のL表色系におけるb値が、-0.40以下である、態様1~5のいずれか一項に記載の透明導電積層体。
 〈態様7〉
 上記繊維状の導電性材料が、銀ワイヤーである、態様1~6のいずれか一項に記載の透明導電積層体。
 〈態様8〉
 全光線透過率が90%以上である、態様1~7のいずれか一項に記載の透明導電積層体。
 〈態様9〉
 ヘーズ値が1.00%以下である、態様1~8のいずれか一項に記載の透明導電積層体。
 〈態様10〉
 L表色系におけるb値の絶対値が0.80以下である、態様1~9のいずれか一項に記載の透明導電積層体。
 本発明の透明導電積層体は、良好な色調と透過率を両立させることができる。また、これにより本発明の透明導電積層体は、タッチパネル等の透明電極を必要とする多くの用途において用いることができる。
図1は、本発明の基材積層体の構成の一例を示す概略図である。 図2は、参考例1で用いた透明基材及び透明導電層付透明基材の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図3は、実施例1で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図4は、実施例2で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図5は、比較例1で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図6は、比較例2で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図7は、参考例2で用いた透明基材及び透明導電層付透明基材の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図8は、実施例3で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図9は、実施例4で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図10は、実施例5で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図11は、実施例6で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図12は、実施例7で用いた基材積層体(両面)の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図13は、比較例3で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。 図14は、比較例4で用いた基材積層体の(a)透過スペクトル及び(b)反射スペクトルを示す図である。
 《透明導電積層体》
 本発明の透明導電積層体は、基材積層体、及び基材積層体上に積層されている透明導電層を有する。ここで、この基材積層体は、透明基材及び透明基材上に積層されている硬化樹脂層を有し、かつ透明導電層は、繊維状の導電性材料を有する。
 したがって、透明導電積層体の構成としては、以下が例示される:
 透明基材/硬化樹脂層/透明導電層
 硬化樹脂層/透明基材/硬化樹脂層/透明導電層
 透明導電層/硬化樹脂層/透明基材/硬化樹脂層/透明導電層。
 更に、基材積層体は、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ基材積層体が、透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有さない。また、硬化樹脂層の屈折率は、透明基材の屈折率よりも小さい。
 本発明の透明導電積層体によれば、銀ナノワイヤー等の繊維状の導電性材料を用いて透明導電層を形成する場合の問題、すなわち繊維状の導電性材料に固有の表面プラズモン共鳴によって、このような透明導電層を有する透明導電積層体では良好な色調と透過率を両立させることが困難であるという問題を解決することができる。
 理論に限定されるものではないが、本発明の透明導電積層体によれば、繊維状の導電性材料の表面プラズモン共鳴による色調の変化を、上記の透過スペクトル及び反射スペクトルで表される色調で相殺することよって、良好な色調と透過率を両立させることができるものと考えられる。
 したがって、本発明の透明導電積層体は例えば、全光線透過率が、90%以上、91%以上、92%以上、又は93%以上であってよい。また、この全光線透過率は、98%以下、97%以下、96%以下、95%以下、94%以下であってよい。
 本発明に関して、全光線透過率は、JIS K7361-1に準じて測定されるものである。具体的には全光線透過率τ(%)は、下記の式によって表される値である:
 τ=τ/τ×100
 (τ:入射光
  τ:試料片を透過した全光線)
 また、本発明の透明導電積層体は例えば、ヘーズ値が、1.00%以下、0.90%以下、0.80%以下、又は0.70%以下であってよい。またこのヘーズ値は、0.10%以上、0.20%以上、0.30%以上、0.40%以上、0.50%以上、又は0.60%以上であってよい。
 本発明に関して、ヘーズ値は、JIS K7136準拠で定義されるものである。具体的には、ヘーズ値は、全光線透過率τに対する拡散透過率τの比として定義される値であり、より具体的には下記の式から求めることができる:
   ヘーズ(%)=[(τ/τ)-τ(τ/τ)]×100
   τ: 入射光の光束
   τ: 試験片を透過した全光束
   τ: 装置で拡散した光束
   τ: 装置及び試験片で拡散した光束
 また、本発明の透明導電積層体は例えば、L表色系におけるb値の絶対値が、0.80以下、0.70以下、0.60以下、0.50以下、0.40以下、0.30以下、0.20以下、又は0.10以下であってよい。
 本発明に関して、L表色系におけるL値、a値、b値は、JIS Z8722号に準じて、透過モードにより計測される値である。なお、これらの値の測定においては、光源として日本工業規格Z8720に規定される標準の光D65を採用し、2度視野の条件で測定を行う。
 図1は、本発明の透明導電積層体の模式図である。図1に示されるように、本発明の透明導電積層体100は、基材積層体50、及び基材積層体上に積層されている透明導電層10を有する。ここで、基材積層体50は、透明基材30及び透明基材上に積層されている硬化樹脂層20を有し、かつ透明導電層10は、平均繊維径100nm以下の繊維状の導電性材料を有する。
 以下では、本発明の透明導電積層体を構成する各構成要素について、それぞれ説明する。
 〈基材積層体〉
 本発明の透明導電積層体において用いられる基材積層体は、透明基材及び透明基材上に積層されている硬化樹脂層を有する。ここで、硬化樹脂層の屈折率は、透明基材の屈折率よりも小さく、それによって硬化樹脂層の表面での反射を抑制できる。
 また、この基材積層体は、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有さない。
 また、さらにこの基材積層体は、650nm~850nmの範囲に、透過スペクトルのボトムピークを有さず、かつトップピークを1つ有するか若しくは有さない;かつ/又は反射スペクトルのトップピークを有さず、かつボトムピークを1つ有するか若しくは有さないことができる。また、この基材積層体は、650nm~850nmの範囲に、透過スペクトルのボトムピーク及びトップピークを有さず、かつ反射スペクトルのトップピーク及びボトムピークを有さないことが、この基材積層体を有する透明導電積層体の良好な色調及び透過率を達成するために好ましい。
 この基材積層体は、このような透過スペクトル及び反射スペクトルを有することによって、L表色系におけるb値が、-0.40以下、-0.50以下、又は-0.60以下であってよく、また-1.00以上、-0.90以上、-0.80以上、又は-0.70以上であってよい。
 この基材積層体が、上記のような透過スペクトル及び反射スペクトルを有するためには、硬化樹脂層の屈折率と透明基材の屈折率との間の差によって、硬化樹脂層の表面での反射と、硬化樹脂層と透明基材との間の界面での反射との間の干渉を生じさせることができる。
 したがって、硬化樹脂層の屈折率と高分子フィルムの屈折率との差は、0.05以上、0.06以上、0.07以上、0.08以上、0.09以上、又は0.10以上であってよい。また、この差は、0.20以下、0.19以下、0.18以下、0.17以下、0.16以下、又は0.15以下であってよい。
 具体的には、透明基材の屈折率n1、及び透明基材上の硬化樹脂層の屈折率n2の関係が、n1>n2であるので、硬化樹脂層側から入射した光は、硬化樹脂層の表面での反射、及び硬化樹脂層と透明基材との界面での反射のいずれにおいても、位相が半波長ずれる。したがって、これらの経路の光路長の差が、反射を減少させることを意図する385nm~485nmの光の波長の約n倍(nは正の整数)にすることによって、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有さないようにすることができる。
 具体的には、この場合、385nm~485nmの略中心波長である435nmの波長について考慮すると、光路長の差は、例えば435nm×n±100nm、435nm×n±70nm、435nm×n±50nm、又は435nm×n±30nmであってよい(nは、正の整数、特に1~10の正数)。
 (透明基材)
 基材積層体を構成する透明基材は、その上に、硬化樹脂層を積層して基材積層体を構成できる任意の透明基材であってよい。このような透明基材は、ポリマーのような有機材料であっても、ガラスなどのような無機材料であってもよい。
 この透明基材としては、特にポリマー基材を用いることができる。このようなポリマー基材としては、ポリアクリレート、ポリオレフィン、ポリカーボネート、ポリエーテルサルホン、ポリアミドイミドのフィルムを挙げることができる。また、ポリオレフィンのフィルムとしては、シクロオレフィンポリマーフィルムを用いることができる。
 ポリマー基材としては、光学的に複屈折の少ないもの、又は複屈折とフィルム厚さの積である位相差を可視光の波長の1/4又は1/2程度に制御したもの(「λ/4フィルム」又は「λ/2フィルム」として言及される)、さらには複屈折をまったく制御していないものを、用途に応じて適宜選択することができる。ここで言うように用途に応じて適宜選択を行う場合としては、例えば液晶ディスプレイに使用する偏光板や位相差フィルムや、有機ELディスプレイの反射防止用の偏光板や位相差フィルムなどの機能を取り込んだ、いわゆるインナー型のタッチパネルのように、直線偏光、楕円偏光、円偏光などの偏光によって機能を発現するディスプレイ部材として、本発明の透明導電性積層体を用いる場合を挙げることができる。
 透明基材の厚さは適宜に決定しうるが、一般には強度や取扱性等の作業性などの点から、10μm以上、20μm以上、30μm以上、40μm以上、又は50μm以上であってよく、また500μm以下、400μm以下、300μm以下、200μm以下、100μm以下であってよい。
 (硬化樹脂層)
 基材積層体を構成する硬化樹脂層は、透明基材上に積層されて基材積層体を構成できる任意の硬化樹脂層であってよい。
 硬化樹脂層は、例えば熱硬化性樹脂、光硬化性樹脂等の硬化性樹脂から形成することができる。光硬化性樹脂としては紫外線硬化性樹脂、電子線硬化性樹脂等が挙げられる。
 硬化樹脂層を形成するための材料としては、メチルトリエトキシシラン、フェニルトリエトキシシラン等のオルガノシラン系の熱硬化性樹脂やエーテル化メチロールメラミン等のメラミン系熱硬化性樹脂、ポリオールアクリレート、ポリエステルアクリレート、ウレタンアクリレートをモノマーとする樹脂、エポキシアクリレート等の多官能アクリレート系紫外線硬化性樹脂等がある。
 硬化樹脂層の厚さ及び屈折率は、上記のような光路長の差を考慮して、上記のような反射スペクトルが得られるように調節することができる。
 これに関して、硬化樹脂層の屈折率の調節のためには、硬化樹脂層を構成する硬化性樹脂とは異なる屈折率を有する粒子を、硬化樹脂層中に分散させることができる。
 このような粒子としては、金属酸化物、金属窒化物、及び金属フッ化物からなる群より選択される粒子が好適に使用される。金属酸化物粒子としては、Al、Bi、CaF、In、In・SnO、HfO、La、Sb、Sb・SnO、SiO、TiO、Y、ZnO及びZrOからなる群から選ばれる少なくとも一種を用いることができ、特にAl、SiO、TiOを用いることができる。また、金属フッ化物粒子としては、MgFを用いることができる。とりわけ、硬化樹脂層の屈折率を低くすることができるSiO、MgFが好ましい。
 このような粒子の粒径は、1nm以上、5nm以上、又は1nm以上であってよく、100nm以下、70nm以下、50nm以下であってよい。超粒子の粒径が大きすぎる場合は、光散乱を生じやすくなるため好ましくない。また、粒子の粒径が小さすぎる場合は、粒子の比表面積が増大することにより粒子表面の活性化を促し、粒子同士の凝集性が著しく高くなり、それによって溶液の調整・保存が困難となるため好ましくない。
 ここで、この粒径は、査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等による観察によって、撮影した画像を元に直接に投影面積円相当径を計測し、集合数100以上からなる粒子群を解析することで、数平均一次粒子径として求めることができる。
 このような粒子の製造法については液相法、気相法などが手法としてとりうるが、これら製造方法についても特に制約はない。
 硬化樹脂層中に粒子を分散させる配合比は、硬化後の樹脂成分100質量部に対して、粒子が5質量部以上、10質量部以上、30質量部以上、50質量部以上であってよく、また500質量部以下、400質量部以下、300質量部以下、200質量部以下、又は100質量部以下であってよい。粒子が少なすぎる場合には、屈折率の調節効果が十分ではない場合があり、また。粒子が多すぎる場合には、硬化樹脂層中に均一に分散させることが困難な場合がある。
 硬化樹脂層の厚さは、50nm以上、80nm以上であってよく、また3,000nm以下、1,000nm以下、又は500nm以下であってよい。
 硬化樹脂層は、色調調整のための色材を添加して行ってもよく、硬化樹脂層への色材の添加は、硬化樹脂層の膜厚及び屈折率の調整と組み合わせて行っても、単独で行ってもよい。
 使用する色材としては、一般的には染料や顔料が挙げられる。信頼性などを考慮した場合には無機系顔料が好ましい。色材を選定することにより、特定波長領域又は可視光領域全域に吸収を持たせ、色調調整を行うことができる。色材の添加量は、色材が有する吸収波長の波長領域の透過率の低下率が、色材添加前の透過率と比較して、例えば0.5%以上であってよく、また5.0%以下、3.0%以下、又は1.0%以下である量であってよい。
 ただし、色材を使用する場合には、色材による光吸収によって本発明の透明導電積層体の透過率が低下するので、本発明の透明導電積層体の透過率を高めるためには、色材の量は比較的少なくすること、又は色材を使用しないことが好ましい。
 硬化樹脂層は塗工法により形成することが出来る。実際の塗工法としては、上記化合物を各種有機溶剤に溶解して、濃度や粘度を調節した塗工液を用いて、位相差フィルム上に塗工後、放射線照射や加熱処理等により層を硬化させる。塗工方式としては例えば、マイクログラビヤコート法、マイヤーバーコート法、ダイレクトグラビヤコート法、リバースロールコート法、カーテンコート法、スプレーコート法、コンマコート法、ダイコート法、ナイフコート法、スピンコート法等の各種塗工方法が用いられる。
 なお、硬化樹脂層は、透明基材上に、直接に、又は適当なアンカー層を介して積層することができる。こうしたアンカー層としては例えば、硬化樹脂層と透明基材との密着性を向上させる機能を有する層、水分や空気の透過を防止する機能を有する層、水分や空気を吸収する機能を有する層、紫外線や赤外線を吸収する機能を有する層、透明基材の帯電性を低下させる機能を有する層等を挙げることができる。
 〈透明導電層〉
 本発明の透明導電積層体において用いられる透明導電層は、繊維状の導電性材料を有する。ここで、この繊維状の導電性材料の平均繊維径は、100nm以下、90nm以下、80nm以下、70nm以下、60nm以下、50nm以下、40nm以下であってよく、また5nm以上、10nm以上、20nm以上、又は30nm以上であってよい。繊維状の導電性材料の平均繊維長は、10μm以上、15μm以上、20μm以上、25μm以上、30μm以上であってよく、また100μm以下、90μm以下、80μm以下、70μm以下、60μm以下、50μm以下であってよい。
 本発明に関して、平均繊維径は、査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等による観察によって、撮影した画像を元に直接に個々の繊維の繊維径を計測し、集合数100以上からなる繊維群を解析することで、数平均繊維径として求めることができる。
 この透明導電層の表面抵抗値は例えば、1,000Ω/□以下、500Ω/□以下、300Ω/□以下、200Ω/□以下、又は100Ω/□以下であってよく、また1Ω/□以上、10Ω/□以上、20Ω/□以上、又は30Ω/□以上であってよい。表面抵抗値を低くするには、繊維状の導電性材料の添加量を増やしたり、平均繊維長を適度に長くしたりするとよい。
 具体的には、繊維状の導電性材料としては、銀ナノワイヤー等の金属ワイヤー、カーボンナノチューブ等の繊維状の導電性材料を挙げることもできる。このような繊維状の導電性材料、特に金属ナノワイヤー、より特に銀ナノワイヤーは、将来実現すると思われるベンダブルディスプレイで必要とされる耐屈曲性が、ITO等の導電性金属酸化物を用いて得られる透明導電層よりも優れている点で好ましい。また、このような繊維状の導電性材料は、光学特性、導電性等の他の性質に関しても優れていることが知られている。
 繊維状の導電性材料を用いて透明等電膜を得る場合、噴霧法、コーティング法等のウエットプロセスを用いることができる。
 透明導電層の材料として繊維状の導電性材料を使用する場合、繊維状の導電性材料を相互に結合して固定するバインダーとしての樹脂材料を併せて用いることが好ましい。この樹脂材料としては、熱可塑性樹脂又は硬化性樹脂を用いることができ、硬化性樹脂は、熱、光、電子線、又は放射線で硬化する硬化性樹脂であってよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。この樹脂材料としては、紫外線硬化性樹脂を用いることが特に好ましい。
 透明導電層の材料として繊維状の導電性材料を使用する場合、繊維状の導電性材料の光や熱による金属の劣化を防止することを目的とする添加剤を併せて用いることが好ましく、例えば紫外線吸収材、酸化防止剤等を用いることができる。
 〈オーバーコート〉
 繊維状の導電性材料を用いる場合、繊維状の導電性材料が外部からの光を反射・散乱させることによる乳濁感・白濁感を抑制するために、繊維状の導電性材料を屈折率が異なる他の材料で被覆して反射率を低下させることができる。このような被覆のための材料は、繊維状の導電性材料の導電性を損なわないように選択することができる。
 また、透明導電層の色調を調節するためにオーバーコートに色材を添加することができる。色材の使用に関しては、上記の硬化樹脂層に関する記載を参照できる。
 透明導電層の材料として繊維状の導電性材料を使用する場合、繊維状の導電性材料の層を形成した後で、この層にオーバーコートを提供することができる。このオーバーコートは、繊維状の導電性材料の層に含浸して硬化し、それによって繊維状の導電性材料の一部が表面から露出するようにするように提供することによって、透明導電層の表面抵抗を小さく維持しつつ、透明導電層の強度をより高くすることができる。
 本発明におけるオーバーコートとしては、硬化樹脂層として後述するものを用いることができる。
 また、本発明におけるオーバーコートは、熱硬化性樹脂よりなるもの、紫外線(UV)硬化性樹脂よりなるもの、電子線(EB)硬化性樹脂よりなるもの等を挙げることができる。オーバーコート表面における表面抵抗値が比較的高くてもよい用途(例えば電磁波シールド材等)においては、これらのオーバーコートを適用することができる。
 また、オーバーコート表面における表面抵抗値が低い方が好ましい用途においては、金属アルコキシドおよび金属アセトキシドからなる群より選ばれる少なくとも1種の加水分解後の縮合反応生成物から形成されるオーバーコートを適用することが好ましい。
 オーバーコートの厚みは、塗膜強度や耐溶剤性に優れるという観点から例えば、10nm以上、20nm以上、30nm以上、40nm以上、50nm以上であってよく、また150nm以下、140nm以下、130nm以下、120nm以下、110nm以下、又は100nm以下であってよい。
 オーバーコートの厚が薄すぎると、十分な塗膜強度が得られず、後加工工程で不利となる場合があり、また耐溶剤性も低くなる傾向にある。他方で、オーバーコートの厚が厚すぎると、表面抵抗が増加する傾向にある。
 以下、実施例を挙げて本発明を詳しく説明するが、本発明はこれらの実施例に限定されない。
 《参考例1、実施例1~2、及び比較例1~2》
 以下の参考例1、実施例1~2、及び比較例1~2では、透明基材として、シクロオレフィンポリマーフィルム(日本ゼオン社製、ZF14)を用い、かつこの透明基材上に、硬化樹脂層を介さずに直接に(参考例1)、又は硬化樹脂層を介して(実施例1~2、及び比較例1~2)、銀ナノワイヤーの分散液を用いて透明導電層を形成して、透明導電積層体を得た。
 具体的には、参考例1、実施例1~2、及び比較例1~2の透明導電積層体は下記のようにして得た。
 〈参考例1〉
 透明基材としてのシクロオレフィンポリマー(COP)フィルム上に直接に、銀ナノワイヤーの分散液を塗布して、表面抵抗値が50Ω/□の透明導電層を形成した。なお、銀ナノワイヤーとして平均繊維径25nm、平均繊維長40μmのものを用い、分散媒として水(イオン交換水)を用い、分散液の固形分濃度は0.2wt%とした。
 透明基材の光学物性、及び透明基材上に透明導電層を形成して得た透明導電積層体の光学物性を、下記の表1に示している。
 〈実施例1〉
 (基材積層体の形成)
 ウレタンアクリレート系紫外線硬化樹脂(荒川化学工業社製、ビームセット575、硬化膜屈折率1.51)、及びMgFナノ粒子分散液(CIKナノテック社製)を、固形分質量比が100:300となるように混合し、そして有機溶剤(1-メトキシ-2-プロパノール)で希釈して固形分濃度を10wt%にすることによって、硬化樹脂塗布溶液を得た。ここで、この紫外線硬化樹脂の屈折率は、1.49であり、MgFナノ粒子の屈折率は1.39であった。
 その後、得られた硬化樹脂塗布溶液を、参考例1と同じ透明基材上に塗布し、乾燥し、紫外線照射により硬化させて、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例1と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表1に示している。
 〈実施例2〉
 (基材積層体の形成)
 透明基材上に形成する硬化樹脂層の厚さを変更したことを除いて実施例1と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例1と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表1に示している。
 〈比較例1〉
 (基材積層体の形成)
 硬化樹脂塗布溶液の調製において、ウレタンアクリレート系紫外線硬化樹脂とMgFナノ粒子分散液との固形分質量比率を、100:300から100:100へ変更し、硬化樹脂層の厚さを変更したことを除いて実施例1と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例1と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表1に示している。
 〈比較例2〉
 (基材積層体の形成)
 透明基材上に形成する硬化樹脂層の厚さを変更したことを除いて比較例1と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例1と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表1に示している。
 なお、透過スペクトルおよび反射スペクトルの測定は、次の条件による。測定波長範囲340~850nm、スキャンスピード600nm/min、サンプリング間隔:1nmとし、反射スペクトルはサンプルへの入射角5°として積分球測定モードとし、透過スペクトルはサンプルに対して垂直入射として積分球測定モードとし、測定を行った。
Figure JPOXMLDOC01-appb-T000001
 表中、「透過トップ」とは、透過スペクトルにおけるトップピークを指し、「透過ボトム」とは、透過スペクトルにおけるボトムピークを指し、「反射トップ」とは、反射スペクトルにおけるトップピークを指し、「反射ボトム」とは、反射スペクトルにおけるボトムピークを指す。
 〈評価結果についての分析〉
 (参考例1)
 参考例1の透明基材としてのシクロオレフィンポリマーフィルムは、ほぼ無色透明であった。このことは、表1において、参考例1の透明基材のb値の絶対値が小さいこと、及び参考例1についての図2において、「透明基材のみ」の透過スペクトル及び反射スペクトルがなだらかにのみ変化していることに対応している。
 これに対して、参考例1でのように、この透明基材上に銀ナノワイヤーで構成されている透明導電層を形成して得た透明導電積層体は、黄色っぽい色を有していた。このことは、表1において、参考例1の透明導電積層体のb値が比較的大きい正の値になっていること、及び参考例1についての図2において、「透明基材+透明導電層」の透過スペクトルのボトムピーク及び反射スペクトルのトップピークが350nm~385nm未満の範囲に存在していることに対応している。
 (実施例1及び2)
 実施例1及び2の基材積層体は、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有していなかった。また、実施例1及び2の基材積層体は、硬化樹脂層の屈折率が、透明基材の屈折率よりも小さかった。
 実施例1及び2の透明導電積層体は、ほぼ無色透明であった。このことは、表1において、実施例1及び2の透明導電積層体のb値の絶対値が小さいことに対応している。
 (比較例1)
 比較例1の基材積層体は、硬化樹脂層の屈折率が、透明基材の屈折率よりも小さかったものの、透過スペクトルのトップピーク及びボトムピーク、並びに反射スペクトルのトップピーク及びボトムピークのいずれも、385nm~485nmの範囲に存在しなかった。
 比較例1の透明導電積層体は、黄色っぽい色を有していた。このことは、表1において、比較例1の透明導電積層体のb値が比較的大きい正の値になっていることに対応している。
 (比較例2)
 比較例2の基材積層体は、硬化樹脂層の屈折率が、透明基材の屈折率よりも小さかったものの、透過スペクトルのトップピーク及びボトル、並びに反射スペクトルのトップピーク及びボトムピークのすべてを、385nm~485nmの範囲に有していた。
 比較例2の透明導電積層体は、黄色っぽい色を有していた。このことは、表1において、比較例2の透明導電積層体のb値が比較的大きい正の値になっていることに対応している。
 《参考例2、実施例3~6、及び比較例3~4》
 以下の参考例2、実施例3~6、及び比較例3~4では、透明基材として、ポリカーボネートフィルム(帝人株式会社、ピュアエースC110-100)を用い、かつこの透明基材上に、硬化樹脂層を介さずに直接に(参考例2)、又は硬化樹脂層を介して(実施例3~6、及び比較例3~4)、銀ナノワイヤーの分散液を用いて透明導電層を形成して、透明導電積層体を得た。
 具体的には、参考例2、実施例3~6、及び比較例3~4の透明導電積層体は下記のようにして得た。
 〈参考例2〉
 透明基材としてのポリカーボネート(PC)フィルム上に直接に、参考例1と同様に、銀ナノワイヤーの分散液を塗布して、表面抵抗値が50Ω/□の透明導電層を形成した。
 透明基材の光学物性、及び透明基材上に透明導電層を形成して得た透明導電積層体の光学物性を、下記の表2に示している。
 〈実施例3〉
 (基材積層体の形成)
 ウレタンアクリレート系紫外線硬化樹脂(荒川化学工業社製、ビームセット575、硬化膜屈折率1.51)、及びMgFナノ粒子分散液(CIKナノテック社製)を、固形分質量比が100:200となるように混合し、有機溶剤(1-メトキシ-2-プロパノール)で希釈して固形分濃度を15wt%にすることによって、硬化樹脂塗布溶液を得た。ここで、この紫外線硬化樹脂の屈折率は、1.49であり、MgFナノ粒子の屈折率は1.39であった。
 その後、得られた硬化樹脂塗布溶液を、参考例2と同じ透明基材上に塗布し、乾燥し、紫外線照射により硬化させて、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例2と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表2に示している。
 〈実施例4〉
 (基材積層体の形成)
 硬化樹脂塗布溶液の調製において、ウレタンアクリレート系紫外線硬化樹脂とMgFナノ粒子分散液との固形分質量比率を、100:200から100:100へ変更し、硬化樹脂層の厚さを変更したことを除いて実施例3と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例2と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (オーバーコートの形成)
 形成した透明導電層に、膜厚80nmのオーバーコートを透明導電層に適用して、透明導電層を構成する銀ナノワイヤー間に含浸させることによって、基材積層体上にオーバーコート付の透明導電層を有する透明導電積層体を得た。なお、ここでオーバーコートの形成には、アクリル系紫外線硬化樹脂(新中村化学社製、A-DHP)を、有機溶剤(1-メトキシ-2-プロパノールとジアセトンアルコールとの体積比2:1の混合物)で希釈して固形分濃度を2.0wt%としたオーバーコート塗布溶液を用いた。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表2に示している。
 〈実施例5〉
 (基材積層体の形成)
 硬化樹脂塗布溶液の調製において、ウレタンアクリレート系紫外線硬化樹脂とMgFナノ粒子分散液との固形分質量比率を、100:200から100:50へ変更したことを除いて実施例3と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例2と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (オーバーコートの形成)
 形成した透明導電層に、実施例4と同様にしてオーバーコートを適用して、基材積層体上にオーバーコート付の透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表2に示している。
 〈実施例6〉
 (基材積層体の形成)
 硬化樹脂塗布溶液の調製において、ウレタンアクリレート系紫外線硬化樹脂とMgFナノ粒子分散液との固形分質量比率を、100:200から100:10へ変更し、硬化樹脂層の厚さを変更したことを除いて実施例3と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例2と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (オーバーコートの形成)
 形成した透明導電層に、実施例4と同様にしてオーバーコートを適用して、基材積層体上にオーバーコート付の透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表2に示している。
 〈実施例7〉
 実施例4において、硬化樹脂層の厚さを表に示すとおりとし、透明基材の両面に硬化樹脂層を形成し、両方の硬化樹脂層上に透明導電層を形成し、両方の透明導電層にオーバーコートを適用した以外は同様にして、透明導電積層体を得た。
 〈比較例3〉
 (基材積層体の形成)
 透明基材上に形成する硬化樹脂層の厚さを変更したことを除いて実施例4と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例2と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表2に示している。
 〈比較例4〉
 (基材積層体の形成)
 硬化樹脂塗布溶液の調製において、MgFナノ粒子分散液の代わりにTiOナノ粒子分散液(CIKナノテック社製)を用い、硬化樹脂層の厚さを変更したことを除いて実施例4と同様にして、透明基材上に硬化樹脂層を有する基材積層体を得た。ここで、TiOナノ粒子の屈折率は2.55であった。
 (透明導電積層体の形成)
 形成した基材積層体の硬化樹脂層上に、参考例2と同様に、銀ナノワイヤーの分散液を塗布して透明導電層を形成することによって、基材積層体上に透明導電層を有する透明導電積層体を得た。
 (光学物性)
 上記のようにして得た基材積層体、及び透明導電積層体の光学物性を、下記の表2に示している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〈評価結果についての分析〉
 (参考例2)
 参考例2の透明基材としてのポリカーボネートフィルムは、ほぼ無色透明であった。このことは、表2において、参考例2の透明基材のb値の絶対値が小さいこと、及び参考例2についての図7において、「透明基材のみ」の透過スペクトル及び反射スペクトルがなだらかにのみ変化していることに対応している。
 これに対して、参考例2でのように、この透明基材上に銀ナノワイヤーで構成されている透明導電層を形成して得た透明導電積層体は、黄色っぽい色を有していた。このことは、表2において、参考例2の透明導電積層体のb値が比較的大きい正の値になっていること、及び参考例2についての図7において、「透明基材+透明導電層」の透過スペクトルのボトムピーク及び反射スペクトルのトップピークが350nm~385nm未満の範囲に存在していることに対応している。
 (実施例3~6)
 実施例3~6の基材積層体は、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有していなかった。また、実施例3~6の基材積層体は、硬化樹脂層の屈折率が、透明基材の屈折率よりも小さかった。
 実施例3~6の透明導電積層体は、ほぼ無色透明であった。このことは、表2において、実施例3~6の透明導電積層体のb値の絶対値が小さいことに対応している。また、実施例7の透明導電積層体は、透明基材の両面に硬化樹脂層、透明導電層、及びオーバーコートを有しているにも関わらず、透明基材の片面に硬化樹脂層及び透明導電層を有している比較例3の透明導電積層体よりも小さいb値を有しており、したがって黄色みが比較的小さかった。
 (比較例3)
 比較例3の基材積層体は、硬化樹脂層の屈折率が、透明基材の屈折率よりも小さかったものの、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有しておらず、かつ透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有していた。
 比較例3の透明導電積層体は、黄色っぽい色を有していた。このことは、表2において、比較例3の透明導電積層体のb値が比較的大きい正の値になっていることに対応している。
 (比較例4)
 比較例2の基材積層体は、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有していなかった。しかしながら、実施例3~6の基材積層体は、硬化樹脂層の屈折率が、透明基材の屈折率よりも大きかった。
 比較例4の透明導電積層体は、青色っぽい色を有していた。このことは、表2において、比較例4の透明導電積層体のa値及びb値が比較的大きい負の値になっていることに対応している。
 10  透明導電層
 20  硬化樹脂層
 30  透明基材
 50  基材積層体
 100  本発明の透明導電積層体

Claims (10)

  1.  基材積層体、及び基材積層体上に積層されている透明導電層を有する透明導電積層体であって、
     前記基材積層体が、透明基材及び前記透明基材上に積層されている硬化樹脂層を有し、
     前記基材積層体が、透過スペクトルのトップピーク及び反射スペクトルのボトムピークを、385nm~485nmの範囲に有し、かつ
     前記基材積層体が、透過スペクトルのボトムピーク及び反射スペクトルのトップピークを、385nm~485nmの範囲に有さず、
     前記透明導電層が、繊維状の導電性材料を有し、かつ
     前記硬化樹脂層の屈折率が、前記透明基材の屈折率よりも小さい、
    透明導電積層体。
  2.  前記硬化樹脂層の屈折率と前記高分子フィルムの屈折率とが、0.05以上異なっている、請求項1に記載の透明導電積層体。
  3.  前記硬化樹脂層が、硬化性樹脂、及び前記硬化性樹脂中に分散している粒子から形成されてなる、請求項1又は2に記載の透明導電積層体。
  4.  前記粒子が、金属酸化物、金属窒化物、及び金属フッ化物からなる群より選択される、請求項3に記載の透明導電積層体。
  5.  前記基材積層体が、650nm~850nmの範囲に、
     透過スペクトルのボトムピークを有さず、かつトップピークを1つ有するか若しくは有さない、かつ/又は
     反射スペクトルのトップピークを有さず、かつボトムピークを1つ有するか若しくは有さない、
    請求項1~4のいずれか一項に記載の透明導電積層体。
  6.  前記基材積層体のL表色系におけるb値が、-0.40以下である、請求項1~5のいずれか一項に記載の透明導電積層体。
  7.  前記繊維状の導電性材料が、銀ワイヤーである、請求項1~6のいずれか一項に記載の透明導電積層体。
  8.  全光線透過率が90%以上である、請求項1~7のいずれか一項に記載の透明導電積層体。
  9.  ヘーズ値が1.00%以下である、請求項1~8のいずれか一項に記載の透明導電積層体。
  10.  L表色系におけるb値の絶対値が0.80以下である、請求項1~9のいずれか一項に記載の透明導電積層体。
PCT/JP2019/006159 2018-02-20 2019-02-19 透明導電積層体 WO2019163791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/970,668 US20200381138A1 (en) 2018-02-20 2019-02-19 Transparent conductive laminate
JP2020500975A JPWO2019163791A1 (ja) 2018-02-20 2019-02-19 透明導電積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-028061 2018-02-20
JP2018028061 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163791A1 true WO2019163791A1 (ja) 2019-08-29

Family

ID=67687324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006159 WO2019163791A1 (ja) 2018-02-20 2019-02-19 透明導電積層体

Country Status (3)

Country Link
US (1) US20200381138A1 (ja)
JP (1) JPWO2019163791A1 (ja)
WO (1) WO2019163791A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198642A (ja) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd 透明導電膜付き基材及びその製造方法
WO2013115310A1 (ja) * 2012-02-03 2013-08-08 株式会社きもと 透明導電膜付き基材及びタッチパネル
JP2013205565A (ja) * 2012-03-28 2013-10-07 Fujitsu Ltd 積層型液晶表示素子
JP2015050100A (ja) * 2013-09-03 2015-03-16 日東電工株式会社 透明導電性フィルム
JP2017050251A (ja) * 2015-09-04 2017-03-09 デクセリアルズ株式会社 分散液、透明導電膜、入力装置及び有機el照明装置
JP2017183195A (ja) * 2016-03-31 2017-10-05 日東電工株式会社 透明導電性フィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844996B2 (ja) * 2011-05-11 2016-01-20 日東電工株式会社 透明導電性積層体及びタッチパネル
US20150243405A1 (en) * 2012-09-27 2015-08-27 Toray Industries, Inc. Transparent conductive laminate
US20140186587A1 (en) * 2012-12-27 2014-07-03 Cheil Industries Inc. Transparent conductor and apparatus including the same
KR102083679B1 (ko) * 2013-01-25 2020-03-02 도레이첨단소재 주식회사 정전용량방식 터치패널용 고투과 복합필름

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198642A (ja) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd 透明導電膜付き基材及びその製造方法
WO2013115310A1 (ja) * 2012-02-03 2013-08-08 株式会社きもと 透明導電膜付き基材及びタッチパネル
JP2013205565A (ja) * 2012-03-28 2013-10-07 Fujitsu Ltd 積層型液晶表示素子
JP2015050100A (ja) * 2013-09-03 2015-03-16 日東電工株式会社 透明導電性フィルム
JP2017050251A (ja) * 2015-09-04 2017-03-09 デクセリアルズ株式会社 分散液、透明導電膜、入力装置及び有機el照明装置
JP2017183195A (ja) * 2016-03-31 2017-10-05 日東電工株式会社 透明導電性フィルム

Also Published As

Publication number Publication date
US20200381138A1 (en) 2020-12-03
JPWO2019163791A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
JP5051328B1 (ja) 光学積層体、偏光板及び画像表示装置
JP6799176B2 (ja) ハードコートフィルム、光学積層体および画像表示装置
JP6153723B2 (ja) 防眩性フィルムの製造方法、防眩性フィルム、偏光板および画像表示装置
WO2002055612A1 (fr) Composition de revêtement, film de revêtement en cette composition, revêtement antireflet, film antireflet, afficheur d'image, et produit intermédiaire
JP6673629B2 (ja) 反射防止フィルムおよびその製造方法
JP2008274266A (ja) 帯電防止性(及びハードコート性)を実現できる組成物、単層体、部材又は積層体
KR102197747B1 (ko) 반사 방지 필름 및 그 제조 방법
JP4712236B2 (ja) 反射防止膜、反射防止フィルム、画像表示装置、及び、それらの製造方法
WO2014119505A1 (ja) 反射防止フィルムおよびその製造方法
JP2017167560A (ja) 防眩性フィルムの製造方法、防眩性フィルム、偏光板および画像表示装置
JP2013254116A (ja) 光学積層体、及びこれを用いた偏光板
JP2013254118A (ja) 光学積層体、及びこれを用いた偏光板
JP2002275430A (ja) コーティング組成物、及び、その塗膜
KR101485524B1 (ko) 컬링 방지 lcd 백라이트용 반사 시트
TW201937216A (zh) 液晶顯示裝置與用於該液晶顯示裝置之光學構件及光學構件之套組
JP5911785B2 (ja) 光学積層体
JP6048010B2 (ja) 積層体、偏光板、液晶パネル、タッチパネルセンサ、タッチパネル装置および画像表示装置
JP2014198405A (ja) 導電性光学部材
WO2019163791A1 (ja) 透明導電積層体
JP2013254117A (ja) 光学積層体、及びこれを用いた偏光板
JP6074851B2 (ja) 導電性光学部材
JP2013254115A (ja) 光学積層体、及びこれを用いた偏光板
US20090136713A1 (en) Optical layered product
JP2008292987A (ja) 光学積層体
JP2000238169A (ja) 透明導電性フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757965

Country of ref document: EP

Kind code of ref document: A1