JP4860064B2 - カルボン酸エステル合成反応器内のpH制御方法 - Google Patents

カルボン酸エステル合成反応器内のpH制御方法 Download PDF

Info

Publication number
JP4860064B2
JP4860064B2 JP2001236683A JP2001236683A JP4860064B2 JP 4860064 B2 JP4860064 B2 JP 4860064B2 JP 2001236683 A JP2001236683 A JP 2001236683A JP 2001236683 A JP2001236683 A JP 2001236683A JP 4860064 B2 JP4860064 B2 JP 4860064B2
Authority
JP
Japan
Prior art keywords
reaction
reactor
catalyst
aldehyde
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001236683A
Other languages
English (en)
Other versions
JP2003048863A (ja
Inventor
辰男 山口
英明 後藤
敏昭 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2001236683A priority Critical patent/JP4860064B2/ja
Publication of JP2003048863A publication Critical patent/JP2003048863A/ja
Application granted granted Critical
Publication of JP4860064B2 publication Critical patent/JP4860064B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、酸素の存在下でアルデヒドとアルコールをパラジウムおよび鉛を含む触媒と反応させてカルボン酸エステルを連続的に製造する方法において、副生成物の生成を低減させる方法を提供するものである。
【0002】
【従来の技術】
工業的に有用なカルボン酸エステルの具体的なものとして、メタクリル酸メチル又はアクリル酸メチルがある。その製造方法としてメタクロレイン又はアクロレイン等のアルデヒドとアルコール(例:メタノール)と反応させて直接、メタクリル酸メチル又はアクリル酸メチルを製造する酸化エステル化法が提案されている。
【0003】
この製法ではメタクロレイン又はアクロレインをメタノールなどのアルコールと分子状酸素とを触媒上で反応させることによって行われ、触媒としてパラジウム、鉛を含む触媒を用いた例が、特公昭57−35856〜35861号公報に、また、パラジウムと鉛の金属間化合物を触媒とする例が、特公昭62−7902号公報に開示されている。
生産性の向上を達成することを目的として、近年高いアルデヒド濃度で優れた反応特性を示す触媒や反応系の安定化方法が特開平8−332383号公報、特開平8−337554号公報、特開平10-263399号公報、特開平10−114708号公報、特開平9−052044号公報に示されている。
【0004】
その中では、アルデヒド濃度が30%と高い条件では生成するMMA濃度も高くなり工業的には有利になるが、その一方、反応によって生成する水濃度も高くなる。するとアルデヒドと水との反応が進みやすくなるためカルボン酸の生成量も多くなる。カルボン酸の副生は触媒等に吸着し反応活性を低下させるばかりでなく、アルデヒドとアルコールの反応生成物アセタールを副生してしまう。そこで、反応器内のpHを一定のレベルに保つためにアルカリを連続的に供給することが記載されている。
【0005】
【発明が解決しようとする課題】
本発明の酸素存在下でパラジウムおよび鉛を含む触媒を用いて高濃度のアルデヒドとアルコールからカルボン酸エステルを連続的に製造する方法においては、カルボン酸の副生濃度が高くなる。そこで、カルボン酸の濃度が高くなることによってpHが低下し(プロトンが触媒的に作用)アセタールの副生増大する問題があり、その解決策としてアルカリによる中和が行われている。
しかし、供給するアルカリによって、新たに副生成物を発生させてしまうこと、触媒を劣化させるという問題があった。
【0006】
【課題を解決するための手段】
本発明者らは、酸素存在下でパラジウムおよび鉛を含む触媒を用いてアルデヒドとアルコールからカルボン酸エステルを連続的に製造する方法において、工業的に有利となる反応条件について検討してきた。経済的に実施するには高い生産性を確保することが必要である。本反応は、アルデヒドとアルコールが1/1の量論反応が理想である。
RCHO+ROH+1/2O2 →RCOOR+H2
RCHO+H2O+1/2O2 →RCOOH+H2
【0007】
アルデヒドに比べアルコールの反応性が低く、アルデヒドの濃度が低い程アルデヒド基準の転化率、生成するカルボン酸エステルの選択率は高い。しかし低濃度では生産性が低く、高濃度では大きく転化率が低下する。したがって、経済的に有利な条件として、アルデヒド濃度は約30%付近が有利と推定される。しかしアルデヒドの濃度が高くなるこれらの条件で反応行うと、生成する水濃度も高くなり、その結果アルデヒドと水が反応する確率も高くなるため、副生するカルボン酸の生成量が増大することは避けられない。
【0008】
したがって、標準的な条件でカルボン酸を中和せず連続反応を行うとpHは4以下まで低下する。すると、プロトン(遊離カルボン酸)を触媒としてアルデヒドとアルコールの反応によって多量のアセタールが生成してしまう。 そこで、アルカリを反応系に供給し、プロトン濃度を低く抑える工夫がなされ、反応性を改善する方法が実施されてきた。
本研究者らは、さらにアルデヒドのカルボン酸エステルへの選択率を高めるべく検討を進めてきた。その結果、アセタールの副生を抑制するための操作として行っていたアルカリの供給方法に改善の余地があることをつきとめ、副生成物を減らす方法を見いだした。
【0009】
すなわち、酸素の存在下でアルデヒドとアルコールをパラジウムおよび鉛を含む触媒と反応させてカルボン酸エステルを連続的に製造する方法において、触媒を分離した反応液にアルカリ溶液を混合しpH9以下の液として反応器に供給することを特徴とする反応器内のpH制御方法である。以下に気泡塔反応器や撹拌槽反応器を具体例として発明の詳細を説明する。
本反応方法では、反応器内は、触媒(固体)、アルデヒド、アルコール(液体)、酸素または空気(気体)の3相系で反応は進行する。反応を効果的に行うためには物質移動による拡散律速から避け、反応律速の領域にするために通常は激しく混合されている。したがって、アルデヒドと水とが反応して生成するカルボン酸によるpH低下を抑制するアルカリとの中和反応を速やかに行うためには、最も混合性の良い場所が選定される。
【0010】
すなわち、供給するアルカリは激しく混合されている反応器内に直接投入することが短時間に均一化する場所で最適と考えられていた。しかし、本発明者らの詳細な検討の結果、反応器に直接アルカリ供給すると、▲1▼塩基が触媒となって、不飽和アルデヒドとしてメタクロレインを用いた場合には、原料のメタクロレインや生成物であるMMAの二重結合部位にメトシキ基が付加した副生成物、メトシキ−メタクロレン、メトキシ−MMAなどのが生成することがわかった。
【0011】
また、▲2▼アルカリ物質が原因と推定される触媒への影響も明らかになった。これらの現象は、特開平8−337554号、に記載されているような少量のNaOH(固体)をメタノールに溶解させて得られる低濃度のNaOH/MeOH溶液であっても発生することがわかった。本発明者らの推定では、メタノールに溶解したNaOHが、反応液中に存在する水との溶媒和によって熱が発生する現象に由来すると考えられる。
【0012】
すなわち、メタノールに溶解したNaOHはメタノールで溶媒和された状態のNaOCH3に近い状態で存在すると考えることができ、水と接触することによってNaOCH3構造からNaOH・H2Oのように水の溶媒和が起こり多量の溶媒和熱が発生するものと推定される。したがって、溶媒和による発熱を抑制するには、NaOHとH2OとMeOHの三者を予め混合し溶媒和によって発生する熱を予め除いておくことが重要であると推定される。
【0013】
また、シリカ系の材料は酸には比較的強いものの強い塩基には弱いことが知られており、シリカ系成分を含む触媒の場合触媒への影響も発生したものと推定される。すなわち、アルカリ溶液を触媒が存在しない反応液と混合しpH9以下の条件で反応器に供給することが触媒にとって極めて重要であることが明らかになった。
触媒が存在しない反応液は触媒を含む反応液スラリーを抜き出し、触媒を沈降分離、フィルター分離、サイクロン分離、クロスフィルター分離などの装置、方法で実施することができる。反応器のサイズや方式によって最適な分離方法を選定する。触媒を分離した反応液は混合槽に供給し、そこでアルカリと完全に混合されpH9以下で反応器に戻す。アルカリとの混合は、撹拌槽などに槽型混合器やスタチックミキサーなどのオンライン混合器など均一に混合できる装置であればよい。
【0014】
アルカリ混合に用い反応器に循環する液量は、多いほど均一性は高くなり好ましいが、循環に要するポンプ設備や動力も大きくなることから、適当な量が選定される。アルカリと混合し反応器に循環される液量を反応器に供給する原料供給量に対して表すと、原料供給量の0.1〜2倍、好ましくは0.3〜1.5倍の範囲である。
アルカリ溶液は、NaOH、H2O、アルコールを予め最適な組成に調製しておく。H2O/NaOHのモル比及びアルコール濃度は重要であり、希薄なアルカリを多量に用いることが副生成部等の抑制からは好ましいが、反応器内のアルデヒド濃度を低下させてしまい生産性からは好ましくない。従って反応器の濃度を大きく低下させない組成が選定される。
【0015】
アルコールの濃度は50%以上あるこが重要であり、これ以下ではアルカリ濃度が結果的に高くなるため好まししくない。NaOH/H2Oが(2.4〜3)の範囲であれば、アルコール濃度は50%以上のさらに高い方が副生成物抑制の観点からは原理的には好ましい。しかし、アルコール濃度を極端に高めアルカリ濃度を低くすると反応器内のアルデヒ濃度の低下を招くために好ましくない。
したがって好ましく50%〜99%さらに好ましくは、75%〜95%である。アルカリ成分として用いる原料は、NaOH、KOH、LiOH、Mg(OH)2、Ca(OH)2などの水酸化物、Na2CO3、K2CO3、Li2CO3、などの炭酸塩類、NaOCH3、KOCH3、LiOCH3、Mg(OCH32、などの金属アルコキシド、化合物を用いることができる。コストなどの経済性からNaOH、KOHが好ましいく、NaOHがさらに好ましい材料といえる。
【0016】
アルコールは目的とするカルボン酸エステルによって最適なアルコールを選定することができる。分離精製などの面から一般的には対象とするエステルのアルコールが選定される。例えば、メタクリル酸メチル、アクリル酸メチルの場合にはメタノールが好ましく、メタクリル酸エチル、アクリル酸エチルの場合にエタノールが好ましい。その他のアルコールも原理的には使用できるが、アルカリ成分の溶解度が低下する傾向があり、低いアルカリ量で充分な場合に用いる場合もある。NaOH、H2O、アルコールの混合器内の滞留時間は、混合方法や装置によって異なるが通常5秒〜1時間程度である。
【0017】
本発明において使用するアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、イソブチルアルデヒド、グリオキサールなどの脂肪族飽和アルデヒド;アクロレイン、メタクロレイン、クロトンアルデヒド、などの脂肪族α・β−不飽和アルデヒド;ベンズアルデヒド、トリルアルデヒド、ベンジルアルデヒド、フタルアルデヒド、などの芳香族アルデヒド;並びにこれらアルデヒドの誘導体などがあげられる。これらのアルデヒドは単独もしくは任意の二種以上の混合物として用いることができる。
【0018】
本発明において使用するアルコールとしては、例えば、メタノール、エタノール、イソプロパノール、オクタノールなどの脂肪族飽和アルコール;エチレングリコール、ブタンジオールなどのジオール;アリルアルコール、メタリルアルコールなどの脂肪族不飽和アルコール;ベンジルアルコールなどの芳香族アルコールなどがあげられる。これらのアルコールは単独もしくは任意の二種以上の混合物として用いることができる。
【0019】
本発明の2つの効果のうち副生成物抑制効果は、メタクロレイン、アクロレン等の不飽和アルデヒドにおいて効果的である。
本発明反応におけるアルデヒドとアルコールとの使用量比には特に限定はなく例えばアルデヒド/アルコールのモル比で10〜1/1000のような広い範囲で実施できるが、一般的には1/2〜1/50の範囲で実施される。
本発明方法は、気泡塔、撹拌槽などの混合型従来公知の反応器に適用できる。反応器を多段槽化し、直列に連結した場合には、二段反応器に供給する反応原料にアルカリを供給混合しpH9以下で反応器に供給することができる。同様にしてさらに複数の反応器を接続しても実施できる。本発明反応は、様々な温度条件で実施することができる。触媒を分離した反応液を反応温度以下の低温に冷却しアルカリと混合する場合が副生成物の抑制からは有利となる場合もある。
【0020】
低温にすると反応器に戻す時点では反応温度まで加熱必要ないなるため、これらの熱交換コストなどから最適な方法を選択するのが好ましい。100℃以上の高温でも実施できるが、好ましくは30〜100℃である。
圧力は減圧から加圧下の任意の広い圧力範囲で実施することができるが、通常は1〜20Kg/cm2 の圧力で実施される。
【0021】
【発明の実施の形態】
以下に実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0022】
【実施例1】
シリカ・アルミナ・マグネシアを担体として、パラジウム3wt%、鉛2.3wt%を担持した触媒を用いた。触媒1.5Kgを触媒分離器2を備え、液相部が12Lのステンレス製撹拌槽型反応器1に仕込み、鉛濃度が10ppmとなるように酢酸鉛を溶解させた34wt%のメタクロレイン/メタノールを原料供給ライン5から5.4L/hで供給した。反応温度80℃、圧力4Kg/cm2 G制御し、酸素濃度を調製した空気を6から供給しながら反応を行った。
【0023】
反応器出口酸素濃度が4%(酸素分圧0.2atmに相当)となるように空気を調製し反応を維持した。反応液はライン10から7L/hで抜きだし、触媒分離器2で触媒を分離し、触媒が分離された反応液をライン12からアルカリ混合機3に流量2L/hで供給した。混合機に供給するアルカリ溶液はH2O/NaOH=2.4(モル比)、MeOH濃度50vol%をアルカリ供給ライン7から反応器内のpHが6.5となるように供給量を制御して供給した。
【0024】
混合機3から反応器に入るラインのpHは7.5であった。100時間反応させ、反応生成物をガスクロマトグラフィーで分析したところメタクロレインの転化率は65.2%でメチルメタクリレート(MMA)の選択率は89.3%、アセタールの選択率は0.9%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は0.9%であった。
さらに反応を継続し1000時間に反応生成物を分析した。メタクロレインの転化率は65.3%でメチルメタクリレート(MMA)の選択率は89.5%、アセタールの選択率は0.9%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は0.8%であった。1000時間の反応でも活性、選択率に変化はなく安定した成績が得られた。
【0025】
【比較例1】
アルカリ供給溶液として4wt%NaOH/MeOH溶液を反応器に直接供給する方法に変更した以外は、実施例1と同様の条件で100時間反応を行った。反応生成物をガスクロマトグラフィーで分析したところメタクロレインの転化率は64.1%でメチルメタクリレート(MMA)の選択率は88.1%、アセタールの選択率は0.9%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は2.3%であった。
さらに反応を継続し1000時間に反応生成物を分析した。メタクロレインの転化率は63.0%でメチルメタクリレート(MMA)の選択率は88.3%、アセタールの選択率は1.0%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は2.4%であった。
【0026】
【比較例2】
アルカリ供給溶液として4wt%NaOH/H2O溶液を反応器に直接供給する方法に変更した以外は、実施例1と同様の条件で100時間反応を行った。反応生成物をガスクロマトグラフィーで分析したところメタクロレインの転化率は65.1%でメチルメタクリレート(MMA)の選択率は87.2%、アセタールの選択率は1.2%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は2.6%であった。
さらに反応を継続し1000時間に反応生成物を分析した。メタクロレインの転化率は61.1%でメチルメタクリレート(MMA)の選択率は87.3%、アセタールの選択率は1.0%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は2.4%であった。100時間と1000時間を比較すると活性の低下が認められた。
【0027】
【実施例2】
アルカリ供給液としてH2O/NaOH=2.4(モル比)、MeOH濃度90vol%に変更し、メタクロレイン濃度の微調整を行い反応器内のメタクロレイン濃度が実施例1と同様になるようにした以外は同一条件で100時間反応を行った。反応生成物をガスクロマトグラフィーで分析したところメタクロレインの転化率は65.6%でメチルメタクリレート(MMA)の選択率は90.1%、アセタールの選択率は0.8%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は0.8%であった。
さらに1000時間反応を行い、反応生成物をガスクロマトグラフィーで分析したところメタクロレインの転化率は65.8%でメチルメタクリレート(MMA)の選択率は90.3%、アセタールの選択率は0.8%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は0.8%であった。
【0028】
【実施例3】
アルカリ供給液としてNaOHからKOHに変更した以外は、実施例1と同様の条件で100時間反応を行った。反応生成物をガスクロマトグラフィーで分析したところメタクロレインの転化率は65.3%でメチルメタクリレート(MMA)の選択率は89.8%、アセタールの選択率は0.8%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は0.9%であった。
【0029】
【実施例4】
アルデヒドをアクロレインに変更した以外は、実施例1と同様の条件で100時間反応を行った。反応生成物をガスクロマトグラフィーで分析したところアロレインの転化率は70.3%でアクリレート(MA)の選択率は91.1%、アセタールの選択率は0.8%、メトキシ体合計(メトキシアクロレイン+メトキシMA)は0.7%であった。
【0030】
【比較例3】
アルカリ供給溶液として30wt%NaOH/H2O溶液を反応器に直接供給する方法に変更した以外は、実施例1と同様の条件で100時間反応を行った。反応生成物をガスクロマトグラフィーで分析したところメタクロレインの転化率は55.7%でメチルメタクリレート(MMA)の選択率は87.2%、アセタールの選択率は1.1%、メトキシ体合計(メトキシメタクロレイン+メトキシMMA)は2.5%であった。反応後触媒を抜き出し調べたところ、触媒に一部固まりが見られた。
【0031】
【実施例5】
アルデヒドをアクロレイン、アルコールをエタノールに変更した以外は、実施例1と同様の条件で100時間反応を行った。反応生成物をガスクロマトグラフィーで分析したところアロレインの転化率は70.3%でアクリル酸エチルの選択率は90.8%、アセタールの選択率は0.8%、メトキシ体合計(メトキシアクロレイン+メトキシMA)は0.7%であった。
【0032】
【発明の効果】
以上述べた如く、本発明では酸素存在下でパラジウム及び鉛を含む触媒を用いてアルデヒドとアルコールからカルボン酸エステルを連続的に製造する方法において、アルカリ性条件で生成するメトキシ体類不純物の生成を削減することができ、且つ優れた反応性を長期間にわたり安定に発現できる。触媒寿命が改善され、触媒交換の頻度が少なく、操作性、経済性に優れる。
【図面の簡単な説明】
【図1】 本発明の方法を実施する装置の概念図である。
【符号の説明】
1反応器、2触媒分離器、3混合器、4コンデンサー、
5原料液供給ライン、6酸素等ガス供給ライン、7アルカリ液供給ライン
8反応液抜き出しライン、9廃ガスライン、10(反応液+触媒)スラリー
11触媒もどりライン、12触媒分離後の反応液

Claims (3)

  1. 酸素の存在下でアルデヒドとアルコールをパラジウムおよび鉛を含む触媒と反応させてカルボン酸エステルを連続的に製造する方法において、反応器内のpHを一定に保つための方法であって、触媒を分離した反応液に、H 2 O/アルカリ=2.4〜3(モル比)であって50Vol%以上のアルコールを含むアルカリ溶液を混合しpH9以下で反応器に供給する反応器内のpH制御方法。
  2. 供給するアルカリ溶液アルカリカチオンがナトリウムまたはカリウムである請求項1に記載のpH制御方法。
  3. アルデヒドがアクロレイン又はメタクロレインである請求項1に記載のカルボン酸エステルの連続的製造法。
JP2001236683A 2001-08-03 2001-08-03 カルボン酸エステル合成反応器内のpH制御方法 Expired - Lifetime JP4860064B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236683A JP4860064B2 (ja) 2001-08-03 2001-08-03 カルボン酸エステル合成反応器内のpH制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236683A JP4860064B2 (ja) 2001-08-03 2001-08-03 カルボン酸エステル合成反応器内のpH制御方法

Publications (2)

Publication Number Publication Date
JP2003048863A JP2003048863A (ja) 2003-02-21
JP4860064B2 true JP4860064B2 (ja) 2012-01-25

Family

ID=19067906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236683A Expired - Lifetime JP4860064B2 (ja) 2001-08-03 2001-08-03 カルボン酸エステル合成反応器内のpH制御方法

Country Status (1)

Country Link
JP (1) JP4860064B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023059674A1 (en) * 2021-10-08 2023-04-13 Dow Global Technologies Llc Process for low byproduct formation from an oxidative esterification reactor with base addition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886528A1 (de) * 2013-12-20 2015-06-24 Evonik Industries AG Verfahren zur Herstellung von ungesättigten Estern ausgehend von Aldehyden durch Direkte Oxidative Veresterung
JP7068823B2 (ja) * 2015-01-16 2022-05-17 レーム・ゲーエムベーハー アルデヒドをカルボン酸エステルにする酸化的エステル化用の金を基礎とする触媒
SG11202000694WA (en) * 2017-07-28 2020-02-27 Rohm & Haas A method for production of methyl methacrylate by oxidative esterification using a heterogeneous catalyst
KR102640086B1 (ko) * 2017-07-28 2024-02-23 다우 글로벌 테크놀로지스 엘엘씨 불균일 촉매를 사용하여 산화적 에스터화에 의해 메틸 메타크릴레이트를 제조하는 방법
MX2020001032A (es) 2017-07-28 2020-07-20 Dow Global Technologies Llc Método para producción de metacrilato de metilo por esterificación oxidativa mediante el uso de un catalizador heterogéneo.
WO2019022886A1 (en) 2017-07-28 2019-01-31 Rohm And Haas Company PROCESS FOR THE PRODUCTION OF METHYL METHACRYLATE BY OXIDATIVE ESTERIZATION USING A HETEROGENEOUS CATALYST
CN111094230B (zh) * 2017-07-28 2023-04-04 罗门哈斯公司 通过使用非均相催化剂进行氧化酯化来生产甲基丙烯酸甲酯的方法
JP7268007B2 (ja) 2017-09-19 2023-05-02 ダウ グローバル テクノロジーズ エルエルシー 不均一触媒を使用する酸化的エステル化によるメタクリル酸メチルを生成するための方法
EP3760608A1 (de) 2019-07-05 2021-01-06 Röhm GmbH Verfahren zur herstellung von alkylmethacrylaten und optional methacrylsäure
WO2023025676A1 (de) * 2021-08-23 2023-03-02 Röhm Gmbh Aufbereitung eines katalysators für die oxidative veresterung von methacrolein zu methylmethacrylat zur verlängerung der lebensdauer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473717A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of carboxylic ester
JPS5473723A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of alpha,beta-unsaturated carboxylic ester
JP3408662B2 (ja) * 1995-06-14 2003-05-19 旭化成株式会社 カルボン酸エステルの連続的製造法
JP3503777B2 (ja) * 1995-07-19 2004-03-08 旭化成ケミカルズ株式会社 パラジウム及び鉛を含む表面制御担持触媒
JP3498102B2 (ja) * 1995-08-16 2004-02-16 旭化成ケミカルズ株式会社 強度に優れたカルボン酸エステル製造用触媒
JP3532668B2 (ja) * 1995-08-25 2004-05-31 旭化成ケミカルズ株式会社 カルボン酸エステル製造触媒の高純度・高品位化方法
JPH09221452A (ja) * 1996-02-13 1997-08-26 Mitsubishi Rayon Co Ltd カルボン酸エステルの製造方法
JP3408700B2 (ja) * 1996-10-07 2003-05-19 旭化成株式会社 カルボン酸エステルの連続的製造方法
JP3511350B2 (ja) * 1997-03-25 2004-03-29 旭化成ケミカルズ株式会社 カルボン酸エステル製造用触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023059674A1 (en) * 2021-10-08 2023-04-13 Dow Global Technologies Llc Process for low byproduct formation from an oxidative esterification reactor with base addition

Also Published As

Publication number Publication date
JP2003048863A (ja) 2003-02-21

Similar Documents

Publication Publication Date Title
CA1103272A (en) Process for producing carboxylic esters
EP1392636B1 (en) Process for preparing carboxylic acids and derivatives thereof
RU2409552C2 (ru) Способ получения алкил(мет)акрилатов
JP4860064B2 (ja) カルボン酸エステル合成反応器内のpH制御方法
RU2005123377A (ru) Способ карбонилирования метанола в присутствии низкого содержания воды для высокоэффективного получения уксусной кислоты и контроля водного баланса
JPH09216850A (ja) カルボン酸エステルの製造方法
TW200829548A (en) Process for preparing alpha-hydroxycarboxylic acids
JPS636056B2 (ja)
EP0254291B1 (en) Catalytic process for production of alkoxylated esters
JP2005526855A (ja) エチレン系不飽和酸およびエステルの製造方法
KR870000035B1 (ko) 옥살산 디에스테르의 제법
US20160137583A1 (en) Method for producing alpha-hydroxycarboxylic acid esters
US4242525A (en) Process for producing salts of pyruvic acid
JPH05148184A (ja) カルボン酸エステルの製造法
JPS58198442A (ja) メタクリル酸メチル又はアクリル酸メチルの改良製造方法
IE58072B1 (en) Process for the synthesis of 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropyl alcohol
JP6199197B2 (ja) ポリオキシアルキレンアルキルエーテルカルボン酸塩の製造方法
JP3864642B2 (ja) アルコール類の製造方法
JP2003171347A (ja) アクリル酸エステルの製造方法
JP3012059B2 (ja) 低級脂肪酸エステルの製造方法
JP2552513B2 (ja) (ポリ)オキシエチレンアルキルエーテル化合物の酸化方法
JP4412626B2 (ja) 2−置換−3−ヒドロキシプロピオン酸エステル類の製造法
CN114177950B (zh) 碳酸二烷基酯的制备方法及其催化剂再生方法和装置及应用
RU2771241C1 (ru) Способ получения этилацетата
JP2004155666A (ja) エラグ酸の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term