JP4829850B2 - 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置 - Google Patents

光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置 Download PDF

Info

Publication number
JP4829850B2
JP4829850B2 JP2007201886A JP2007201886A JP4829850B2 JP 4829850 B2 JP4829850 B2 JP 4829850B2 JP 2007201886 A JP2007201886 A JP 2007201886A JP 2007201886 A JP2007201886 A JP 2007201886A JP 4829850 B2 JP4829850 B2 JP 4829850B2
Authority
JP
Japan
Prior art keywords
magnetization direction
electrode
magnetization
optical modulator
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007201886A
Other languages
English (en)
Other versions
JP2008083686A (ja
Inventor
淳 久我
賢一 青島
賢司 町田
信彦 船橋
泰敬 宮本
紀一 河村
直樹 清水
史郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2007201886A priority Critical patent/JP4829850B2/ja
Publication of JP2008083686A publication Critical patent/JP2008083686A/ja
Application granted granted Critical
Publication of JP4829850B2 publication Critical patent/JP4829850B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁化方向の変化を用いた光変調器、及び当該光変調器を用いた表示装置、オログラフィー装置、及びホログラム記録装置に関する。
従来、典型的な光変調器としては、液晶を用いるものが一般的であった。液晶を用いる光変調器では、電圧の印加により液晶分子の配向を回転又は反転させ、光の吸収、反射、透過を制御する。この種の光変調器は直視型あるいは投射型液晶表示装置として多用されている。また、同様の原理は、液晶光シャッタ、反射光抑制フィルタ、又は色温度変換フィルタ等にも応用されている。
また、光変調器としては、液晶の他に、例えば電気泳動素子を用いたものが知られている。電気泳動方式の典型的な例はマイクロカプセル型である(例えば、非特許文献1参照)。電気泳動素子を用いた光変調器では、液体を包むポリマーのマイクロカプセルの中に着色して正負に帯電した顔料を封入し、これを外部電界によって基板側又は背面基板側へ移動させて反射型としてのコントラストを得る。
また、機械的な外部光変調方式としては、MEMS(Micro-Electromechanical Systems)と呼ばれる半導体の微細加工技術を応用して作製する空間光変調器としてDMD(Digital Micro-mirror Device)がすでに市場に出ている(例えば、非特許文献2参照)。この方式では、画素ドットに対応する十数ミクロン角の微細な可動ミラー・アレイによって、入射光が画素ドット毎にミラーの傾きによって変調される。
H.Kawai, M.Miyasaka,A.Miyazaki, S.Nebashi, T.Shimoda, "Flexible Active-Matrix ElectrophoreticDisplays for Electronic Paper Applications ",Proc.IDW’05,pp.833-836(2005) J.Grimmett and J.Huffman, "Advancements in DLP Technology: The New10.8μm Pixeland Beyond", Proc.IDW’05,pp.1879-1882(2005)
しかし、従来の前記光変調器は、応答速度が遅いという問題があった。例えば、液晶を用いた光変調器の応答速度は、主として素子の材料と構造に左右される。通常のTN液晶では液晶分子の粘性のために、典型的には応答速度は十数ミリ秒程度である。近年開発された、スプレイ配向状態から一旦ベンド配向状態へ遷移させ、このベンド配向状態でON/OFFを行う高速型のOCB(Optically Compensated Bend)液晶であっても、その応答速度はせいぜい3ms程度である。また、電気泳動方式では粒子が電界や磁界によって移動したり回転したりするので、それらの応答速度は数十ミリ秒程度に留まっている。
また、機械的な外部光変調方式では、応答速度は数マイクロ秒と高速の場合もあるが、逆に下記のように微細化に難点がある。
また、従来の光変調器は、微細化が困難であるために光変調の高精細化が困難であった。例えば、光変調器あるいは表示装置の画素ドットサイズは、光変調方法あるいは表示原理に加えて構造や作製技術で決まる。液晶方式では、画像保持のためのTFT(薄膜トランジスタ)が画素ドット毎に必要となる。また、高コントラストを確保するためには、液晶層厚として2ミクロン程度は必要であり、さらに、この液晶層を2枚のガラス基板又はプラスチック基板で挟む必要がある。このため、最小の画素ドットサイズは数ミクロン角程度が限界であると言われている。
また、電気泳動方式では、マイクロカプセルのサイズの限界が数十ミクロン角程度であり、電気化学反応又は発色反応方式を用いる場合でも、数十ミクロン角程度が限界である。さらに、機械的変調方式では、画素ドットサイズは主としてMEMSの精度で決まり、DMDで十数ミクロン角程度が限界である。
このように、従来の光変調器には画素ドットサイズの限界があり、これらの限界を大幅に縮小化するのは現状技術では困難である。
そこで、本発明は、応答速度が高速で高精細な光変調が可能な光変調器、及びこの光変調器を用いた、表示装置、ホログラフィー装置、ホログラム記録装置を提供することを目的とする。
本発明の一局面の光変調器は、入射する光を偏光する第1偏光手段と、アレイ状に配設された複数の画素の各々に配設され、スピン注入により磁化方向が反転され、前記第1偏光手段によって偏光された光が入射されるスピン注入型磁化反転素子と、前記磁化方向の反転による前記スピン注入型磁化反転素子への入射光の偏光方向の変化を検出する第2偏光手段と、前記画素を選択するために前記スピン注入型磁化反転素子に電圧を印加する電圧印加装置とを含み、前記スピン注入型磁化反転素子は、電圧の印加によって磁化方向が変化する磁化方向可変層と、磁化方向が固定された磁化方向固定層と、前記磁化方向可変層と前記磁化方向固定層とを分離する分離層とが積層された積層構造であり、前記電圧印加装置は、前記磁化方向固定層と積層される第1電極と、前記磁化方向可変層と積層される第2電極とを備え、前記第1電極及び前記第2電極のうちの少なくとも前記入射光が入射する電極の少なくとも前記画素に含まれる部分は、透明電極材料で構成されており、前記第2偏光手段の検出結果に基づいて画素選択を行う。
また、前記スピン注入型磁化反転素子の各々には、任意の画素を選択するための画素選択用電極が接続されており、前記磁化方向の反転は、前記画素選択用電極を介して行われてもよい。
また、前記スピン注入型磁化反転素子は、画素領域毎に配設される柱状のスピン注入素子であり、相隣接するスピン注入素子同士は、電気的及び磁気的に絶縁されてもよい。
また、前記スピン注入型磁化反転素子は、前記入射光を反射する層を含んでもよい。
また、前記スピン注入型磁化反転素子へのスピン注入のためのパルス電圧の制御により、前記入射光の変調を行ってもよい。
また、前記分離層は、前記入射光を反射する材料で構成されてもよい。
また、前記スピン注入型磁化反転素子と前記偏光手段との間に配設され、時分割で前記入射光の偏光角度が可変となるシャッタをさらに含んでもよい。
本発明の一局面の表示装置は、これらの光変調器を含む。
本発明の一局面のホログラフィー装置は、2系統の入射光の干渉縞を撮像する撮像手段と、前記撮像手段の画像信号を前記いずれかに記載の光変調器を用いて表示する表示手段と、を有する。
本発明の一局面のホログラム記録装置は、2系統の入射光を用いて記録媒体に記録するホログラム記録装置であって、前記記録媒体の状態の変化をモニターする撮像手段を有し、前記撮像手段の位相情報に基づき、前記2系統の入射光のうちの少なくとも1系統の光変調を前記いずれかに記載の光変調器を用いて行う。
本発明によれば、応答速度が高速で高精細な光変調が可能な光変調器と、この光変調器を用いる表示装置、ホログラフィー装置、及びホログラム記録装置を提供できるという特有の効果が得られる。
以下、本発明の光変調器を適用した実施の形態について説明する。
本実施の形態の光変調器では、画素を構成する磁性材料に入射する光の偏光方向のファラデー回転効果又はカー回転効果を利用する。
例えば、同一の方向に一様に磁化された磁性材料に偏光した光が入射すると、磁性材料の磁化の方向に応じて、その偏光軸が回転する。
ここで、この磁性材料の磁化の方向をスピン注入によって反転させると、その領域を通過又は反射する光の偏光軸は、反転前の磁性材料の偏光軸の回転方向と異なる方向(逆方向)に観点する。画素選択はこの原理を利用する。
例えば、この原理を利用して画素選択を行うためには、スピン注入(電圧の印加)によって、少なくとも一部の磁化方向が反転する構造を有するスピン注入型磁化反転素子を用いればよい。
このスピン注入型磁化反転素子は、例えば多層構造を有するように構成され、多層構造のうちの少なくとも一部の層の磁化方向が、スピン注入によって反転するように構成されている。スピン注入型磁化反転素子の構成の一例としては、電圧の印加(スピン注入)によって磁化方向が変化する磁化方向可変層と、磁化方向が固定された磁化方向固定層、この磁化方向可変層と磁化方向固定層とを分離する分離層、及び磁化方向可変層の所定の領域に電圧を印加する電圧印加装置とを有するように構成される。
この構成において、磁化方向可変層への電圧の印加による磁化方向の変化(反転)によって、入射光の偏光方向を変化(逆方向に回転)させ、変調される入射光の領域を選択することができる。
従来の空間光変調器は、例えば、液晶分子の配向や、粒子の移動・回転、又は、画素ミラーの角度回転等の制御を伴うものであり、本実施の形態による光変調器では従来の光変調器に比べて動作速度が高速となる。
また、本実施の形態による光変調器は、液晶を用いた光変調器のように動作保持のためのアクティブ素子(TFT等)を必要とせず、また、マイクロミラー等の機械的な動作を伴わないために構造が単純となる。さらに、コントラストを確保するための素子の膜厚が、液晶等の光変調器と比べて薄くてすむため、従来の光変調器に比べて微細化が容易であるために光変調を高精細で行うことができる。
[実施の形態1]
図1Aは、実施の形態1の光変調器により画素選択を行う原理を模式的に表す断面図である。図1Bは、実施の形態1の光変調器を表す平面図である。図1Aは、図1BのA0−A0’断面を表す。
図1Aに示すように、光変調器10は、スピン注入型磁化反転素子101、非磁性絶縁体102、電極印加手段20、及び偏光板を含む。なお、実施の形態1では偏光板を図示せずに省略する。偏光板についての説明は実施の形態2において行う。
スピン注入型磁化反転素子101は、磁化方向が固定された磁化方向固定層11と、非磁性材料で構成される分離層12と、電圧の印加によって磁化方向(スピン方向)が反転する磁化方向可変層13とが柱状(ピラー状)に積層された構造を有する。
スピン注入型磁化反転素子101は、図1Aに示す紙面を貫く方向に延伸するように複数配列されている。各スピン注入型磁化反転素子101の間には、非磁性絶縁体102が形成されている。
電圧印加装置20は、入射光16が変調される領域(画素)を選択するために、磁化方向可変層13の所定の領域に電圧を印加する。
この電圧印加装置20は、図1A及び図1Bに示すように、電極14(電極X)及び電極15(電極Y)を含む。電極14は、磁化方向固定層11の上にライン状に配列される。また、各電極15は、スピン注入型磁化反転素子101及び非磁性絶縁体102の面のうちの各電極14とは反対の面に配列される。電極14及び電極15は、それぞれ平行に複数配列されており、各電極14と各電極15とは、図1Aに示すように空間的には離間し、図1Bに示すように、平面視では互いに直交して格子状(アレイ状)をなすように配列されている。
画素103は、図1Bに示すように、電極14と電極15とが平面視において重なる領域に形成される。すなわち、電極14及び電極15は、画素選択用の電極である。
なお、電極14及び電極15は、光が透過し易い透明電極材料で形成することが望ましいが、画素103に含まれる部分だけを透明電極材料で形成し、画素103に含まれない部分には低抵抗電極材料を用いて形成してもよい。
このような光変調器10において、光変調される領域の選択(画素103の選択)は以下のようにして行う。
まず、初期状態では、磁化方向可変層13の磁化方向(スピン方向)は、(+)方向(図1において、左方向)を向いており、磁化方向固定層13の磁化方向は(−)方向(図1において、右方向)を向いている。
この場合に、所定の偏光方向(偏光軸17)を有する入射光16が入射すると、電極14及び電極15に電圧が印加されていない状態では、磁化方向固定層11、及び磁化方向可変層13の磁化方向に従ってその偏光方向がファラデー回転(偏光軸18,角度θ)する。
ここで、電極14及び電極15に電圧を印加して画素を選択すると、選択された磁化方向可変層13の所定の領域の磁化方向のみが(−)方向に反転する。
この場合、各スピン注入型磁化反転素子101が非磁性絶縁体102によって囲まれているため、選択される領域は、電圧が印加される電極14及び電極15の交点の画素103になる。この選択された画素103に入射光16が入射した場合、磁化方向可変層13の磁化方向の変化(反転)に伴って、電圧が印加されていない領域とは逆向きに偏光方向が回転(偏光軸19,角度θ)する。この偏光方向の変化を、周知の偏光板を用いて検出することにより所望の画素103を選択できる。さらに、電極14及び電極15に印加される電圧のパルス制御や、又は印加される電圧の電圧値の制御によって(図5以下で後述)、入射光の光変調を行うことが可能となる。
この場合、電極14及び電極15による電圧の印加は、磁化方向可変層13、分離層12、及び磁化方向固定層11に対して行われるが、実質的には磁化方向可変層13の電圧印加による磁化方向の変化により、入射光の変調が行われる。
なお、分離層12は、非磁性材料ではなく、絶縁材料で構成されてもよい。このような構造をトンネル磁気抵抗効果素子(TMR:Tunneling Magnetoresistiv)と呼ぶ場合もある。
以上のような光変調器10では、磁化方向の反転による光の偏光方向の回転を利用しているため、従来の光変調器に比べて動作速度が速く、10〜50nsec程度の動作速度がえら得る。
また、局所的な磁化反転は、電極14及び電極15の交点領域内で起こるので、その磁化反転領域(画素103の領域)の大きさは、実質的に電極の大きさに依存することになる。すなわち、現状の半導体の微細加工技術を用いて電極14及び電極15を形成すれば、少なくともサブミクロン以下のサイズでの高精細な光変調を行うことが可能になる。
次に、図1に示す光変調器10の製造方法の一例について、図2A〜図2E、及び図3A〜図3Bに基づき、手順を追って説明する。なお、以下の図では、図1と上下が逆になる(以下の図では電極14が下側になる)。
まず、図2Aに示す工程において、シリコン(Si)、酸化シリコン(SiO)、酸化マグネシウム(MgO)、あるいはガラス等よりなる基板10a上に、画素選択駆動用の電極14を形成する。電極14は、例えば、SnO,ITO,IZO、又はTiO等の透明電極材料、若しくは、Ta、Cr、又はCu等の金属材料をスパッタ法等で堆積し、リソグラフィー法等で所望のサイズに加工することで形成することができる。
なお、スピン注入型磁化反転素子101の上面の全領域に透明電極材料を形成するのではなく、上面のうちの画素103に含まれる領域に透明電極材料を形成し、画素103に含まれない上面領域には、低抵抗金属材料を形成してもよい。
また、基板10aにSiやMgOを用いる場合には、電極14をエピタキシャル成長させてもよい。
次に、図2Bに示す工程において、磁化方向固定層11を形成する。磁化方向固定層11は、スピン分極率の高い材料で形成されることが好ましい。例えば、金属系ハーフメタルとして、Co2MnAl、Co2MnSi、Co2Cr0.6Fe0.4Al、CoFeB、MiMnSb等が大きなスピン偏極率を有する材料として考えられる。また、酸化物系ハーフメタルとしては、La0.7Sr0.3MnO3、Sr2Fe(W0.4Mo0.6)O6、Sr2FeReO6、CrO2、FE34等を用いることもできる。さらに、TiOCo、ZnOMn等の導電性のある透明磁性体、又は、GaMnNやZnCrTe等の磁性半導体を用いることもできる。
また、磁化方向固定層11は、上述のいずれかの材料層を複数積層することにより組成の異なる層の積層構造にしてもよく、また、磁化方向固定層11の磁化方向を固定するために、スピン固着層を追加することによって積層構造としてもよい。本実施の形態では、電極14上に磁化方向固定層11を厚さ数〜数十nmだけ堆積する。堆積方法としては、例えば、分子線エピタクシー法(MBE法)やスパッタ法等を用いることができる。
次に、図2Cに示す工程において、例えばCuよりなる分離層12を堆積する。後述するように、空間光変調器を反射型で用いる場合には、磁化方向可変層に進入した入射光を反射させる必要があるため、入射光(たとえばRGB光)に対する反射率の大きい材料を用いるのが望ましい。また、非磁性層12は、例えばMBE法やスパッタ法等で堆積する。また、この非磁性層12の厚さは偏極スピン電子がトンネルできる厚さ(2〜3nm)とされることが好ましい。
次に、図2Dに示す工程において、図2B又は図2Cの工程と同様にして、非磁性層12上に磁化方向可変層13を堆積する。
磁化方向可変層13に用いる材料としては、例えば、CoFe、NiFe、Fe、Ni、Co、Py等を用いることができる。また、Al23やSiO2等の絶縁体中にCo等の微粒子を分散させたグラニュラー薄膜構造としてもよい。また、TIOCo、ZnOMn等の導電性のある透明磁性体、又は、GaMnNやZnCrTe等の磁性半導体を用いることもできる。磁化方向可変層13の厚さは、数nm以下程度とし、例えばMBE法やスパッタ法等により堆積することができる。
次に、図2Eに示す工程において、スピン注入型磁化反転素子101として残す部分(図中、電極14の上に形成されている部分)を除き、リソグラフィー法等により、磁化方向可変層13、非磁性層12、及び磁化方向固定層11層を除去する。
次に、図2Fに示す工程において、非磁性絶縁体101を堆積する。非磁性絶縁体101は、SiO、Al、AlN等の絶縁材料で形成することができる。
次に、図2Gに示す工程において、図2Aの工程と同様の方法により電極15を形成する。電極15は、磁化方向可変層13に効率よく光を侵入させるため、入射光に対して透明な材料を用いることが望ましい。たとえば、Sn23あるいはITO等の材料を用いることができる。
また、電極14と電極15は、平面視した場合に互いに直交となる方向に延伸した構造(アレイ状)となっている。図3Aは、図2Aに示す工程の平面図であり、図3AのA−A‘断面が図2Aに対応する。また、図3Bは、図2Eに示す工程の平面図であり、図3BのB−B’断面が図2Eに対応している。
また、以上の光変調器10の構造において、個々の素子(選択領域)の電気的あるいは磁気的な分離は、例えば以下の方法により行うことができる。第1の方法(構造)としては、リソグラフィー等によるメサエッチングで磁化方向可変層13を画素加工する方法がある。この場合、磁化方向可変層13に、素子分離のための格子状の溝が形成されることになる。また、第2の方法としては、磁化方向可変層13に、例えば窒素等のイオンを局所的に注入することにより、部分的に絶縁化する方法がある。
以上、本実施の形態によれば、アレイ状に配列されたスピン注入型磁化反転素子101のうちの任意の画素103を選択することによって入射光を変調するので、応答速度が高速で高精細な光変調器を提供することができる。
なお、このような磁気的又は電気的な分離構造が形成された場合であっても、従来の液晶や電気泳動素子、又はMEMS等を用いた変調器に比べて微細な構造を形成することが可能であり、高精細な光変調を行う上では殆ど問題になることはない。
[実施の形態2]
図4は、実施の形態2の光変調器10Aの構成を示す図である。この光変調器10Aの構成は、実施の形態1の光変調器10に準ずるものである。このため、実施の形態1における光変調器10と同一の構成要素には同一符号を付し、その説明を省略する。
図4に示すように、実施の形態2の光変調器10Aは、実施の形態1のスピン注入型磁化反転素子101の非磁性層12に相当する非磁性層12Aが、入射光16を反射するよう構成されている点が異なる。この相違点により、磁化方向可変層13を透過した入射光16は、非磁性層12Aによって反射されて再び磁化方向可変層13を透過する。このため、実施の形態2の光変調器10Aでは、画素103が選択された入射光の偏光方向が回転する角度が大きくなり、選択される画素103の検出が容易になる。
また、実施の形態1に記載したような透過型の非磁性層12を有する光変調器10では、磁化方向固定層11、非磁性層12、及び磁化方向可変層13のすべてが入射光を透過するように構成されることが好ましいが、実施の形態2の光変調器10Aの場合は、少なくとも磁化方向可変層13が入射光を透過するように構成されていればよい。なお、電極15は、入射光を透過する材料で構成されてもよい。これにより、入射光の利用効率がさらに良好となる。
すなわち、光変調器10Aにおいては、磁化方向可変層13に入射光16を導入させる側に形成された電極15と、磁化方向可変層13によって変調された入射光16又は反射光(16A及び16B)を外部に放出させる側に形成される電極(実施の形態1では電極14、実施の形態2では電極15)とが、光透過性の材料により構成されることが好ましい。
図4には、偏光板22及び25と、電圧制御手段21を示す。すなわち、入射光16を予め偏光させるための偏光板22と、選択された画素を検出するための、反射光(出射光)を透過させる偏光板25が示されている。また、電圧制御手段21は、電極14及び電極15に接続されて、電圧印加装置20を構成している。
実施の形態2の光変調器10Aでは、偏光板22によって所定の方向に偏光した入射光16が、磁化方向可変層13に入射する。所定の偏光方向を有する入射光16が入射すると、電極14及び電極15に電圧が印加されていない状態では、磁化方向可変層13の磁化方向に従ってその偏光方向がファラデー回転する。
ここで、電極14及び電極15に電圧を印加して画素を選択すると、選択された磁化方向可変層13の所定の領域(スピン方向反転領域)の磁化方向のみが反転する。
この選択された領域に入射光16が入射した場合、磁化方向可変層13の磁化方向の変化(反転)に伴って、電圧が印加されていない領域とは逆向きに偏光方向が回転する。ここで、偏光方向が異なる光が混在した反射光(16A、16B)に対して、偏光板25を用いて画素選択されていない素子(電圧が印加されていない画素103)からの反射光16Aを除外する。この場合、偏光板25は、偏光板22と、偏光方向がクロスニコル配置となるような偏光板23を含む構造とする。すなわち、選択された画素103からの出射光16Bは、偏光板23を透過することができる。このようにして、偏光板23を透過させたい光を変調させるための画素103を選択することができる。
また、偏光板25が、偏光板23とは別の偏光板24を含むように構成してもよい。例えば、偏光板24を偏光板23の近傍に配置して、その偏光軸を選択された画素103における偏光軸の逆回転の角度に合わせておくと、この偏光軸の逆回転に対応した光を選択的に高いSN比で検出することができる。
また、電極14及び電極15に印加される電圧は、電圧制御手段21によって制御され、入射光の光変調が行われる。次に、これらの電圧制御の具体的な例について説明する。
図5〜図8は、光変調器10Aの基本的な駆動方法を示す図である。図5は、個々の素子(個々の選択領域)の電圧・抵抗特性を示す図であり、図6は、図5に示す特性を有する素子を配列(電極X,Yを格子状に配列)した画素の構成を模式的に示す図であり、図7、図8は電圧制御と表示期間の例を示す図である。
光変調器10Aの個々の素子は図5に示すような電圧・抵抗特性を示し、抵抗が高い状態(H)が画素非選択の状態に対応し、抵抗が低い状態(L)が選択された画素103の状態(偏光軸逆回転)に対応する。すなわち、電圧がVd以上となると消去(非選択)、電圧が−Vd以下で書き込み(選択)が可能となる。
例えば、アレイ状に配列された個々の素子においては、図6に示すように、各電極X、Y(電極14及び電極15)に書き込み・消去回路(電圧制御手段21)を接続してH/Lの変換を行い、所望の画素103を選択する。
また、光変調にあたっては、図7に示すように、電極X、Y間にまずVd以上の電圧を印加して画素非選択状態(H)の初期化を行う。次に電極X、Y間に−Vdの電圧を印加して画素選択状態(L)に転移させる。その後、表示期間に相当する時間を経て再びVdの電圧を印加することにより、画素103の選択を終了する。この、書き込パルス(−Vd電圧印加)から、消去パルス(2回目のVd電圧印加)までの時間幅によって、入射光の強度変調を行うことができる。
また、図8は、強度変調をするためのパルス数を変調した例である。一定の間隔を有する−VdとVdのパルスの組を表示パルスとし、所定期間内における当該表示パルスの数を変更することで、入射光の強度変調を行うことができる。
また、図9〜図11は、素子に印加する電圧値を制御することで光強度変調を行う方法の例を示す図である。図9は個々の素子の電圧とスピン(磁化)反転領域の関係を、図10は、電圧制御の例を、図11は図10に対応する表示期間を示す図である。
例えば、個々の素子が図9に示すような電圧・スピン反転領域の関係を有している場合に、光強度変調の電圧値による制御が可能になる。すなわち、電極X、Y間に印加する電圧を変化させることでスピン反転領域が変化するため、電圧値の制御によって光変調が可能になる。
例えば、図10に示すように、まず電極X,Yの間にVe以上の電圧を印加して初期化する。次にいずれかの画素103を選択するにあたり、−Vdと−Veの間の電圧を印加することで、スピン反転領域を制御し、面積階調方式として強度変調を行うことができる。
この場合、図11に示すように、パルスの期間よって表示期間を制御することが可能となるとともに、印加される電圧値によっても強度変調を行うことが可能となる。
また、この光変調器を用いて、例えば表示装置(ディスプレイ)を実現することが可能となるが、例えばカラー対応の表示装置を構成する例について以下に説明する。
[実施の形態3]
また、図12は、実施の形態2による光変調器10Aを用いて、カラー対応の表示装置10Bを構成した例を示す図である。ただし、先に説明した部分には同一の符号を付し、説明を省略する。
本実施の形態による表示装置10Bでは、光変調器10A(磁化方向可変層13)への入射光の供給を、RGB光の時分割照明器26を用いて行っていることが特徴である。時分割照明器26は、R,G,B光を放射する発光ダイオードやレーザ光を有し、R,G,Bに対応するダイオードやレーザが、1フィールド期間内で順次点灯する構造になっている。これらの光を光変調器に入射し、その反射光をスクリーン27に投写する構成とすることで、表示速度が高速であって、高精細な表示装置を形成することが可能となる。
例えば、表示装置10Bは、DMD等を用いた従来の投写型表示装置に比べて画素サイズが小さく、高精細となっている。
[実施の形態4]
また、磁化方向可変層によって回転される入射光の偏光軸の角度が、波長(R,G,B)によって異なる性質を利用して、カラー対応の表示装置を構成することもできる。図13は、波長と偏光軸回転角度の関係を模式的に示す図である。図13に示すように、波長が長いほど、磁化方向可変層によって回転される偏光軸の回転角度は大きくなっている。
図14は、実施の形態4によるカラー対応の表示装置10Cを示す図である。ただし、先に説明した部分には同一の符号を付し、説明を省略する。本実施の形態による表示装置10Cでは、光源に白色光源28を用いている。また、光変調された出射光側には、液晶偏光シャッタ29が配設されている。液晶偏光シャッタ29は、液晶を挟む2枚の電極間に印加する電圧の大きさを変更することで、偏光角度を制御することができる。従って、RGBに対応する偏光軸回転角度θR、θG、θBに相当する電圧を、1フィールド期間内で、時分割で順次印加してカラー表示を行うことができる。
[実施の形態5]
また、図15は、光変調器10Aを用いて立体動画対応のホログラフィー装置30を構成した例である。ただし、先に説明した部分には同一の符号を付し、説明を省略するとともに、光変調器10Aの詳細な構造の図示は省略する。
本実施の形態によるホログラフィー装置30は、大別して画像入力系と画像再生系とに分けることができる。まず、画像入力系は、レーザ光源31、ビーム拡大器32、レンズ33、36、ハーフミラー34、37、ミラー35、及び撮像手段(CCDカメラ)38によって構成されている。
まず、画像入力にあたっては、レーザ光源31から発するレーザ光を、ビーム拡大器32で拡大した後、レンズ33により並行光とする。このレーザ光を、ハーフミラー34により、被写体に照明して物体光とするものと、参照光とに分ける。被写体に照射された物体光は、レンズ36、ハーフミラー37を介して撮像手段38に入射する。また、参照光は、ミラー35、ハーフミラー37によって反射されて参照光と合成され、干渉縞が形成される。この干渉縞パターンを撮像手段38(CCDカメラ)によりリアルタイムで検出する。
一方、画像再生系は、レーザ光源40、ビーム拡大器41、レンズ39、偏光板22及び23、光変調器10Aを有している。画像の再生にあたっては、レーザ光源40,ビーム拡大器41,レンズ39により平行な参照レーザービームを形成し、これを光変調器10Aに入射する。ここで、撮像手段38(CCDカメラ)から、干渉縞パターン画像信号を光変調器10Aに入力し、当該干渉縞パターン画像信号に対応した光変調を行うことで、立体画像を形成することができる。この場合、参照光の変調には、動作速度が高速度であって高精細である光変調器10Aを用いることが好ましい。
[実施の形態6]
また、図16は、光変調器10Aを用いてホログラム記録装置50を構成した例である。ただし、先に説明した部分には同一の符号を付し、説明を省略するとともに、光変調器10Aの詳細な構造の図示は省略する。
本実実施の形態によるホログラム記録装置50では、レーザ光源51から発するレーザ光を、ビーム拡大器52で拡大した後、レンズ53により並行光とする。このレーザ光を、ハーフミラー54により、信号光と参照光に分ける。信号光は、光変調器10Aにより2次元ページデータに対応した光変調がなされ、記録媒体55に到達する。また、参照光は、ミラー57を介して光変調器10Aに入射され、光変調された後、ミラー58を介して記録媒体55に到達する。この場合、記録媒体55の波面の乱れは位相情報として撮像手段(CCDカメラ)56によってリアルタイムに検出される。また、光変調器10Aは、当該位相情報に応じて参照光の光変調を行い、このために波面の乱れの影響をキャンセルすることが可能になっている。
例えば、従来のフォトポリマー記録媒体を用いた体積ホログラム記録の場合、空気の流れ等によるシステムの温度変動、書き込み時の光重合によるフォトポリマーの収縮、あるいは収差等の光学系の不完全性に基づいて記録媒体の波面が乱れることが、高多重化を妨げる要因となる場合があった。
そこで、ホログラム記録装置50では、この波面の乱れをCMOSカメラ等の撮像手段でリアルタイムに検出し、その乱れをキャンセルするように参照光を空間的に変調している。この場合、参照光の変調には、動作速度が高速度である光変調器10Aを用いることが好ましい。また、ページデータの書き込みにもこの光変調器10Aを用いることができる。また、ホログラム記録装置では、光の波長程度の分解能で波面を制御できるため、多重度を格段に向上させることができる。
[実施の形態7]
図17は、実施の形態7の光変調器の要部(スピン注入型磁化反転素子及び電極)を示す断面図である。
光変調器のスピン注入型磁化反転素子は、磁化方向固定層11、及び磁化方向可変層13が複数材料層を含む積層体であるとともに、下部側の電極14も複数の金属材料層の積層体によって構成される点が実施の形態1乃至6の光変調器と異なる。なお、非磁性層12Aは、入射光を反射するよう構成されている。この点は、実施の形態2と同様である。
下部側の電極14は、シリコン(Si)基板上にTa層、Cu層、Ta層、Cu層、及びRu層がこの順に積層された積層体である。
磁化方向固定層11は、Ru層、Cu層、Ir−Mn層、Co−Fe層、Ru層、Co−Fe層、及びCo−Fe−Si層をこの順に積層された積層体である。
分離層12Aは、Cu層の単層構造である。
磁化方向可変層13は、Co−Fe−Si層、Cu層、及びRu層がこの順に積層された積層体である。
このように下部側の電極14、磁化方向固定層11、分離層12A、及び磁化方向可変層13を形成した後に、スピン注入型磁化反転素子101として残す部分以外をリソグラフィー法等により除去する。さらに、SiOで構成される非磁性絶縁体102と透明電極を順次形成する。これは、実施の形態1の光変調器10と同一の作製方法である。
図18は、実施の形態7の光変調器の上部透明電極と下部電極との間に電流Iapを通流させてスピン注入型磁化反転素子101をスピン注入磁化反転させたときにおける磁化方向可変層による反射光のカー回転角の変化を表す特性図である。
上部の透明な電極15を負極、下部側の電極14を正極としたときの電流の向きを正、電極15を正極、電極14を負極としたときの電流の向きを負としている。
電流Iapが+30mA以上となる点Aでは、反射光のカー回転角θは、正方向であり、この状態から電流を零とした点A‘においてもカー回転角θは正方向を維持する。電流Iapは−25mA以下となる点Bでは、反射光のカー回転角θは点Aとは逆方向(負方向)であり、この状態から電流を零とした点B’においてもカー回転角θは負方向を維持することが分かる。
このように、実施の形態7の光変調器によれば、磁化方向固定層11及び磁化方向可変層13が複数材料層を含む積層体によって構成されるスピン注入型磁化反転素子101と、複数の金属材料層の積層体によって構成される下部側の電極14とを有することにより、電流を零とした状態においても、電流供給時とほぼ同様のカー回転角θを維持することができる。
以上、本発明の例示的な実施の形態の光変調器について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
実施の形態1の光変調器により画素選択を行う原理を模式的に表す断面図である。 実施の形態1の光変調器を表す平面図である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その1)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その2)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その3)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その4)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その5)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その5)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その5)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その6)である。 図1のスピン注入型磁化反転素子の製造方法を示す図(その7)である。 実施の形態2による光変調器の構成の概要図である。 図4の光変調器の個々の素子の電圧・抵抗特性を示す図である。 図4の光変調器の画素の配置を示す図である。 電圧制御と表示期間の関係を示す図(その1)である。 電圧制御と表示期間の関係を示す図(その2)である。 図4の光変調器の個々の素子の電圧とスピン反転領域の関係を示す図である。 電圧制御の方法の例を示す図である。 図10に対応した表示期間を示す図である。 実施の形態3による表示装置を示す図である。 カラー表示の動作原理を示す図である。 実施の形態4による表示装置を示す図である。 実施の形態5によるホログラフィー装置を示す図である。 実施の形態6によるホログラム記録装置を示す図である。 実施の形態7の光変調器の要部(スピン注入型磁化反転素子及び電極)を示す断面図である。 実施の形態7の光変調器の上部透明電極と下部電極との間に電流Iapを通流させてスピン注入型磁化反転素子101をスピン注入磁化反転させたときにおける磁化方向可変層による反射光のカー回転角の変化を表す特性図である。
符号の説明
10,10A 光変調器
11 磁化方向固定層
12,12A 分離層
13 磁化方向可変層
14,15 電極
16 入射光
17,18,19 偏光軸
20 電圧印加装置
21 電圧制御手段
22,23,24,25 偏光板
26 時分割照明器
27 スクリーン
30 ホログラフィー装置
31,40 レーザ光源
32,41 ビーム拡大器
33,36 レンズ
34,37 ハーフミラー
35 ミラー
37 撮像手段
50 ホログラム記録装置
51 レーザ光源
52 ビーム拡大器
53 レンズ
54 ハーフミラー
55 記録媒体
56撮像手段
57,58 ミラー

Claims (10)

  1. 入射する光を偏光する第1偏光手段と、
    アレイ状に配設された複数の画素の各々に配設され、スピン注入により磁化方向が反転され、前記第1偏光手段によって偏光された光が入射されるスピン注入型磁化反転素子と、
    前記磁化方向の反転による前記スピン注入型磁化反転素子への入射光の偏光方向の変化を検出する第2偏光手段と
    前記画素を選択するために前記スピン注入型磁化反転素子に電圧を印加する電圧印加装置と
    を含み、
    前記スピン注入型磁化反転素子は、
    電圧の印加によって磁化方向が変化する磁化方向可変層と、
    磁化方向が固定された磁化方向固定層と、
    前記磁化方向可変層と前記磁化方向固定層とを分離する分離層と
    が積層された積層構造であり、
    前記電圧印加装置は、
    前記磁化方向固定層と積層される第1電極と、
    前記磁化方向可変層と積層される第2電極と
    を備え、前記第1電極及び前記第2電極のうちの少なくとも前記入射光が入射する電極の少なくとも前記画素に含まれる部分は、透明電極材料で構成されており、
    前記第2偏光手段の検出結果に基づいて画素選択を行う、光変調器。
  2. 前記スピン注入型磁化反転素子の各々には、任意の画素を選択するための画素選択用電極が接続されており、前記磁化方向の反転は、前記画素選択用電極を介して行われる、請求項1に記載の光変調器。
  3. 前記スピン注入型磁化反転素子は、画素領域毎に配設される柱状のスピン注入素子であり、相隣接するスピン注入素子同士は、電気的及び磁気的に絶縁される、請求項1又は2に記載の光変調器。
  4. 前記スピン注入型磁化反転素子は、前記入射光を反射する層を含む、請求項1乃至のいずれか一項に記載の光変調器。
  5. 前記スピン注入型磁化反転素子へのスピン注入のためのパルス電圧の制御により、前記入射光の変調を行う、請求項1乃至のいずれか一項に記載の光変調器。
  6. 前記分離層は、前記入射光を反射する材料で構成されることを特徴とする請求項1乃至のいずれか一項に記載の光変調器。
  7. 前記スピン注入型磁化反転素子と前記偏光手段との間に配設され、時分割で前記入射光の偏光角度が可変となるシャッタをさらに含む、請求項1乃至のいずれか一項に記載の光変調器。
  8. 請求項又は記載の光変調器を含む表示装置。
  9. 2系統の入射光の干渉縞を撮像する撮像手段と、
    前記撮像手段の画像信号を、請求項1乃至のいずれか一項に記載の光変調器を用いて表示する表示手段と、を有するホログラフィー装置。
  10. 2系統の入射光を用いて記録媒体に記録するホログラム記録装置であって、
    前記記録媒体の状態の変化をモニターする撮像手段を有し、
    前記撮像手段の位相情報に基づき、前記2系統の入射光のうちの少なくとも1系統の光変調を、請求項1乃至のいずれか一項に記載の光変調器を用いて行うことを特徴とするホログラム記録装置。
JP2007201886A 2006-08-31 2007-08-02 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置 Expired - Fee Related JP4829850B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201886A JP4829850B2 (ja) 2006-08-31 2007-08-02 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006235325 2006-08-31
JP2006235325 2006-08-31
JP2007201886A JP4829850B2 (ja) 2006-08-31 2007-08-02 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置

Publications (2)

Publication Number Publication Date
JP2008083686A JP2008083686A (ja) 2008-04-10
JP4829850B2 true JP4829850B2 (ja) 2011-12-07

Family

ID=39354568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201886A Expired - Fee Related JP4829850B2 (ja) 2006-08-31 2007-08-02 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置

Country Status (1)

Country Link
JP (1) JP4829850B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181800A (ja) * 2016-03-30 2017-10-05 日本放送協会 光変調素子、空間光変調器及び表示装置
JP2017181799A (ja) * 2016-03-30 2017-10-05 日本放送協会 光変調素子、空間光変調器及び表示装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054604B2 (ja) * 2008-04-30 2012-10-24 日本放送協会 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP4939477B2 (ja) * 2008-05-01 2012-05-23 日本放送協会 多素子空間光変調器
JP5054636B2 (ja) * 2008-08-22 2012-10-24 日本放送協会 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP5054639B2 (ja) * 2008-09-01 2012-10-24 日本放送協会 光変調素子および空間光変調器
JP5054640B2 (ja) * 2008-09-01 2012-10-24 日本放送協会 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP2010232374A (ja) * 2009-03-26 2010-10-14 Nippon Hoso Kyokai <Nhk> 磁気抵抗素子ならびにこれを用いた磁気ランダムアクセスメモリおよび空間光変調器
JP5238619B2 (ja) * 2009-06-12 2013-07-17 日本放送協会 磁気光学式空間光変調器およびその製造方法
JP2011002522A (ja) * 2009-06-16 2011-01-06 Nippon Hoso Kyokai <Nhk> 光変調素子ならびにこれを用いた空間光変調器、表示装置、ホログラフィ装置、ホログラム記録装置、および撮像装置
JP2011002604A (ja) * 2009-06-18 2011-01-06 Tdk Corp スピン注入型の空間光変調素子
JP5249876B2 (ja) * 2009-08-27 2013-07-31 日本放送協会 反射型空間光変調器
JP2011060918A (ja) * 2009-09-08 2011-03-24 Nippon Hoso Kyokai <Nhk> スピン注入磁化反転素子、磁気ランダムアクセスメモリ、光変調器、表示装置、ホログラフィ装置、ホログラム記録装置および光変調器の製造方法
JP5679690B2 (ja) * 2010-04-15 2015-03-04 日本放送協会 スピン注入磁化反転素子ならびにこれを用いた磁気ランダムアクセスメモリおよび空間光変調器
JP6182030B2 (ja) * 2013-09-12 2017-08-16 日本放送協会 光変調素子の製造方法および空間光変調器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204615A (ja) * 1990-01-06 1991-09-06 Fujitsu Ltd 磁気光学素子とそれを用いた表示装置
JP4066477B2 (ja) * 1997-10-09 2008-03-26 ソニー株式会社 不揮発性ランダムアクセスメモリー装置
JP3982685B2 (ja) * 2002-02-21 2007-09-26 独立行政法人科学技術振興機構 空間光変調器
JP2004146820A (ja) * 2002-10-03 2004-05-20 Sony Corp 不揮発性ランダムアクセスメモリ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181800A (ja) * 2016-03-30 2017-10-05 日本放送協会 光変調素子、空間光変調器及び表示装置
JP2017181799A (ja) * 2016-03-30 2017-10-05 日本放送協会 光変調素子、空間光変調器及び表示装置

Also Published As

Publication number Publication date
JP2008083686A (ja) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4829850B2 (ja) 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置
JP6657111B2 (ja) 小型3d奥行取得システム
JP4920996B2 (ja) 光制御素子、表示装置及び応力測定装置
EP0811872A1 (en) Diffractive spatial light modulator and display
KR20120091414A (ko) 위상 변조기와 상호 작용하는 광을 변조하는 위상 변조기
JP2011060918A (ja) スピン注入磁化反転素子、磁気ランダムアクセスメモリ、光変調器、表示装置、ホログラフィ装置、ホログラム記録装置および光変調器の製造方法
CN111771168B (zh) 用于形成三维光场分布的光学器件、系统和方法
JP5782334B2 (ja) 空間光変調器およびその画素駆動方法
JP2008064825A (ja) 多素子空間光変調器およびこれを備えた映像表示装置
US6876481B2 (en) Spatial light modulator
JP5054595B2 (ja) レーザプロジェクタ
JP5054636B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP4551363B2 (ja) 空間光変調装置
JP5054604B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP6302759B2 (ja) 空間光変調器
JP3270075B2 (ja) 光変調素子
JPH08211423A (ja) 偏向装置及びそれを用いた画像シフト型撮像装置
JP2001343619A (ja) 空間光変調器
JP2006038944A (ja) 空間光変調器、および当該空間光変調器に用いる駆動回路、並びに当該空間光変調器の駆動方法
US20070097323A1 (en) Electro-optical wobulator
JP5054640B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP2013218142A (ja) 空間光変調器及びホログラム表示装置
JPH0588131A (ja) 磁気光学素子
JPH05134224A (ja) 磁気光学素子
JPH05134223A (ja) 磁気光学素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees