JP4853655B2 - ソレノイド駆動制御装置 - Google Patents

ソレノイド駆動制御装置 Download PDF

Info

Publication number
JP4853655B2
JP4853655B2 JP2007057456A JP2007057456A JP4853655B2 JP 4853655 B2 JP4853655 B2 JP 4853655B2 JP 2007057456 A JP2007057456 A JP 2007057456A JP 2007057456 A JP2007057456 A JP 2007057456A JP 4853655 B2 JP4853655 B2 JP 4853655B2
Authority
JP
Japan
Prior art keywords
solenoid
current
solenoids
control
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007057456A
Other languages
English (en)
Other versions
JP2008218900A (ja
Inventor
薫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007057456A priority Critical patent/JP4853655B2/ja
Publication of JP2008218900A publication Critical patent/JP2008218900A/ja
Application granted granted Critical
Publication of JP4853655B2 publication Critical patent/JP4853655B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ソレノイド駆動制御装置に関し、より特定的には、複数のソレノイドの駆動制御を行うソレノイド駆動制御装置に関する。
従来、複数系統のソレノイドを駆動するためのソレノイド制御装置として、特許文献1に記載の技術がある。特許文献1に記載のソレノイド制御装置では、各系統のソレノイド電流を示す電圧値は、同じタイミングで検知される。つまり、例えば2系統のソレノイドを制御する場合、第1系統のソレノイド電流を示す電圧値、および第2系統のソレノイド電流を示す電圧値が同一タイミングで検知される。検知された第1系統の電圧値は、制御部のAD変換部に入力される。一方、第2系統の電圧値は、電圧保持回路によって一端保持された後、制御部のAD変換部に入力される。上記ソレノイド制御装置では、上記電圧値が制御部に入力されるタイミングを電圧保持回路によってずらすことで、各系統からの電圧値がAD変換部に順に入力される。これによって、上記ソレノイド制御装置は、複数系統のソレノイドを制御する場合であってもAD変換部を1つにすることができる。
特開平9−283332号公報
上記ソレノイド制御装置は、ソレノイドを駆動させるためのパルス信号のオンタイミングに同期したソレノイド電流を検知することで、検知結果に応じてソレノイドに対してフィードバック制御を行うものである。したがって、上記ソレノイド制御装置では各系統において同一タイミングでソレノイド電流を検知する必要があり、そのために電圧保持回路が必要となる。上記ソレノイド制御装置では、AD変換器の数を1つにすることができる代わりに電圧保持回路が必要となるので、回路の部品点数の削減、実装面積の削減、コストの削減を十分に図ることができなかった。
それ故、本発明の目的は、簡易な構成で複数系統のソレノイドを制御することが可能なソレノイド駆動制御装置を提供することである。
本発明は、上記の課題を解決するために、以下の構成を採用した。すなわち、第1の発明は、複数のソレノイドを制御するためのソレノイド駆動制御装置である。ソレノイド駆動制御装置は、電流検出部と、切替部と、A/D変換部と、制御部とを備えている。電流検出部は、複数のソレノイドに流れる電流をそれぞれ検出して当該電流の大きさを示す信号をそれぞれ出力する。切替部は、電流検出部からそれぞれ出力される信号のうちでいずれか1つの信号を出力するとともに、所定のタイミングの前に入力される制御指令により、出力する信号の切り替えを当該所定のタイミングで繰り返し行う。A/D変換部は、切替部において切替が行われてから次に切替が行われるまでの間に、切替部から出力される信号にA/D変換を行うことによって、ソレノイドに流れる電流の大きさを示すモニタ値を複数回取得する。制御部は、A/D変換部によって取得された複数個のモニタ値を用いて、当該モニタ値に対応するソレノイドを制御する。
第2の発明において、切替部は、A/D変換部によってモニタ値が複数回取得された後でかつ、制御部による制御演算が実行される前に、出力する信号の切り替えを行うようにしてもよい。
第3の発明において、A/D変換部は、前回に取得したモニタ値に基づく制御演算を制御部が完了した後でモニタ値の取得を開始する。
第4の発明において、ソレノイド駆動制御装置は、複数のソレノイドに供給される電源電圧を検出する電源電圧検出部と、検出された電源電圧が所定値を下回った場合、複数のソレノイドのうちで、再起動すべきソレノイドを選出する選出部とをさらに備えていてもよい。このとき、制御部は、選出部で選出されたソレノイドを起動させるように制御を行う。
第5の発明において、ソレノイド駆動制御装置は、複数のソレノイドに供給される電源電圧を検出する電源電圧検出部をさらに備えていてもよい。このとき、制御部は、検出された電源電圧が所定値を下回った場合、複数のソレノイドを起動させるように制御を行う。
第6の発明において、制御部は、A/D変換部によって取得された複数個のモニタ値の平均値を算出し、当該平均値を所定の目標値に近づけるようにソレノイドを制御してもよい。
第1の発明によれば、切替部によってモニタの対象となるソレノイドを切り替えてA/D変換を行うので、ソレノイド電流のモニタに用いるA/Dコンバータの数を1つにすることができる。また、ソレノイド電流のモニタを複数回行い、複数個のモニタ値に基づいて制御を行うので、複数のソレノイドを同一タイミングでモニタする必要がない。したがって、モニタ対象を切り替えてモニタを行う場合でも電圧保持回路が不要であるので、ソレノイド駆動制御装置の構成を簡易化することができる。
また、切替部において切替が行われてからソレノイド電流モニタ動作が行われるまでの間に時間的余裕があるので、切替部の出力が安定してから正確なソレノイド電流値を得ることができる。
また、切替部において切替が行われてから制御部による制御演算が行われ、制御演算の完了後にソレノイド電流モニタ動作が行われる。これによって、切替部の出力が安定してから正確なソレノイド電流値を得ることがより確実になる。
および第の発明によれば、ソレノイド電源が何らかの理由で低下した場合でも、ソレノイドをオン状態に復帰させ、ソレノイドを正常に駆動させることができる。
の発明によれば、ソレノイドに流れる平均電流に基づいて制御を行うので、ソレノイドを精度良く制御することができる。
以下、本発明の一実施形態に係るソレノイド駆動制御装置について説明する。図1は、本実施形態に係るソレノイド駆動制御装置の構成を示す図である。図1に示すように、ソレノイド駆動制御装置は、CPU1、入出力回路6、第1ソレノイド11a、および第2ソレノイド11bを備えている。ソレノイド駆動制御装置は、2系統(2チャネル)すなわち2つのソレノイド11aおよび11bについてソレノイド電流を検知し、検知結果に基づいてフィードバック制御を行うものである。なお、本ソレノイド駆動制御装置は、例えば車両に搭載され、ソレノイドはバルブとして車両制御に用いられる。また、本実施形態では、2つのソレノイドを制御する場合を例として説明するが、本発明は3つ以上のソレノイドを制御する場合にも適用可能である。以下、各部の構成の詳細について説明する
CPU1は、各ソレノイド11aおよび11bに対する制御に必要な演算処理を行う。具体的には、CPU1は、第1出力回路2a、第2出力回路2b、SIO(Serial Input/Output )3、第1A/Dコンバータ4、および第2A/Dコンバータ5を有する。本実施形態においては、第2A/Dコンバータ5が請求項に記載のA/D変換部に相当し、後述する制御演算動作(図4に示すステップS14〜S19)を行うCPU1が請求項に記載の制御部に相当する。また、入出力回路6は、各ソレノイド11aおよび11bのソレノイド電流を検知してCPU1に出力するとともに、CPU1からの制御信号(パルス信号)に従って各ソレノイド11aおよび11bの駆動制御を行う。入出力回路6は、モニタ切替回路7、第1電流検出回路8a、第2電流検出回路8b、第1トランジスタ9a、第2トランジスタ9b、第1ダイオード10a、および第2ダイオード10bを有する。本実施形態においては、各電流検出回路8aおよび8bが請求項に記載の電流検出部に相当し、モニタ切替回路7が請求項に記載の切替部に相当する。
第1出力回路2aは、PWM制御のためのパルス信号を出力する回路である。第1出力回路2aは、第1トランジスタ9aのベース端子に接続されている。第1トランジスタ9aは、NPN型のトランジスタであり、コレクタ端子はソレノイド電源(BS)に接続されており、エミッタ端子は第1ソレノイド11aの一端に接続されている。第1トランジスタ9aは、第1出力回路2aからのパルス信号に従って第1ソレノイド11aに流れる電流をオン/オフするためのスイッチである。第1ソレノイド11aの他端は、第1電流検出回路8aの一方の入力端に接続されている。第1電流検出回路8aは、第1ソレノイド11aに流れる電流(ソレノイド電流)を検出する回路である。第1電流検出回路8aの他方の入力端は接地されている。なお、第1ソレノイド11aの両端には、第1ダイオード10aが接続されており、具体的には、第1ソレノイド11aと第1トランジスタ9aとの間にカソード端子が接続され、第1ソレノイド11aと第1電流検出回路8aとの間にアノード端子が接続されている。第1ダイオード10aは、上記第1トランジスタ9aによるスイッチをオフした時に第1ソレノイド11aの両端間に生じる電圧によって第1トランジスタ9aが破壊されることを保護するためのものである。
第2出力回路2bは、PWM制御のためのパルス信号を出力する回路である。第2出力回路2bは、第2トランジスタ9bのベース端子に接続されている。第2トランジスタ9bは、NPN型のトランジスタであり、コレクタ端子はソレノイド電源(BS)に接続されており、エミッタ端子は第2ソレノイド11bの一端に接続されている。第2トランジスタ9bは、第2出力回路2bからのパルス信号に従って第2ソレノイド11bに流れる電流をオン/オフするためのスイッチである。第2ソレノイド11bの他端は、第2電流検出回路8bの一方の入力端に接続されている。第2電流検出回路8bは、第2ソレノイド11bに流れる電流(ソレノイド電流)を検出する回路である。第2電流検出回路8bの他方の入力端は接地されている。なお、第2ソレノイド11bの両端には、第2ダイオード10bが接続されており、具体的には、第2ソレノイド11bと第2トランジスタ9bとの間にカソード端子が接続され、第2ソレノイド11bと第2電流検出回路8bとの間にアノード端子が接続されている。第2ダイオード10bは、上記第2トランジスタ9bによるスイッチをオフした時に生じる第2ソレノイド11b両端の電圧によって第2トランジスタ9bが破壊されることを保護するためのものである。
各電流検出回路8aおよび8bは、検知したソレノイド電流を示す電圧値(信号)をモニタ切替回路7に出力する。モニタ切替回路7は、SIO3および第2A/Dコンバータ5に接続されている。モニタ切替回路7は、SIO3からの切替指令に従って、各電流検出回路8aおよび8bのいずれかから入力された信号を選択的に第2A/Dコンバータ5へ出力する。一方、第1A/Dコンバータ4は、ソレノイド電源(BS)に接続されてお
り、ソレノイド電源の電圧値を入力する。ここで、ソレノイド電源は、例えば車両のバッテリから供給される。
次に、図1に示すソレノイド駆動制御装置の動作について説明する。図2は、ソレノイド駆動制御装置の動作の概要を説明するための図である。ここで、ソレノイド駆動制御装置の動作には、大別して、(a)ソレノイド電流モニタ動作、(b)モニタ対象切替動作、(c)制御演算動作、および(d)電源電圧モニタ動作の4つがある。
図2に示すように、ソレノイド駆動制御装置は、第1ソレノイド11aを制御する期間(第1チャネル制御期間)と、第2ソレノイド11bを制御する期間(第2チャネル制御期間)とに制御期間を分けて、2つのソレノイド11aおよび11bを時分割で別個に制御する。各制御期間においては、(a)ソレノイド電流モニタ動作、(b)モニタ対象切替動作、および(c)制御演算動作が順に行われる。また、(d)電源電圧モニタ動作は、所定時間間隔で行われる。
(a)ソレノイド電流モニタ動作は、制御対象のソレノイドに流れる電流をCPU1がモニタ(取得)する動作である。詳細な動作は後述するが、第1チャネル制御期間においては、CPU1は、第1ソレノイド11aに流れる電流を示す値をモニタ値として取得する。また、第2チャネル制御期間においては、CPU1は、第2ソレノイド11bに流れる電流を示す値をモニタ値として取得する。また、1回のソレノイド電流モニタ動作において、ソレノイド電流のモニタは複数回行われる。すなわち、1回のソレノイド電流モニタ動作においてCPU1は上記モニタ値を複数回取得する。
複数回のモニタが終了してソレノイド電流モニタ動作が終了すると、ソレノイド駆動制御装置は(b)モニタ対象切替動作を行う。モニタ対象切替動作は、モニタを行う対象となるソレノイドを切り替える動作である。具体的には、第1チャネル制御期間においては、モニタ対象のソレノイドが、第1ソレノイド11aから第2ソレノイド11bに切り替えられる。また、第2チャネル制御期間においては、モニタ対象のソレノイドが、第2ソレノイド11bから第1ソレノイド11aに切り替えられる。
(b)モニタ対象切替動作が終了すると、ソレノイド駆動制御装置は、(c)制御演算動作を行う。制御演算動作は、(a)ソレノイド電流モニタ動作によって取得されたモニタ値に基づいて、制御対象のソレノイドを制御するための演算を行う動作である。詳細な動作は後述するが、CPU1は、モニタ動作によって取得された複数個のモニタ値に基づいて決められる値(具体的にはモニタ値の平均値)を算出する。そして、算出された値に基づいて制御対象のソレノイドを制御するための演算を行う。これによって、演算結果に応じたパルス信号が第1または第2出力回路2aまたは2bから出力される。以上の制御演算動作が完了した後、1回の制御期間は終了する。
あるチャネルの制御期間が終了すると、他のチャネルの制御期間が開始される。他のチャネルの制御期間においても上記と同様、(a)ソレノイド電流モニタ動作、(b)モニタ対象切替動作、および(c)制御演算動作が順に行われる。したがって、モニタ切替回路7は、モニタ対象切替動作を繰り返し行うこととなる。また、ソレノイド電流モニタ動作は、モニタ対象切替動作が行われてから次にモニタ対象切替動作が行われる間での間に行われるので、第2A/Dコンバータ5は、モニタ切替回路7による切替が行われてから次に切替が行われるまでの間にモニタ値を複数回取得することになる。また、CPU1は、制御期間における処理を各チャネルについて順番に繰り返し行うことで、複数チャネルのソレノイドの制御を行う。本実施形態では、図2に示されるように、第1ソレノイド11aを制御する第1チャネル制御期間と第2ソレノイド11bを制御する第2チャネル制御期間とが繰り返される。
また、ソレノイド駆動制御装置は、上述した(a)〜(c)の動作に加えて、(d)電源電圧モニタ動作を行う。電源電圧モニタ動作は、ソレノイド電源(BS)の電圧を検出し、当該電圧が所定値を下回った場合に、各ソレノイドを再起動する必要があるか否かを判断する動作である。電源電圧モニタ動作は、所定時間に1回の割合で行われる。詳細は後述するが、電源電圧モニタ動作によって、ソレノイド電源電圧が低下したことによってソレノイドがオフ状態になった場合でも、ソレノイドを再起動することによって正常に復帰させることができる。
以上のように、本実施形態では、モニタ対象(制御対象)の切替を切替回路によって用いて行う。これによって、ソレノイド電流のモニタに用いるA/Dコンバータの数を1つにすることができるので、ソレノイド駆動制御装置の構成を簡易化することができる。
さらに、本実施形態では、電流モニタ動作においてソレノイド電流のモニタを複数回行い、複数個のモニタ値に基づいて制御を行うことにより、ソレノイドを高精度で制御することを可能としている。したがって、本実施形態によれば、複数のソレノイドを同一タイミングでモニタし、パルス信号のオンタイミングに同期したソレノイド電流を検知する必要がなく、各ソレノイドに対するモニタを別個のタイミングで行えばよい。したがって、モニタ対象(制御対象)の切替を切替回路によって行う場合でも、電圧保持回路が不要となるので、ソレノイド駆動制御装置の構成を簡易化することができる。
次に、図3〜図6を参照して、ソレノイド駆動制御装置の動作の詳細を説明する。まず、上記(d)電源電圧モニタ動作について図3を用いて説明する。図3は、電源電圧モニタ動作の処理の流れを示すフローチャートである。図3に示す処理は、上記(a)〜(c)の動作に同期して行われる必要はなく、制御期間が第1チャネル制御期間であるか第2チャネル制御期間であるかによらず、所定時間に1回の割合で実行される。また、電源電圧モニタ動作は、モニタ動作中の期間および制御演算動作中の期間において最低1回ずつ実行されることが好ましい(図2参照)。
まずステップS1において、CPU1は、ソレノイド電源電圧を検出する。具体的には、第1A/Dコンバータ4は、ソレノイド電源の電圧値を入力してA/D変換する。なお、本実施形態においては、上記ステップS11を実行するCPU1が請求項に記載の電源電圧検出部に相当する。続くステップS2において、CPU1は、ステップS1で得られたデジタル値が、予め定められた所定値よりも小さいか否かを判定する。ステップS2の判定結果が肯定である場合、ステップS3およびS4の処理が実行される。一方、ステップS2の判定結果が否定である場合、ステップS3およびS4の処理がスキップされて、CPU1は図3に示す処理を終了する。
ステップS3において、CPU1は、各ソレノイド11aおよび11bのうちで、リカバリ(再起動)が必要なソレノイドを選出する。ここで、各ソレノイド11aおよび11bは、最低保持電流(オン状態を維持することができる電流)の値が異なることがある。したがって、CPU1は、次に示す処理を各ソレノイドについて実行することによって、リカバリが必要なソレノイドを選出する。すなわち、CPU1は、ステップS1で検出されたソレノイド電源電圧とソレノイドの抵抗とに基づいて、ソレノイドに流れる電流の推測値を算出する。上記推測値は、ソレノイド電源電圧をソレノイド抵抗で割ることによって得られる。なお、各ソレノイドの抵抗値は、予めCPU1の内部または外部の記憶手段に記憶されている。次に、CPU1は、上記推測値とソレノイドの最低保持電流とに基づいて、リカバリが必要であるか否かを判別する。具体的には、上記推測値がソレノイドの最低保持電流以上である場合、当該ソレノイドはリカバリが不要であると判断し、上記推測値がソレノイドの最低保持電流よりも小さい場合、当該ソレノイドはリカバリが必要で
あると判断する。なお、本実施形態においては、上記ステップS13を実行するCPU1が請求項に記載の選出部に相当する。
続くステップS4において、CPU1は、ステップS3で選出されたソレノイドについてリカバリフラグをオンに設定する。ここで、リカバリフラグとは、ソレノイドはリカバリが必要であるか否かを示すフラグであり、各ソレノイドについて1つずつ設定される。CPU1は、各リカバリフラグのオン/オフを記憶手段に記憶しておく。ステップS4の処理の後、CPU1は、図3に示す処理を終了する。
次に、上記(a)〜(c)の動作について図4を用いて説明する。図4は、ソレノイド電流モニタ動作、モニタ対象切替動作、および制御演算動作の処理の流れを示すフローチャートである。図4に示す処理は、1回の制御期間において実行される処理である。
まず、CPU1は、ソレノイド電流モニタ動作としてステップS11およびS12の処理を実行する。すなわち、ステップS11において、CPU1は、制御対象であるソレノイドのソレノイド電流をモニタする。具体的には、第1または第2電流検出回路8aまたは8bで検出されたソレノイド電流を示す電圧値がモニタ切替回路7を介して第2A/Dコンバータ5に入力される。第2A/Dコンバータ5は、入力された電圧値をA/D変換することによってソレノイド電流の大きさを示すデジタル値(モニタ値)を得る。
続くステップS12において、CPU1は、ソレノイド電流のモニタを予め定められた所定回数行ったか否かを判定する。ステップS12における判定結果が肯定の場合、後述するステップS13の処理が実行される。一方、ステップS12における判定結果が否定の場合、ステップS11の処理が再度実行される。つまり、CPU1は、ソレノイド電流のモニタを上記所定回数行うまでステップS11およびS12の処理ループを繰り返す。そして、所定個数のモニタ値が得られると、(b)モニタ対象切替動作(ステップS13)の処理を実行する。
なお、ソレノイドに対してパルス信号によってPWM制御を行う場合、ソレノイド電流の時間変化は三角波となる。モニタ切替回路7からの信号からモニタ値を複数回取得する周期(すなわち、上記ステップS11を複数回実行する周期)は、上記三角波の周期とは異なる周期となるように、ステップS11の処理が実行されることが好ましい。モニタ値の取得周期と三角波の周期とが一致すると、複数のモニタ値は三角波の同じ位相における電流値(同じ値)となってしまい、電流の平均値を正確に算出することができなくなるからである。また、三角波の極大値付近の電流値、極小値付近の電流値、および、極大値と極小値の中間付近の電流値が取得できるように、モニタ値の取得回数は3回以上であることが好ましい。
ステップS13において、CPU1はモニタ対象切替動作を行う。具体的には、CPU1のSIO3は、モニタ切替回路7に対して出力信号の切替指示を出力する。切替指示とは、第1電流検出回路8aから入力される信号と、第2電流検出回路8bから入力される信号とのうちで、出力する信号を切り替える指示である。本実施形態では、ソレノイドは2つであるので、切替指示は“0”または“1”を示す信号であってもよい。具体的には、第1電流検出回路8aから入力される信号をモニタ切替回路7に出力させる場合、“0”を示す切替指示がSIO3から出力される。一方、第2電流検出回路8bから入力される信号をモニタ切替回路7に出力させる場合、“1”を示す切替指示がSIO3から出力される。したがって、第1チャネル制御期間では、SIO3は“1”を示す信号をモニタ切替回路7に出力し、第2チャネル制御期間では、SIO3は“0”を示す信号をモニタ切替回路7に出力する。切替指示を入力したモニタ切替回路7は、切替指示に従って、出力する信号の切替を行う。
ステップS13の後、(c)制御演算動作として、ステップS14〜S19の処理が実行される。まずステップS14において、CPU1は、モニタ期間中におけるソレノイドの平均電流を算出する。平均電流は、ステップS11で得られた複数個のモニタ値の平均を算出することによって得ることができる。
続くステップS15において、CPU1は、制御対象のソレノイドに対応するリカバリフラグがオンに設定されているか否かを判定する。ステップS15の判定処理は、制御対象のソレノイドについてリカバリが必要であるか否かを判定するための処理である。ステップS15の判定結果が肯定の場合、ステップS16の処理が実行される。一方、ステップS15の判定結果が否定の場合、ステップS17の処理が実行される。
ステップS16において、CPU1は、目標電流を起動電流に設定する。この起動電流は制御対象のソレノイドの起動電流であり、CPU1は各ソレノイドの起動電流の値を予め記憶手段に記憶しているものとする。一方、ステップS17において、CPU1は、目標電流を所定の保持電流に設定する。この保持電流は制御対象のソレノイドの保持電流であり、CPU1は各ソレノイドの保持電流の値を予め記憶手段に記憶しているものとする。
上記ステップS16に示したように、制御対象のソレノイドについてリカバリが必要である場合(ステップS15でYes)、目標電流は起動電流に設定される。その結果、後述するステップS18およびS19の処理によってソレノイドには起動電流が印可され、ソレノイドをオン状態にすることができる。一方、上記ステップS17に示したように、制御対象のソレノイドについてリカバリが必要でない場合(ステップS15でNo)、目標電流は保持電流に設定され、オン状態にあるソレノイドに対する通常の制御が行われる。ステップS16またはS17の次に、ステップS18の処理が実行される。
ステップS18において、CPU1は、制御対象のソレノイドを制御するための演算を行う。具体的には、ステップS14で算出された平均電流と、ステップS16またはS17で設定された目標電流とに基づいて、出力すべきパルス信号のデューティ比を算出する。より具体的には、平均電流を目標電流に近づけるようにパルス信号のデューティ比を算出する。
続くステップS19において、CPU1は、ステップS18の演算結果に応じたパルス信号を出力する。すなわち、CPU1の第1または第2出力回路2aまたは2bは、ステップS18で算出されたデューティ比のパルス信号を出力する。このパルス信号が第1または第2トランジスタ9aまたは9bに入力されることによって、ソレノイド電源BSから第1または第2ソレノイド11aまたは11bに流れる電流が制御され、ソレノイドの駆動が制御される。なお、各出力回路2aおよび2bは、ステップS19の後、次の該当制御期間でパルス信号が出力されるまで、同じデューティ比のパルス信号を出力し続ける。なお、パルス信号の周波数は、電流リップルを低減させてバルブの制御性を向上したり、ソレノイド駆動音を低減させたりする等の目的で、数kHz以上とすることが好ましい。上記ステップS19の後、CPU1は、図4に示す処理を終了する。
以上のように、図4に示した処理によれば、1回のソレノイド電流モニタ動作で複数のモニタ値を取得し(ステップS11およびS12)、複数のモニタ値からソレノイドの平均電流を算出し(ステップS14)、平均電流に基づいた制御を行う(ステップS18およびS19)。したがって、各ソレノイドのソレノイド電流をパルス信号のオンタイミングに同期して同一タイミングでモニタする必要がないので、モニタ対象の切替を行う場合でも電圧保持回路を必要とせず、簡易な構成でソレノイド駆動制御装置を実現することが
できる。
また、本実施形態では、ソレノイド電流モニタ動作(ステップS11およびS12)の後、制御演算動作(ステップS14〜S19)が行われる前にモニタ対象切替動作(ステップS13)が行われる。これによれば、ある制御期間においてモニタ対象切替動作が行われてから、次の制御期間においてソレノイド電流モニタ動作が行われるまでの間に制御演算動作が行われる。ここで、モニタ対象切替動作を行った直後においては、モニタ切替回路7の出力が安定せず、正確なソレノイド電流値を得ることができない可能性がある。これに対して、本実施形態によれば、モニタ対象切替動作が行われてから次にソレノイド電流モニタ動作が行われるまでの間に時間的余裕があるので、モニタ切替回路7の出力が安定してから正確なソレノイド電流値を得ることができる。
なお、本実施形態では、制御演算動作が完了するまで次のソレノイド電流モニタ動作を行わないようにしたが、他の実施形態においては、(制御演算動作が開始された後であって)制御演算動作が完了する前に次のソレノイド電流モニタ動作を行うようにしてもよい。例えば、上記ステップS14において平均電流を算出した後であれば、記憶手段に記憶されている複数のモニタ値を示すデータは、新たなモニタ値を示す内容に更新されてもよいので、ステップS14の後で次のソレノイド電流モニタ動作を開始するようにしてもよい。
さらに、図3および図4に示した処理によれば、何らかの理由でソレノイド電源電圧が低下した場合であっても、ソレノイドをオン状態に復帰させることができる。以下、図5を用いて詳細を説明する。
図5は、ソレノイド駆動制御装置の各部における信号の時間変化を示すタイミングチャートである。以下、図5を参照して、例えば第1チャネル制御期間中にソレノイド電源電圧が何らかの原因で低下した場合における動作について説明する。なお、図5に示すモニタ期間とは、ソレノイド電流モニタ動作中の期間である。
図5においては、第1チャネル制御期間におけるモニタ期間以外の期間中に電源電圧SVが所定の電圧vを下回ったとする。また、その結果、第1ソレノイド11aのソレノイド電流SA1が最低保持電流Ik1を下回り、第2ソレノイド11bのソレノイド電流SA2が最低保持電流Ik2を下回ったとする。このとき、第1ソレノイド11aのオン/オフを示すS1および第2ソレノイド11bのオン/オフを示すS2で示されるように、第1および第2ソレノイド11aおよび11bはオフ状態に変化してしまう。
本実施形態では、電源電圧モニタ動作が行われ、電源電圧SVが所定の電圧vを下回った場合にはソレノイド電流を推測する処理が行われ、リカバリが必要なソレノイドが選出される(ステップS3)。その結果、図5に示す例では、第1および第2ソレノイド11aおよび11bはともに、リカバリが必要であると判断される。
リカバリが必要と判断されたソレノイドについては、当該ソレノイドの次の制御期間において、リカバリ制御(ソレノイドを起動させる制御)が行われる。図5に示す例において、第1チャネル制御期間中に上記ステップS4の処理よりも上記ステップS15の処理が先に実行されたとすると、この制御期間中にはリカバリ制御は行われず、次の第1チャネル制御期間においてリカバリ制御が行われる。なお、ステップS4の処理がステップS15の処理よりも先に行われた場合には、電源電圧SVが所定の電圧vを下回った第1チャネル制御期間中にリカバリ制御が行われる。
リカバリ制御が行われる場合、上記ステップS15の判定結果が肯定となり、ステップ
S16で目標電流が起動電流に設定される。その結果、デューティ比D1のパルス信号が第1出力回路2aから出力される。このデューティ比D1は、第1ソレノイド11aを起動させるために必要な最低起動デューティ比Ds1より大きい。その結果、第1ソレノイド11aの電流SA1は最低起動電流Is1を上回り、第1ソレノイド11aはオン状態となる(図5参照)。
また、第2ソレノイド11bについては、電源電圧SVが所定の電圧vを下回ってから次に行われる第2チャネル制御期間においてリカバリ制御が行われる。リカバリ制御が行われる場合、第1ソレノイド11aのリカバリ制御と同様の制御が行われる。すなわち、第2ソレノイド11bを起動させるために必要な最低起動デューティ比Ds1より大きいデューティ比D2のパルス信号が第2出力回路2bから出力される。その結果、第2ソレノイド11bの電流SA2は最低起動電流Is2を上回り、第2ソレノイド11bはオン状態となる(図5参照)。
なお、本実施形態では、CPU1は、モニタ期間中は制御対象となる1つのソレノイドを流れる電流をモニタしているのみであり、モニタ期間以外の期間ではソレノイド電流をモニタしていない。つまり、CPU1は同時に複数のソレノイド電流をモニタしていない。したがって、ソレノイド電源電圧(すなわち、バッテリー電圧)が何らかの原因で低下した場合、その時点でソレノイド電流をモニタしていないソレノイドについては、ソレノイドがオフ状態になったかどうかをCPU1は直接検知することができない。これに対して、図3および図4に示した処理によれば、電源電圧SVが所定の電圧vを下回った場合、各ソレノイドについてリカバリが必要であるかが判断される。そして、リカバリが必要と判断されたソレノイドについては、その後に行われる制御期間においてリカバリ制御が行われる。したがって、全期間について各ソレノイドの電流をモニタしなくても、ソレノイドがオフ状態となって動作しなくなることを確実に防止することができる。近年においては、車両に搭載される電動アクチュエータが増加してきており、バッテリ電圧の変動が大きくなっているので、本実施形態のようにバッテリをソレノイド電源とする場合には、図3に示す処理は特に有効である。
なお、上記実施形態においては、電源電圧SVが所定の電圧vを下回った場合、各ソレノイドについてリカバリが必要であるかが判断され、リカバリが必要と判断されたソレノイドについてのみリカバリ制御が行われる。ここで、他の実施形態においては、電源電圧SVが所定の電圧vを下回った場合、すべてのソレノイドについてリカバリ制御を行うようにしてもよい。具体的には、図3に示すステップS4において、各ソレノイドに対応するリカバリフラグを全てオンに設定するようにしてもよい。このとき、ステップS3の処理は不要となるので、図3に示す処理を簡易化・高速化することができる。
また、本実施形態によれば、図1に示されるように、入出力回路6がモニタ切替回路7を有し、CPU1からモニタ切替回路7に対して切替指示を行うことにより、モニタ対象の切替を行うようにしている。CPU1と入出力回路6との間には、他の制御指示を伝達するためにも通信経路が必要であり、この通信経路を用いて上記切替指示を伝達するようにすることが好ましい。つまり、CPU1は、CPU1から入出力回路6へ伝達される他の指示を伝達するための通信経路によって上記切替指示を伝達することが好ましい。これにより、新たな通信経路を形成せずに本実施形態の構成を容易に実現することができる。
なお、従来のように、パルス信号のオンタイミングに同期してソレノイド電流のモニタを行う方法では、CPU1の処理負荷が大きくなりすぎるので、PWM駆動の駆動周波数の高周波化を図ることが難しい。例えば駆動周波数を数kHzにすると、CPU1の処理負荷が大きくなりすぎ、CPU1が他のアプリケーション処理を行うことを考慮すると実用的でないと考えられる。これに対して、本実施形態によれば、複数個のモニタ値からソ
レノイドの平均電流を算出するようにしているので、パルス信号に厳密に同期してソレノイド電流のモニタを行う必要がない。したがって、本実施形態によれば、駆動周波数を高周波化することが可能となり、パルス信号を高周波化することによって電流リップルを低減させることができる。電流リップルの低減により、ソレノイドを精度良く制御することができるとともに、ソレノイド駆動音を低減させることができる。
本発明は、簡易な構成で複数系統のソレノイドを制御すること等を目的として、例えば複数のソレノイドの駆動制御を行うソレノイド駆動制御装置等に利用することが可能である。
本実施形態に係るソレノイド駆動制御装置の構成を示す図 ソレノイド駆動制御装置の動作の概要を説明するための図 電源電圧モニタ動作の処理の流れを示すフローチャート ソレノイド電流モニタ動作、モニタ対象切替動作、および制御演算動作の処理の流れを示すフローチャート ソレノイド駆動制御装置の各部における信号の時間変化を示すタイミングチャート
符号の説明
1 CPU
2a,2b 出力回路
3 SIO
4 第1A/Dコンバータ
5 第2A/Dコンバータ
6 入出力回路
7 モニタ切替回路
8a,8b 電流検出回路
9a,9b トランジスタ
10a,10b ダイオード
11a,11b ソレノイド

Claims (4)

  1. 複数のソレノイドを制御するためのソレノイド駆動制御装置であって、
    前記複数のソレノイドに流れる電流をそれぞれ検出して当該電流の大きさを示す信号をそれぞれ出力する電流検出部と、
    前記電流検出部から前記複数のソレノイドに対応してそれぞれ出力される信号のうちいずれか1つのソレノイドに対応する信号を選択的に出力し、切替制御指令が入力される毎に、出力する信号を他のいずれか1つのソレノイドに対応する信号に順次切り替え、各切替動作毎に同じソレノイドに対応する信号を出力する切替部と
    記切替部から出力される信号にA/D変換を行うことによって、ソレノイドに流れる電流の大きさを示すモニタ値を前記各切替動作毎に複数回取得するA/D変換部と、
    前記A/D変換部によって取得された複数個のモニタ値を用いて、当該モニタ値に対応するソレノイドを制御する制御部とを備え、
    前記切替部は、前記A/D変換部によって同じソレノイドに対応するモニタ値が前記複数回取得された後でかつ、前記制御部による制御演算が開始される前に、CPUからの前記切替制御指令により出力する信号の切替動作を行い、
    前記A/D変換部は、直前の前記切替動作前に取得されたモニタ値に基づく制御演算を前記制御部が完了した後で当該切替動作後のモニタ値の取得を開始する、ソレノイド駆動制御装置。
  2. 前記複数のソレノイドに供給される電源電圧を検出する電源電圧検出部と、
    前記検出された電源電圧が所定値を下回った場合、前記複数のソレノイドのうちで、再起動すべきソレノイドを選出する選出部とをさらに備え、
    前記制御部は、前記選出部で選出されたソレノイドを起動させるように制御を行う、請求項1に記載のソレノイド駆動制御装置。
  3. 前記複数のソレノイドに供給される電源電圧を検出する電源電圧検出部をさらに備え、
    前記制御部は、前記検出された電源電圧が所定値を下回った場合、前記複数のソレノイドを起動させるように制御を行う、請求項1に記載のソレノイド駆動制御装置。
  4. 前記制御部は、前記A/D変換部によって取得された複数個のモニタ値の平均値を算出し、当該平均値を所定の目標値に近づけるようにソレノイドを制御する、請求項1に記載のソレノイド駆動制御装置。
JP2007057456A 2007-03-07 2007-03-07 ソレノイド駆動制御装置 Expired - Fee Related JP4853655B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057456A JP4853655B2 (ja) 2007-03-07 2007-03-07 ソレノイド駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057456A JP4853655B2 (ja) 2007-03-07 2007-03-07 ソレノイド駆動制御装置

Publications (2)

Publication Number Publication Date
JP2008218900A JP2008218900A (ja) 2008-09-18
JP4853655B2 true JP4853655B2 (ja) 2012-01-11

Family

ID=39838545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057456A Expired - Fee Related JP4853655B2 (ja) 2007-03-07 2007-03-07 ソレノイド駆動制御装置

Country Status (1)

Country Link
JP (1) JP4853655B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229558B2 (ja) * 2008-10-20 2013-07-03 オムロン株式会社 可動体駆動装置および方法、並びにプログラム
WO2013080122A1 (en) 2011-12-01 2013-06-06 Koninklijke Philips Electronics N.V. A structural design and process to improve the temperature modulation and power consumption of an ir emitter
JP5907412B2 (ja) * 2012-02-02 2016-04-26 株式会社デンソー 電磁弁駆動装置
JP6215743B2 (ja) * 2014-03-19 2017-10-18 日立オートモティブシステムズ株式会社 ソレノイドの制御装置
CN107246494A (zh) * 2017-08-08 2017-10-13 安徽能测能控科技有限公司 一种模拟量无线阀门控制器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867004A (ja) * 1981-10-18 1983-04-21 Kyowa Dengiyou:Kk ラツチング式電磁装置の駆動回路
JP3063336B2 (ja) * 1991-11-28 2000-07-12 ソニー株式会社 プランジャソレノイドの駆動回路
JP3026278B2 (ja) * 1995-03-02 2000-03-27 本田技研工業株式会社 パルス幅変調ソレノイドの制御装置
JPH1187134A (ja) * 1997-09-02 1999-03-30 Honda Motor Co Ltd 電磁ソレノイドの制御装置
JP4091163B2 (ja) * 1998-04-21 2008-05-28 株式会社デンソー 信号入力装置,制御装置及び誘導性負荷の電流制御装置

Also Published As

Publication number Publication date
JP2008218900A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4853655B2 (ja) ソレノイド駆動制御装置
US20070096706A1 (en) Power supply control method and power supply apparatus
JP4621636B2 (ja) 電源装置及びその制御方法
US20010013767A1 (en) Discharge circuit and duty ratio setting method
US8264212B2 (en) Power supply control device and power supply control method
US11005471B2 (en) Signal generating circuit and power supply device
JPWO2009001615A1 (ja) 予測制御システム
JP2005051992A (ja) Dc−dcコンバータ制御回路を備えた半導体装置
US8111055B2 (en) Method for controlling a direct current chopper controller
EP2799948B1 (en) Power supply device and power supply switching method
JP2006304504A (ja) 車両用発電機の制御装置
JP2018174632A (ja) 車両用電源装置
JP4784491B2 (ja) モータ駆動装置
JP3758447B2 (ja) 電源系統切替装置
JP7006435B2 (ja) 入出力装置
JP2003209976A (ja) Pwmインバータ装置及びその電流検出方法
JP2009055686A (ja) 電源システム
JP2010140364A (ja) 処理装置
JP2009131067A (ja) 電力変換回路の制御装置及び電力変換システム
CN112840551B (zh) 电力转换装置、电力转换系统以及电力转换方法
JP2008131675A (ja) 電源装置及び漏電検出方法
JP5978932B2 (ja) 誘導性負荷制御装置
JP6064747B2 (ja) 誘導性負荷制御装置
JP2017212770A (ja) 異常検出装置及び電源装置
JP2004249935A (ja) 車輌用電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees