JP4887904B2 - ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品 - Google Patents

ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品 Download PDF

Info

Publication number
JP4887904B2
JP4887904B2 JP2006139799A JP2006139799A JP4887904B2 JP 4887904 B2 JP4887904 B2 JP 4887904B2 JP 2006139799 A JP2006139799 A JP 2006139799A JP 2006139799 A JP2006139799 A JP 2006139799A JP 4887904 B2 JP4887904 B2 JP 4887904B2
Authority
JP
Japan
Prior art keywords
polyphenylene sulfide
sulfide resin
thermal oxidation
polymerization
oxidation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006139799A
Other languages
English (en)
Other versions
JP2007308612A (ja
Inventor
直也 中村
圭 齋藤
敦 石王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006139799A priority Critical patent/JP4887904B2/ja
Publication of JP2007308612A publication Critical patent/JP2007308612A/ja
Application granted granted Critical
Publication of JP4887904B2 publication Critical patent/JP4887904B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

本発明は、溶融流動性に優れ、かつ溶融時の揮発性成分の発生量が少ないポリフェニレンスルフィド樹脂、その製造方法および射出成形品に関するものである。
ポリフェニレンスルフィド(以下PPSと略す)樹脂は優れた耐熱性、バリア性、耐薬品性、電気絶縁性、耐湿熱性などエンジニアリングプラスチックとしては好適な性質を有しており、射出成形、押出成形用を中心として各種電気・電子部品、機械部品および自動車部品、フィルム、繊維などに使用されている。
しかし、PPS樹脂はその融点が高い故に、溶融加工温度が高く、そのため揮発性成分が発生し易く、特に射出成形に用いる際に、金型汚れや金型ベント詰まりによる成形不良を起こす場合があり、揮発成分の低減が強く望まれている。かかる揮発成分はPPS樹脂を融点以下の温度で熱処理をすることにより低減し得るが、過度な熱処理は、溶融粘度の過度な上昇やゲル化物生成による成形性の悪化などの弊害をもたらす。本発明は、特定の条件で熱酸化処理を行うことによって、かかる溶融粘度を大きく上昇させることなく、揮発性成分が大きく減少する事を見い出したものである。
PPS樹脂を熱酸化処理することは以前より行われている。例えば特許文献1にはポリマー粘度が5000〜16000ポイズ(500〜1600Pa・s)(310℃、剪断速度200/秒)の範囲内、非ニュートニアン係数nが1.5〜2.1の範囲内になるようにPPS樹脂にキュアリングを施し、これを溶融押し出しして得られる押出成形物が開示されている。しかし、5000ポイズはメルトフローレートに換算すると100g/10分未満であり、かかるPPS樹脂は溶融粘度が高すぎるために射出成形時の流動性が著しく悪化するため、特にフィラー含有PPS樹脂組成物の射出成形には不向きである。また該特許に開示されているPPS樹脂は熱酸化処理度合いも比較的大きく、熱酸化処理度合いが大きすぎると、ガス低減効果が飽和する反面、溶融流動性は低下する難点がある。
特許文献2には、重量平均分子量が30,000以上で、かつ平均粒径が50μm以下の粒状PPS樹脂を熱酸化処理する方法が開示されている。しかし、特許文献2に記載されている様に、重量平均分子量が30,000以上で、平均粒径が50μm以下のPPS樹脂を得るには、特殊な重合装置または粉砕が必要となり、コストもかかり一般的な方法ではない。更にかかる微細なPPS粒子は溶融混練時の押出機への噛み混み性に劣り、単位時間あたりの溶融混練押し出し量が少なくなるため経済的に不利益である。
特許文献3には低酸素雰囲気下でPPS樹脂を硬化させる方法が開示されているものの、特定の条件下で熱酸化処理を行うことにより、優れた溶融流動性と低揮発成分化を両立しえることにについては何ら記載されていない。
特開昭63−207827号公報(特許請求の範囲) 特開平6−248078号公報(特許請求の範囲) 特開平1−121327号公報(特許請求の範囲)
本発明は、溶融流動性に優れ、かつ溶融時の揮発性成分の発生量が少ないポリフェニレンスルフィド樹脂、その製造方法および射出成形体を得ることを課題とするものである。
そこで本発明者らは上記の課題を解決すべく検討した結果、比較的低粘度のPPSを、比較的軽度に熱酸化処理することにより、溶融時の揮発性成分の発生量が予想以上に減少してかつ溶融流動性に優れた、ポリフェニレンスルフィド樹脂、その製造方法および熱酸化処理されたポリフェニレンスルフィド樹脂からなる射出成形体が得られることを見出し本発明に到達した。
すなわち本発明は、
1.熱酸化処理を施されたポリフェニレンスルフィド樹脂からなり、真空下、320℃で2時間加熱溶融した際に揮発するガス発生量が0.3重量%以下であり、かつ250℃で5分間、20倍重量の1−クロロナフタレンで溶解して、ポアサイズ1μmのPTFEメンブランフィルターで熱時加圧濾過した際の残さ量が4.0重量%以下であり、さらにメルトフローレート(ASTMD−1238−70に準ず。温度315.5℃、荷重5000gにて測定。)が500g/10分を越えるポリフェニレンスルフィド樹脂、
2.熱酸化処理を施されたポリフェニレンスルフィド樹脂からなり、平均粒径が50μmを超える範囲である上記1項記載のポリフェニレンスルフィド樹脂、
3.ポリフェニレンスルフィド樹脂がフラッシュ法で回収されたポリフェニレンスルフィド樹脂である上記1項または2項に記載のポリフェニレンスルフィド樹脂、
4.熱酸化処理温度(Tc)が、熱酸化処理前のポリフェニレンスルフィド樹脂の融点(Tm)と、下記関係にあることを特徴とする、上記1項〜3項のいずれか記載のポリフェニレンスルフィド樹脂の製造方法、
Tm(℃)−120℃< Tc <Tm(℃)−70℃
5.熱酸化処理の処理時間が0.5〜50時間であることを特徴とする、上記4項記載のポリフェニレンスルフィド樹脂の製造方法、
6.熱酸化処理前のポリフェニレンスルフィド樹脂がフラッシュ法で回収されたポリフェニレンスルフィド樹脂であることを特徴とする上記4項または5項記載のポリフェニレンスルフィド樹脂の製造方法、
7.上記1項〜3項のいずれか記載のポリフェニレンスルフィド樹脂を射出成形してなる成形品、
より構成されるものである。
本発明によれば、溶融時の揮発性成分の発生量が予想以上に減少してかつ溶融流動性に優れた、ポリフェニレンスルフィド樹脂、その製造方法および熱酸化処理されたポリフェニレンスルフィド樹脂からなる射出成形体が得られる。
以下、本発明の実施の形態を詳細に説明する。
(1)PPS樹脂
本発明におけるPPS樹脂は、下記構造式(I)で示される繰り返し単位を有する重合体であり、
Figure 0004887904
耐熱性の観点からは上記構造式で示される繰り返し単位を含む重合体を70モル%以上、更には90モル%以上含む重合体が好ましい。またPPS樹脂はその繰り返し単位の30モル%未満程度が、下記の構造を有する繰り返し単位等で構成されていてもよい。
Figure 0004887904
本発明のPPS樹脂は熱酸化処理により酸化架橋されていることを特徴とする。熱酸化処理後のメルトフローレート(ASTM D−1238−70に準ず。温度315.5℃、荷重5000gにて測定。)が500g/10分を超える範囲である必要がある。熱酸化処理後のメルトフローレートが500g/10分以下であると、特にフィラーを高充填して使用する場合にPPS樹脂組成物の溶融流動性が著しく悪化するため好ましくない。熱酸化処理後の溶融粘度の上限については特に制限はないが、実用に耐える強度を有する樹脂(組成物)を得る観点から、1Pa・s(300℃、剪断速度1000/秒)以上であることが好ましい。
本発明のPPS樹脂は、真空下、320℃で2時間加熱溶融した際に揮発するガス発生量が0.3重量%以下である必要があり、好ましくは0.28重量%以下、更に好ましくは0.22重量%以下であることが望ましい。熱酸化処理後のガス発生量が0.3重量%を上回ると、金型や金型ベント部に付着する揮発性成分が増加し、転写不良やガスやけが起こりやすくなるため好ましくない。熱酸化処理後のガス発生量の下限については特に制限しないが、0.03%以上、好ましくは0.05%以上が望ましい。ガス発生量の下限が0.03%を下回ると、金型や金型ベント部に付着する揮発性成分が減少する反面、ガス発生量を低減するまで熱酸化処理する時間が長くなり経済的に不利である。また、熱酸化処理の長期化により、ゲル化物が生じ易くなり、成形不良を引き起こす一因となり得る。
なお、上記ガス発生量とは、PPS樹脂を真空下で加熱溶融した際に揮発するガスが、冷却されて液化または固化した付着性成分の量を意味しており、PPS樹脂を真空封入したガラスアンプルを、管状炉で加熱することにより測定されるものである。ガラスアンプルの形状としては、腹部が100mm×25mm、首部が255mm×12mm、肉厚が1mmである。具体的な測定方法としては、PPS樹脂を真空封入したガラスアンプルの胴部のみを320℃の管状炉に挿入して2時間加熱することにより、管状炉によって加熱されていないアンプルの首部で揮発性ガスが冷却されて付着する。この首部を切り出して秤量した後、付着したガスをクロロホルムに溶解して除去する。次いで、この首部を乾燥してから再び秤量する。ガスを除去した前後のアンプル首部の重量差よりガス発生量を求める。
本発明のPPS樹脂は、250℃で5分間、20倍重量の1−クロロナフタレンに溶解して、ポアサイズ1μmのPTFEメンブランフィルターで熱時加圧濾過した際の残さ量が4.0重量%以下である必要があり、好ましくは3.5重量%以下、更に好ましくは3.0重量%以下であることが望ましい。残さ量が4.0重量%を上回ることは、PPSの熱酸化架橋が過度に進行し、樹脂中のゲル化物の増加を意味する。PPSの熱酸化架橋を過度に進行させても、揮発分低減効果は少なく、一方で溶融流動性の低下、ゲル化物による成形不良等の原因になるため好ましくない。残さ量の下限については特に制限しないが、1.5%以上、好ましくは1.7%以上である。残さ量が1.5%を下回ると、熱酸化架橋の程度が軽微すぎるため、溶融時の揮発成分はそれほど減少せず、揮発分低減効果が小さい可能性がある。
なお、上記残さ量は、PPS樹脂を約80μm厚にプレスフィルム化したものを試料とし、高温濾過装置および空圧キャップと採集ロートを具備したSUS試験管を用いて測定されるものである。具体的には、まずSUS試験管にポアサイズ1μmのメンブランフィルターをセットした後、約80μm厚にプレスフィルム化したPPS樹脂および20倍重量の1−クロロナフタレンを秤量して密閉する。これを250℃の高温濾過装置にセットして5分間加熱振とうする。次いで空圧キャップに空気を含んだ注射器を接続してから注射器のピストンを押し出し、空圧による熱時濾過を行う。残さ量の具体的な定量方法としては、濾過前のメンブランフィルターと濾過後に150℃で1時間真空乾燥したメンブランフィルターの重量差より求める。
本発明のPPS樹脂粉粒体は、その平均粒径が50μmを超える範囲であることが好ましく、60μm以上の範囲がより好ましい。なお、ここで平均粒径とは、篩い分け法で測定して得られる積算分布の50%に対応する粒子径(D50)を示す。篩い分け法使用する、標準ふるいのメッシュは、粒径が比較的細かい場合、20メッシュ、32メッシュ、60メッシュ、200メッシュ、330メッシュの組合せとし、粒径が比較的荒い場合は4メッシュ、7メッシュ、14メッシュ、20メッシュ、32メッシュ、60メッシュの組合せとし、標準ふるいをセットした振とう機の最上段の標準ふるい内に入れた後、蓋をして30分振とうさせ、各振るいに残ったサンプル量を秤量し、各メッシュに相当する目開き(μm)と、積算重量をプロットし、積算分布の50%に対応する粒子径(D50)を平均粒径とする。
平均粒径が小さすぎるPPS樹脂を得るには、従来技術で述べたように、特殊な重合装置または粉砕が必要となり、コストもかかり好ましい方法ではない。更にかかる微細なPPS粒子は溶融混練時の押出機への噛み混み性に劣り、単位時間あたりの溶融混練押し出し量が少なくなるため経済的にも不利益である。平均粒径の上限は特に制限はないが、750μm以下が好ましく、600μm以下が更に好ましい。通常の方法で750μm以上の粒径のPPSを得ようとすると、重合行程終了後に、重合系を徐冷する必要が生じるが、これは重合時間の延長を意味し、できれば急速に冷却するか、後述するフラッシュ法で回収する方が経済的に有利である。
本発明における、熱酸化処理温度(Tc)は、熱酸化処理前のポリフェニレンスルフィド樹脂の融点(Tm)と、下記式1の関係にあることが好ましく、
Tm(℃)−120℃< Tc <Tm(℃)−70℃ 式1
下記式2の関係にあることが更に好ましい。
Tm(℃)−120℃< Tc <Tm(℃)−80℃ 式2
Tcが(Tm(℃)−70℃)以上の温度で熱酸化処理を行うと、熱酸化処理が急激に進行するため、その制御が困難となるため好ましくない。一方、Tcが(Tm(℃)−120℃)以下の温度では、熱酸化処理の進行が著しく遅くなるため、好ましくない。
なお、本発明の効果を得る上で、本発明のPPS樹脂を100%用いて成形品とすることが最も好ましいが、必要に応じ、上記条件を満たさないPPS樹脂とブレンド使用する事を排除するものではない。ブレンド比率としては、本発明のPPS樹脂を75〜25%(例えば75%、50%、25%)ブレンドするなど適宜必要に応じ選択することは可能である。
上記本発明のPPS樹脂のもととなる、熱酸化処理前のPPS樹脂(以下、処理前PPS樹脂という)の製造方法について詳細に説明するが、もちろん本発明で規定する要件を満足する限り処理前PPS樹脂の製造法は下記に限定されるものではない。
まず、処理前PPS樹脂の製造方法において使用するポリハロゲン芳香族化合物、スルフィド化剤、重合溶媒、分子量調節剤、重合助剤および重合安定剤の内容について説明する。
[ポリハロゲン化芳香族化合物]
本発明で用いられるポリハロゲン化芳香族化合物とは、1分子中にハロゲン原子を2個以上有する化合物をいう。具体例としては、p−ジクロロベンゼン、m−ジクロロベンゼン、o−ジクロロベンゼン、1,3,5−トリクロロベンゼン、1,2,4−トリクロロベンゼン、1,2,4,5−テトラクロロベンゼン、ヘキサクロロベンゼン、2,5−ジクロロトルエン、2,5−ジクロロ−p−キシレン、1,4−ジブロモベンゼン、1,4−ジヨードベンゼン、1−メトキシ−2,5−ジクロロベンゼンなどのポリハロゲン化芳香族化合物が挙げられ、好ましくはp−ジクロロベンゼンが用いられる。また、異なる2種以上のポリハロゲン化芳香族化合物を組み合わせて共重合体とすることも可能であるが、p−ジハロゲン化芳香族化合物を主要成分とすることが好ましい。
ポリハロゲン化芳香族化合物の使用量は、加工に適した粘度のPPS樹脂を得る点から、スルフィド化剤1モル当たり0.9から2.0モル、好ましくは0.95から1.5モル、更に好ましくは1.005から1.2モルの範囲が例示できる。
[スルフィド化剤]
本発明で用いられるスルフィド化剤としては、アルカリ金属硫化物、アルカリ金属水硫化物、および硫化水素が挙げられる。
アルカリ金属硫化物の具体例としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。
アルカリ金属水硫化物の具体例としては、例えば水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化ナトリウムが好ましく用いられる。これらのアルカリ金属水硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。
また、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで調製されるスルフィド化剤も用いることができる。また、アルカリ金属水硫化物とアルカリ金属水酸化物からスルフィド化剤を調整し、これを重合槽に移して用いることができる。
あるいは、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から反応系においてin situで調製されるスルフィド化剤も用いることができる。また、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素からスルフィド化剤を調整し、これを重合槽に移して用いることができる。
本発明において、仕込みスルフィド化剤の量は、脱水操作などにより重合反応開始前にスルフィド化剤の一部損失が生じる場合には、実際の仕込み量から当該損失分を差し引いた残存量を意味するものとする。
なお、スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。アルカリ金属水酸化物の具体例としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物を好ましいものとして挙げることができ、アルカリ土類金属水酸化物の具体例としては、例えば水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、なかでも水酸化ナトリウムが好ましく用いられる。
スルフィド化剤として、アルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいが、この使用量はアルカリ金属水硫化物1モルに対し0.95から1.20モル、好ましくは1.00から1.15モル、更に好ましくは1.005から1.100モルの範囲が例示できる。
[重合溶媒]
本発明では重合溶媒として有機極性溶媒を用いる。具体例としては、N−メチル−2−ピロリドン、N−エチル−2−ピロリドンなどのN−アルキルピロリドン類、N−メチル−ε−カプロラクタムなどのカプロラクタム類、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、ジメチルスルホン、テトラメチレンスルホキシドなどに代表されるアプロチック有機溶媒、およびこれらの混合物などが挙げられ、これらはいずれも反応の安定性が高いために好ましく使用される。これらのなかでも、特にN−メチル−2−ピロリドン(以下、NMPと略記することもある)が好ましく用いられる。
有機極性溶媒の使用量は、スルフィド化剤1モル当たり2.0モルから10モル、好ましくは2.25から6.0モル、より好ましくは2.5から5.5モルの範囲が選択される。
[分子量調節剤]
本発明においては、生成する処理前PPS樹脂の末端を形成させるか、あるいは重合反応や分子量を調節するなどのために、モノハロゲン化合物(必ずしも芳香族化合物でなくともよい)を、上記ポリハロゲン化芳香族化合物と併用することができる。
[重合助剤]
本発明においては、比較的高重合度の処理前PPS樹脂をより短時間で得るために重合助剤を用いることも好ましい態様の一つである。ここで重合助剤とは得られるポリアリーレンスルフィド樹脂の粘度を増大させる作用を有する物質を意味する。このような重合助剤の具体例としては、例えば有機カルボン酸塩、水、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩およびアルカリ土類金属リン酸塩などが挙げられる。これらは単独であっても、また2種以上を同時に用いることもできる。なかでも、有機カルボン酸塩および/または水が好ましく用いられる。
上記アルカリ金属カルボン酸塩とは、一般式R(COOM)n(式中、Rは、炭素数1〜20を有するアルキル基、シクロアルキル基、アリール基、アルキルアリール基またはアリールアルキル基である。Mは、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれるアルカリ金属である。nは1〜3の整数である。)で表される化合物である。アルカリ金属カルボン酸塩は、水和物、無水物または水溶液としても用いることができる。アルカリ金属カルボン酸塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p−トルイル酸カリウム、およびそれらの混合物などを挙げることができる。
アルカリ金属カルボン酸塩は、有機酸と、水酸化アルカリ金属、炭酸アルカリ金属塩および重炭酸アルカリ金属塩よりなる群から選ばれる一種以上の化合物とを、ほぼ等化学当量ずつ添加して反応させることにより形成させてもよい。上記アルカリ金属カルボン酸塩の中で、リチウム塩は反応系への溶解性が高く助剤効果が大きいが高価であり、カリウム、ルビジウムおよびセシウム塩は反応系への溶解性が不十分であると思われるため、安価で、重合系への適度な溶解性を有する酢酸ナトリウムが最も好ましく用いられる。
これら重合助剤を用いる場合の使用量は、仕込みアルカリ金属硫化物1モルに対し、通常0.01モル〜0.7モルの範囲であり、より高い重合度を得る意味においては0.1〜0.6モルの範囲が好ましく、0.2〜0.5モルの範囲がより好ましい。
また水を重合助剤として用いることは、流動性と高靭性が高度にバランスした樹脂組成物を得る上で有効な手段の一つである。その場合の添加量は、仕込みアルカリ金属硫化物1モルに対し、通常0.5モル〜15モルの範囲であり、より高い重合度を得る意味においては0.6〜10モルの範囲が好ましく、1〜5モルの範囲がより好ましい。
これら重合助剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよいが、重合助剤としてアルカリ金属カルボン酸塩を用いる場合は前工程開始時或いは重合開始時に同時に添加することが、添加が容易である点からより好ましい。また水を重合助剤として用いる場合は、ポリハロゲン化芳香族化合物を仕込んだ後、重合反応途中で添加することが効果的である。
[重合安定剤]
本発明においては、重合反応系を安定化し、副反応を防止するために、重合安定剤を用いることもできる。重合安定剤は、重合反応系の安定化に寄与し、望ましくない副反応を抑制する。副反応の一つの目安としては、チオフェノールの生成が挙げられ、重合安定剤の添加によりチオフェノールの生成を抑えることができる。重合安定剤の具体例としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属水酸化物、およびアルカリ土類金属炭酸塩などの化合物が挙げられる。そのなかでも、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムなどのアルカリ金属水酸化物が好ましい。上述のアルカリ金属カルボン酸塩も重合安定剤として作用するので、本発明で使用する重合安定剤の一つに入る。また、スルフィド化剤としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいことを前述したが、ここでスルフィド化剤に対して過剰となるアルカリ金属水酸化物も重合安定剤となり得る。
これら重合安定剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。重合安定剤は、仕込みアルカリ金属硫化物1モルに対して、通常0.02〜0.2モル、好ましくは0.03〜0.1モル、より好ましくは0.04〜0.09モルの割合で使用することが好ましい。この割合が少ないと安定化効果が不十分であり、逆に多すぎても経済的に不利益であり、ポリマー収率が低下する傾向となる。
重合安定剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよいが、前工程開始時或いは重合開始時に同時に添加することが添加が容易である点からより好ましい。
次に、本発明の処理前PPS樹脂の製造方法について、前工程、重合反応工程、回収工程、および後処理工程と、順を追って具体的に説明する。
[前工程]
本発明に用いるPPS樹脂の製造方法において、スルフィド化剤は通常水和物の形で使用されるが、ポリハロゲン化芳香族化合物を添加する前に、有機極性溶媒とスルフィド化剤を含む混合物を昇温し、過剰量の水を系外に除去することが好ましい。なお、この操作により水を除去し過ぎた場合には、不足分の水を添加して補充することが好ましい。
また、上述したように、スルフィド化剤として、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで、あるいは重合槽とは別の槽で調製されるアルカリ金属硫化物も用いることができる。この方法には特に制限はないが、望ましくは不活性ガス雰囲気下、常温〜150℃、好ましくは常温から100℃の温度範囲で、有機極性溶媒にアルカリ金属水硫化物とアルカリ金属水酸化物を加え、常圧または減圧下、少なくとも150℃以上、好ましくは180〜260℃まで昇温し、水分を留去させる方法が挙げられる。この段階で重合助剤を加えてもよい。また、水分の留去を促進するために、トルエンなどを加えて反応を行ってもよい。
重合反応における、重合系内の水分量は、仕込みスルフィド化剤1モル当たり0.5〜10.0モルであることが好ましい。ここで重合系内の水分量とは重合系に仕込まれた水分量から重合系外に除去された水分量を差し引いた量である。また、仕込まれる水は、水、水溶液、結晶水などのいずれの形態であってもよい。
[重合反応工程]
本発明においては、有機極性溶媒中でスルフィド化剤とポリハロゲン化芳香族化合物とを200℃以上290℃未満の温度範囲内で反応させることによりPPS樹脂粉粒体を製造することが好ましい。
重合反応工程を開始するに際しては、望ましくは不活性ガス雰囲気下、常温〜220℃、好ましくは100〜220℃の温度範囲で、有機極性溶媒にスルフィド化剤とポリハロゲン化芳香族化合物を加える。この段階で重合助剤を加えてもよい。これらの原料の仕込み順序は、順不同であってもよく、同時であってもさしつかえない。
かかる混合物を通常200℃〜290℃の範囲に昇温する。昇温速度に特に制限はないが、通常0.01〜5℃/分の速度が選択され、0.1〜3℃/分の範囲がより好ましい。
一般に、最終的には250〜290℃の温度まで昇温し、その温度で通常0.25〜50時間、好ましくは0.5〜20時間反応させる。
最終温度に到達させる前の段階で、例えば200℃〜260℃で一定時間反応させた後、270〜290℃に昇温する方法は、より高い重合度を得る上で有効である。この際、200℃〜260℃での反応時間としては、通常0.25時間から20時間の範囲が選択され、好ましくは0.25〜10時間の範囲が選択される。
なお、より高重合度のポリマーを得るためには、複数段階で重合を行うことが有効である。複数段階で重合を行う際は、245℃における系内のポリハロゲン化芳香族化合物の転化率が、40モル%以上、好ましくは60モル%に達した時点であることが有効である。
なお、ポリハロゲン化芳香族化合物(ここではPHAと略記)の転化率は、以下の式で算出した値である。PHA残存量は、通常、ガスクロマトグラフ法によって求めることができる。
(a)ポリハロゲン化芳香族化合物をアルカリ金属硫化物に対しモル比で過剰に添加した場合
転化率=〔PHA仕込み量(モル)−PHA残存量(モル)〕/〔PHA仕込み量(モル)−PHA過剰量(モル)〕
(b)上記(a)以外の場合
転化率=〔PHA仕込み量(モル)−PHA残存量(モル)〕/〔PHA仕込み量(モル)〕
[回収工程]
本発明の処理前PPS樹脂の製造方法においては、重合終了後に、重合体、溶媒などを含む重合反応物から固形物を回収する。
本発明の処理前PPS樹脂の最も好ましい回収方法は、急冷条件下に行うことであり、この回収方法の好ましい一つの方法としてはフラッシュ法が挙げられる。フラッシュ法とは、重合反応物を高温高圧(通常250℃以上、8kg/cm以上)の状態から常圧もしくは減圧の雰囲気中へフラッシュさせ、溶媒回収と同時に重合体を粉粒体状にして回収する方法であり、ここでいうフラッシュとは、重合反応物をノズルから噴出させることを意味する。フラッシュさせる雰囲気は、具体的には例えば常圧中の窒素または水蒸気が挙げられ、その温度は通常150℃〜250℃の範囲が選択される。
フラッシュ法は、溶媒回収と同時に固形物を回収することができ、また回収時間も比較的短くできることから、経済性に優れた回収方法である。この回収方法では、固化過程でNaに代表されるイオン性化合物や有機系低重合度物(オリゴマー)がポリマー中に取り込まれやすい傾向がある。
但し、本発明の回収法はフラッシュ法に限定されるものではない。本発明の要件を満たす方法であれば、徐冷して粒子状のポリマーを回収する方法(クエンチ法)を用いることもやぶさかではない。しかし、経済性、性能を鑑みた場合、本発明の処理前PPS樹脂はフラッシュ法で回収されたものを用いることがより好ましい。
[後処理工程]
本発明の処理前PPS樹脂は、上記重合、回収工程を経て生成した後、酸処理、熱水処理または有機溶媒による洗浄を施されたものであってもよい。
酸処理を行う場合は次のとおりである。本発明でPPS樹脂の酸処理に用いる酸は、PPS樹脂を分解する作用を有しないものであれば特に制限はなく、酢酸、塩酸、硫酸、リン酸、珪酸、炭酸およびプロピル酸などが挙げられ、なかでも酢酸および塩酸がより好ましく用いられるが、硝酸のようなPPS樹脂を分解、劣化させるものは好ましくない。
酸処理の方法は、酸または酸の水溶液にPPS樹脂を浸漬せしめるなどの方法があり必要により適宜撹拌または加熱することも可能である。例えば、酢酸を用いる場合、PH4の水溶液を80〜200℃に加熱した中にPPS樹脂を浸漬し、30分間撹拌することにより十分な効果が得られる。処理後のPHは4以上例えばPH4〜8程度となっても良い。酸処理を施されたPPS樹脂は残留している酸または塩などを除去するため、水または温水で数回洗浄することが好ましい。洗浄に用いる水は、酸処理によるPPS樹脂の好ましい化学的変性の効果を損なわない意味で、蒸留水、脱イオン水であることが好ましい。
熱水処理を行う場合は次のとおりである。本発明において使用するPPS樹脂粉粒体を熱水処理するにあたり、熱水の温度を100℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上、特に好ましくは170℃以上とすることが好ましい。100℃未満ではPPS樹脂の好ましい化学的変性の効果が小さいため好ましくない。
本発明の熱水洗浄によるPPS樹脂の好ましい化学的変性の効果を発現するため、使用する水は蒸留水あるいは脱イオン水であることが好ましい。熱水処理の操作に特に制限は無く、所定量の水に所定量のPPS樹脂を投入し、圧力容器内で加熱、撹拌する方法、連続的に熱水処理を施す方法などにより行われる。PPS樹脂と水との割合は、水の多い方が好ましいが、通常、水1に対し、PPS樹脂200g以下の浴比が選択される。
また、処理の雰囲気は、末端基の分解は好ましくないので、これを回避するため不活性雰囲気下とすることが望ましい。さらに、この熱水処理操作を終えたPPS樹脂は、残留している成分を除去するため温水で数回洗浄するのが好ましい。
有機溶媒で洗浄する場合は次のとおりである。本発明でPPS樹脂の洗浄に用いる有機溶媒は、PPS樹脂を分解する作用などを有しないものであれば特に制限はなく、例えばN−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、1,3−ジメチルイミダゾリジノン、ヘキサメチルホスホラスアミド、ピペラジノン類などの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホン、スルホランなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、ジオキサン、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、パークロルエチレン、モノクロルエタン、ジクロルエタン、テトラクロルエタン、パークロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール・フェノール系溶媒およびベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などが挙げられる。これらの有機溶媒のうちでも、N−メチル−2−ピロリドン、アセトン、ジメチルホルムアミドおよびクロロホルムなどの使用が特に好ましい、また、これらの有機溶媒は、1種類または2種類以上の混合で使用される。
有機溶媒による洗浄の方法としては、有機溶媒中にPPS樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。有機溶媒でPPS樹脂を洗浄する際の洗浄温度については特に制限はなく、常温〜300℃程度の任意の温度が選択できる。洗浄温度が高くなる程洗浄効率が高くなる傾向があるが、通常は常温〜150℃の洗浄温度で十分効果が得られる。圧力容器中で、有機溶媒の沸点以上の温度で加圧下に洗浄することも可能である。また、洗浄時間についても特に制限はない。洗浄条件にもよるが、バッチ式洗浄の場合、通常5分間以上洗浄することにより十分な効果が得られる。また連続式で洗浄することも可能である。
これら酸処理、熱水処理または有機溶媒による洗浄は、これらを適宜組み合わせて行うことも可能である。
本発明で用いる好ましい熱酸化処理前のPPS樹脂としては、東レ(株)製M2888、M3088、L2480、L4230、M3910、呉羽化学工業社製W205Aなどが挙げられる。
上記製造方法によって得られた処理前PPS樹脂を酸素雰囲気下においての加熱またはH等の過酸化物もしくはS等の加硫剤を添加しての加熱による熱酸化処理を施すことで、本発明のPPS樹脂が得られるが、処理の簡便さから酸素雰囲気下においての加熱による熱酸化処理方法が特に好ましい。
熱酸化処理のための加熱装置は、通常の熱風乾燥機でもまた回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よくしかもより均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。熱酸化処理の際の酸素濃度は2体積%以上、更には8体積%以上とすることが望ましい。酸素濃度の上限には特に制限はないが、50体積%程度が限界であり、25体積%以下がより好ましい。熱酸化処理の好ましい温度条件は上述のとおりである。処理時間は、0.5〜50時間が挙げられ、0.5〜20時間がより好ましく、0.5〜10時間がさらに好ましい。
また熱酸化処理の前後に、熱酸化架橋を抑制し、揮発分や水分除去を目的として乾式熱処理を行うことも可能である。その温度は130〜250℃が好ましく、160〜250℃の範囲がより好ましい。また、この場合の酸素濃度は2体積%未満とすることが望ましい。処理時間は、0.5〜50時間が好ましく、1〜20時間がより好ましく、1〜10時間がさらに好ましい。加熱処理の装置は通常の熱風乾燥機でもまた回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よくしかもより均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。
かくして得られた本発明のPPS樹脂は、耐熱性、耐薬品性、難燃性、電気的性質並びに機械的性質に優れ、特に射出成形用途等に好適に適用される。
なお本発明のPPS樹脂には本発明の効果を損なわない範囲において、他の樹脂を添加することも可能である。例えば、柔軟性の高い熱可塑性樹脂を少量添加することにより柔軟性及び耐衝撃性を更に改良することが可能である。但し、この量が組成物全体の50重量%を超えるとPPS樹脂本来の特徴が損なわれるため好ましくなく、特に30重量%以下の添加が好ましく使用される。熱可塑性樹脂の具体例としては、エポキシ基含有オレフィン系共重合体、その他のオレフィン系樹脂、ポリアミド樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンエーテル樹脂、ポリサルフォン樹脂、ポリアリルサルフォン樹脂、ポリケトン樹脂、ポリエーテルイミド樹脂、ポリアリレート樹脂、液晶ポリマー、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、四フッ化ポリエチレン樹脂などが挙げられる。
また、改質を目的として、以下のような化合物の添加が可能である。イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤、ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン系化合物などの可塑剤、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重縮合物、シリコーン系化合物などの離型剤、次亜リン酸塩などの着色防止剤、その他、滑剤、紫外線防止剤、着色剤、発泡剤などの通常の添加剤を配合することができる。上記化合物は何れも組成物全体の20重量%を越えるとPPS樹脂本来の特性が損なわれるため好ましくなく、10重量%以下、更に好ましくは1重量%以下の添加がよい。
また、本発明のPPS樹脂には機械的強度、靱性などの向上を目的に、エポキシ基、アミノ基、イソシアネート基、水酸基、メルカプト基およびウレイド基の中から選ばれた少なくとも1種の官能基を有するアルコキシシランを添加してもよい。かかる化合物の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシシラン、γ−(2−ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物、γ−イソシアナトプロピルトリエトキシシラン、γ−イソシアナトプロピルトリメトキシシラン、γ−イソシアナトプロピルメチルジメトキシシラン、γ−イソシアナトプロピルメチルジエトキシシラン、γ−イソシアナトプロピルエチルジメトキシシラン、γ−イソシアナトプロピルエチルジエトキシシラン、γ−イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物、およびγ−ヒドロキシプロピルトリメトキシシラン、γ−ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などが挙げられる。
かかるシラン化合物の好適な添加量は、ポリフェニレンスルフィド樹脂100重量部に対し、0.05〜5重量部の範囲が選択される。
本発明のPPS樹脂は、本発明の効果を損なわない範囲で充填材を配合して使用することも可能である。かかる充填材の具体例としてはガラス繊維、炭素繊維、バサルト繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカー、ワラステナイトウィスカー、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、あるいはタルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、カーボンナノチューブ、フラーレン、窒化ホウ素、炭化珪素、カーボンブラックおよびシリカ、黒鉛などの非繊維状充填材が用いられ、これらは中空であってもよく、さらにはこれら充填剤を2種類以上併用することも可能である。また、これらの充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用してもよい。
かかる無機フィラーの配合量は通常、ポリフェニレンスルフィド樹脂100重量部に対し、0.0001〜500重量部の範囲が好ましく、0.001〜400重量部の範囲がより好ましい。無機フィラーの含有量は、強度と剛性、その他特性のバランスから用途により適宜変えることが可能である。
混練機は、単軸、2軸の押出機、バンバリーミキサー、ニーダー、及びミキシングロールなど通常公知の溶融混練機に供給してPPS樹脂の融解ピーク温度+5〜60℃の加工温度で混練する方法などを代表例として挙げることができる。副原料を用いる際、原料の混合順序には特に制限はなく、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練し更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後単軸あるいは2軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することも勿論可能である。
本発明のPPS樹脂は射出成形品、フィルム、シート、繊維などに適用することが可能である。
このようにして得られる本発明のポリアリーレンサルファイド樹脂(組成物)は、特に射出成形用途に適しており、その具体的用途としては、例えばセンサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭、事務電気製品部品;オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライターなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品;水道蛇口コマ、混合水栓、ポンプ部品、パイプジョイント、水量調節弁、逃がし弁、湯温センサー、水量センサー、水道メーターハウジングなどの水廻り部品;バルブオルタネーターターミナル、オルタネーターコネクター,ICレギュレーター、ライトディヤー用ポテンシオメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、車速センサー、ケーブルライナー、エンジンコントロールユニットケース、エンジンドライバーユニットケース、コンデンサーケース、モーター絶縁材料、ハイブリッドカーの制御系部品ケースなどの自動車・車両関連部品、その他の各種用途が例示できる。
以下に実施例を挙げて本発明を更に具体的に説明する。
以下の実施例において、材料特性については下記の方法により行った。
[ガス発生量]
腹部が100mm×25mm、首部が255mm×12mm、肉厚が1mmのガラスアンプルにPPS樹脂3gを計り入れてから真空封入した。このガラスアンプルの胴部のみを、アサヒ理化製作所製のセラミックス電気管状炉ARF−30Kに挿入して320℃で2時間加熱した。アンプルを取り出した後、管状炉によって加熱されておらず揮発ガスの付着したアンプルの首部をヤスリで切り出して秤量した。次いで付着ガスを5gのクロロホルムで溶解して除去した後、60℃のガラス乾燥機で1時間乾燥してから再度秤量した。ガスを除去した前後のアンプル首部の重量差をガス発生量とした。
[残さ量]
空圧キャップと採集ロートを具備したセンシュー科学製のSUS試験管に、予め秤量しておいたポアサイズ1μmのPTFEメンブランフィルターをセットし、約80μm厚にプレスフィルム化したPPS樹脂100mgおよび1−クロロナフタレン2gを計り入れてから密閉した。これをセンシュー科学製の高温濾過装置SSC−9300に挿入し、250℃で5分間加熱振とうしてPPS樹脂を1−クロロナフタレンに溶解した。空気を含んだ20mLの注射器を空圧キャップに接続した後、ピストンを押出して溶液をメンブランフィルターで濾過した。メンブランフィルターを取り出し、150℃で1時間真空乾燥してから秤量した。濾過前後のメンブランフィルター重量の差を残さ量とした。
[MFR]
測定温度315.5℃、5000g荷重とし、ASTM−D1238−70に準ずる方法で測定した。
[溶融粘度]
東洋精機社製キャピログラフ1Cを用い、孔長10.00mm、孔直径0.50mmのダイスを用い、300℃で溶融粘度の測定を行った。
[平均粒径]
篩い分け法で測定して得られる積算分布の50%に対応する粒子径(D50)を求め、平均粒径とした。具体的には振とう機として、FRITSCH−ELECTROMAGNETIC LABORATORY SIEVE SHAKERを用い、ステンレス製標準ふるい(径203mm、深さ45mm)セットした。標準ふるいのメッシュは、粒径が比較的細かい場合、20メッシュ、32メッシュ、60メッシュ、200メッシュ、330メッシュの組合せとし、粒径が比較的荒い場合は4メッシュ、7メッシュ、14メッシュ、20メッシュ、32メッシュ、60メッシュの組合せとした。PPSサンプル110±0.1gを秤量し、そこに帯電防止用にカーボンブラック(330メッシュをパスするもの)を1.1±0.1g入れ、ポリ袋中で混合した。該PPSサンプル100±0.1gを、標準ふるいをセットした振とう機の最上段の標準ふるい内に入れた後、蓋をして30分振とうさせた。その後各振るいに残ったサンプル量を±0.1gの精度で秤量し、各メッシュに相当する目開き(μm)と、積算重量をプロットし、積算分布の50%に対応する粒子径(D50)を求めた。
[融点(Tm)の測定]
パーキンエルマー社製DSC7を用い、サンプル量約10mg、窒素雰囲気下、昇温・降温速度20℃/分で、50℃で340℃まで昇温し、340℃で1分間ホールドし、100℃まで降温後、再度昇温した際の融解ピーク温度を融点(Tm)とした。
[曲げ強度および曲げ弾性率]
ASTM D790に準じて測定を行った。具体的には次のように測定を行った。本発明の樹脂組成物ペレットを、シリンダー温度330℃に設定した住友−ネスタール社製射出成形機(SG75−HIPRO・MIII)に供給し、射出圧力=成形下限圧力+5Kgf/cmのゲージ圧にて射出成形を行い、幅12.7mm×高さ6.4mm×長さ127mmの試験片を得た。この試験片を用い、23℃、相対湿度50%の雰囲気下、スパン100mm、歪み速度3mm/minの条件で測定を行った。
[参考例1]PPS−1の調製
撹拌機および底に弁のついたオートクレーブに、47.5%水硫化ナトリウム8267.4g(70.0モル)、96%水酸化ナトリウム2925.0g(70.2モル)、N−メチル−2−ピロリドン(NMP)13860.0g(140.0モル)、酢酸ナトリウム2238.6g(27.3モル)、及びイオン交換水10500.0gを仕込み、常圧で窒素を通じながら240℃まで約3時間かけて徐々に加熱し、水14772.1gおよびNMP280.0gを留出したのち、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.08モルであった。また、硫化水素の飛散量は仕込みアルカリ金属硫化物1モル当たり0.023モルであった。
次に、p−ジクロロベンゼン(p−DCB)10435.4g(71.0モル)、NMP6444.9g(65.1モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら、200℃から250℃まで0.8℃/分の速度で昇温し、250℃で70分保持した。次いで、250℃から278℃まで0.8℃/分の速度で昇温し、278℃で78分保持した。オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら内容物を攪拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
得られた固形物およびイオン交換水53リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した60リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
得られたケークおよびイオン交換水90リットル及びpHが7となるように酢酸を添加後、撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水76リットルを注ぎ込み吸引濾過してケークを得た。得られたケークを窒素気流下、120℃で乾燥することにより、乾燥PPSを得た。
得られたPPS−1は、MFRが720g/10分、融点(Tm)=282℃、平均粒径320μmであった。
[参考例2]PPS−2の調製
重合時に酢酸ナトリウムを添加しなかったこと以外は、参考例1と同様にして重合を行った。
得られたPPS−2は、溶融粘度が5Pa・s(300℃、剪断速度1000/秒)、融点(Tm)=282℃、平均粒径60μmであった。なお、MFR=500g/10分のポリマーの溶融粘度は約80Pa・s(300℃、剪断速度1000/秒)なので、PPS−2はMFRが500g/10分以上である。
[実施例1、2、比較例1、2、3]
PPS−1を空気雰囲気下、表1に示す条件で熱酸化処理を行い、MFR、ガス発生量及び残さ量を測定した。結果を表1、図1に示す。比較例2からわかるように熱酸化処理が少なすぎるとガス発生量が多くなる。一方比較例3からわかるように、過度の熱酸化処理は、ガス発生量低減効果は飽和し、溶融粘度のみ低下する傾向にある。
Figure 0004887904
[実施例3、比較例4,5]
PPS−2を空気雰囲気下、表2に示す条件で熱酸化処理を行い、MFR及び/または溶融粘度、ガス発生量、残さ量を測定した。結果を表2に示す。
Figure 0004887904
[実施例4]
実施例2のPPSを100重量部、ガラス繊維(日本電気硝子社製ECS03TN−103/P)67重量部ドライブレンドした後、日本製鋼所社製TEX30α型2軸押出機(L/D=45.5)を用い、スクリュー回転数300rpmでシリンダー出樹脂温度が320℃となるように温度を設定し、溶融混練し、ストランドカッターによりペレット化した。120℃で一晩乾燥したペレットを用い、射出成形に供した。サンプルの曲げ強度、曲げ弾性率を測定したところ、曲げ強度230MPa、曲げ弾性率11.5GPaであった。
[比較例6]
比較例2のPPSを用いた以外は実施例4と同様に溶融混練、射出成形を行った。サンプルの曲げ強度、曲げ弾性率を測定したところ、曲げ強度180MPa、曲げ弾性率11.0GPaであった。
本発明によれば、溶融流動性にかつ溶融時の揮発性成分の発生量が少ないポリフェニレンスルフィド樹脂が得られる。
実施例1,2、比較例1〜3におけるMFRとガス発生量の関係を示す図である。

Claims (7)

  1. 熱酸化処理を施されたポリフェニレンスルフィド樹脂からなり、真空下、320℃で2時間加熱溶融した際に揮発するガス発生量が0.3重量%以下であり、かつ250℃で5分間、20倍重量の1−クロロナフタレンで溶解して、ポアサイズ1μmのPTFEメンブランフィルターで熱時加圧濾過した際の残さ量が4.0重量%以下であり、さらにメルトフローレート(ASTMD−1238−70に準ず。温度315.5℃、荷重5000gにて測定。)が500g/10分を越えるポリフェニレンスルフィド樹脂。
  2. 熱酸化処理を施されたポリフェニレンスルフィド樹脂からなり、平均粒径が50μmを超える範囲である請求項1記載のポリフェニレンスルフィド樹脂。
  3. ポリフェニレンスルフィド樹脂がフラッシュ法で回収されたポリフェニレンスルフィド樹脂である請求項1または2に記載のポリフェニレンスルフィド樹脂。
  4. 熱酸化処理温度(Tc)が、熱酸化処理前のポリフェニレンスルフィド樹脂の融点(Tm)と、下記関係にあることを特徴とする、請求項1〜3のいずれか記載のポリフェニレンスルフィド樹脂の製造方法。
    Tm(℃)−120℃< Tc <Tm(℃)−70℃
  5. 熱酸化処理の処理時間が0.5〜50時間であることを特徴とする、請求項4記載のポリフェニレンスルフィド樹脂の製造方法。
  6. 熱酸化処理前のポリフェニレンスルフィド樹脂がフラッシュ法で回収されたポリフェニレンスルフィド樹脂であることを特徴とする請求項4または5記載のポリフェニレンスルフィド樹脂の製造方法。
  7. 請求項1〜3のいずれか記載のポリフェニレンスルフィド樹脂を射出成形してなる成形品。
JP2006139799A 2006-05-19 2006-05-19 ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品 Active JP4887904B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139799A JP4887904B2 (ja) 2006-05-19 2006-05-19 ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139799A JP4887904B2 (ja) 2006-05-19 2006-05-19 ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品

Publications (2)

Publication Number Publication Date
JP2007308612A JP2007308612A (ja) 2007-11-29
JP4887904B2 true JP4887904B2 (ja) 2012-02-29

Family

ID=38841773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139799A Active JP4887904B2 (ja) 2006-05-19 2006-05-19 ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品

Country Status (1)

Country Link
JP (1) JP4887904B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900365B2 (ja) * 2007-11-08 2012-03-21 東レ株式会社 ポリフェニレンスルフィド樹脂の製造方法
CN101910251A (zh) * 2007-11-08 2010-12-08 东丽株式会社 聚苯硫醚树脂的制造方法
JP5125993B2 (ja) * 2008-10-31 2013-01-23 東レ株式会社 ポリアリーレンスルフィド樹脂の製造方法
CN102482420B (zh) * 2009-08-27 2013-08-28 东丽株式会社 聚芳撑硫醚和其制造方法
JP7067052B2 (ja) * 2017-01-31 2022-05-16 東レ株式会社 ポリフェニレンスルフィド樹脂組成物および成形品
EP4063095A4 (en) * 2019-11-19 2023-09-27 Toray Industries, Inc. POLYPHENYLENE SULFIDE RESIN COMPOSITION FOR MOTOR VEHICLE REFRIGERANT PARTS AND MOTOR VEHICLE REFRIGERANT PARTS
EP4063096A4 (en) * 2019-11-19 2023-09-27 Toray Industries, Inc. POLYPHENYLENE SULFIDE RESIN COMPOSITION FOR MOTOR VEHICLE COOLING COMPONENT AND MOTOR VEHICLE COOLING COMPONENT
EP4349886A1 (en) * 2021-05-27 2024-04-10 Toray Industries, Inc. Resin powder mixture, method for producing same, and method for producing three-dimensional molded product

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686530B2 (ja) * 1986-03-04 1994-11-02 大日本インキ化学工業株式会社 ポリフエニレンスルフイドの硬化方法
JP3074746B2 (ja) * 1991-02-18 2000-08-07 東レ株式会社 ポリアリーレンスルフィドの製造方法
JPH0665376A (ja) * 1992-08-19 1994-03-08 Dainippon Ink & Chem Inc ポリアリーレンスルフィド樹脂の架橋方法
JP3240315B2 (ja) * 1993-02-26 2001-12-17 大日本インキ化学工業株式会社 ポリアリーレンスルフィドの製造法
JP3538878B2 (ja) * 1994-02-08 2004-06-14 大日本インキ化学工業株式会社 管状押出成形物用の高分子量ポリアリーレンスルフィド
JP3473780B2 (ja) * 1994-07-01 2003-12-08 大日本インキ化学工業株式会社 高強度ポリアリーレンスルフィド及びその製造方法
JPH0820645A (ja) * 1994-07-06 1996-01-23 Tonen Chem Corp 射出成形容器用の高分子量ポリアリーレンスルフィド
JPH0853621A (ja) * 1994-08-11 1996-02-27 Toray Ind Inc ポリフェニレンスルフィド樹脂およびその成形品
JPH11246761A (ja) * 1998-03-04 1999-09-14 Tonen Kagaku Kk ポリアリーレンスルフィドの硬化方法
JP4742525B2 (ja) * 2004-06-25 2011-08-10 東レ株式会社 ポリフェニレンスルフィド樹脂組成物
JP2006012649A (ja) * 2004-06-28 2006-01-12 Toray Ind Inc 樹脂被覆電線
US7847055B2 (en) * 2004-11-30 2010-12-07 Toray Industries, Inc. Polyphenylene sulfide resin, process for producing the same, and fiber comprising the same

Also Published As

Publication number Publication date
JP2007308612A (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5273321B1 (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体
JP4887904B2 (ja) ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品
US20100249342A1 (en) Process for production of polyphenylene sulfide resin
JP6707810B2 (ja) ポリフェニレンスルフィド樹脂組成物からなる自動車用冷却モジュール
JP2010053356A (ja) ポリフェニレンサルファイド樹脂組成物および成形品
JP2007297612A (ja) ポリフェニレンスルフィド樹脂組成物
JP6551602B2 (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法および成形品
JP7067052B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2009280794A (ja) ポリフェニレンスルフィド樹脂の処理方法
JP2012046721A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP4900365B2 (ja) ポリフェニレンスルフィド樹脂の製造方法
JP2009179757A (ja) ポリフェニレンサルファイド樹脂組成物、射出成形体および箱型成形体部品
JP2018141149A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2009057414A (ja) ポリフェニレンスルフィド樹脂の製造方法
JP2002293934A (ja) ポリアリーレンスルフィド樹脂及びその製造方法
JP2010070656A (ja) ポリフェニレンサルファイド樹脂組成物およびそれからなる成形品
JP5131125B2 (ja) ポリフェニレンサルファイド樹脂組成物および成形体
KR102535459B1 (ko) 폴리페닐렌설피드 수지 조성물, 그 제조 방법 및 성형체
JP2009275197A (ja) ポリフェニレンサルファイド樹脂組成物および成形体
JP2019147943A (ja) ポリフェニレンサルファイド樹脂組成物および成形品
WO2021100758A1 (ja) 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品
JP7424181B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形体
JP2002332351A (ja) ポリアリーレンスルフィド樹脂およびその製造方法
JP2013181043A (ja) ポリアリーレンスルフィド樹脂組成物および成形体
JP2019195909A (ja) ポリフェニレンスルフィド樹脂組成物からなる成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4887904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3