JP4973061B2 - フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体 - Google Patents

フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体 Download PDF

Info

Publication number
JP4973061B2
JP4973061B2 JP2006219983A JP2006219983A JP4973061B2 JP 4973061 B2 JP4973061 B2 JP 4973061B2 JP 2006219983 A JP2006219983 A JP 2006219983A JP 2006219983 A JP2006219983 A JP 2006219983A JP 4973061 B2 JP4973061 B2 JP 4973061B2
Authority
JP
Japan
Prior art keywords
fuel cut
downshift
return
control
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006219983A
Other languages
English (en)
Other versions
JP2008045446A (ja
Inventor
信之 柴垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006219983A priority Critical patent/JP4973061B2/ja
Publication of JP2008045446A publication Critical patent/JP2008045446A/ja
Application granted granted Critical
Publication of JP4973061B2 publication Critical patent/JP4973061B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御に関し、特に、所望の減速度を実現するためにダウンシフトタイミングを変更する車両であって、フューエルカットからの復帰時および変速時におけるショックを回避する車両の制御に関する。
自動変速機を備える車両においては、変速時に生じる一時的なトルク変動により衝撃を伴う。たとえば、緩やかな減速に起因するダウンシフトにおいては、変速ギヤ比の増大に対し車速の変化がほとんどないため変速時においてエンジン出力軸と車両の駆動軸が接続されると、駆動軸の慣性質量の影響を受けてエンジン回転数が急激に上昇する。このエンジン回転数の急激な上昇により駆動軸の慣性質量が持つトルクが消費され、車両の駆動トルクが一時的に低下する。この駆動トルクの一時的変動は乗員に不快な衝撃として感じられることがある。このような原因に限らず、マニュアル変速機とは異なり自動変速機においては運転者が認識しない状況のもとで、変速時に駆動力の伝達が一時的に中断されるため運転者がショックを感じることがある。
ところで、減速走行においてはエンジン出力(以下においては、エンジン出力をエンジントルクと同義に用いることがある)をあまり必要としないことから、減速状態、エンジン回転数、エンジン冷却水温等の運転状態に応じて、減速状態の場合にエンジンへの燃料供給を中止する、いわゆるフューエルカット制御を実行して、燃料消費の低減により燃費向上を図っている。このフューエルカット制御は、走行性能や乗心地を損なわない範囲でエンジンに対する燃料の供給を可及的に少なくして燃費を向上させる制御である。一般的には、エンジンがアイドリング状態にある減速中にエンジン回転数が予め定められた範囲に入る(フューエルカット回転数以上)ことにより、燃料の供給を停止している。具体的には、走行中にスロットルバルブが閉じられて(減速走行)、かつ、エンジン回転数がフューエルカット回転数以上であると、燃料の供給を停止する。また、エンジン回転数が低下してその範囲の下限を規定している復帰回転数(フューエルカット復帰回転数)に達すると燃料の供給を再開する。なお、近年では、このフューエルカット制御を長引かせるために、ロックアップクラッチを係合状態やスリップ状態として、エンジン回転数の低下を遅らせて、さらなる燃費の向上が図られることもある。
特開平1−247733号公報(特許文献1)は、自動変速機を備える車両において、フューエルカット制御を実行している場合に、変速ギヤ比を増大する変速(ダウンシフト)が行なわれた場合に、乗員に与える衝撃を回避する制御装置を開示する。この制御装置は、自動変速機と、減速時に燃料供給を中止するフューエルカット制御部およびスロットル全閉時の吸入空気量を制御する全閉空気量制御部を備えたエンジンにおいて、自動変速機のギヤ位置を検出してダウンシフトを判定するダウンシフト判定部を設け、ダウンシフトを検出した場合には、全閉空気量制御部の特性に適合した所定時間T(2)後に全閉空気量を増大させるとともに、フューエルカット制御中であれば、ダウンシフトを検出してからフューエルカット制御部の特性に適合した所定時間T(1)後にフューエルカットを中止する。
この制御装置によるとダウンシフト時にフューエルカット制御を中止するとともに、空気量を増大する構成とし、かつ、各々の特性に合致するようにダウンシフトの検出からその対応作動開始までにそれぞれディレー時間を設けた。これにより、ダウンシフトを検出した時に、フューエルカットを中止してエンジンブレーキトルクを低減する構成として、さらに、あまりにも空気量が少ないことを回避してエンジンブレーキトルクの低減代も大きくして、衝撃を緩和する効果が発現する。これにより、より一層ダウンシフト時のショックを低減することができるという効果が得られる。
このように、フューエルカット制御を実行する車両において、ダウンシフトのタイミングにより衝撃を回避するためには、変速点(以下、変速ポイントと記載する)の検出が必須である。特開平11−257482号公報(特許文献2)は、コースト状態(車輪側からエンジン側へ動力が伝達されている状態:被駆動状態)でダウンシフト変速が実行されることにより発生した過度のエンジンブレーキ力に起因する変速ショックの発生が大きくなることを回避する自動変速機の変速制御装置を開示する。この自動変速機の変速制御装置は、複数のクラッチを備え、コースト時に変速ポイントに従いクラッチtoクラッチ変速のダウンシフトを行なう自動変速機の変速制御装置であって、車両の減速度を検出する検出部を備え、コースト時のダウンシフトを行なう際の変速ポイントを、車両の減速度に応じて変更する。
この自動変速機の変速制御装置によると、変速ポイントを車両の減速度に応じて変更することにより、変速ポイントを必要以上に高く設定する必要がないため、減速時による過剰なエンジンブレーキを抑制し、常にどのような減速度のときにでも変速ショックを抑え、良好なダウンシフトが実行できる。
特開平1−247733号公報 特開平11−257482号公報
最近の自動変速機においては、さらなる燃費向上やドライバビリティの向上を目的として、多段化(7速〜9速)の傾向が進んでいる。変速ギヤ段数が多くなればなるほど、特許文献2に開示されたように、減速度に応じて変速ポイントを変更する場合には変速ポイントが一定の場合に比較して、フューエルカット復帰のタイミングと変速ポイント(変速タイミング)とが重なる可能性が高くなる。
しかしながら、上述したいずれの特許文献においても、減速後に応じて変速ポイントを変更することを前提として、フューエルカット復帰のタイミングと変速タイミングとの重なりに伴うショックの発生についての言及がない。
本発明は、上述の課題を解決するためになされたものであって、その目的は、減速度に応じて変速ポイントを可変とする自動変速機およびフューエルカット制御を実行する内燃機関を搭載した車両において、変速ショックやフューエルカット復帰ショックを回避する、車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体を提供することである。
第1の発明に係る車両の制御装置は、フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両を制御する。この制御装置は、減速時のダウンシフト変速点を変更するための変更手段と、車両の状態が予め定められた実行条件を満足すると内燃機関への燃料供給を停止するフューエルカットを実行し、車両の状態が予め定められた復帰条件を満足するとフューエルカットから復帰するように、内燃機関を制御するためのフューエルカット実行手段と、ダウンシフト変速点に基づいて実行されるダウンシフト変速期間内においては、フューエルカットから復帰しないように、復帰条件とは別の条件でフューエルカットから復帰させるように、フューエルカット実行手段を制御するための制御手段とを含む。第6の発明に係る制御方法は、第1の発明に係る制御装置と同様の要件を備える。
第1または第6の発明によると、減速走行時において要求される減速度合いに応じて減速時のダウンシフト変速点が変更されるので、減速時において実行されているフューエルカットからの復帰タイミングとダウンシフト変速期間とが重なる場合が確率的に多くなる。このような場合においては、通常の復帰条件を用いてフューエルカットから復帰するのではなく、別の条件(たとえば変速指示)に基づいてフューエルカットから復帰する。このため、通常の復帰条件である、内燃機関の回転数の低下状況に基づいてフューエルカットからの復帰をするのではなく、変速期間を回避してフューエルカットから復帰するので、フューエルカットからの復帰とダウンシフト変速期間とが重なることが回避できる。このため、ショックを抑制することができる。その結果、減速度合いに応じてダウンシフト変速点を可変とする自動変速機およびフューエルカット制御を実行する内燃機関を搭載した車両において、変速ショックやフューエルカット復帰ショックを回避する車両の制御装置や制御方法を提供することができる。
第2の発明に係る車両の制御装置においては、第1の発明の構成に加えて、制御手段は、内燃機関の回転数に基づいて設定される復帰条件とは別の条件で、フューエルカットから復帰させるようにフューエルカット実行手段を制御するための手段を含む。第7の発明に係る制御方法は、第2の発明に係る制御装置と同様の要件を備える。
第2または第7の発明によると、通常の復帰条件である、内燃機関の回転数の低下状況に基づいてフューエルカットからの復帰をするのではなく、変速期間を回避してフューエルカットから復帰するので、フューエルカットからの復帰とダウンシフト変速期間とが重なることが回避できる。
第3の発明に係る車両の制御装置においては、第1または第2の発明の構成に加えて、制御手段は、ダウンシフト変速指示に基づいて設定される別の条件で、フューエルカットから復帰させるようにフューエルカット実行手段を制御するための手段を含む。第8の発明に係る制御方法は、第3の発明に係る制御装置と同様の要件を備える。
第3または第8の発明によると、通常の復帰条件である、内燃機関の回転数の低下状況に基づいてフューエルカットからの復帰をするのではなく、変速指示に基づいて変速期間を回避してフューエルカットから復帰するので、フューエルカットからの復帰とダウンシフト変速期間とが重なることが回避できる。
第4の発明に係る車両の制御装置においては、第1〜第3のいずれかの発明の構成に加えて、変更手段は、減速度合いに応じて、ダウンシフト変速点を変更するための手段を含む。第9の発明に係る制御方法は、第4の発明に係る制御装置と同様の要件を備える。
第4または第9の発明によると、減速の要求度合いに応じてダウンシフト変速点を高車速側に変更して、早期にダウンシフト指令を出力して、所望の減速を実現することができる。
第5の発明に係る車両の制御装置は、第1〜第4のいずれかの発明の構成に加えて、フューエルカットが実行されている場合にはロックアップクラッチを係合およびスリップのいずれかの状態になるように、かつ、フューエルカットから復帰してから予め定められた時間の経過後にロックアップクラッチが解放されるように、ロックアップクラッチを制御するための手段をさらに含む。第10の発明に係る制御方法は、第5の発明に係る制御装置と同様の要件を備える。
第5または第10の発明によると、フューエルカットからの復帰後に直ちにロックアップクラッチを解放するのではなく、フューエルカットからの復帰から予め定められた時間の経過後にロックアップクラッチを解放する。このため、実際に燃料供給が復帰するタイミングとロックアップクラッチが解放されるタイミングとを一致または近接させることができ、内燃機関の回転数の過度の上昇を抑制することができる。
第11の発明に係るプログラムは、第6〜第10のいずれかの発明に係る制御方法をコンピュータで実現するプログラムであって、第12の発明に係る記録媒体は、第6〜第10のいずれかの発明に係る制御方法をコンピュータで実現するプログラムを記録した媒体である。
第11または第12の発明によると、コンピュータ(汎用でも専用でもよい)を用いて、第6〜第10のいずれかの発明に係る制御方法を実現することができる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰り返さない。
図1に示すように、本実施の形態に係る制御装置が搭載された車両は、エンジン150と、吸気系152と、排気系154と、エンジンECU(Electronic Control Unit)100とECT(Electronically Controlled Automatic Transmission)−ECU200とを含む。また、このエンジン150は、ロックアップクラッチ付きトルクコンバータを備えた有段式の7速自動変速機を介して駆動論に動力を伝達する。なお、本発明は、7速自動変速機に限定されて適用されるものではない。たとえば、有段変速機であれば6速や8速以上でもよい。
吸気系152は、吸気通路110と、エアクリーナ118と、エアーフローメータ104と、スロットルモータ114と、スロットルバルブ112と、スロットルポジションセンサ116とを含む。
エアクリーナ118から吸気された空気は、吸気通路110を通り、エンジン150に流通する。吸気通路110の途中には、スロットルバルブ112が設けられる。スロットルバルブ112は、スロットルモータ114が作動することにより開閉される。このとき、スロットルバルブ112の開度は、スロットルポジションセンサ116により検出することが可能となる。エアクリーナ118とスロットルバルブ112との間における吸気通路には、エアーフローメータ104が設けられており、吸気された空気量を検出する。エアーフローメータ104には、吸入空気量Qを表わす吸気量信号をエンジンECU100に送信する。
エンジン150は、冷却水通路122と、シリンダブロック124と、インジェクタ126と、ピストン128と、クランクシャフト130と、水温センサ106と、クランクポジションセンサ132とを含む。
シリンダブロック124には特定の数に対応したシリンダが設けられ(特定の数は、気筒の数に対応する)、シリンダにはそれぞれピストン128が設けられる。ピストン128上部の燃焼室に吸気通路110を通って、インジェクタ126から噴射された燃料と吸気された空気との混合気が導入されて、点火プラグ(図示せず)の点火により燃焼する。燃焼が生じると、ピストン128が押し下げられる。このとき、ピストン128の上下運動は、クランク機構を介して、クランクシャフト130の回転運動に変換される。なお、エンジン150の回転数(エンジン回転数ne)は、クランクポジションセンサ132により検出された信号に基づいてエンジンECU100が検出する。
シリンダブロック124内には、冷却水通路122が設けられており、ウォータポンプ(図示せず)の作動により、冷却水が循環する。この冷却水通路122内の冷却水は、冷却水通路122に接続されたラジエータ(図示せず)へと流通して冷却ファン(図示せず)により放熱される。冷却水通路122の通路上には水温センサ106が設けられており、冷却水通路122内の冷却水の温度(エンジン冷却水温)THWを検出する。水温センサ106は、検出したエンジン冷却水温THWを示す信号をエンジンECU100に送信する。
排気系154は、排気通路108と、第1の空燃比センサ102Aと、第2の空燃比センサ102Bと、第1の三元触媒コンバータ120Aと、第2の三元触媒コンバータ120Bとを含む。第1の三元触媒コンバータ120Aの上流側に第1の空燃比センサ102Aが設けられ、第1の三元触媒コンバータ120Aの下流側(第2の三元触媒コンバータ120Bの上流側)に第2の空燃比センサ102Bが設けられる。なお、三元触媒コンバータは1個でもよい。
エンジン150の排気側に接続された排気通路108は、第1の三元触媒コンバータ120Aおよび第2の三元触媒コンバータ120Bに接続される。すなわち、エンジン150において燃焼室内の混合気の燃焼により生じる排気ガスは、まず、第1の三元触媒コンバータ120Aに流入する。第1の三元触媒コンバータ120Aに流入した排気ガス中に含まれるHC、COは、第1の三元触媒コンバータ120Aにおいて酸化される。また、第1の三元触媒コンバータ120Aに流入した排気ガス中に含まれるNOxは、第1の三元触媒コンバータ120Aにおいて、還元される。この第1の三元触媒コンバータ120Aは、エンジン150の近くに設置され、エンジン150の冷間始動時においても速やかに昇温されて触媒機能を発現する。
さらに、排気ガスは、NOxの浄化を目的として、第1の三元触媒コンバータ120Aから第2の三元触媒コンバータ120Bに送られる。この第1の三元触媒コンバータ120Aと第2の三元触媒コンバータ120Bとは、基本的には同じ構造および機能を有するものである。
第1の三元触媒コンバータ120Aの上流側に設けられた第1の空燃比センサ102A、第1の三元触媒コンバータ120Aの下流側であって第2の三元触媒コンバータ120Bの上流側に設けられた第2の空燃比センサ102Bは、第1の三元触媒コンバータ120Aまたは第2の三元触媒コンバータ120Bを通過した排気ガス中に含まれる酸素の濃度を検出する。酸素の濃度を検出することにより、排気ガス中に含まれる燃料と空気との比、いわゆる空燃比を検出することができる。
第1の空燃比センサ102Aおよび第2の空燃比センサ102Bは、排気ガス中の酸素濃度に応じた電流を発生させる。この電流は、たとえば電圧に変換されてエンジンECU100に入力される。したがって、第1の空燃比センサ102Aの出力信号から第1の三元触媒コンバータ120Aの上流における排気ガスの空燃比を検出することができ、第2の空燃比センサ102Bの出力信号から第2の三元触媒コンバータ120Bの上流における排気ガスの空燃比を検出することができる。これらの第1の空燃比センサ102Aおよび第2の空燃比センサ102Bは、空燃比がリーンのときには、たとえば0.1V程度の電圧を発生し、空燃比がリッチのときには0.9V程度の電圧を発生するものである。これらの値に基づいて空燃比に換算した値と、空燃比のしきい値とを比較して、エンジンECU100による空燃比制御が行なわれる。
第1の三元触媒コンバータ120Aおよび第2の三元触媒コンバータ120Bは、空燃比がほぼ理論空燃比のときにHC,COを酸化しつつNOxを還元する機能、すなわちHC,COおよびNOxを同時に浄化する機能を有する。これらの第1の三元触媒コンバータ120Aおよび第2の三元触媒コンバータ120Bは、空燃比がリーンであり排気ガス中の酸素量が多いと、酸化作用が活発となるが還元作用が不活発となり、また空燃比がリッチであり排気ガス中の酸素量が少ないと、逆に還元作用が活発となるが酸化作用が不活発となり、前述の三成分をすべて良好に浄化させることができない。
なお、エンジンECU100には、運転者により操作されるアクセルペダルの開度(アクセルペダル開度ACC)を検出するアクセルペダル開度センサ160が接続されている。
上述したように、このエンジン150からの出力は、ロックアップクラッチ付きトルクコンバータを備えた7速自動変速機を介して駆動輪に伝達される。エンジンECU100は、この自動変速機を制御するECT−ECU200と通信可能に接続されている。ECT−ECU200には、自動変速機の出力軸回転数(AT出力軸回転数no)を検出するAT出力軸回転数センサ210と、ロックアップクラッチを制御するロックアップクラッチ油圧回路220とが接続されている。なお、ECT−ECU200は、図示しない自動変速機の摩擦係合要素(クラッチやブレーキ)の係合状態を制御する油圧回路を制御して、車速とスロットル開度とで規定されるマップ等に基づいて、所望の変速ギヤ段を実現する。さらに、後述するように、このECT−ECU200は、減速度合いに応じてダウンシフトポイント(ダウンシフト変速線)を変更する。
ロックアップクラッチ油圧回路220は、ロックアップクラッチを、係合状態、解放状態および係合状態と解放状態との中間のスリップ状態のいずれかの状態になるように、ロックアップクラッチの係合圧を制御する。
以下においては、エンジンECU100とECT−ECU200とをまとめて1つのECUとして説明する。
このECUは、アクセルペダルが踏まれておらず、エンジン150の回転数(エンジン回転数ne)が予め定められたフューエルカット許可回転数ncutよりも高い場合には、フューエルカット制御を実行する。これにより、インジェクタ126からの燃料噴射が停止されて燃費の向上やエミッションの向上を図ることができる。燃料の供給を停止しているので車両の速度が低下し、エンジン150の回転数(エンジン回転数ne)がフューエルカット復帰回転数nrtよりも低くなるとエンジンストールを防止するためにフューエルカット制御が中止されてインジェクタ126による燃料噴射が再開される。また、運転者によりアクセルペダルが踏まれた場合にも、加速要求があったため、フューエルカット制御が中止されてインジェクタ126による燃料噴射が再開される。このとき、アクセルペダルの開度に応じてスロットルバルブ112が開いて吸入空気量Qが増大する。
上述したように、ECT−ECU200によりダウンシフト変速線が変更される(コーストダウンの場合にはアクセル開度が0であるので変速線自体を変更するのではなく、車速または自動変速機出力軸回転数no(以下、AT出力軸回転数noと記載する)(なお、これらは横軸)とアクセル開度またはスロットル開度(なお、これらは縦軸)とで規定される変速マップにおける変速線の横軸切片であるダウンシフト変速ポイントのみを変更しても構わない)。コーストダウン時においてフューエルカットの実行中に車速(AT出力軸回転数noに比例)が低下して、ダウンシフト変速線を横切ると(ダウンシフト変速ポイントを下回ると)、ECU(ECT−ECU200)から油圧制御回路にダウンシフト指令が出力される。
このような場合において、本実施の形態に係るECUは、ダウンシフト変速指令出力タイミングと実際に変速が終了するタイミングとの間においてフューエルカットから復帰することを回避するように、フューエルカット制御を実行する。さらに、ECUは、このフューエルカットからの復帰後におけるロックアップクラッチの作動を制御する。すなわち、コーストダウン時においてフューエルカットをより実行するために(エンジン回転数neを低下させ難くするために)、減速スリップ制御されており、ロックアップクラッチは係合状態またはスリップ状態になるように制御されている(以下、ロックアップクラッチが係合状態またはスリップ状態に制御されていることをロックアップクラッチが作動状態に制御されていると記載し、ロックアップクラッチが解放状態に制御されていることをロックアップクラッチが非作動状態に制御されていると記載する場合がある)。これは、主として、フューエルカットに起因するエンジン回転数の急激な落込みを回避するため、および、急減速(急制動)が起こったときに備えて、即座にロックアップクラッチを解放してエンジンストールを回避するためである。ECUは、このロックアップクラッチが作動状態から非作動状態に変更されるタイミングを制御する。
図2を参照して、本実施の形態に係る制御装置の機能ブロック図について説明する。図2に示すように、この制御装置は、減速要求度合いが大きい時に早期にダウンシフトさせるためのダウンシフトポイント上昇変更部10000と、変速指令が出力されたことによりフューエルカットからの復帰を判断するフューエルカット復帰判断部20000と、エンジン回転数neがフューエルカット復帰回転数nrtを下回ったことによりフューエルカットからの復帰を判断するフューエルカット復帰判断部30000と、ロックアップクラッチの減速スリップ制御をフューエルカットの復帰から所定時間遅延させて終了させるLCスリップ制御遅延終了判断部40000と、フューエルカットを実行するフューエルカット制御部50000と、ロックアップクラッチの状態(係合状態およびスリップ状態の作動状態、解放状態の非作動状態)を制御するロックアップクラッチ制御部60000とを含む。
ダウンシフトポイント上昇変更部10000は、通常におけるダウンシフト回転数であるダウンシフトベース回転数を算出するダウンシフトベース回転数算出部10100と、減速要求度合いΔno算出部10200とに接続されている。ダウンシフトポイント上昇変更部10000は、ダウンシフトベース回転数に対して、(たとえば現在の変速ギヤ段毎に)設定された減速要求度合いΔnoに対するダウンシフトポイント上昇分shtnoを加算して、変速指令判断部10300の変速マップのダウンシフト変速線(ダウンシフト変速ポイント)を高車速側に変更する。このようにすると、減速時において、減速要求度合いに応じてダウンシフト指令が出力されるタイミングが変更されて、減速要求度合いが大きい時には、より早期にダウンシフトされて大きな減速を実現できる。
AT出力軸回転数no検出部10400にて検出されたAT出力軸回転数no(車速に比例)が、変更されたダウンシフト変速線を高車速側から低車速側に横切ると(コースト時のためスロットル開度またはアクセル開度は0であるので、AT出力軸回転数noが変更されたダウンシフト変速ポイントを下回ると)、ダウンシフト指令が出力される。
フューエルカットからの復帰には、通常通り、エンジン回転数neがフューエルカット復帰回転数を下回ると、フューエルカットから復帰するように判断するフューエルカット復帰判断部30000に加えて、フューエルカット復帰判断部20000を備える。このフューエルカット復帰判断部20000は、ダウンシフト変速指令のタイミングと実ダウンシフト変速のタイミングとの間にフューエルカットからの復帰タイミングが挟まれないように、変速指令が出力されるとフューエルカットから復帰するように判断する。フューエルカット復帰判断部20000およびフューエルカット復帰判断部30000は、いすれもフューエルカット制御部50000およびLCスリップ制御遅延終了判断部40000に接続されている。
フューエルカット制御部50000は、燃料噴射機構50100(インジェクタ126の制御部)に接続され、燃料をインジェクタ126から噴射しないようにしてフューエルカットを実行する。ロックアップクラッチ制御部60000は、ロックアップクラッチの状態を作動状態(係合状態、スリップ状態)および非作動状態(解放状態)のいずれかの状態になるように、ロックアップクラッチ油圧回路60100を制御する。
LCスリップ制御遅延終了判断部40000においては、フューエルカットからの復帰後、所定時間が経過してから、作動状態(係合状態、スリップ状態)のロックアップクラッチを非作動状態(解放状態)になるように、ロックアップクラッチ油圧回路60100に制御信号を出力する。これは、ロックアップクラッチを非作動状態(解放状態)にする制御信号が出力されてから、この制御信号をロックアップクラッチ油圧回路が実際にロックアップクラッチを解放状態とするまでに要する時間(より詳しくは、ロックアップクラッチが作動状態から非作動状態への移行を開始するまでの時間)と、フューエルカットからの復帰指令の制御信号が出力されてから、実際にエンジン150への燃料供給が復帰するまでに要する時間(より詳しくは、燃料供給の復帰に伴うエンジン回転数およびエンジントルクの上昇がロックアップクラッチの入力側に到達するまでの時間)とを比較すると、一般に、前者が後者より短い(すなわち、両制御信号を同時に出力した場合には、ロックアップクラッチが非作動状態となるタイミングのほうが、燃料供給が復帰するタイミングよりも早くなり、その結果、エンジン回転数の過度の上昇が発生する)。これは、フューエルカット中は、ロックアップクラッチは、急減速等に備えて、作動状態であっても即座に遮断できるように、完全な係合状態ではなくスリップ状態とされる傾向にあることや、燃料供給が復帰してからエンジンの回転上昇およびエンジントルク上昇がロックアップクラッチの入力側に達するまでには比較的長時間を要すること等に起因する。このため、フューエルカット復帰時において、フューエルカットからの復帰指令の制御信号を出力した後に、所定時間経過した後に、ロックアップクラッチの非作動指令の制御信号を出力する。これにより、実際に燃料供給が復帰するタイミングとロックアップクラッチが非作動状態となるタイミングとを一致または近接させることができ、エンジン回転数neの過度の上昇を抑制することができる。
このような機能ブロックを有する本実施の形態に係る制御装置は、デジタル回路やアナログ回路の構成を主体としたハードウェアでも、ECUに含まれるCPU(Central Processing Unit)およびメモリとメモリから読み出されてCPUで実行されるプログラムとを主体としたソフトウェアでも実現することが可能である。一般的に、ハードウェアで実現した場合には動作速度の点で有利で、ソフトウェアで実現した場合には設計変更の点で有利であると言われている。以下においては、ソフトウェアとして制御装置を実現した場合を説明する。なお、このようなプログラムを記録した記録媒体についても本発明の一態様である。
図3を参照して、ECU(エンジンECU100またはECT−ECU200)で実行されるダウンシフトポイント上昇変更処理のプログラムの制御構造について説明する。なお、このプログラムは、予め定められたサイクルタイムで繰り返し実行される。以下、他のフローチャートで示されるプログラムも同様に予め定められたサイクルタイムで繰り返し実行され、複数のフローチャートで示される各サブルーチン化されたプログラムが並行して実行される。さらに、以下の説明において、オン状態のフラグをオン状態にするとは、オン状態を維持することを示し、オフ状態のフラグをオフ状態にするとは、オフ状態を維持することを、それぞれ示す。
ステップ(以下、ステップをSと記載する)1000にて、ECUは、ベースとなるダウンシフトベース回転数dwnnoに、変速マップに設定された変更前のダウンシフトポイントを示す回転数dwn_tblを代入する。なお、以下の説明では、6速から5速のダウンシフトについて説明する。
S1100にて、ECUは、減速度合いΔnoを算出する。本発明は、この減速度合いΔnoの算出について限定されない。たとえば、車両の状態、運転者の操作等に基づいて減速度合いΔnoが適宜算出される。
S1200にて、ECUは、変速ギヤ段別に設定されたマップ(shtno_map)に基づいてシフトポイント上昇分shtnoを算出する。このとき、たとえば、マップ(shtno_map)は、図4の実線に示すように、減速度合いΔnoが大きいほどシフトポイント上昇分shtnoが大きくなるように設定される。すなわち、減速度合いが大であるほど、より高車速側でダウンシフトするためにかさ上げ量を多くする。なお、マップ(shtno_map)は、図4の一点鎖線に示すように、減速度合いΔnoが大きいほどシフトポイント上昇分shtnoが小さくなるように設定されるものであっても構わない。
S1300にて、ECUは、ダウンシフト回転数dwnnoに(dwnno+shtno)を代入する。これで、6速から5速へのダウンシフトポイントを示すダウンシフト回転数(変速線で表わされてもよい)が、シフトポイント上昇分shtnoだけ変更される。この状態を図5に示す。本実施の形態においては減速時であるので、スロットル開度またはアクセル開度が0であるので、図5の横軸に沿って記載したシフトポイント上昇分shtnoだけダウンシフト回転数(ダウンシフトポイント)が上昇する。その結果、図6に示すように、減速度合いΔnoに応じてダウンシフトが早期に実行される。
S1400にて、ECUは、AT出力軸回転数noを検出する。なお、このAT出力軸回転数noにディファレンシャルギヤのギヤ比(最終ギヤ比)を乗算すると車速を算出することができる。すなわち、AT出力軸回転数noと車速との間には比例関係が成立する。
S1500にて、ECUは、AT出力軸回転数noが変更されたダウンシフト回転数dwnnoを下回ったか否かを判断する。AT出力軸回転数noが変更されたダウンシフト回転数dwnnoを下回ると(S1500にでYES)、処理はS1600へ移される。もしそうでないと(S1500にてNO)、この処理は終了してダウンシフトの変速指示shtjdgは変更されない。
S1600にて、ECUは、変速指示shtjdgに(shtjdg−1)を代入する。これにより、6速から5速へのダウンシフト変速指示が生成される。
図7を参照して、ECUで実行されるフューエルカット復帰判断処理のプログラムの制御構造について説明する。
S2000にて、ECUは、エンジン回転数neを検出する。このとき、ECUは、クランクポジションセンサ132により入力された信号に基づいて、エンジン回転数neを検出する。
S2100にて、ECUは、フューエルカット復帰回転数nrtを検出する。このフューエルカット復帰回転数nrtは、ロックアップクラッチの作動状態(詳しくは後述する)や、エンジン150の温度(エンジン冷却水温THW)等により、異なる値が設定される。
S2200にて、ECUは、フューエルカットからの自然復帰判定条件が成立したか否かを判断する。このとき、エンジン回転数neがフューエルカット復帰回転数nrtを下回わると、フューエルカットからの自然復帰判定条件が成立したと判断される。エンジン回転数neがフューエルカット復帰回転数nrtを下回わり、フューエルカットからの自然復帰判定条件が成立すると(S2200にてYES)、処理はS2900へ移される。もしそうでないと(S2200にてNO)、処理はS2300へ移される。
S2300にて、ECUは、変速指示shtjdgを検出する。S2400にて、ECUは、ダウンシフト変速指示であるか否かを判断する。より具体的には6速から5速へのダウンシフト変速指示であるか否かを判断する。ダウンシフト変速指示であると判断されると(S2400にてYES)、処理はS200へ移される。もしそうでないと(S2400にてNO)、処理はS200へ移される。
S2800にて、ECUは、減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットの実行前提フラグxprfcluをオン状態にする(セットする)。その後、この処理は終了する。
S2900にて、ECUは、減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットの実行前提フラグxprfcluをオフ状態にする(リセットする)。
図8を参照して、ECUで実行されるフューエルカット復帰回転数設定処理のプログラムの制御構造について説明する。
S3000にて、ECUは、フューエルカットから復帰するベース回転数nrtbを算出する。このベース回転数nrtbは、ロックアップクラッチの作動状態以外の要因を考慮して決定される、フューエルカットからの復帰回転数である。
S3100にて、ECUは、減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットからの復帰する回転数nrtluを算出する。エンジン回転数neに対して設定されるこれらのフューエルカットからの復帰回転数の一例は、ベース回転数nrtbが1200rpm、回転数nrtluが700rpm等である。
S3100にて、ECUは、減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットの実行前提フラグxprfcluがオン状態であるか否かを判断する。フラグxprfcluがオン状態であると(S3200にてYES)、処理はS3300へ移される。もしそうでないと(S3200にてNO)、この処理はS3400へ移される。
S3300にて、ECUは、回転数nrtluをフューエルカットからの復帰回転数nrtに代入することにより、フューエルカット復帰回転数を算出する。その後、この処理は終了する。
S3400にて、ECUは、ベース回転数nrtbをフューエルカットからの復帰回転数nrtに代入することにより、フューエルカット復帰回転数を算出する。
図9を参照して、ECUで実行されるロックアップクラッチのスリップ制御をフューエルカット復帰から遅延させて終了させる判断処理のプログラムの制御構造について説明する。なお、図9に示すフローチャートの中で、他のフローチャートで示した処理と同じ処理については同じステップ番号を付してある。それらの処理の内容は同じである。したがって、それらについての詳細な説明はここでは繰り返さない。なお、このように説明を繰り返さないのはこれ以降に説明するフローチャートについても同じである。
S4000にて、ECUは、フューエルカットからの自然復帰判定条件が成立したか否かを判断する。このとき、エンジン回転数neがフューエルカット復帰回転数nrtを下回わると、フューエルカットからの自然復帰判定条件が成立したと判断される。エンジン回転数neがフューエルカット復帰回転数nrtを下回わり、フューエルカットからの自然復帰判定条件が成立すると(S4000にてYES)、処理はS4400へ移される。もしそうでないと(S4000にてNO)、処理はS4100へ移される。
S4100にて、ECUは、減速時においてロックアップクラッチをスリップ状態(作動状態)を終了させるために用いるカウンタcafcrに0をセットする。なお、このカウンタcafcrは加算カウンタであって、ECUは、加算値(カウント値)が予め設定されたカウンタしきい値(後述するしきい値B)に到達したか否かを判断できる。
S4200にて、ECUは、フューエルカット許可回転数ncutを検出する。エンジン回転数neが、この許可回転数ncut以上であると、フューエルカットが許可されて、フューエルカットが実行される。
S4300にて、ECUは、エンジン回転数neが許可回転数ncutを下回っているか否かを判断する。エンジン回転数neが許可回転数ncutを下回わると(S4300にてYES)、処理はS4400へ移される。もしそうでないと(S4300にてNO)、処理はS4500へ移される。
S4400にて、ECUは、フューエルカット実行フラグxfcidlをオフ状態にする(リセットする)。その後、処理はS4600へ移される。
S4500にて、ECUは、フューエルカット実行フラグxfcidlをオン状態にする(セットする)。
S4600にて、ECUは、フューエルカット実行フラグxfcidlをオフ状態にされてからカウントを開始したカウンタcafcrの加算値(カウント値)が予め設定されたカウンタしきい値Bに到達したか否かを判断する。カウンタcafcrの加算値(カウント値)がカウンタしきい値Bに到達すると(S4600にてYES)、処理はS4700へ移される。もしそうでないと(S4600にてNO)、処理はS4800へ移される。なお、このカウンタしきい値Bは、実際に燃料供給が復帰するタイミングとロックアップクラッチが非作動状態となるタイミングとを一致または近接させることができ、エンジン回転数neの過度の上昇を抑制することができるように設定される。
S4700にて、ECUは、減速フューエルカット時においてスリップ状態(作動状態)としていたロックアップクラッチを非作動状態(解放状態)とするスリップ制御終了指示フラグxslucnをオン状態にする(セットする)。このため、ロックアップクラッチは、フューエルカットからの復帰後カウンタcafcrが設定されたしきい値Bに到達する時間だけ遅れて、作動状態から非作動状態である解放状態にされる。その後、この処理は終了する。
S4800にて、ECUは、減速フューエルカット時においてスリップ状態(作動状態)としていたロックアップクラッチを非作動状態(解放状態)とするスリップ制御終了指示フラグxslucnをオフ状態にする(リセットする)。
以上のような構造およびフローチャートに基づく、本実施の形態に係る制御装置により制御される車両の動作について、図10を参照して説明する。
図10の時刻t(1)において、コースト走行時において、6速から5速へのダウンシフト変速指示が出力される(S1500にてYESおよびS1600ならびにS2300およびS2400にてYES)。なお、このとき、6速から5速へのダウンシフト変速線(ダウンシフト変速ポイント)は、図4〜図6に示すように、減速度合いに応じて高車速側に変更されている(S1000〜S1300)。
減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットが実行されているときに、すなわち、フューエルカット自然復帰状態であるエンジン回転数neがフューエルカット復帰回転数nrt以上であるときに(S2200にてNO)、このダウンシフト変速指示が検出されると(S2400にてYES)、減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットの実行前提フラグxprfcluのオン状態が維持される(S2900)。すなわち、変速指示が検出されると実行前提フラグxprfcluのオン状態が維持されるので、変速期間中にフューエルカットから復帰することを回避できる。このため、変速期間とフューエルカットからの復帰タイミングが重ならない。
フューエルカット自然復帰状態であるエンジン回転数neがフューエルカット復帰回転数nrtよりも低くなると(S2200にてYES)、減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットの実行前提フラグxprfcluをオフ状態にされる(S2900)。詳しくは、変速指示が検出されない場合においてフューエルカット自然復帰条件が成立すると(S2200にてYES、S2400にてNO)、減速時においてロックアップクラッチをスリップ状態(作動状態)としたフューエルカットの実行前提フラグxprfcluがオフ状態になり(S2900)、フューエルカットから復帰する。このため、変速期間とフューエルカットからの復帰タイミングが重ならない。
このように、フューエルカットからの復帰が変速動作中に重なることを回避する。このため、ショックが大きくなることを回避できる。
さらに、このようにして、変速動作に重ならないタイミングでフューエルカットからの復帰が実行されると(より具体的には、フューエルカット実行フラグxfcidlがオフ状態にされると)、フューエルカット実行フラグxfcidlをオフ状態にされてからカウントを開始したカウンタcafcrの加算値(カウント値)が予め設定されたカウンタしきい値Bに到達したか否かを判断する(S4600)。カウンタcafcrの加算値(カウント値)が予め設定されたカウンタしきい値Bに到達するまで、フューエルカットの復帰から所定時間が経過すると(S4600にてYES)、減速フューエルカット時においてスリップ状態(作動状態)としていたロックアップクラッチを非作動状態(解放状態)とするスリップ制御終了指示フラグxslucnをオン状態にする(S4700)。これが図10の時刻t(2)で示されるタイミングである。
この時刻t(2)において、ロックアップクラッチは、フューエルカットからの復帰後カウンタcafcrが設定値Bまで到達する時間だけ遅れて、非作動状態である解放状態にされる。このようにすることにより、フューエルカット復帰時において、フューエルカットからの復帰指令の制御信号を出力した後に、所定時間経過した後に、ロックアップクラッチの非作動指令の制御信号を出力するので、実際に燃料供給が復帰するタイミングとロックアップクラッチが非作動状態となるタイミングとを一致または近接させることができ、エンジン回転数neの過度の上昇を抑制することができる。
以上のようにして、フューエルカット制御が実行されるエンジンと、ロックアップクラッチ付きトルクコンバータを備えた自動変速機とを搭載した車両において、
(1)減速要求度合いに応じてダウンシフトポイントを高車速側に変更して、早期にダウンシフト指令を出力して、所望の減速を実現すること、
(2)ロックアップクラッチを作動させて(減速スリップ制御)フューエルカットを実行している場合において、フューエルカットからの復帰と、上記(1)で変更されたダウンシフトポイントに基づくダウンシフト変速動作とが重なることを回避してショックを抑制すること、
(3)フューエルカットからの復帰後に直ちにロックアップクラッチを非作動状態(解放状態)にするのではなく、フューエルカットからの復帰から所定時間の経過後にロックアップクラッチを非作動状態(解放状態)にして、実際に燃料供給が復帰するタイミングとロックアップクラッチが非作動状態となるタイミングとを一致または近接させることができ、エンジン回転数neの過度の上昇を抑制すること
ができる。
<変形例>
以下、本発明の実施の形態の変形例について説明する。本変形例においては、図7に示すフローチャートで表わされるプログラムとは異なるフローチャートで表わされるプログラムを実行する。その他の構造は、上述の実施の形態と同じである。したがって、それらについての説明はここでは繰り返さない。
図11を参照して、ECUで実行されるフューエルカット復帰判断処理のプログラムの制御構造について説明する。なお、図11に示すフローチャートの中で上述の図7と同じ処理については同じステップ番号を付してある。それらの処理の内容は同じである。したがって、それらについての説明はここでは繰り返さない。
S5000にて、ECUは、変速指示shtjdgが5速以下であるか否かを判断する。変速指示shtjdgが5速以下であると(S5000にてYES)、処理はS2900へ移される。もしそうでないと(S5000にてNO)、処理はS2800へ移される。
すなわち、図10のタイミングA(時刻t(3))よりも、変速指示が出力されたタイミング(時刻t(1))早いときには(タイミングAよりも図10の左側に変速指示の出力タイミングがあるときには)、変速指示が出力されたタイミング(時刻t(1))で、フューエルカットからの復帰を実行する。
このようにしても、ロックアップクラッチを作動させて(減速スリップ制御)フューエルカットを実行している場合において、フューエルカットからの復帰と、ダウンシフト変速動作とが重なることを回避できるので、ショックを抑制することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態に係る制御装置が搭載される車両の制御ブロック図である。 本発明の実施の形態に係る制御装置の機能ブロック図である。 本発明の実施の形態に係る制御装置であるECUで実行されるプログラムの制御構造を示すフローチャート(その1)である。 減速度合いとシフトポイント上昇分との関係を表わしたマップを示す図である。 ダウンシフト変速線の変更状態を示す図である。 ダウンシフト変速線の変更に伴う変速タイミングの変更状態を示す図である。 本発明の実施の形態に係る制御装置であるECUで実行されるプログラムの制御構造を示すフローチャート(その2)である。 本発明の実施の形態に係る制御装置であるECUで実行されるプログラムの制御構造を示すフローチャート(その3)である。 本発明の実施の形態に係る制御装置であるECUで実行されるプログラムの制御構造を示すフローチャート(その4)である。 本発明の実施の形態に係る制御装置であるECUで実行された車両の動作を示すタイミングチャートである。 本発明の実施の形態の変形例に係る制御装置であるECUで実行されるプログラムの制御構造を示すフローチャートである。
符号の説明
100 エンジンECU、102A 第1の空燃比センサ、102B 第2の空燃比センサ、104 エアーフローメータ、106 水温センサ、108 排気通路、110 吸気通路、112 スロットルバルブ、114 スロットルモータ、116 スロットルポジションセンサ、118 エアクリーナ、120A 第1の三元触媒コンバータ、120B 第2の三元触媒コンバータ、122 冷却水通路、124 シリンダブロック、126 インジェクタ、128 ピストン、130 クランクシャフト、150 エンジン、152 吸気系、154 排気系、160 アクセルペダル開度センサ、200 ECT−ECU、210 AT出力軸回転数センサ、220 ロックアップクラッチ油圧回路。

Claims (10)

  1. フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置であって、
    減速時のダウンシフト変速点を変更するための変更手段と、
    前記内燃機関の回転数が許可回転数よりも高いという条件を含む実行条件を満足すると前記内燃機関への燃料供給を停止するフューエルカットを実行し、前記内燃機関の回転数が復帰回転数よりも低下したという条件を含む復帰条件を満足すると前記フューエルカットから復帰するように、前記内燃機関を制御するためのフューエルカット実行手段と、
    前記復帰条件の成立前に前記ダウンシフト変速の指示が出力されたという別の条件が成立した場合、前記別の条件の成立時にフューエルカットから復帰させるように、前記フューエルカット実行手段を制御するための制御手段とを含む、車両の制御装置。
  2. 前記別の条件は、前記ダウンシフト変速の指示が出力され、かつ前記ダウンシフト変速の指示による変速後の変速比が所定比よりも低速側であるという条件である、請求項に記載の車両の制御装置。
  3. 前記変更手段は、減速度合いに応じて、前記ダウンシフト変速点を変更するための手段を含む、請求項1または2に記載の車両の制御装置。
  4. 前記車両はロックアップクラッチ付き流体継手を備え、
    前記車両の制御装置は、前記フューエルカットが実行されている場合には前記ロックアップクラッチを係合およびスリップのいずれかの状態になるように、かつ、前記フューエ
    ルカットから復帰してから予め定められた時間の経過後に前記ロックアップクラッチが解放されるように、前記ロックアップクラッチを制御するための手段をさらに含む、請求項1〜のいずれかに記載の車両の制御装置。
  5. フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御方法であって、
    減速時のダウンシフト変速点を変更する変更ステップと、
    前記内燃機関の回転数が許可回転数よりも高いという条件を含む実行条件を満足すると前記内燃機関への燃料供給を停止するフューエルカットを実行し、前記内燃機関の回転数が復帰回転数よりも低下したという条件を含む復帰条件を満足すると前記フューエルカットから復帰するように、前記内燃機関を制御するフューエルカット実行ステップと、
    前記復帰条件の成立前に前記ダウンシフト変速の指示が出力されたという別の条件が成立した場合、前記別の条件の成立時にフューエルカットから復帰させるように、前記フューエルカット実行ステップを制御する制御ステップとを含む、車両の制御方法。
  6. 前記別の条件は、前記ダウンシフト変速の指示が出力され、かつ前記ダウンシフト変速の指示による変速後の変速比が所定比よりも低速側であるという条件である、請求項に記載の車両の制御方法。
  7. 前記変更ステップは、減速度合いに応じて、前記ダウンシフト変速点を変更するステップを含む、請求項5または6に記載の車両の制御方法。
  8. 前記車両はロックアップクラッチ付き流体継手を備え、
    前記車両の制御方法は、前記フューエルカットが実行されている場合には前記ロックアップクラッチを係合およびスリップのいずれかの状態になるように、かつ、前記フューエルカットから復帰してから予め定められた時間の経過後に前記ロックアップクラッチが解放されるように、前記ロックアップクラッチを制御するステップをさらに含む、請求項のいずれかに記載の車両の制御方法。
  9. 請求項のいずれかの制御方法をコンピュータに実現させるプログラム。
  10. 請求項のいずれかの制御方法をコンピュータに実現させるプログラムを記録した記録媒体。
JP2006219983A 2006-08-11 2006-08-11 フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体 Active JP4973061B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219983A JP4973061B2 (ja) 2006-08-11 2006-08-11 フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219983A JP4973061B2 (ja) 2006-08-11 2006-08-11 フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体

Publications (2)

Publication Number Publication Date
JP2008045446A JP2008045446A (ja) 2008-02-28
JP4973061B2 true JP4973061B2 (ja) 2012-07-11

Family

ID=39179432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219983A Active JP4973061B2 (ja) 2006-08-11 2006-08-11 フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体

Country Status (1)

Country Link
JP (1) JP4973061B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125874A (ja) 2008-11-25 2010-06-10 Toyota Motor Corp 車両の制御装置
JP5834855B2 (ja) * 2011-12-06 2015-12-24 日産自動車株式会社 車両のエンジン自動制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454247A (ja) * 1990-06-22 1992-02-21 Mazda Motor Corp エンジンの燃料カット装置
JPH07247874A (ja) * 1994-03-07 1995-09-26 Toyota Motor Corp エンジンおよび自動変速機の制御装置
JP3201153B2 (ja) * 1994-06-27 2001-08-20 トヨタ自動車株式会社 自動変速機付き車両の燃料供給制御装置
JP2004306707A (ja) * 2003-04-03 2004-11-04 Toyota Motor Corp 車両の変速制御装置
JP3967700B2 (ja) * 2003-08-29 2007-08-29 本田技研工業株式会社 内燃機関の燃料カットを制御する装置
JP4672252B2 (ja) * 2003-10-08 2011-04-20 トヨタ自動車株式会社 車両用の制御装置

Also Published As

Publication number Publication date
JP2008045446A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
JP2008231985A (ja) トルクディマンド型の内燃機関の制御装置
JP2009180231A (ja) パワートレインの制御装置
JP4702563B2 (ja) パワートレインの制御装置
JP2008303911A (ja) 変速制御装置及び車両制御装置
JP4923836B2 (ja) ロックアップクラッチを備えた自動変速機を搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP4973061B2 (ja) フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP4232579B2 (ja) 車両用内燃機関の制御装置
JP4692523B2 (ja) 車両の制御装置および制御方法
JP4784574B2 (ja) 車両の制御装置、制御方法およびその方法をコンピュータに実現させるプログラムならびにそのプログラムを記録した記録媒体
JP2013204624A (ja) 車両の制御装置
JP2009209881A (ja) 車両の制御装置および制御方法
JP4326925B2 (ja) 自動車の駆動制御装置
JP2010077997A (ja) 自動変速機の制御装置
JP4645579B2 (ja) 自動変速機を搭載した車両の制御装置および制御方法、その制御方法を実現するプログラムおよび記録媒体
JP4872966B2 (ja) 車両の制御装置
JP4492403B2 (ja) 変速時空燃比制御装置
US20180031120A1 (en) Controller for Vehicle
JP2882144B2 (ja) 車両用自動変速機の制御装置
JP2010007767A (ja) 自動変速機の制御装置
JP2018189023A (ja) 車両の制御装置
JP2017088052A (ja) 車両の制御装置
JP6447591B2 (ja) 車両の制御装置
JP2006342907A (ja) 自動変速機のロックアップ制御装置
JP3203945B2 (ja) 自動変速機付内燃機関の制御装置
JP3228117B2 (ja) 自動変速機付内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R151 Written notification of patent or utility model registration

Ref document number: 4973061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3