JP4921694B2 - デルタドープされた炭化シリコン金属半導体電界効果トランジスタ、およびデルタドープされた炭化シリコン金属半導体電界効果トランジスタの製造方法 - Google Patents

デルタドープされた炭化シリコン金属半導体電界効果トランジスタ、およびデルタドープされた炭化シリコン金属半導体電界効果トランジスタの製造方法 Download PDF

Info

Publication number
JP4921694B2
JP4921694B2 JP2003539110A JP2003539110A JP4921694B2 JP 4921694 B2 JP4921694 B2 JP 4921694B2 JP 2003539110 A JP2003539110 A JP 2003539110A JP 2003539110 A JP2003539110 A JP 2003539110A JP 4921694 B2 JP4921694 B2 JP 4921694B2
Authority
JP
Japan
Prior art keywords
layer
doped
forming
gate
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003539110A
Other languages
English (en)
Other versions
JP2005507174A (ja
JP2005507174A5 (ja
Inventor
スリラム サプサリシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Inc filed Critical Cree Inc
Publication of JP2005507174A publication Critical patent/JP2005507174A/ja
Publication of JP2005507174A5 publication Critical patent/JP2005507174A5/ja
Application granted granted Critical
Publication of JP4921694B2 publication Critical patent/JP4921694B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8128Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/242AIBVI or AIBVII compounds, e.g. Cu2O, Cu I
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、マイクロ電子デバイスに関し、より詳細には炭化シリコンに形成された金属半導体電界効果トランジスタ(Metal−Semiconductor Field−Effect Transistor、MESFET)に関する。
高パワー処理能力(>20ワット)を必要とするが、無線周波数(500MHz)、Sバンド(3GHz)、およびXバンド(10GHz)などの高周波数で動作する電子回路は、近年ますます普及している。高パワーで高周波数の回路の増加のために、それに対応して、無線周波数および無線周波数より高い周波数で信頼性良く動作できる一方、依然としてより高いパワー負荷を処理できるトランジスタに対する需要が増大している。以前は、バイポーラトランジスタおよびパワー金属酸化物半導体電界効果トランジスタ(Metal−Oxide Semiconductor Field−Effect Transistor、MOSFET)が、高パワー適用例に使用されていたが、そのようなデバイスのパワー処理能力は、より高い動作周波数で制限されることがあった。接合電界効果トランジスタ(Junction Field−Effect Transistor、JFET)は、一般に高周波数適用例に使用されるが、以前より知られているJFETの高パワー処理能力も制限されることがあった。
近年、金属半導体電界効果トランジスタ(MESFET)は、高周波数適用例に関して開発された。MESFET構造は、多数キャリアだけが電流を運ぶので、高周波数適用例に関して好ましいかもしれない。MESFET設計は、低減されたゲート容量によって、ゲート入力のより速いスイッチング時間が可能になるので、現在のMOSFET設計より好ましい可能性がある。したがって、全ての電界効果トランジスタは、電流を運ぶために多数キャリアしか使用しないが、MESFETのショットキーゲート構造は、MESFETを高周波数適用例に対して望ましくする可能性がある。
構造のタイプに加えて、恐らくより基本的には、トランジスタが形成される半導体材料の特性はまた、動作パラメータに影響を及ぼす。トランジスタの動作パラメータに影響を及ぼす特性の中で、電子移動度、飽和電子ドリフト速度、ブレークダウン電界、および熱伝導率は、トランジスタの高周波数および高パワー特性により大きな影響を有する可能性がある。
電子移動度は、電子が、電界の存在下でいかに迅速に電子の飽和速度に加速されるかの量である。以前は、高電子移動度を有する半導体材料が好ましかった。なぜなら、より多くの電流をより小さい電界で発生することができ、結果として電界が加えられたときにより速い応答時間を生じるからである。飽和電子ドリフト速度は、電子を半導体材料で得ることができる最大速度である。より高い飽和電子ドリフト速度を有する材料は、より高い速度が、ソースからドレインへのより短い時間に変換されるので、高周波数適用例に好ましい。
ブレークダウン電界は、ショットキー接合のブレークダウンおよびデバイスのゲートを通る電流が、突然増大する電界強度である。高ブレークダウン電界材料は、より大きな電界を、一般に、所定の寸法の材料によって支持することができるので、高パワーで高周波数のトランジスタに好ましい。電子は、より小さい電界よりもより大きな電界によって、より迅速に加速することができるので、より大きな電界は、より速い遷移を可能にする。
熱伝導率は、熱を散逸するための半導体材料の能力である。一般の動作において、全ての半導体は、熱を発生する。次に、高パワーおよび高周波数トランジスタは、通常、小信号トランジスタより大きな量の熱を発生する。半導体材料の温度が上昇するとき、接合漏れ電流は、一般に増大し、電界効果トランジスタを通る電流は、温度の上昇とともにキャリア移動度の低減のために一般に低減する。したがって、熱が半導体から散逸するなら、材料は、より低い温度で維持され、より小さい漏れ電流でより大きな電流を運ぶことができる。
過去において、最も高い周波数のMESFETは、その高い電子移動度のために、ガリウム砒素(GaAs)などのn型III−V化合物で製造された。これらのデバイスは、増大した動作周波数および適度に増大したパワー処理能力を提供するが、これらの材料の比較的低いブレークダウン電圧およびより低い熱伝導率が、高パワー適用例におけるそれらの有用性を制限する。
炭化シリコン(SiC)は、長年にわたり、優れた物理および電気特性を有することが知られ、これらの特性は、シリコン(Si)またはGaAsで作られたデバイスより高い温度、より高いパワー、およびより高い周波数で動作することができる電子デバイスの製造を、理論的に可能にする。約4×10V/cmの高いブレークダウン電界、約2.0×10cm/secの高い飽和電子ドリフト速度、および約4.9W/cm°Kの高い熱伝導率は、SiCが、高周波数で高パワー適用例に適することを示す。残念なことに、製造における困難性が、高パワーおよび高周波数の適用に関するSiCの有用性を制限する。
近年、炭化シリコンのチャネル層を有するMESFETが、シリコン基板上に製造された(特許文献1、および特許文献2を参照されたい)。MESFETの半導体層はエピタキシャルであるので、上に各エキタキシャル層が成長される層は、デバイスの特徴に影響を及ぼす。したがって、Si基板上に成長されるSiCエピタキシャル層は、一般に、異なる基板上に成長されるSiCエピタキシャル層とは異なる電気および熱特性を有する。特許文献1および2に記載されるSi基板上のSiCデバイスは、改善された熱特性を示すことができるが、Si基板の使用は、熱を散逸するためにそのようなデバイスの能力を一般に制限する。さらに、Si上のSiCの成長は、一般に、デバイスが動作するときに、結果として高い漏れ電流を生じる、エピタキシャル層における欠陥を結果として生じる。
他のMESFETが、SiC基板を用いて開発された。その開示が、参照によって完全に本明細書に組み込まれる、現在放棄されている1990年6月19日に出願された米国特許出願大07/540488号明細書は、SiC基板上に成長されたSiCのエピタキシャル層を有するSiC MESFETを開示する。これらのデバイスは、SiC基板上に成長されたエピタキシャル層の改善された結晶品質のために、以前のデバイスより改善された熱特性を示す。しかしながら、高いパワーおよび高周波数を得るために、SiCのより低い電子移動度の制限を解消することが必要である可能性がある。
同様に、Palmourに一般に譲渡された特許(特許文献4)は、SiCのn領域上に形成されたソースおよびドレインコンタクト、および基板とチャネルが形成されるn型層との間の任意に軽くドープされたエピタキシャル層を有するSiC MESFETを開示する。Sriramらへの特許(特許文献5)も、SiC MESFET、および高周波数動作に関するMESFETの性能を低減することがある「表面効果」を解消するとして記載された構造を開示する。Sriramらは、nソースおよびドレインコンタクト領域、ならびにp型バッファ層を使用するSiC MESFETも開示する。MESFETは、「High Voltage Silicon Carbide MESFETs and Methods of Fabricating the Same」との名称のBaligaへの特許(特許文献5)、および「Semiconductor Device」との名称で公開された(特許文献6)に論じられている。しかしながら、これらの特許に報告された性能にもかかわらず、SiC MESFETをさらに改善することができる。
米国特許第4762806号明細書 米国特許第4757028号明細書 米国特許第5270554号明細書 米国特許第5925895号明細書 米国特許第5399883号明細書 国際公開第01/67521 A1号パンフレット Yokogawaら、「Electronic Properties of Nitrogen Delta-Doped Silicon Carbide Layers」、MRS秋シンポジウム、2000年 Konstantinovら、「Investigation of Lo-Hi-Lo and Delta-Doped Silicon Carbide Structure」、MRS秋シンポジウム、2000年
例えば、従来のSiC FET構造は、同様の導電型の軽くドープされた領域だけゲートからオフセットされた、非常に薄く多くドープされたチャネル(デルタドープされたチャネル)を使用することによって、FETの動作範囲全体の間、すなわち完全なオープンチャネルからピンチオフ電圧まで、一定の特性を提供することができる。デルタドープされたチャネルは、非特許文献1および2に詳細に議論されている。これらの文献で議論される構造は、デルタドープされたチャネルを使用し、高パワー適用例に望ましい高いブレークダウン電圧を提供する。しかしながら、これらのデバイスは、望ましくない、デルタドープされたチャネルのより低い移動度のために、増大されたソースおよびドレイン抵抗値も有する。一般に、増大されたソースおよびドレイン抵抗値は、上述されたように重要なデバイス特徴である可能性があるブレークダウン電圧を低下させることがあるので、単にデルタドープされたチャネルのキャリア濃度を増大することによって解消することはできない。
本発明の実施形態は、金属半導体電界効果トランジスタ(MESFET)のユニットセルを提供する。MESFETのユニットセルは、ソース、ドレイン、およびゲートを有する、デルタドープされた炭化シリコンMESFETを含む。ゲートは、ソースとドレインとの間に位置し、第1の導電型のドープされたチャネル層に延在する。ソースおよびドレインに隣接する炭化シリコンの領域は、それぞれソースとゲートとの間、およびドレインとゲートとの間に延在する。炭化シリコンの領域は、ドープされたチャネル層のキャリア濃度より大きいキャリア濃度を有する。炭化シリコンの領域も、ゲートから離間される。
本発明のさらなる実施形態において、デルタドープされた炭化シリコンMESFETおよび炭化シリコンの領域は、炭化シリコン基板と、基板上の第1の導電型の炭化シリコンのデルタドープされた層とを含む。デルタドープされた層上の第1の導電型の炭化シリコンのドープされたチャネル層は、デルタドープされた層の少なくとも1つのキャリア濃度より小さいキャリア濃度を有する。ドープされたチャネル層上のオーミックコンタクトは、ソースおよびドレインをそれぞれ規定することができる。ドープされたチャネル層上の第1の導電型の炭化シリコンのキャップ層は、ドープされたチャネル層のキャリア濃度より大きいキャリア濃度を有する。第1のリセスが、ソースとドレインとの間に位置付けられる。第1のリセスは、第1の距離だけ、キャップ層を通ってドープされたチャネル層へ延在する第1のフロアを有する。ゲートは、第1のリセス内にあり、ドープされたチャネル層に延在する。第2のリセスは、ソースとドレインとの間に位置付けられ、キャップ層を通ってドープされたチャネル層へ、第1の距離より短い第2の距離だけ延在する第2のフロアを有する。第2のリセスは、それぞれ側壁を有し、この側壁は、ソースおよびゲートと、ドレインおよびゲートとのそれぞれ1つの間にあり、ゲート、ソース、およびドレインから離間し、炭化シリコンの領域を提供するように、ソースおよびゲートと、ドレインおよびゲートとのそれぞれ1つの間に延在するキャップ層の領域を規定する。
本発明のさらなる実施形態において、第2のリセスの第2のフロアは、第3の距離だけドープされたチャネル層に延在する。炭化シリコン基板は、半絶縁性炭化シリコン基板とすることができる。第1の導電型のシリコンは、n型導電性の炭化シリコンまたはp型導電性の炭化シリコンとすることができる。
本発明のさらに他の実施形態において、炭化シリコンの領域は、注入された領域とすることができる。本発明の他の実施形態において、炭化シリコンの領域は、デルタドープされた層およびドープされたチャネル層とともに単一の成長ステップで成長される。本発明のさらなる実施形態において、デルタドープされた層、ドープされたチャネル層、およびキャップ層は、基板上に成長される。
本発明の追加の実施形態において、キャップ層は、約3×1017cm−3から約6×1017cm−3のキャリア濃度および約500Åから約1000Åの厚みを有することができる。デルタドープされた層は、約2×1018cm−3から約3×1018cm−3のキャリア濃度および約200Åから約300Åの厚みを有することができる。ドープされたチャネル層は、約1×1016cm−3から約5×1016cm−3のキャリア濃度および約1800Åから約3500Åの厚みを有することができる。
本発明のさらなる実施形態において、MESFETは、さらに基板とデルタドープされた層との間に第2の導電型の炭化シリコンのバッファ層を含む。p型バッファ層に関して、バッファ層は、約1.0×1016cm−3から約6×1016cm−3、一般に約1.5×1016cm−3のキャリア濃度を有することができる。バッファ層は、約0.2μmから約0.5μmの厚みを有することができる。n型バッファ層に関しては、バッファ層は、約1×1015cm−3以下のキャリア濃度および約0.25μmの厚みを有することができる。第2の導電型の炭化シリコンは、p型導電性の炭化シリコン、n型導電性の炭化シリコン、またはドープされていない炭化シリコンとすることができる。
本発明のさらに他の実施形態において、MESFETは、ドープされたチャネル層のキャリア濃度より大きいキャリア濃度を有するソースおよびドレインの下に、第1の導電型の炭化シリコンの領域をさらに含むことができる。第1の導電型の炭化シリコンの領域は、少なくとも約1×1019cm−3のキャリア濃度を有することができる。本発明のさらなる実施形態において、MESFETは、キャップ層上およびドープされたチャネル層上の酸化物層をさらに含むことができる。
本発明のさらなる実施形態において、オーミックコンタクトは、ニッケルコンタクトを含む。MESFETは、オーミックコンタクト上の上層をさらに含むことができる。本発明のさらなる他の実施形態において、デルタドープされた層およびドープされたチャネル層は、側壁を有するメサを形成し、この側壁は、トランジスタの周囲を規定し、かつデルタドープされた層およびドープされたチャネル層を通って延在する。メサの側壁は、基板に延在することができ、または基板に延在しないこともできる。
本発明の追加の実施形態において、第1の距離は、約0.07μmから約0.25μmとすることができ、第2の距離は、約500Åから約1000Åとすることができる。ゲートは、ドープされたチャネル層上のクロムの第1のゲート層と、白金および金を含む第1のゲート層上の上層とを含むことができる。あるいは、ゲートは、ドープされたチャネル層上のニッケルの第1のゲート層と、第1のゲート層上の上層とを含むことができ、上層は金を含む。ゲートは、約0.4μmから約0.7μmの長さを有することができる。ソースからゲートへの距離は、約0.5μmから約0.7μmとすることができる。ドレインからゲートへの距離は、約1.5μmから約2μmとすることができる。ソースと第2のリセスの側壁の中の第1の側壁との間の距離は、約0.1μmから約0.4μmとすることができ、ドレインと第2のリセスの側壁の中の第2の側壁との間の距離は、約0.9μmから約1.7μmとすることができる。第2のリセスの側壁の中の第1の側壁とゲートとの間の距離は、約0.3μmから約0.6μmとすることができ、第2のリセスの側壁の中の第2の側壁とゲートとの間の距離は、約0.3μmから約0.6μmとすることができる。複数のユニットセルを備えるトランジスタにおける第1のゲートから第2のゲートへの距離は、約20μmから約50μmとすることができる。
本発明は、SiC MESFETを参照して主に上述されたが、SiC MESFETの製造方法も提供される。
本発明は、本発明の様々な実施形態を示す、図1および図2A〜図2Hを参照して記載される。図に示されるように、層または領域の寸法は、例示の目的で誇張され、したがって本発明の一般的な構造を示すように提供される。さらに、本発明の様々な態様は、基板または他の層上に形成される層を参照して記載される。当業者によって理解されるように、他の層または基板上に形成される層への参照は、追加の層を介在させることができることが予想される。介在する層なしに他の層または基板上に形成される層への参照は、層または基板上に「直接」形成されると本明細書で記載される。同様の参照符号は、全体を通して同様の要素を参照する。
本発明の実施形態は、図1および図2A〜図2Hを参照して以下に詳細に記載され、これらの図は、本発明の様々な実施形態、および本発明の実施形態の製造の様々なプロセスを示す。金属半導体電界効果トランジスタ(MESFET)は、ドープされたチャネル層によってゲートからオフセットされた、デルタドープされた層、すなわち非常に薄く多くドープされた層を有して提供され、ドープされたチャネル層は、デルタドープされた層に対して軽くドープされる。以下の詳細に記載されるように、ブレークダウン電圧を増大し、かつ従来のMESFETに対してより低いソースおよびドレイン抵抗値のダブルリセス形成されたゲート構造が提供される。本発明の実施形態によるMESFETは、以下に記載されるように既存の製造技術を使用して製造することができる。本発明の実施形態によるMESFETは、例えば、符号分割多重アクセス(Code Division Multiple Access、CDMA)および/または広帯域CDMA(WCDMA)などの複雑な変調構成を使用する基地局のためのパワー増幅器など、高効率線形パワー増幅器で有用であり得る。
図1を参照すると、本発明の実施形態による金属半導体電界効果トランジスタ(MESFET)が、以下に詳細に記載される。図1に示されるように、p型またはn型のいずれかの導電性または半絶縁の単結晶バルク炭化シリコン(SiC)基板10が提供される。基板は、6H、4H、15R、または3C炭化シリコンのグループから選択された炭化シリコンから形成することができる。
p型炭化シリコンのオプションのバッファ層12は、基板10の上に設けることができる。オプションのバッファ層12は、6H、4H、15R、または3Cポリタイプ(polytype)のp型導電性の炭化シリコンで形成されることが好ましい。バッファ層は、約1.0×1016cm−3から約6×1016cm−3、一般に約1.5×1016cm−3のキャリア濃度を有することができる。適切なドーパントは、アルミニウム、ボロン、およびガリウムを含む。バッファ層12は、約0.2μmから約0.5μmの厚みを有することができる。バッファ層12は、p型の炭化シリコンとして上述されたが、本発明は、この構成に限定されるべきではない。代替として、バッファ層は、ドープされていない炭化シリコン、または非常に少なくドープされたn型導電性の炭化シリコンとすることができる。少なくドープされた炭化シリコンを、バッファ層12に用いる場合、バッファ層12のキャリア濃度は、約5×1015cm−3より低いことが好ましい。ドープされていないまたはn型のバッファ層12を用いる場合、基板10は、好ましくは半絶縁性の炭化シリコン基板である。
バッファ層12は、基板10と、n型またはp型のいずれかの炭化シリコンとすることができるデルタドープされた層14との間に配置することができる。デルタドープされた層14は、一般に、非常に薄い二次元層に均一に分布したドーピング不純物を有し、かつ一般に、高いキャリア濃度を有する。しかしながら、デルタドープされた層14は、ドーピングプロファイル、すなわち、プロファイルにおけるより高いキャリア濃度を有する1つまたは複数のスパイクとともに、一般に様々な深さを有するデルタドープされた層14の異なる部分のキャリア濃度の表示を有することもできる。
全てn型の炭化シリコンである、デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18は、図1に示されるように、基板10上に設けることができる。したがって、ドープされたチャネル層16は、デルタドープされた層14上であり、キャップ層18は、ドープされたチャネル層16上である。オプションのバッファ層12を、基板10上に設ける場合、デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18を、オプションのバッファ層12上に設けることができる。デルタドープされた層は、上述されるように、そのドーピングプロファイルにおける単一のスパイクまたは複数のスパイクを含むので、ドープされたチャネル層16は、デルタドープされた層14のドーピングプロファイルにおける少なくとも1つのスパイクのキャリア濃度より小さいキャリア濃度を有する。ドープされたチャネル層16のキャリア濃度は、また、キャップ層18のキャリア濃度より小さい。したがって、ドープされたチャネル層16は、軽くドープされ、すなわち、デルタドープされた層14とキャップ層18との両方に対して、より小さいキャリア濃度を有する。
デルタドープされた層14は、6H、4H、15R、または3Cポリタイプのn型導電性の炭化シリコンで形成することができる。約2×1018cm−3から約3×1018cm−3のデルタドープされたn型層のn型キャリア濃度が適している。適切なドーパントは、窒素およびリンを含む。デルタドープされた層14は、約200Åから約300Åの厚みを有することができる。ドープされたチャネル層16は、約1×1016cm−3から約5×1016cm−3のキャリア濃度を有することができ、かつ6H、4H、15R、または3Cポリタイプのn型導電性の炭化シリコンで形成することができる。ドープされたチャネル層16は、さらに、約1800Åから約3500Åの厚みを有することができる。最後に、キャップ層18は、約3×1017cm−3から約6×1017cm−3のキャリア濃度、および約500Åから約1000Åの厚みを有することができる。
デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18は、n型導電性の炭化シリコンであるとして記載されたが、本発明は、この構成に限定されないことは理解される。代替として、例えば相補デバイスにおいて、デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18は、p型導電性の炭化シリコンとすることができる。
図1にさらに示されるように、n領域13および17は、それぞれデバイスのソースおよびドレイン領域に設けられる。本明細書で使用されるように、「n」または「p」は、同一または他の層または基板に隣接する領域、または同一または他の層または基板の他の領域に存在する多いキャリア濃度によって規定される領域を参照する。領域13および17は、一般にn型導電性の炭化シリコンであり、かつドープされたチャネル層16のキャリア濃度より高いキャリア濃度を有する。n領域13および17に関しては、約1×1019cm−3のキャリア濃度が適しているが、可能な限り高いキャリア濃度が好ましい。
オーミックコンタクト26および22は、注入された領域13および17上に設けることができ、ソースコンタクト26およびドレインコンタクト22を提供するように離間される。オーミックコンタクト26および22は、好ましくは、ニッケルまたは他の適した金属で作られる。酸化物層20は、さらに、デバイスの露出された表面上に設けることができる。
本発明の実施形態によるMESFETは、第1のリセス形成されたセクションおよび第2のリセス形成されたセクションを含む。第1のリセス形成されたセクションは、約500Åから約1000Åの距離を、キャップ層18を通ってドープされたチャネル層16まで延在するフロアを有する。第2のリセス形成されたセクションは、第1のリセス形成されたセクションの側壁34、36の間に設けられる。第1のリセス形成されたセクションの第1の側壁34は、ソース26とゲート24との間であり、かつ第1のリセス形成されたセクションの第2の側壁36は、ドレイン22とゲート24との間である。第2のリセス形成されたセクションのフロアは、約0.07μmから約0.25μmの距離を、ドープされたチャネル層16に延在する。第1のリセス形成されたセクションのフロアは、また、さらにドープされたチャネル層16の中に、例えばさらに100Å延在することができるが、ドープされたチャネル層16の中に、第2のリセス形成されたセクションのフロアまでは延在しない。さらに、ソース26と、第1のリセス形成された構造の第1の側壁34との間の距離は、約0.1μmから約0.4μmとすることができる。ドレイン22と、第1のリセス形成された構造の第2の側壁36との間の距離は、約0.9μmから約1.7μmとすることができる。第1のリセス形成されたセクションの第1の側壁34とゲート24の間の距離は、約0.3μmから約0.6μmとすることができる。第1のリセス形成されたセクションの第2の側壁36とゲート24の間の距離は、約0.3μmから約0.6μmとすることができる。
上述されたリセス形成されたセクションは、第1および第2のリセス形成されたセクションと呼ばれているが、これらのリセス形成されたセクションは、これらの用語によって限定されないことが理解される。これらの用語は、あるリセス形成されたセクションを、他のリセス形成されたセクションと識別するためだけに使用される。したがって、上述された第1のリセス形成されたセクションは、第2のリセス形成されたセクションと呼ぶことができ、同様に、上述された第2のリセス形成されたセクションは、第1のリセス形成されたセクションと呼ぶことができる。
ゲートコンタクト24は、第1のリセス形成されたセクションの側壁34、36の間の第2のリセス形成されたセクションに設けられる。ゲートコンタクト24は、クロム、白金、または白金シリサイド、ニッケル、またはTiWNで作られることができるが、ショットキー効果を達成するために当業者に知られている金などの他の金属も使用することができる。しかしながら、ショットキーゲートコンタクト24は、一般に、3層構造を有する。そのような構造は、クロム(Cr)の良好な接着性のための利点を有することができる。例えば、ゲートコンタクト24は、ドープされたチャネル層16に接触するクロム(Cr)の第1のゲート層を任意に含むことができる。ゲートコンタクト24は、さらに、白金(Pt)および金、または他の導電性の高い金属の上層46を含むことができる。あるいは、ゲートコンタクト24は、ドープされたチャネル層16上の第2のリセス形成されたセクションのフロア上にニッケルの第1の層を含むことができる。ゲートコンタクト24は、さらに、金の層を含むニッケルの第1の層上の上層を含むことができる。示されるように、オプションの金属上層28、30、および32は、ソースコンタクト26、ドレインコンタクト22、およびゲートコンタクト24上に設けることができる。上層28、30、および32は、金、銀、アルミニウム、白金、および銅とすることができる。他の適切な導電性が高い金属も、上層に使用することができる。
ゲートコンタクト下のn型導電性領域の厚みは、デバイスのチャネル領域の断面高さを規定し、デバイスの所望のピンチオフ電圧およびキャリア濃度に基づき選択される。所定のドープされたチャネル層およびデルタドープされた層のキャリア濃度、ならびに所定のピンチオフ電圧に関するこれらの層の深さは、当業者に知られている方法を使用して容易に計算することができる。したがって、ドープされたチャネル層の厚みおよびキャリア濃度を、−3ボルトより低い、好ましくは−5ボルトより低いピンチオフ電圧を提供するように選択されることが望ましい。ピンチオフ電圧は、また、約−3ボルトから約−20ボルト、典型的には約−5ボルトから約−15ボルトとすることができる。
MESFETの寸法の選択において、ゲートの幅は、電流の流れに垂直方向のゲートの寸法として規定される。図1の断面に示されるように、ゲート幅は、ページ内およびページ外に延びる。ゲートの長さは、電流の流れに平行なゲートの寸法である。図1の断面に示されるように、ゲート長さは、ドープされたチャネル層16と接触するゲート24の寸法である。本発明の実施形態によるMESFETのゲート長さは、約0.4μmから約0.7μmとすることができる。他の重要な寸法は、ソースコンタクト26またはn領域13からゲートコンタクト24までの距離として、図1の断面に示されるソースとゲートとの距離である。本発明の実施形態によるソースとゲートとの距離は、約0.5μmから約0.7μmとすることができる。さらに、ドレイン22からゲート24までの距離は、約1.5μmから約2μmとすることができる。本発明の実施形態は、さらに、MESFETの複数のユニットセルを含むことができ、ユニットセルの第1のゲートから第2のゲートまでの距離は、約20μmから約50μmとすることができる。
図2Aから図2Hは、本発明の実施形態によるFETの製造を示す。図2Aに示されるように、オプションのバッファ層12を、SiC基板10上に成長または堆積することができる。基板10は、半絶縁SiC基板、p型基板、またはn型基板とすることができる。オプションのバッファ層12は、約1.5×1016cm−3またはそれより小さいキャリア濃度を有するp型導電性の炭化シリコンとすることができる。あるいは、バッファ層は、n型炭化シリコン、またはドープされていない炭化シリコンとすることができる。
基板10は、半絶縁である場合、その全体が示されるように、その開示が本明細書に参照によって組み込まれる、名称「Semi-insulating Silicon Carbide Without Vanadium Domination」である、一般に譲渡されかつ同時係属中の米国特許出願第09/313802号明細書に記載されるように製造することができる。そのような半絶縁の基板は、炭化シリコン基板の抵抗値が、点欠陥によって支配される(dominated)ように、十分に高いレベルの点欠陥、および十分に整合されたレベルのp型およびn型ドーパントを有する炭化シリコン基板を提供することによって製造することができる。そのような支配は、上昇された温度で、ソース粉末とともに炭化シリコン基板を製造することによって達成することができ、ソース粉末は、約1×1016cm−3以下、好ましくは約1×1014cm−3以下の、重金属、遷移元素、または他の深いレベルのトラッピング元素の濃度を有する。例えば、約300℃から約500℃低い種(seed)とともに、約2360℃と2380℃との間の温度を使用することができる。したがって、半絶縁性の基板が、重金属、遷移元素ドーパント、またはバナジウムなどの他の深いレベルのトラッピング元素が実質的に無く、基板の抵抗値が、そのような重金属または遷移金属によって支配されないことが好ましい。半絶縁性の基板が、そのような重金属、遷移元素ドーパント、または他の深いレベルのトラッピング元素を有さないことが好ましいが、そのような材料の存在が、本明細書に記載されたMESFETの電気特性に実質的に影響を及ぼさないなら、本発明の教示の恩恵を受ける限り、そのような元素は、測定可能な量で存在することができる。
図2Bに示されるように、デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18を、オプションのバッファ層12上に成長または堆積することができる。バッファ層12が含まれないなら、デルタドープされた層、ドープされたチャネル層16、およびキャップ層18が、基板10上に成長または堆積されることが理解される。図2Bに示されるように、デルタドープされた層14が、バッファ層12上に形成され、ドープされたチャネル層16が、デルタドープされた層14上に形成され、かつキャップ層18が、ドープされたチャネル層16上に形成される。デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18は、ドープされたチャネル層16を成長する第1の時間、およびキャップ層18を成長する第2の時間で、ソース材料濃度を変更することによって、単一の成長ステップで成長することができることが理解される。デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18は、複数の成長ステップで成長することもできる。あるいは、キャップ層18は、イオン注入することによって形成することができる。
図2Cに示されるように、マスク45は、n領域13および17を注入するために形成することができる。領域13および17は、一般に、例えば窒素(N)またはリン(P)のイオン注入によって形成され、その後に高温度のアニールが続く。適切なアニール温度は、約1100℃から約1600℃までとすることができる。イオン注入は、図2Dに示されるように、n領域13および17を形成するためにマスク45によって覆われていない領域に実施することができる。したがって、ドープされたチャネル層16より大きなキャリア濃度を有する、n型導電性の炭化シリコンの多くドープされた領域を提供するために、デルタドープされた層14、ドープされたチャネル層16、およびキャップ層18の一部に、イオンが注入される。注入されると、ドーパントは、インプラントを活性化するためにアニールされる。
図2Dに見られるように、基板10、バッファ層12、デルタドープされた層14、ドープされたチャネル層16、キャップ層18、およびn領域13および17は、デバイスの周囲を規定する絶縁メサを形成するようにエッチングすることができる。基板10、デルタドープされた層14、ドープされたチャネル層16、キャップ層18、およびn領域13および17は、トランジスタの周囲を規定する側壁を有するメサを形成する。メサの側壁は、デバイスのデルタドープされた層14を越えて下方に延在する。一般に、メサは、図2Cに示されるように、デバイスの基板10内に延在するように形成される。メサは、デバイス内をメサへ流れる電流を閉じ込め、かつデバイスの容量を低減するように、デバイスの欠乏領域を越えて延在することができる。デバイスの欠乏領域が、メサのレベルの下に延在するなら、それは、メサの外側の区域に広がることができ、結果としてより大きな容量を生じる。メサは、好ましくは、上述されたデバイスを反応性イオンエッチングすることによって形成されるが、当業者に知られている他の方法を、メサを形成するために使用することができる。さらに、メサを使用しない場合には、デバイスは、陽子ボンバードメント、補償原子を用いるカウンタドーピング、または当業者に知られている他の方法などの他の方法を使用して絶縁することができる。
図2Dは、さらに、MESFETの第1のリセス43の形成を示す。第1のリセス43を、第1のリセス43に関するマスク47を形成し、次に、マスク47にしたがってリセスを形成するために、約500Åから約1000Åの距離でキャップ層18を通ってエッチングすることによって形成することができる。キャップ層18は、第1のリセス43を形成するために、少なくともドープされたチャネル層16でエッチングされる。第1のリセス43は、ドライまたはウエットエッチングプロセスなどのエッチングプロセスによって形成することができる。あるいは、エッチングは、例えば、さらに約100Å、ドープされたチャネル層16へ続くことができる。リセスが、ドープされたチャネル層16へ延在するように第1のリセスをエッチングすることは、ドープされたチャネル層16に達しないために好ましい。
図2Eは、第1のリセス43が上述のように形成された後の酸化物層20の形成を示す。酸化物層は、存在する構造の露出された表面、すなわち、絶縁メサ、n領域13および17、キャップ層18、および第1のリセス43内のドープされたチャネル層16に、成長または堆積することができる。酸化プロセスは、エッチングプロセスによって損傷されることがあるSiCを取り除き、かつエッチングによって表面に生成された可能性がある粗さを平坦にする。これは、ゲートメタライゼーションの形成前に実施される以下で説明する第2のリセスのエッチングを、非常により浅くすることを可能にして、一般に取り除くことができないサブ表面損傷および表面粗さを最小化することができる。
領域13および17へ酸化物層20を通ってコンタクトウィンドウをエッチングすることができる。ニッケルは、次に、ソースコンタクト26およびドレインコンタクト22を堆積するために蒸着され、かつ図2Fに示されるようにオーミックコンタクトを形成するためにアニールすることができる。そのような堆積およびアニールプロセスは、当業者に知られている従来の技術を使用して実施することができる。例えば、オーミックコンタクトは、約1050℃で約2分間アニールすることができる。しかしながら、約800℃から約1150℃の温度、および約30秒から約10分間などの他の時間および温度を使用することができる。
図2Gは、MESFETのゲート構造のための第2のリセスの形成を示す。第2のリセス40を、第2のリセスのためのマスク49を形成し、次にマスク49にしたがってリセスをエッチングすることによって形成することができる。ドープされたチャネル層16を、リセス40を形成するために、約0.07μmから約0.25μmの距離にエッチングすることができる。ドープされたチャネル層16へのエッチングのこれらの距離は、酸化物層20を通るエッチングを含まないことが分かる。
第1のリセス43および第2のリセス40は、例えば、電子サイクロトロン共鳴(Electron Cyclotron Resonance、ECR)、または誘導結合プラズマ(Inductively Coupled Plasma、ICP)エッチングなどのドライエッチングによって形成することができる。あるいは、上述されたリセスは、ダブルリセスプロセスにより2つのステップで形成することができる。例えば、ショットキーゲートコンタクト24は、酸化物層20を通ってドープされたチャネル層16へ第2のリセス形成されたセクションに形成することができる。酸化物層20は、第1にドープされたチャネル層16を通してエッチングされ、次にドープされたチャネル層16へのエッチングのために第2のエッチングが実施されることができる。第1のエッチングの深さは、完全に酸化物層20を通ることができ、または第1のエッチングの深さは、酸化物層20を部分的にだけ通ることができる。第2のエッチングに関するドープされたチャネル層16への好ましい深さは、約0.07μmから約0.25μmである。同様に、第1のリセス形成されたセクションは、2ステップのエッチングでエッチングすることができ、上述のように、キャップ層18を通る第1のエッチングは、ドープされたチャネル層16へ、またはドープされたチャネル層16内に延在する。
2つのエッチング方法は、単一のエッチングプロセスに対する多数の利点を有することができる。1つの利点は、第1のエッチングを、ウエハ上の任意のメタライゼーション前に実施することができ、熱酸化物が、第1のリセス形成されたセクションに対するエッチングの後で成長されることを可能にすることである。熱酸化プロセスは、エッチングプロセスによって損傷されることがあるSiCを取り除き、かつエッチングによって表面に生成された可能性がある粗さを平坦にする。これは、ゲートメタライゼーションの形成前に実施される第2のリセス形成されたセクションの第2のエッチングを、非常により浅くすることを可能にして、一般に取り除くことができないサブ表面損傷および表面粗さを最小化することができる。2つのエッチング方法の他の利点は、浅い第2のエッチングは、エッチングされた側壁へのゲートコンタクトの量を低減できることである。これは、損傷された可能性のある材料のコンタクト面積を最小化し、低減されたコンタクト面積は、またゲート容量を低減することができ、したがって、トランジスタの周波数応答を改善する。
図2Hは、上述されたように、ゲートコンタクト24、およびオプションの上層28、30、および32の形成を示す。例えば、クロム層は、第2のリセス40に堆積することができる。一般にクロム層は、蒸着堆積によって形成される。ゲート構造は、次に、白金および金の堆積によって完了することができる。同様に、当業者に理解されるように、上層28および30は、ゲート構造の形成前または形成後のいずれかで形成することができる。実際、チタン/白金/金構造が使用されるなら、上層の白金および金部分は、ゲート構造の白金および金部分32と同じプロセスステップで形成することができる。したがって、上層28および30は、ゲートコンタクトの形成前、またはゲートコンタクトの形成後に形成することができる。
簡単に上述されたように、本発明の実施形態によるMESFETは、同時に、従来のMESFETに対してブレークダウン電圧を増加させ、かつソースおよびドレイン抵抗値を低減することができる、ダブルリセス形成されたゲート構造を提供する。これは、高いブレークダウン電圧を得るために、ソースおよびドレイン抵抗値を犠牲にするデルタドープされた層を使用して、従来の電界効果トランジスタに対する利点を提供することができる。
図面および明細書において、本発明の典型的な好ましい実施形態が説明され、特定の用語が用いられたが、これらの用語は、一般的で記載する意味だけで使用され、限定する目的ではなく、本発明の範囲は添付の特許請求の範囲に示される。
本発明の実施形態による金属半導体電界効果トランジスタ(MESFET)の断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。 本発明の実施形態によるMESFETの製造における処理ステップを示す断面図である。

Claims (59)

  1. デルタドープされた炭化シリコン金属半導体電界効果トランジスタ(MESFET)を含むMESFETのユニットセルであって、
    炭化シリコン基板と、
    該基板上の第1の導電型の炭化シリコンのデルタドープされた層と
    前記デルタドープされた層の少なくとも1つのキャリア濃度より小さいキャリア濃度を有する、前記デルタドープされた層上の前記第1の導電型の炭化シリコンのドープされたチャネル層と、
    前記ドープされたチャネル層の両端に形成されたソースおよびドレインと、前記ソースおよび前記ドレイン上のオーミックコンタクトと、
    前記ソースと前記ドレインとの間にあり、かつ前記チャネル層の中まで延在したゲートと、
    前記ドープされたチャネル層のキャリア濃度より大きいキャリア濃度を有する、前記ドープされたチャネル層上の前記第1の導電型の炭化シリコンのキャップ層であって、該キャップ層はそれぞれ前記ソースおよび前記ドレインに隣接し、前記ソースおよび前記ドレインから前記ゲート方向に延在し、かつ前記ゲートから離間するキャップ層と
    を含むことを特徴とするMESFETのユニットセル。
  2. 前記デルタドープされた炭化シリコンMESFETのユニットセルはさらに、
    前記キャップ層を貫き少なくとも前記ドープされたチャネル層まで第1の距離だけ延在する、前記ソースと前記ドレインとの間の第1のリセスであって、前記ドープされたチャネル層に第1のフロアを有し、さらに前記ソースと前記ゲートの間、および前記ドレインと前記ゲートの間のそれぞれに、前記ゲートから離間されて側壁を有し、該側壁は、前記ソースおよび前記ドレインのそれぞれから延在する前記キャップ層の領域を規定する、前記第1のリセスと、
    前記ソースと前記ドレインとの間の前記第1のリセス内にあり、前記ドープされたチャネル層の中まで第2の距離だけ延在して第2のフロアを形成する第2のリセスと、
    該第2のリセス内にあり前記ドープされたチャンネル層の中まで延在する前記ゲートとを含むことを特徴とする
    請求項1に記載のMESFETのユニットセル。
  3. 前記第1のリセスの第1のフロアは、第3の距離だけ前記ドープされたチャネル層内に延在することを特徴とする請求項2に記載のMESFETのユニットセル。
  4. 前記炭化シリコン基板は、半絶縁性の炭化シリコン基板を含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  5. 前記第1の導電型の炭化シリコンは、n型導電性の炭化シリコンを含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  6. 前記第1の導電型の炭化シリコンは、p型導電性の炭化シリコンを含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  7. 前記キャップ層は、注入された領域であることを特徴とする請求項1または2に記載のMESFETのユニットセル。
  8. 前記キャップ層が、前記デルタドープされた層および前記ドープされたチャネル層とともに単一の成長ステップで成長されることを特徴とする請求項1または2に記載のMESFETのユニットセル。
  9. 前記デルタドープされた層、前記ドープされたチャネル層、および前記キャップ層が、前記基板上に堆積されることを特徴とする請求項1または2に記載のMESFETのユニットセル。
  10. 前記キャップ層は、3×1017cm−3から6×1017cm−3のキャリア濃度を有することを特徴とする請求項1に記載のMESFETのユニットセル。
  11. 前記キャップ層は、500Åから1000Åの厚みを有することを特徴とする請求項1または2に記載のMESFETのユニットセル。
  12. 前記デルタドープされた層は、2×1018cm−3から3×1018cm−3のキャリア濃度を有することを特徴とする請求項1または2に記載のMESFETのユニットセル。
  13. 前記デルタドープされた層は、200Åから300Åの厚みを有することを特徴とする請求項1または2に記載のMESFETのユニットセル。
  14. 前記ドープされたチャネル層は、1×1016cm−3から5×1016cm−3のキャリア濃度を有することを特徴とする請求項1または2に記載のMESFETのユニットセル。
  15. 前記ドープされたチャネル層は、1800Åから3500Åの厚みを有することを特徴とする請求項1または2に記載のMESFETのユニットセル。
  16. 前記基板と前記デルタドープされた層との間に炭化シリコンのバッファ層をさらに含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  17. 前記バッファ層の炭化シリコンは、p型導電性の炭化シリコンであることを特徴とする請求項16に記載のMESFETのユニットセル。
  18. 前記バッファ層は、1.0×1016cm−3から6×1016cm−3のキャリア濃度を有することを特徴とする請求項1に記載のMESFETのユニットセル。
  19. 前記バッファ層は、0.5μmの厚みを有することを特徴とする請求項1に記載のMESFETのユニットセル。
  20. 前記バッファ層の炭化シリコンは、n型導電性の炭化シリコンであることを特徴とする請求項16に記載のMESFETのユニットセル。
  21. 前記バッファ層の炭化シリコンは、ドープされていない炭化シリコンであることを特徴とする請求項16に記載のMESFETのユニットセル。
  22. 前記ソースおよび前記ドレインは、前記ドープされたチャネル層のキャリア濃度より大きいキャリア濃度を有する第1の導電型の炭化シリコンの領域であることを特徴とする請求項1または2に記載のMESFETのユニットセル。
  23. 前記ソースおよび前記ドレインの第1の導電型の炭化シリコンの領域は、少なくとも1×1019cm−3のキャリア濃度を有することを特徴とする請求項22に記載のMESFETのユニットセル。
  24. 前記キャップ層および前記ドープされたチャネル層上の酸化物層をさらに含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  25. 前記オーミックコンタクトは、ニッケルコンタクトを含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  26. 前記オーミックコンタクト上の上層をさらに含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  27. 前記デルタドープされた層および前記ドープされたチャネル層は、側壁を有するメサを形成し、前記側壁が、前記トランジスタの周囲を規定し、かつ前記デルタドープされた層および前記ドープされたチャネル層を貫いて延在することを特徴とする請求項1または2に記載のMESFETのユニットセル。
  28. 前記メサの前記側壁は、前記基板内へ延在することを特徴とする請求項27に記載のMESFETのユニットセル。
  29. 前記第の距離は、0.07μmから0.25μmであることを特徴とする請求項2に記載のMESFETのユニットセル。
  30. 前記ゲートは、前記ドープされたチャネル層上のクロムの第1のゲート層を含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  31. 前記ゲートは、前記第1のゲート層上の上層をさらに含み、前記上層は、白金および金を含むことを特徴とする請求項30に記載のMESFETのユニットセル。
  32. 前記ゲートは、前記ドープされたチャネル層上のニッケルの第1のゲート層を含むことを特徴とする請求項1または2に記載のMESFETのユニットセル。
  33. 前記ゲートは、前記第1のゲート層上の上層をさらに含み、前記上層は、金を含むことを特徴とする請求項32に記載のMESFETのユニットセル。
  34. 前記ゲートは、0.4μmから0.7μmのゲート長を有することを特徴とする請求項1に記載のMESFETのユニットセル。
  35. 前記第1の距離は、500Åから1000Åであることを特徴とする請求項2に記載のMESFETのユニットセル。
  36. 前記ソースと前記第1のリセスの側壁の中の前記ソースと前記ゲートの間にある第1の側壁との間の距離は、0.1μmから0.4μmであり、
    前記ドレインと前記第1のリセスの側壁の中の前記ドレインと前記ゲートの間にある第2の側壁との間の距離は、0.9μmから1.7μmであることを特徴とする請求項2に記載のMESFETのユニットセル。
  37. 前記第1のリセスの側壁の中の前記ソースと前記ゲートの間にある第1の側壁と前記ゲートとの間の距離は、0.3μmから0.6μmであり、
    前記第1のリセスの側壁の中の前記ドレインと前記ゲートの間にある第2の側壁と前記ゲートとの間の距離は、0.3μmから0.6μmであることを特徴とする請求項2に記載のMESFETのユニットセル。
  38. ソース、ドレイン、およびゲートを有するデルタドープされた金属半導体電界効果トランジスタ(MESFET)を含むMESFETの形成方法であって、
    炭化シリコン基板上に第1の導電型の炭化シリコンのデルタドープされた層を形成するステップと、
    前記デルタドープされた層の少なくとも1つのキャリア濃度より小さいキャリア濃度を有する、前記第1の導電型の炭化シリコンのドープされたチャネル層を、前記デルタドープされた層上に形成するステップと、
    前記ドープされたチャネル層上に、前記ドープされたチャンネル層のキャリア濃度より大きなキャリア濃度を有するように、前記第1の導電型の炭化シリコンのキャップ層を形成するステップ
    少なくとも前記キャップ層を貫くように前記ソースおよび前記ドレインを形成し、それにより、前記ソースおよび前記ドレインから前記ゲート方向に延在し、かつ前記ゲートの形成予定箇所から離間するキャップ層を残すステップと、
    記ソースおよび前記ドレイン上にそれぞれオーミックコンタクトを形成するステップと、
    前記ソースと前記ドレインとの間に、前記ドープされたチャネル層の中まで延在させてゲートを形成する形成するステップと、を含む
    ことを特徴とする形成方法。
  39. 前記キャップ層を残すステップおよび前記ゲートを形成するステップは、
    前記キャップ層を貫いて、少なくとも前記ドープされたチャネル層まで第1の距離だけ延在する、前記ソースと前記ドレインとの間の第1のリセスを形成するステップであって、前記第1のリセスを形成するステップは第1のフロアを前記ドープされたチャネル層に形成し、側壁を前記ソースおよび前記ゲートの形成予定箇所の間、前記ドレインおよび前記ゲートの形成予定箇所の間に、かつ前記ゲートの形成予定箇所から離間してそれぞれに形成し、前記側壁は前記ソースおよび前記ドレインのそれぞれから延在する前記キャップ層の領域を規定する、前記第1のリセスを形成するステップと、
    前記ソースと前記ドレインとの間の前記第1のリセス内に、前記ドープされたチャネル層の中まで第2の距離だけ延在し、前記ドープされたチャネル層の中に第2のフロアを形成する第2のリセスを形成するステップと、
    前記第2のリセス内に前記ドープされたチャネル層の中まで延在する前記ゲートを形成するステップと、をさらに含むことを特徴とする請求項38に記載の形成方法。
  40. 前記デルタドープされた層を形成するステップ、前記ドープされたチャネル層を形成するステップ、および前記キャップ層を形成するステップが、単一の成長ステップで、前記デルタドープされた層、前記ドープされたチャネル層、および前記キャップ層のエピタキシャル成長のステップを含むことを特徴とする請求項38または39に記載の形成方法。
  41. 単一の成長ステップにおけるソース材料濃度が、前記デルタドープされた層に対して、前記ドープされたチャネル層を成長するために第1の時間だけ変更され、かつ前記キャップ層を成長するために第2の時間だけ変更されることを特徴とする請求項4に記載の形成方法。
  42. 前記キャップ層を形成するステップは、前記ドープされたチャネル層の表面から所定の深さまで第1の導電型のドーパントを注入することを含むことを特徴とする請求項38または39に記載の形成方法。
  43. 前記デルタドープされた層を形成するステップ、前記ドープされたチャネル層を形成するステップ、および前記キャップ層を形成するステップは、前記デルタドープされた層を堆積するステップ、前記ドープされたチャネル層を堆積するステップ、および前記キャップ層を堆積するステップを含むことを特徴とする請求項38または39に記載の形成方法。
  44. 前記第1の導電型の炭化シリコンは、n型導電性の炭化シリコンを含むことを特徴とする請求項38または39に記載の形成方法。
  45. 前記第1の導電型の炭化シリコンは、p型導電性の炭化シリコンを含むことを特徴とする請求項38または39に記載の形成方法。
  46. 前記基板と前記デルタドープされた層との間にバッファ層を形成するステップさらに含むことを特徴とする請求項38または39に記載の形成方法。
  47. バッファ層を形成するステップは、p型導電性の炭化シリコン層を形成するステップを含むことを特徴とする請求項4に記載の形成方法。
  48. バッファ層を形成するステップは、n型導電性の炭化シリコン層を形成するステップを含むことを特徴とする請求項4に記載の形成方法。
  49. バッファ層を形成するステップは、ドープされていない炭化シリコン層を形成するステップを含むことを特徴とする請求項4に記載の形成方法。
  50. 前記ドープされたチャネル層より大きいキャリア濃度を有する、n型導電性の炭化シリコンの多くドープされた領域を提供するように、ソース領域およびドレイン領域にn型ドーパントを注入することをさらに含み、
    前記オーミックコンタクトを形成するステップは、前記多くドープされた領域にオーミックコンタクトを形成することを含むことを特徴とする請求項38または39に記載の形成方法。
  51. メサを形成するように、前記デルタドープされた層、前記ドープされたチャネル層、前記キャップ層、および前記多くドープされた領域をエッチングするステップをさらに含むことを特徴とする請求項5に記載の形成方法。
  52. 前記n型ドーパントを注入するステップは、前記n型ドーパントを活性化するために、前記n型ドーパントをアニールすることをさらに含むことを特徴とする請求項5に記載の形成方法。
  53. 前記MESFET上に酸化物層を成長するステップをさらに含むことを特徴とする請求項38または39に記載の形成方法。
  54. 前記MESFET上に酸化物層を堆積するステップをさらに含むことを特徴とする請求項38または39に記載の形成方法。
  55. 前記オーミックコンタクトを形成するステップは、
    前記ソースおよび前記ドレイン上の前記酸化物層を貫いてコンタクトウィンドウをエッチングするステップと、
    前記コンタクトウィンドウ内に前記オーミックコンタクトを形成するステップとを含む
    ことを特徴とする請求項53または54に記載の形成方法。
  56. 前記第1のリセスを形成するステップは、
    前記第1のリセスのために前記キャップ層上にマスクを形成するステップと、
    前記マスクにしたがって、前記ドープされたチャネル層に延在する前記第1の距離だけ、前記キャップ層を貫いてエッチングするステップとを含むことを特徴とする請求項39に記載の形成方法。
  57. 前記第1のリセスを形成するステップは、
    前記第1のリセスのために前記キャップ層上にマスクを形成するステップと、
    前記マスクにしたがって、前記第1の距離だけ、前記キャップ層を貫いてエッチングし、第3の距離だけ前記ドープされたチャネル層内に延在するようにエッチングするステップとを含むことを特徴とする請求項39に記載の形成方法。
  58. 前記第2のリセスを形成するステップは、
    前記第2のリセスのためのマスクを形成するステップと、
    前記マスクにしたがって前記第2の距離だけ前記第1のフロア内をエッチングするステップとを含むことを特徴とする請求項39に記載の形成方法。
  59. MESFETを形成する方法であって、
    炭化シリコン基板上に第2の導電型のバッファ層を形成するステップと、
    前記バッファ層の上にデルタドープされた層を、該デルタドープされた層の上にドープされたチャネル層を、および該ドープされたチャネル層の上にキャップ層を、ソース材料キャリア濃度を、前記デルタドープされた層に対して、前記ドープされたチャネル層を成長するために第1の時間だけ変更し、かつ前記キャップ層を成長するために第2の時間だけ変更することにより、全層を第1の導電型の単一の成長ステップでエピタキシャル成長するステップと、
    前記ソースおよび前記ドレインを形成する領域を規定するため、前記キャップ層の上に第1の導電型のドーパントの注入のためのマスクを形成するステップと、
    第1の導電型のドーパントを注入し、かつアニールによって前記第1の導電型のドーパントを活性化するステップと、
    メサを形成するために、前記デルタドープされた層、前記ドープされたチャネル層、前記キャップ層、および前記第1の導電型のドーパントが注入された領域をエッチングするステップと、
    第1のリセスのためのマスクを形成し、前記ソースと前記ドレインとの間に前記第1のリセスを前記キャップ層を貫いて第1の距離だけエッチングし第1のフロアを前記ドープされたチャネル層内に形成し、かつ側壁を、前記ソースおよび前記ゲートとの間、および前記ドレインおよび前記ゲートとの間にそれぞれ1つ形成するステップと、
    前記キャップ層上と前記第1のリセス内に酸化物層を成長するステップと、
    前記酸化物層に、ソースコンタクトおよびドレインコンタクトのためのウィンドウを開口するステップと、
    前記ウィンドウ上にオーミックコンタクトを形成するステップと、
    前記第1のリセス内に第2のリセスを形成するためにマスクを形成するステップと、
    前記第1の距離より長い第2の距離だけ、前記酸化物層を貫き前記ドープされたチャネル層の中まで延在する第2のリセスをエッチングするステップと、
    前記ドープされたチャネル層の中まで延在する前記第2のリセス内にゲートを形成するステップと
    をさらに含むことを特徴とする請求項38に記載の方法。
JP2003539110A 2001-10-24 2002-10-08 デルタドープされた炭化シリコン金属半導体電界効果トランジスタ、およびデルタドープされた炭化シリコン金属半導体電界効果トランジスタの製造方法 Expired - Lifetime JP4921694B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/136,456 2001-10-24
US10/136,456 US6906350B2 (en) 2001-10-24 2001-10-24 Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
PCT/US2002/032204 WO2003036729A1 (en) 2001-10-24 2002-10-08 Delta doped silicon carbide metal-semiconductor field effect transistors and methods of fabricating them

Publications (3)

Publication Number Publication Date
JP2005507174A JP2005507174A (ja) 2005-03-10
JP2005507174A5 JP2005507174A5 (ja) 2006-01-05
JP4921694B2 true JP4921694B2 (ja) 2012-04-25

Family

ID=22472931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003539110A Expired - Lifetime JP4921694B2 (ja) 2001-10-24 2002-10-08 デルタドープされた炭化シリコン金属半導体電界効果トランジスタ、およびデルタドープされた炭化シリコン金属半導体電界効果トランジスタの製造方法

Country Status (11)

Country Link
US (2) US6906350B2 (ja)
EP (1) EP1459390B1 (ja)
JP (1) JP4921694B2 (ja)
KR (1) KR20040045904A (ja)
CN (1) CN100459171C (ja)
AT (1) ATE431967T1 (ja)
AU (1) AU2002334921A1 (ja)
CA (1) CA2464110A1 (ja)
DE (1) DE60232420D1 (ja)
TW (1) TW578305B (ja)
WO (1) WO2003036729A1 (ja)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
US6906350B2 (en) * 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
JP4209136B2 (ja) * 2002-05-30 2009-01-14 パナソニック株式会社 半導体装置及びその製造方法
US6893947B2 (en) * 2002-06-25 2005-05-17 Freescale Semiconductor, Inc. Advanced RF enhancement-mode FETs with improved gate properties
US8546884B2 (en) * 2002-10-29 2013-10-01 Avago Technologies General Ip (Singapore) Pte. Ltd. High value resistors in gallium arsenide
US6956239B2 (en) * 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
EP1519419B1 (en) * 2003-09-24 2018-02-21 Nissan Motor Co., Ltd. Semiconductor device and manufacturing method thereof
DE10350160B4 (de) * 2003-10-28 2012-12-06 Infineon Technologies Ag Verfahren zur Herstellung eines Sperrschicht-Feldeffekttransistors mit hoher Durchbruchspannung
US7470967B2 (en) * 2004-03-12 2008-12-30 Semisouth Laboratories, Inc. Self-aligned silicon carbide semiconductor devices and methods of making the same
US7411218B2 (en) * 2004-03-19 2008-08-12 Fairchild Semiconductor Corporation Method and device with durable contact on silicon carbide
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
WO2005114746A1 (en) * 2004-05-21 2005-12-01 Nanyang Technological University Novel structures of silicon carbide metal semiconductor field effect transistors for high voltage and high power applications
US7345309B2 (en) 2004-08-31 2008-03-18 Lockheed Martin Corporation SiC metal semiconductor field-effect transistor
JP5031566B2 (ja) * 2004-09-01 2012-09-19 クレー・スウェーデン・アクチボラゲット チャネル層の下部および上部にスペーサが含まれる横方向電界効果トランジスタおよびその製造方法
KR100612418B1 (ko) * 2004-09-24 2006-08-16 삼성전자주식회사 자기정렬 바디를 갖는 반도체 소자 및 그 제조방법
US20060091606A1 (en) * 2004-10-28 2006-05-04 Gary Paugh Magnetic building game
US7348612B2 (en) * 2004-10-29 2008-03-25 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7217968B2 (en) * 2004-12-15 2007-05-15 International Business Machines Corporation Recessed gate for an image sensor
US7326962B2 (en) * 2004-12-15 2008-02-05 Cree, Inc. Transistors having buried N-type and P-type regions beneath the source region and methods of fabricating the same
JP4866007B2 (ja) * 2005-01-14 2012-02-01 富士通株式会社 化合物半導体装置
JP4586547B2 (ja) * 2005-01-24 2010-11-24 住友電気工業株式会社 接合型電界効果トランジスタ
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US8203185B2 (en) * 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7402844B2 (en) * 2005-11-29 2008-07-22 Cree, Inc. Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods
JP2007157829A (ja) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd 半導体装置
US7368971B2 (en) * 2005-12-06 2008-05-06 Cree, Inc. High power, high frequency switch circuits using strings of power transistors
KR100655125B1 (ko) * 2005-12-26 2006-12-08 한국전기연구원 이중 면도핑 구조의 채널을 갖는 탄화규소 고주파 금속접합전계효과 트랜지스터
DE102006012369A1 (de) * 2006-03-17 2007-09-20 United Monolithic Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements mit einer metallischen Steuerelektrode und Halbleiterbauelement
US8049272B2 (en) * 2006-06-16 2011-11-01 Cree, Inc. Transistors having implanted channel layers and methods of fabricating the same
US8193537B2 (en) 2006-06-19 2012-06-05 Ss Sc Ip, Llc Optically controlled silicon carbide and related wide-bandgap transistors and thyristors
CN101473442B (zh) * 2006-06-19 2012-07-04 Ssscip有限公司 半绝缘外延的碳化硅及相关的宽带隙晶体管
US20080054300A1 (en) * 2006-06-30 2008-03-06 Philip Gene Nikkel Body contact structure and method for the reduction of drain lag and gate lag in field effect transistors
US7646043B2 (en) * 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate
JP5105160B2 (ja) 2006-11-13 2012-12-19 クリー インコーポレイテッド トランジスタ
US7528427B2 (en) 2007-01-30 2009-05-05 International Business Machines Corporation Pixel sensor cell having asymmetric transfer gate with reduced pinning layer barrier potential
US7737476B2 (en) * 2007-02-15 2010-06-15 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having self-aligned structures
KR100853799B1 (ko) * 2007-07-25 2008-08-25 주식회사 동부하이텍 트렌치 게이트 반도체 소자 및 그의 제조 방법
US7935620B2 (en) * 2007-12-05 2011-05-03 Freescale Semiconductor, Inc. Method for forming semiconductor devices with low leakage Schottky contacts
US9024327B2 (en) * 2007-12-14 2015-05-05 Cree, Inc. Metallization structure for high power microelectronic devices
US7750370B2 (en) * 2007-12-20 2010-07-06 Northrop Grumman Space & Mission Systems Corp. High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer
US9711633B2 (en) * 2008-05-09 2017-07-18 Cree, Inc. Methods of forming group III-nitride semiconductor devices including implanting ions directly into source and drain regions and annealing to activate the implanted ions
US8841682B2 (en) * 2009-08-27 2014-09-23 Cree, Inc. Transistors with a gate insulation layer having a channel depleting interfacial charge and related fabrication methods
JP5464579B2 (ja) * 2009-08-28 2014-04-09 独立行政法人産業技術総合研究所 リセスゲート型炭化珪素電界効果トランジスタおよびその製造方法
US20110147845A1 (en) * 2009-12-22 2011-06-23 Prashant Majhi Remote Doped High Performance Transistor Having Improved Subthreshold Characteristics
JP4985757B2 (ja) * 2009-12-25 2012-07-25 株式会社デンソー 炭化珪素半導体装置
JP2011159714A (ja) * 2010-01-29 2011-08-18 Denso Corp 炭化珪素半導体装置およびその製造方法
KR101194973B1 (ko) * 2010-04-27 2012-10-25 에스케이하이닉스 주식회사 반도체 소자의 트랜지스터 및 그 형성방법
JP5732790B2 (ja) * 2010-09-14 2015-06-10 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US10447709B2 (en) * 2010-12-29 2019-10-15 Rapid7, Inc. Methods and systems for integrating reconnaissance with security assessments for computing networks
DE102011016900A1 (de) * 2011-04-13 2012-10-18 Friedrich-Alexander-Universität Erlangen-Nürnberg Halbleiterbauelement
CN102339868B (zh) * 2011-09-01 2013-08-14 西安电子科技大学 带反型隔离层结构的金属半导体场效应晶体管及制作方法
JP2013131650A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 半導体装置及びその製造方法
US9753909B2 (en) 2012-09-07 2017-09-05 Splunk, Inc. Advanced field extractor with multiple positive examples
US9152929B2 (en) 2013-01-23 2015-10-06 Splunk Inc. Real time display of statistics and values for selected regular expressions
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9755059B2 (en) * 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US9184234B2 (en) * 2014-01-16 2015-11-10 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor design
US9236445B2 (en) 2014-01-16 2016-01-12 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor having replacement gate and epitaxially grown replacement channel region
US9425099B2 (en) 2014-01-16 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial channel with a counter-halo implant to improve analog gain
US9224814B2 (en) 2014-01-16 2015-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Process design to improve transistor variations and performance
US10867792B2 (en) * 2014-02-18 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor (HEMT) having an indium-containing layer and method of manufacturing the same
US9525031B2 (en) 2014-03-13 2016-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial channel
US9419136B2 (en) 2014-04-14 2016-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Dislocation stress memorization technique (DSMT) on epitaxial channel devices
CN104282764B (zh) * 2014-10-28 2017-10-13 西安电子科技大学 具有坡形栅极的4H‑SiC金属半导体场效应晶体管及制作方法
JP6288298B2 (ja) * 2014-11-12 2018-03-07 富士電機株式会社 炭化珪素半導体スイッチング素子およびその製造方法
US10608079B2 (en) * 2018-02-06 2020-03-31 General Electric Company High energy ion implantation for junction isolation in silicon carbide devices
CN113782590A (zh) * 2021-09-09 2021-12-10 西安电子科技大学 一种具有部分下沉沟道的4H-SiC金属半导体场效应晶体管
CN115939185B (zh) * 2022-11-23 2024-03-08 扬州国宇电子有限公司 一种快恢复二极管芯片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175239A (ja) * 1991-06-14 1993-07-13 Cree Res Inc 高電力、高周波金属−半導体電界効果トランジスタ
US5925895A (en) * 1993-10-18 1999-07-20 Northrop Grumman Corporation Silicon carbide power MESFET with surface effect supressive layer
WO2001067521A1 (fr) * 2000-03-03 2001-09-13 Matsushita Electric Industrial Co., Ltd. Dispositif a semiconducteur

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2324780C3 (de) 1973-05-16 1978-07-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zum Herstellen eines Halbleiterbauelements
JPS6051213B2 (ja) 1978-05-30 1985-11-13 株式会社フジクラ 伸縮自在なテ−プ電線の製造装置
JPS59134874A (ja) 1983-01-21 1984-08-02 Hitachi Ltd 半導体装置の製造方法
US4762806A (en) 1983-12-23 1988-08-09 Sharp Kabushiki Kaisha Process for producing a SiC semiconductor device
JPS60142568A (ja) 1983-12-29 1985-07-27 Sharp Corp 炭化珪素電界効果トランジスタの製造方法
US4737469A (en) 1984-01-19 1988-04-12 Honeywell Inc. Controlled mode field effect transistors and method therefore
JPS60154674A (ja) 1984-01-25 1985-08-14 Hitachi Ltd 電子装置の製造方法
JPS60189250A (ja) 1984-03-08 1985-09-26 Fujitsu Ltd 半導体装置
JPS6144821A (ja) * 1984-07-11 1986-03-04 ユニヴア−シテイ・オブ・シドニ− 抗アレルゲン剤
DE3578271D1 (de) 1984-11-02 1990-07-19 Toshiba Kawasaki Kk Feldeffekttransistor mit einem schottky-gate und herstellungsverfahren dafuer.
JP2615390B2 (ja) 1985-10-07 1997-05-28 工業技術院長 炭化シリコン電界効果トランジスタの製造方法
EP0252179B1 (en) 1986-07-11 1992-05-27 International Business Machines Corporation Process for producing undercut mask profiles
JPS6347983A (ja) 1986-08-18 1988-02-29 Sharp Corp 炭化珪素電界効果トランジスタ
US5229625A (en) 1986-08-18 1993-07-20 Sharp Kabushiki Kaisha Schottky barrier gate type field effect transistor
JPS6459961A (en) 1987-08-31 1989-03-07 Toshiba Corp Semiconductor device
JPH0797659B2 (ja) 1987-10-20 1995-10-18 三洋電機株式会社 SiC青色発光ダイオード
JPH0797660B2 (ja) 1987-10-20 1995-10-18 三洋電機株式会社 SiC青色発光ダイオード
US4947218A (en) 1987-11-03 1990-08-07 North Carolina State University P-N junction diodes in silicon carbide
JPH0798684B2 (ja) 1988-01-19 1995-10-25 日本碍子株式会社 高密度SiC焼結体の製造方法
JPH01196873A (ja) 1988-02-02 1989-08-08 Sharp Corp 炭化珪素半導体装置
US4927710A (en) * 1988-04-21 1990-05-22 Japan Exlan Company Limited Matting agent
JP2612040B2 (ja) 1988-06-28 1997-05-21 株式会社豊田中央研究所 β−SiCを用いたMOS・FET及びその製造方法
US5014108A (en) 1990-05-15 1991-05-07 Harris Corporation MESFET for dielectrically isolated integrated circuits
JPH04225534A (ja) 1990-12-27 1992-08-14 Fujitsu Ltd 半導体装置及びその製造方法
JPH0547798A (ja) 1991-01-31 1993-02-26 Texas Instr Inc <Ti> 抵抗性AlGaAsを有するGaAs FET
US5289015A (en) 1991-04-25 1994-02-22 At&T Bell Laboratories Planar fet-seed integrated circuits
US5264713A (en) 1991-06-14 1993-11-23 Cree Research, Inc. Junction field-effect transistor formed in silicon carbide
JP3129879B2 (ja) 1993-06-03 2001-01-31 ノーリツ鋼機株式会社 感光材料処理装置
US5510630A (en) 1993-10-18 1996-04-23 Westinghouse Electric Corporation Non-volatile random access memory cell constructed of silicon carbide
US5396085A (en) 1993-12-28 1995-03-07 North Carolina State University Silicon carbide switching device with rectifying-gate
US5399883A (en) 1994-05-04 1995-03-21 North Carolina State University At Raleigh High voltage silicon carbide MESFETs and methods of fabricating same
US5686737A (en) 1994-09-16 1997-11-11 Cree Research, Inc. Self-aligned field-effect transistor for high frequency applications
SE9404452D0 (sv) 1994-12-22 1994-12-22 Abb Research Ltd Semiconductor device having an insulated gate
JP3158973B2 (ja) 1995-07-20 2001-04-23 富士電機株式会社 炭化けい素縦型fet
US5972801A (en) 1995-11-08 1999-10-26 Cree Research, Inc. Process for reducing defects in oxide layers on silicon carbide
JP2728126B2 (ja) 1995-12-25 1998-03-18 日本電気株式会社 電界効果トランジスタ
US5719409A (en) 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
DE19644821C1 (de) 1996-10-29 1998-02-12 Daimler Benz Ag Steuerbare Halbleiterstruktur mit verbesserten Schalteigenschaften
US5742082A (en) 1996-11-22 1998-04-21 Motorola, Inc. Stable FET with shielding region in the substrate
US5891769A (en) 1997-04-07 1999-04-06 Motorola, Inc. Method for forming a semiconductor device having a heteroepitaxial layer
US6121633A (en) 1997-06-12 2000-09-19 Cree Research, Inc. Latch-up free power MOS-bipolar transistor
JPH11150124A (ja) 1997-09-12 1999-06-02 Toshiba Corp 電界効果トランジスタおよびその製造方法
JP3216804B2 (ja) 1998-01-06 2001-10-09 富士電機株式会社 炭化けい素縦形fetの製造方法および炭化けい素縦形fet
US6107649A (en) 1998-06-10 2000-08-22 Rutgers, The State University Field-controlled high-power semiconductor devices
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
US6218680B1 (en) 1999-05-18 2001-04-17 Cree, Inc. Semi-insulating silicon carbide without vanadium domination
US6686616B1 (en) * 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
US6458640B1 (en) 2001-06-04 2002-10-01 Anadigics, Inc. GaAs MESFET having LDD and non-uniform P-well doping profiles
US6906350B2 (en) * 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175239A (ja) * 1991-06-14 1993-07-13 Cree Res Inc 高電力、高周波金属−半導体電界効果トランジスタ
US5925895A (en) * 1993-10-18 1999-07-20 Northrop Grumman Corporation Silicon carbide power MESFET with surface effect supressive layer
WO2001067521A1 (fr) * 2000-03-03 2001-09-13 Matsushita Electric Industrial Co., Ltd. Dispositif a semiconducteur

Also Published As

Publication number Publication date
TW578305B (en) 2004-03-01
US20050023535A1 (en) 2005-02-03
CA2464110A1 (en) 2003-05-01
DE60232420D1 (de) 2009-07-02
CN100459171C (zh) 2009-02-04
ATE431967T1 (de) 2009-06-15
JP2005507174A (ja) 2005-03-10
EP1459390B1 (en) 2009-05-20
KR20040045904A (ko) 2004-06-02
EP1459390A1 (en) 2004-09-22
AU2002334921A1 (en) 2003-05-06
US6906350B2 (en) 2005-06-14
WO2003036729A8 (en) 2004-06-24
WO2003036729A1 (en) 2003-05-01
US20030075719A1 (en) 2003-04-24
CN1706048A (zh) 2005-12-07
US6902964B2 (en) 2005-06-07

Similar Documents

Publication Publication Date Title
JP4921694B2 (ja) デルタドープされた炭化シリコン金属半導体電界効果トランジスタ、およびデルタドープされた炭化シリコン金属半導体電界効果トランジスタの製造方法
EP1565946B1 (en) Transistors having buried p-type layers beneath the source region and methods of fabricating the same
US7067361B2 (en) Methods of fabricating silicon carbide metal-semiconductor field effect transistors
US8049272B2 (en) Transistors having implanted channel layers and methods of fabricating the same
US7348612B2 (en) Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
EP1825517B1 (en) Transistors having buried n-type and p-type regions beneath the source region and methods of fabricating the same
US7880172B2 (en) Transistors having implanted channels and implanted P-type regions beneath the source region

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110303

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110404

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110411

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

R150 Certificate of patent or registration of utility model

Ref document number: 4921694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term