JP5054604B2 - 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置 - Google Patents

光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置 Download PDF

Info

Publication number
JP5054604B2
JP5054604B2 JP2008118278A JP2008118278A JP5054604B2 JP 5054604 B2 JP5054604 B2 JP 5054604B2 JP 2008118278 A JP2008118278 A JP 2008118278A JP 2008118278 A JP2008118278 A JP 2008118278A JP 5054604 B2 JP5054604 B2 JP 5054604B2
Authority
JP
Japan
Prior art keywords
film layer
light
light modulation
modulation element
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008118278A
Other languages
English (en)
Other versions
JP2009265561A (ja
Inventor
賢一 青島
信彦 船橋
賢司 町田
泰敬 宮本
淳 久我
紀一 河村
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2008118278A priority Critical patent/JP5054604B2/ja
Publication of JP2009265561A publication Critical patent/JP2009265561A/ja
Application granted granted Critical
Publication of JP5054604B2 publication Critical patent/JP5054604B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Holo Graphy (AREA)

Description

本発明は、磁化方向の変化を利用した光変調素子、この光変調素子を用いた光変調器、この光変調器を用いた表示装置、ホログラフィ装置及びホログラム記録装置に関する。
光変調器としては、液晶や、MEMS(Micro-Electromechanical System)と呼ばれる半導体の微細加工技術を応用して作製されるDMD(Digital Micro-Mirror Device)を用いたものが、知られている。液晶方式は、一般に、液晶分子の配向を電圧印加により反転(回転)させて光の透過をコントロールしている(例えば、非特許文献1参照)。また、DMD方式は、画素に対応した10μm程度のミラーアレイを機械的に動かすことにより、光を変調している(例えば、非特許文献2参照)。
しかしながら、液晶方式は、ホログラフィ表示装置やホログラム記録装置への応用を考えた場合に、画素の精細さや動作の高速応答性の点で問題がある。具体的には、高速型液晶と呼ばれているOCB(Optically Compensated Bend)液晶でも、応答速度は数ミリ秒に止まっている。また、液晶方式では、画像保持のためにTFT(薄膜トランジスタ(Thin Film Transistor)が必要で、高コントラストを確保するために液晶層として少なくとも2μm程度の厚さが必要であり、しかも、このような液晶層を2枚の透明板材で挟む必要があるために、最小の画素サイズとしては数ミクロン角が限度と言われている。他方、DMD方式では、応答速度は数マイクロ秒と速いものの、画素の大きさはMEMSの精度で決まり、十数ミクロン角程度が限界であるという問題がある。
そこで、磁性膜における磁化の方向の変化を用いた光変調素子が提案されている(例えば、特許文献1参照)。この特許文献1に開示された光変調素子は、磁化の方向をスピン注入磁化反転によって反転させ、入射光の偏光面をカー効果により回転させることによって光を変調するものであり、数ナノ秒という高速応答性と、サブミクロンサイズの画素による高精細な光変調を可能とするものである。
特開2008−83686号公報 T. Sonehara, H. Miura, and J. Amako: Proceeding of 12th International Display Research Conferences (1992) 315 J. Grimmett and J. Huffman, "Advancements in DLP Technology: The 10.6μm pixel and Beyond", Proc. IDW2005, pp1879-1882(2005)
しかしながら、特許文献1に開示された光変調方法では、光変調の大きさが大きくはないという問題がある。この問題を解決する1つの方法としては、磁性膜の膜厚を厚くして磁気光学効果を高める方法があるが、このような方法を用いると、反転電流が大きくなってしまう問題が生じる。別の方法としては、磁気光学効果の大きい材料、具体的には、光磁気ディスク記録媒体等に使われているような希土類金属と遷移金属とからなる合金を磁性膜に用いる方法が考えられる。しかし、希土類金属は隣接材料との反応性が高く、大気とも反応しやすいために、スピン注入磁化反転を用いる素子のように他の磁性材料や非磁性材料とからなる積層構造型の素子に適用した場合には、素子作製中に特性が変化してしまう等の問題がある。
本発明はかかる事情に鑑みてなされたものであり、応答速度が速く、画素の微小化による精細な光変調を可能とする光変調素子、この光変調素子を用いて構成される光変調器、この光変調器を用いて構成される表示装置、ホログラフィ装置及びホログラム記録装置を提供することを目的とする。
本発明に係る光変調素子は、2層以上の磁性膜層と、非磁性中間膜層と、自由磁化膜層と、保護膜層とがこの順序で積層されたスピンバルブ型またはトンネル電流型の磁気抵抗素子構造を有し、前記磁性膜層と前記自由磁化膜層における磁化の方向が膜面に垂直な方向であり、前記自由磁化膜層における磁化状態を変化させることによって前記保護膜層を介して前記自由磁化膜層へ入射する光の偏光方向に対してその反射光の偏光方向を変化させる光変調素子であって、前記自由磁化膜層が、GdFeから形成され、前記保護膜層Ru膜層のみからなり、前記自由磁化膜層に接しており、前記Ru膜層の膜厚が3〜5nmであることを特徴としている。
このような構成によれば、保護膜層は、自由磁化膜層と反応して自由磁化膜層の特性を低下させることがなく、また、自由磁化膜層の酸化を防止することができる。さらに、保護膜層は、自由磁化膜層の光磁気効果(カー回転角の大きさ)に悪影響を与えない。そのため、自由磁化膜層の特性が安定しており、かつ、カー回転角の大きな光変調素子を実現することができる。また、このような構成の光変調素子は、微細化が容易であるため、高精細な光変調を実現することができる。
なお、本発明に係る光変調素子は、所謂、スピンバルブ型またはトンネル電流型の磁気抵抗素子(MR素子)と同等の構造を有する。これらのMR素子は、周知の通り、ハードディスクドライブの磁気ヘッド等に用いられているものの、光変調のために用いられている例は皆無であり、本発明は、これらのMR素子を光変調に用い、かつ、光変調素子として用いるために十分な特性を備えるように、Ru膜を設けていることに特徴がある。
本発明に係る光変調素子では、前記保護膜層がRu膜層のみからなることが好ましい。この場合には、保護膜層は、自由磁化膜層と直接に接触し、かつ、光変調素子の積層端に位置することとなる。光変調素子の作製工程においては各層を積層した後に熱処理を施すが、このとき、耐酸化性と耐熱性に優れたRu膜層が表層に設けられているために、他の層の酸化等を効果的に防止して、各層の特性を維持することができる。また、複数層からなる保護膜を用いる場合と比較して、作製プロセスを短縮することができるという利点もある。
Ru膜層の膜厚は、3〜5nmであることが好ましい。保護膜層が3nmより薄いと酸化防止の効果が小さくなり、自由磁化膜層が劣化するおそれがある。一方、保護膜層が5nmを超えて厚くなるにしたがって光の透過率は徐々に小さくなり、自由磁化膜層へ到達する入射光量及び反射光量が低下する。
自由磁化膜層としては、希土類元素と遷移元素との金属間化合物が好適に用いられる。このような金属間化合物は、薄い膜厚でも大きな光磁気効果(カー効果)を示すからであり、特に、成膜が容易なGdFeやTbFeCoが好適に用いられる。
また、本発明に係る光変調素子は、反強磁性を示す垂直磁化材料からなる前記磁性膜層と、強磁性を示す垂直磁化材料からなる前記磁性膜層と、Cuからなる前記非磁性中間膜層と、GdFeからなる前記自由磁化膜層と、Ruからなる保護膜層とがこの順序で積層されることが好ましい。
また、本発明に係る光変調素子では、前記自由磁化膜層のGdFe膜は、GdとFeとの元素比(at%)が30対70であるGd 30 Fe 70 により形成されていることが好ましい。
本発明に係る光変調器は、このような光変調素子が二次元アレイ状に配置され、前記光変調素子を介して上下にそれぞれに配置されて、前記二次元アレイ状に配置されたそれぞれの光変調素子に電圧を印加するための一対の電極である上部電極および下部電極を備え、上部側から入射する光を変調する光変調器であって、前記上部電極が、透明電極材料で形成されていることを特徴とする。
本発明に係る光変調素子は、微細化が可能であるため、このような構成によれば、高精細な光変調を高速で行うことができる。
本発明に係る表示装置は、前記した光変調器と、この光変調器から出射した光を投影するスクリーンとを備えたことを特徴とする。
このような構成によれば、速い表示速度で高精細な画像・映像表現が可能となる。
本発明に係るホログラフィ装置は、物体光と参照光とによって形成された干渉縞を撮像する撮像手段と、前記撮像手段に記録された画像信号を前記した光変調器を用いて再生する画像再生手段と、を具備することを特徴とする。
このような構成によれば、速い表示速度で高精細な立体画像を再現することができる。
本発明に係るホログラム記録装置は、所定の情報を2系統の光を用いて記録媒体に記録するホログラム記録装置であって、前記した光変調器と、
前記2系統の光が前記記録媒体に入射する際の当該記録媒体での状態変化を位相情報として検出する撮像手段と、を備え、
前記撮像手段が検出した前記位相情報に基づき、前記2系統の光のうちの少なくとも1系統の光変調を、前記光変調器を用いて行うことを特徴とする。
このような構成によれば、記録の多重度を格段に向上させることができ、前記2系統の光の光変調をそれぞれ前記光変調器を用いて行うことにより、この効果をさらに向上させることができる。
本発明に係る光変調素子では、製造過程における特性劣化が抑えられた光磁気効果の大きな磁性材料を用いて光変調を行うため、高精細な光変調を高速に行うことができる。また、本発明によれば、このような光変調素子の特性に起因する高速応答性と高精細な光変調特性とを備えた光変調器や表示装置、ホログラフィ装置、ホログラム記憶装置を実現することができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
《光変調器》
<全体構造>
図1(a)に本発明の一実施形態に係る光変調器の概略構成を表した平面図を示し、図1(b)に図1(a)に示す矢視A−A断面図を示し、図1(c)に光変調器に用いられている光変調素子の構造を模式的に表した図を示す。
光変調器10は、基板14と、基板14上に一定間隔で平行に設けられた帯状の下部電極13と、下部電極13上に一定間隔で設けられた光変調素子11と、下部電極13とで光変調素子11を挟むように一定間隔で平行に設けられた帯状の上部透明電極12と、を備えている。上部透明電極12の上空には偏光フィルタ18が配置されており、光変調素子11からの反射光の偏光面の角度に応じて、その反射光を透過し、または、遮光する。
この光変調器10の駆動(動作)は制御装置80によって制御され、制御装置80は、複数の下部電極13の中から電圧を印加する電極を選択する下部電極選択部82と、複数の上部透明電極12の中から電圧を印加する電極を選択する上部電極選択部83と、下部電極選択部82と上部電極選択部83とに電力を供給する電源81と、下部電極選択部82と上部電極選択部83及び電源81の動作制御を司る制御部84とを備えている。以下、各構成要素について説明する。
<基板>
基板14は、下部電極13、光変調素子11及び上部透明電極12を形成するための土台となるものである。光変調器10では、後記するように、光変調素子11に入射した後に反射される光を利用するため、基板14に透光性は要求されず、下部電極13、光変調素子11及び上部透明電極12を形成(成膜)する際の成膜環境に耐えられるものであればよい。したがって、基板14としては、Siウエハ、ガラス基板、セラミックス基板等を用いることができる。
<下部電極>
下部電極13は、光変調素子11に電圧を印加するための一対の電極の片方の電極である。光変調器10では、光変調素子11を縦横に一定間隔で二次元配置する構成としているため、下部電極13は、帯状の形状を有し、一定幅かつ一定間隔で基板14上に設けられている。下部電極13を構成する材料としては、安価で導電性に優れた銅(Cu)が好適に用いられるが、これに限定されるものではなく、金(Au)や白金(Pt)等の貴金属を用いてもよい。下部電極13の幅は、下部電極13上に形成する光変調素子11の形状に合わせて、適宜、定められる。
<上部透明電極>
上部透明電極12は、光変調素子11に電圧を印加するための一対の電極の片方の電極である。光変調器10では、縦横に一定間隔で二次元配置された光変調素子11の中から選ばれる任意の素子に電圧を印加することができるように、上部透明電極12は、一定幅の帯状形状を有し、その長手方向が下部電極13の長手方向と直交するように、一定間隔で平行に配置されている。上部透明電極12としては、ITO等の透明電極材料が好適に用いられる。
<光変調素子>
光変調素子11は、下部電極13と上部透明電極12との間に一定の電圧を印加したときに、光変調素子11に入射した入射光の偏光面をカー効果により一定角度回転させて反射する役割を担う。光変調素子11の平面視〔図1(a)〕での大きさは、例えば、100nm×300nmの大きさからなり、光変調器10では、光変調素子11は、二次元マトリックス状(縦横に一定間隔で二次元配置された状態)に配置されている。より詳しくは、光変調素子11の長手方向と下部電極13の長手方向とを一致させて、光変調素子11を下部電極13上に一定間隔で配置し、かつ、下部電極13の短手方向でも光変調素子11は一定間隔で配置されている。
なお、光変調素子11の形状は長方形(矩形)に限定されるものではない。光変調素子11同士の間隔は、上部透明電極12、下部電極13及び光変調素子11の成膜技術(後述するように、半導体製造プロセスが好適に用いられる)の精度に依存し、適宜、定められる。
光変調素子11としては、所謂、スピンバルブ型またはトンネル電流型の磁気抵抗素子(MR素子)構造を有するものが用いられ、図1(c)に示されるように、下部電極13側から、第1ピンド膜層21(磁性膜層)、第2ピンド膜層22(磁性膜層)、非磁性中間膜層23、自由磁化膜層24、保護膜層25が逐次積層された構造を有しており、保護膜層25上に上部透明電極12が設けられる。光変調器10は、このような光変調素子11を二次元マトリックス状に配置することにより、メサ構造を有する。
[第1ピンド膜層と第2ピンド膜層]
第1ピンド膜層21は反強磁性を示す材料からなり、例えば、TbFeCo等の垂直磁化材料(磁化の方向が膜面に垂直な方向となる材料)が用いられる。第2ピンド膜層22は強磁性を示す材料からなる。第1ピンド膜層21に垂直磁化材料を用いるため、第2ピンド膜層22にも垂直磁化材料を用い、例えば、CoFe等を用いる。第2ピンド膜層22における磁化の向きは、第1ピンド膜層21との交換結合により固定される。
[非磁性中間膜層]
光変調素子11がスピンバルブ型の磁気抵抗素子の場合、非磁性中間膜層23として、非磁性金属であるCu等が用いられる。この場合、下部電極13と上部透明電極12との間に電圧を印加したときに、非磁性中間膜層23を流れる電子は、第1ピンド膜層21と第2ピンド膜層22による磁場の影響を受けて抵抗値が変化し、これにより自由磁化膜層24の磁化の向きに影響を与える。また、非磁性中間膜層23としては、マグネシア(MgO)やアルミナ(Al)等の絶縁体を用いることができる。その場合、光変調素子11の構造は、トンネル電流型の磁気抵抗素子(TMR素子)となる。以下、光変調器10では、光変調素子11として、スピンバルブ型の磁気抵抗素子が用いられているものとして、説明する。
[自由磁化膜層]
自由磁化膜層24は、上部透明電極12と下部電極13との間に印加される電圧の向きに応じて、スピンバルブ効果により磁化の向きが逆になる垂直磁化材料で構成される。垂直磁化材料としては、希土類元素と遷移元素との金属間化合物材料が好適に用いられる。このような金属間化合物は、薄い膜厚でも電圧が印加された際に大きなカー効果を示し、大きなカー回転角を得ることができる。より具体的には、GdFe(例えば、Gd30Fe70)やTFeCo(例えば、T 32.1Fe58.1Co9.8)等〔数値は元素比(at%)を示す〕が好適に用いられる。これらの金属間化合物は、成膜が容易という利点をも有している。
なお、GdFeでは、GdとFeの磁気モーメントが互いに反対に向き合い、その組成によって、全磁気モーメントがGdの磁気モーメントの向きになるか、Feの磁気モーメントの向きになるのかが決まる。例えば、Gd30Fe70の場合には、全磁気モーメントはGdの磁気モーメントの方向に向く。
また、希土類元素の化学的・物理的性質の類似を利用すれば、遷移金属との組み合わせによる材料変更は比較的容易であるが、希土類元素としては、得られる磁気的性質が同等である場合には、原料コストや成膜性に優れた材料を用いることが好ましい。
[保護膜層]
保護膜層25は、自由磁化膜層24の酸化を防止する役割を担う層であり、特に、光変調素子11を形成する際の熱処理(後記する)における自由磁化膜層24の酸化を防止する。また、保護膜層25を構成する材料には、熱処理の際に自由磁化膜層24を構成する材料と反応しない性質が求められる。さらに、保護膜層25には、透光性に優れ、自由磁化膜層24のカー効果を低下させない特性(換言すれば、入射光と反射光の偏光面を実質的に回転させない特性)を有していることが要求される。このような要求を満たす材料として、Ruを用いる。
保護膜層25は、Ru膜層のみからなることが好ましい。これにより、自由磁化膜層24の酸化防止を薄い膜厚で実現することができ、また、製造上も1回の成膜で済ませることができる。さらに、保護膜層25を薄く形成することができるために、自由磁化膜層24への入射光強度の低下を抑制することができる。
なお、保護膜層25は、Ru膜層と他の金属膜層との積層構造であってもよい。この場合、耐酸化性に優れる金属材料であれば、自由磁化膜層24の表面にRu膜層を設け、Ru膜層の表面に耐酸化性金属膜層を設けることができる。自由磁化膜層24の表面にRu膜以外の金属膜を設ける場合には、その金属膜と自由磁化膜層24との反応(合金化)によってカー効果の反転等が起こらない材料を選択することが好ましい。また、自由磁化膜層24への入射光強度が低下しないように、各膜の厚さを調整することが好ましい。
保護膜層25としてのRu膜層については、後に試験結果を踏まえて詳細に説明するが、単層で用いる場合には、その膜厚を3〜5nmとすることが好ましい。Ru膜層が3nmより薄いと酸化防止の効果が小さくなり、自由磁化膜層24が劣化して、カー回転角が小さくなる。一方、Ru膜層が5nmを超えて厚くなるにしたがって光の透過率が徐々に小さくなり、自由磁化膜層24へ到達する入射光量及び反射光量が低下するため、カー効果が得られなくなる。なお、保護膜層25としてのRu膜層を、他の金属膜層と積層構造にして用いる場合には、同時に用いる金属の耐酸化性等を考慮して膜厚を決定すればよいが、前記理由からRu膜層は5nm以下とすることが好ましい。
<制御装置>
下部電極選択部82は、複数の下部電極13にそれぞれ対応して設けられた複数のスイッチング素子から構成される。上部電極選択部83もこれと同様に、複数の上部透明電極12にそれぞれ対応して設けられた複数のスイッチング素子から構成される。各スイッチング素子へは電源81から一定電圧が供給されており、駆動対象となる光変調素子11に下部電極13を介して接続されているスイッチング素子及び上部透明電極12を介して接続されているスイッチング素子が、制御部84からの指令(動作信号)を受けて導通動作を行うことにより、その光変調素子11に電圧が印加される。駆動対象となっている光変調素子11の選択と、この光変調素子11を駆動するためにスイッチング素子の動作制御は、制御部84によって行われる。
電源81は電圧反転機能を備えている。つまり、下部電極13に正電圧を印加すると共に、上部透明電極12に負電圧を印加することができ、逆に、下部電極13に負電圧を印加すると共に、上部透明電極12に正電圧を印加することもできるようになっている。この電源81の電圧反転機能の制御もまた制御部84により行われる。制御部84は、所謂、コンピュータであり、図示しない中央演算装置がROMに格納されたプログラムを実行することにより、電源81、下部電極選択部82及び上部電極選択部83の動作制御が行われる。
<偏光フィルタ>
偏光フィルタ18は、図1(b)に示されるように、光変調素子11からの反射光を、その偏光面の角度によって、透過させたり遮光したりする。この図1(b)に示されている状態について、図2を参照して以下に説明する。
<光変調素子の駆動>
図2に光変調素子への電圧印加形態と自由磁化膜層のカー効果との関係を模式的に表した図を示す。図2(a),(b)にはそれぞれ、下部電極と上部透明電極とに印加する電圧の正負が逆にされた形態が示されている。図2(a),(b)に示す第1ピンド膜層21、第2ピンド膜層22及び自由磁化膜層24の各層内に示される矢印は磁化の向き(スピンの向き)を表している。
図2(a)に示すように、上部透明電極12と下部電極13との間で電流が上部透明電極12側から下部電極13側へと膜層面に垂直に流れるようにした場合には、自由磁化膜層24における磁化(スピン)の向きは、第1ピンド膜層21及び第2ピンド膜層22における磁化の向きと同じになる。一方、図2(b)に示すように、下部電極13側から上部透明電極12側へと膜層面に垂直に電流が流れるようにした場合には、自由磁化膜層24における磁化の向きは、第1ピンド膜層21及び第2ピンド膜層22における磁化の向きとは逆になる。このように、上部透明電極12と下部電極13との間で流す電流の向きによって、自由磁化膜層24における磁化の状態が変化する。この磁化の状態変化は、数ns〜数十ns(ns:ナノ秒)と極めて高速である。
偏光軸71で示される所定の偏光方向を有する入射光が、図2(a),(b)に示す各光変調素子11へ入射すると、自由磁化膜層24によるカー効果により、偏光方向が所定角度回転した反射光となって、各光変調素子11から射出される。ここでは、図2(a)の場合には偏光軸72で示される右回転方向(これを「+方向」とする)へ、図2(b)の場合には偏光軸73で示される左回転方向(これを「−方向」とする)へ、それぞれカー回転が生じる。
そこで、反射光の進行方向に、偏光軸72と平行な偏光軸を有する偏光フィルタ18を配置すると、図2(a)の場合の反射光は偏光フィルタ18を通過することができるが、図2(b)の場合の反射光は偏光フィルタ18を通過することができない状態を作り出すことができる。こうして、偏光フィルタ18を通過する反射光を、光変調素子11ごとにその自由磁化膜層24の磁化の向きを電流の向きによって制御することにより、反射光の強弱(コントラスト)を制御することができる。光変調器10は、前記の通りに上部透明電極12と下部電極13とを選択的に駆動(電圧印加)して所望の光変調素子11に電流を流すことができるようになっているため、この光変調器10を、後記する表示装置、ホログラフィ装置及びホログラム記憶装置に用いることができるようになる。
なお、自由磁化膜層24によるカー効果の大きさ(カー回転角の大きさ)によって反射光のコントラストの強弱比が決まる。図2(a),(b)に示すように、反射光を透過するかまたは遮光するかの状態の場合(つまり、カー回転角が一定角度以上ある場合)には、高いコントラストを得ることができるが、カー回転角が小さい場合には、低コントラストとなる。
また、図1(b)や図2(a),(b)では、自由磁化膜層24の膜面に垂直な方向に対して一定角度ずれた方向から光を入射させているが、カー効果を最大限に得ることができる入射光の方向は、磁化の方向と平行な方向である。したがって、光変調素子11の上空にハーフミラーを設け、そのハーフミラーを介して自由磁化膜層24の膜面に垂直な方向から光変調素子11に光を入射させ、その反射光をハーフミラーで取り出すように構成してもよい。
<光変調器の製造方法>
図3に光変調器の製造方法を模式的に示す。最初に、基板14の表面にCu等からなる下部電極13を形成する〔図3(a)〕。この下部電極13の形成は、例えば、基板14の表面に一様にスパッタ法等によりCu膜を形成し、Cu膜上に下部電極13と同じ線幅のレジストパターンを形成し、このレジストパターンをエッチングマスクとして基板表面が露出するまでCu膜をドライエッチング等した後、レジストパターンを剥離することにより、行うことができる。また、下部電極13を形成する領域を溝としたレジストパターンを先に形成し、スパッタ法によりCu膜を形成した後、レジスト膜を剥離するリフトオフ法によって下部電極13を形成してもよい。
続いて、下部電極13間の溝をアルミナ等の絶縁材料で埋める〔図3(b)〕。アルミナ膜の形成は、反応性スパッタ法やCVD法、ゾル−ゲル法等により行うことができ、必要に応じて、CMP処理等により下部電極13を含む表面を平滑にする。こうして形成された表面に、光変調素子11を構成する第1ピンド膜層21、第2ピンド膜層22、非磁性中間膜層23、自由磁化膜層24、保護膜層25(図3では各層ごとの表示を省略する)を、この順番で各層ごとに所定の膜厚でスパッタ法(例えば、マグネトロンスパッタリング)等により逐次成膜し、光変調素子11の層を形成する〔図3(c)〕。なお、光変調素子11の層を構成する各膜の材料及び厚さについては、本発明の試験結果について、後に図7〜12を参照して説明する際に、併せて説明する。
次に、基板14上に形成された光変調素子11に対して熱処理を施す。この熱処理は、光変調素子11の特性を向上させ、また、後に行われるフォトリソグラフィプロセス中における光変調素子11の特性変化を抑制するために行われる。保護膜層25に耐酸化性に優れるRu膜を用いることによって、薄い膜厚でも、この熱処理において、自由磁化膜層24の酸化を防止し、保護することができる。これにより、自由磁化膜層24の劣化によるカー効果の低下が防止されると共に、保護膜層25による入射光強度と反射高強度の低下が抑制される。しかも、Ru膜はカー回転角に実質的に悪影響を与えない。このように、保護膜層25としてRu膜を用いることは、光変調素子11の光変調性能に極めて重要な役割を果たす。
続いて、熱処理された光変調素子11の層上に、例えば、100nm×300nmのレジストパターン91をメサパターンとなるように、EB露光法等により形成する〔図3(d)〕。このレジストパターン91をエッチングマスクとして用いて、光変調素子11の層をエッチングし、その後、レジストパターン91を除去する〔図3(e)〕。これにより光変調素子11が形成される。次いで、CVD法等により、光変調素子11間をアルミナ等の絶縁材料で埋め、必要に応じてCMP処理等により光変調素子11を含む表面を平滑にする〔図3(f)〕。または、光変調素子11の層をエッチングした後に、このエッチングにより形成された溝をアルミナ等の絶縁材料で埋め、その後にリフトオフ(レジストパターン91の剥離)またはCMPを行う方法を用いてもよい。CMP処理等を行う場合には、光変調素子11の最上部に形成されている保護膜層25の厚さが所定値(好ましくは3〜5nm)に維持されるようにする。
上部透明電極12を、光変調素子11が覆われるように、かつ、下部電極13のラインパターンと直交するように、所定間隔で形成する〔図3(g)〕。この上部透明電極12の形成は、下部電極13の形成方法と同様にして行うことができる。このような製造方法を用いれば、微細な光変調素子11を高密度に配置した光変調器10を製造することができるため、表示速度が速く、高精細な画像及び映像表現が可能な光変調器10を製造することができる。
《表示装置》
図4に本発明の実施形態に係る光変調器を用いた表示装置の概略構成図を示す。この表示装置30は、光変調器10を用いたカラー対応の表示装置であり、光変調器10と、RGB時分割照明器19と、偏光フィルタ17,18と、スクリーン29を備えている。
RGB時分割照明器19は、光の三原色であるR,G,B光をそれぞれ放射する発光ダイオードや半導体レーザ等の光源を備えており、R,G,Bにそれぞれ対応する各光源が1フィールド期間内で順次点灯する構造になっている。例えば、図示しない映像信号送信装置からの信号を受けてRGB時分割照明器19を駆動させる。RGB時分割照明器19から射出された光は、偏光方向(偏光面)を揃えるための偏光フィルタ17を通して光変調器10に入射し、その際に入射光に対応する光変調素子11を駆動(電流印加)してカー効果による反射光の偏光方向制御を行う。そして、偏光フィルタ18は所定の偏光方向の反射光を強く透過し、この偏光方向と角度が偏光方向を有する光の透過を、その角度に応じて制限する。こうして、所定のコントラストを有する映像がスクリーン29に投影される。
前記した通り、光変調器10は、高速応答性を有し、微細な光変調素子11を高密度に配置した構造を有しているため、表示装置30では、速い表示速度で高精細な画像・映像表現が可能となる。
《ホログラフィ装置》
図5に本発明の実施形態に係る光変調器を用いた立体動画対応のホログラフィ装置の概略構造を示す。なお、図5では光変調器10の詳細な構造は省略しており、また、制御装置80の図示を省略している。
ホログラフィ装置40は、大別して、画像入力系と画像再生系とに分けられる。画像入力系は、レーザ光源31と、ビーム拡大器32と、レンズ33,36と、ハーフミラー34,37と、ミラー35と、撮像手段たるCCDカメラ38とを備えている。一方、画像再生系は、レーザ光源41と、ビーム拡大器42と、レンズ45と、偏光板43,44と、光変調器10とを備えている。レーザ光源31とレーザ光源41とは同等のものであり、例えば、前記した表示装置20に用いられているRGB時分割照明器19であって、半導体レーザ光源を備えたものが用いられる。
ホログラフィ装置40では、まず、画像入力にあたって、レーザ光源31から発するレーザ光をビーム拡大器32で拡大した後、レンズ33により並行光とする。このレーザ光(平行光)をハーフミラー34により、被写体に照明して物体光とするための光と、参照光とに分ける。被写体からは反射光たる物体光は、レンズ36とハーフミラー37を介して、CCDカメラ38側へ出射する。一方、参照光は、ミラー35とハーフミラー37によって反射される。こうして、ハーフミラー37から出射する物体光と参照光とが合成されて干渉縞が形成される。この干渉縞のパターンをCCDカメラ38により撮像する。なお、図5では、レンズ33から射出された光の光路を1本線で簡単に示している。
ホログラフィ装置40での画像の再生にあたっては、まず、レーザ光源41から出射したレーザ光をビーム拡大器42で拡大し、その光をレンズ45により平行にして、この平行光を光変調器10に入射させる。他方、CCDカメラ38から干渉縞パターンを記録した画像信号が光変調器10の制御装置80(図5に図示せず)に入力される。制御装置80が入力信号にしたがって光変調素子11を駆動することによって、干渉縞パターンの画像信号に対応した光変調が行われ、立体画像を再生することができる。ホログラフィ装置40では、光変調器10が用いられていることによって、速い表示速度で高精細な立体画像を再現することができる。
《ホログラム記録装置》
図6に本発明の実施形態に係る光変調器を用いたホログラム記録装置の概略構造を示す。なお、図6では光変調器10の詳細な構造は省略している。また、図6では、光の進行方向のみを示すものとし、レンズ等による光の空間的な幅の変更等の図示を省略する。
ホログラム記録装置50では、レーザ光源51(前記したレーザ光源31,41等と同等)から発するレーザ光を、ビーム拡大器52で拡大した後、レンズ53により並行光とする。この平行光(レーザ光)は、ハーフミラー54によって、信号光と参照光とに分けられる。信号光は、光変調器10により2次元ページデータに対応した光変調がなされて、記録媒体55に到達する。一方、参照光は、ミラー57を介して別の光変調器10に入射され、そこで光変調された後、ミラー58を介して記録媒体55に到達する。記録媒体55での状態変化たる波面の乱れは、位相情報として撮像手段たるCMOSカメラ56によってリアルタイムに検出される。こうしてCMOSカメラ56によって検出された位相情報に基づいて、別の光変調器10が参照光の光変調を行うことによって、記録媒体55での波面の乱れの影響をキャンセルすることができ、これにより、多重記録の精度を向上させることができる。
例えば、従来のフォトポリマー記録媒体を用いた体積ホログラム記録の場合、空気の流れ等によるシステムの温度変動や書き込み時の光重合によるフォトポリマーの収縮、収差等の光学系の不完全性等に起因して、記録媒体の波面が乱れることが、記録の多重化を妨げる要因となる場合がある。
そこで、ホログラム記録装置50では、この波面の乱れをCMOSカメラ56等の撮像手段でリアルタイムに検出し、その乱れをキャンセルするように参照光を空間的に変調する。この場合、参照光の変調は高速で行われることが好ましく、光変調器10はその用途に適する。また、ページデータの書き込みにも光変調器10を用いることができる。こうして、ホログラム記録装置50では、光の波長程度の分解能で記録媒体55での波面の乱れを制御できるため、記録の多重度を格段に向上させることができる。
次に本発明に係る光変調器を構成する光変調素子の実施例について詳細に説明するが、本発明は以下の実施例に限定されるものではない。ここでは、本発明に属さない構成についても適宜取り上げて、対比説明することとする。
《保護膜層の膜厚の最適化》
図7(a)に、Ru膜の膜厚とカー効果との関係を調べるために作製した光変調素子の概略構成を示す。基板14(Siウエハ)上に、下部電極13としてのCu電極を形成し、Cu電極上に前記した光変調素子の製造方法にしたがって、光変調素子11を形成した。光変調素子11は、マグネトロンスパッタリングにより、第1ピンド膜層21(膜厚:20nmのTbFeCo膜)、第2ピンド膜層22(膜厚1nmのCoFe膜)、非磁性中間膜層23(膜厚6nmのCu膜)、自由磁化膜層24(膜厚:5nmのGdFe膜)、保護膜層25(Ru膜)を、この順序で積層形成することにより行い、保護膜層25の膜厚を種々に変えた。
本試験では、Ru膜よる自由磁化膜層24の酸化防止効果を確認するために、本来は保護膜層25上に形成すべき上部透明電極を設けずに、直接に光変調素子11に磁界を印加して自由磁化膜層24の磁化の向きを調整することにより、自由磁化膜層24の磁気光学特性(カー効果)を測定することとした。カー効果の測定は、熱処理前と熱処理後(真空中、190℃×1時間)にそれぞれ、カー効果測定装置(レーザ波長:780nm)を用い、外部磁界±1kOeを印加して行った。結果を図7(b)に示す。
図7(b)に示されるように、Ru膜の膜厚が、大凡、2〜6nmの範囲で大きなカー回転角(絶対値)が得られていることがわかる。Ru膜の膜厚が3nmから厚くなるにしたがってカー回転角が小さくなる傾向は、熱処理前と熱処理後とで同じであり、これは、Ru膜の膜厚が厚くなることによってRu膜の反射率が大きくなり、自由磁化膜層24へ入射する光が少なくなることに起因すると考えられる。一方、Ru膜の膜厚が3nmよりも薄い場合のカー回転角の減少は、Ru膜の膜厚が薄いために、熱処理前では測定雰囲気(空気中)に放置されることにより自由磁化膜層24が酸化され、熱処理後では熱処理時に自由磁化膜層24が酸化されたことに起因すると考えられる。Ru膜の膜厚が1nmの場合には、熱処理による自由磁化膜層24の劣化が大きいために、カー回転角の大きさ(絶対値)は、熱処理後の方が熱処理前よりも下がっている。この試験結果からは、Ru膜の膜厚は、好ましくは3〜5nmであり、さらに好ましくは3nmであることがわかる。なお、熱処理前と熱処理後とでは、偏光面の回転方向が逆になっている。この現象の詳細はわかっていないが、自由磁化膜層24の成分であるGdが隣接する材料と反応することで、自由磁化膜層24中のGdFe組成におけるFe量が相対的に増加したことによるものと考えられる。
《保護膜層の構成とカー効果との関係》
<試料作製と試験条件>
図8〜図12に、作製した各種の光変調素子について、印加した磁場の大きさと測定されたカー回転角との関係〔各図(a):熱処理前、各図(b):熱処理後〕と、その光変調素子構造〔各図(c)〕を示す。図8〜図12に示される各光変調素子は、第1ピンド膜層21が膜厚:20nmのTbFeCo膜、第2ピンド膜層22が膜厚:1nmのCoFe膜、非磁性中間膜層23が膜厚:6nmのCu膜、自由磁化膜層24が膜厚:6nmのGdFe膜であり、保護膜層25を種々に変えた。
前記した《保護膜層の膜厚の最適化》の試験と同様に、真空中、190℃×1時間の熱処理前と熱処理後とで、カー効果を測定した。ここでも、上部透明電極は形成せずに、自由磁化膜層24に印加する磁場の大きさで、自由磁化膜層24における磁化の向きを制御した。このとき、図2(a)に示したように、正の磁界でカー回転角が正に出るように、実験系を設定した。
<試験結果−実施例1>
図8に、保護膜層としてRu膜を用いた実施例1の試験結果を示す。Ru膜の膜厚は3nmである。図8(a),(b)に示されるように、熱処理前と熱処理後のいずれの場合でもカー効果が観察され、正磁界での回転角も正であり、カー効果の反転も生じていない。よって、Ru膜を保護膜層25として用いる光変調素子は、光変調器に有用である。
<試験結果−実施例2>
図9に、保護膜層としてRuとCuの2層膜を用いた実施例2の試験結果を示す。Ru膜とCu膜の膜厚はそれぞれ3nmである。図9と後記する図12とを対比すると明らかなように、Ru膜を最表面に形成することによってカー効果が得られていることから、Ru膜が自由磁化膜層24の酸化を防止している。図9(a)に示されるように、熱処理前の状態では、カー回転角の低下や反転は生じていないが、図9(b)に示されるように、熱処理後に、カー回転角の反転が生じている。このカー効果の反転は、GdFeと接するCuがGdと反応することによりGdCu合金となり、磁気モーメントが失われる影響で、磁気的に、Gdリッチな組成からFeリッチな組成へと変化したためと考えられる。
<試験結果−比較例1>
図10に、保護膜層としてRuとTaの2層膜を用いた比較例1の試験結果を示す。Ru膜とTa膜の膜厚はそれぞれ5nmである。図10(a)に示されるように、熱処理前(成膜後)では、正磁界でのカー回転角が負となり、カー効果の反転が生じている。このようなカー効果の反転が生じるような大きな変化は、光変調器として応用する場合に望ましくない。なお、図10(b)に示されるように、熱処理によるカー効果の反転はない。
<試験結果−比較例2>
図11に、保護膜層としてPt膜を用いた比較例2の試験結果を示す。Pt膜の膜厚は3nmである。図11(a)に示されるように、熱処理前には自由磁化膜層24のカー効果が観察されたが、比較例1と同様に、カー効果の反転が起こっている。また、図11(b)に示されるように、熱処理後には自由磁化膜層24のカー効果が著しく失われていることがわかる。すなわち、熱処理によってGdFeが酸化されて磁性を示さなくなったと考えられる。
<試験結果−比較例3>
図12に、保護膜層としてCu膜を用いた比較例3の試験結果を示す。Cu膜の膜厚は3nmである。図12(a),(b)に示されるように、カー回転角はほとんど観察されず、熱処理前でさえも自由磁化膜層24のカー効果が著しく失われていることがわかる。これは、膜厚が3nmのCuのキャッピングでは、GdFeの酸化を防止することができず、GdFeが酸化されて磁性を示さなくなったことが原因と考えられる。
(a)は本発明の一実施形態に係る光変調器の概略構成を示す平面図であり、(b)は(a)に示す矢視A−A断面図であり、(c)は光変調器に用いられている光変調素子の構造を模式的に示す図である。 光変調素子への電圧印加形態と自由磁化膜層のカー効果との関係を模式的に示す図であり、(a),(b)はそれぞれ下部電極と上部透明電極とに印加する電圧の正負を逆にした場合の模式図である。 光変調器の製造方法を模式的に示す図であり、(a)〜(g)はそれぞれ所定の製造段階での構成を示した模式図である。 本発明に係る光変調器を用いた表示装置の概略構造図である。 本発明に係る光変調器を用いた立体動画対応のホログラフィ装置の概略構造図である。 本発明に係る光変調器を用いたホログラム記録装置の概略構造図である。 (a)は作製した光変調素子の概略構成を示す図であり、(b)はRu膜の膜厚とカー効果との関係を示す図である。 実施例1に係る光変調素子のカー効果について、(a),(b)はカー回転角と磁場の大きさとの関係を示すグラフであり、(b)は素子構造を示す図である。 実施例2に係る光変調素子のカー効果について、(a),(b)はカー回転角と磁場の大きさとの関係を示すグラフであり、(b)は素子構造を示す図である。 比較例1に係る光変調素子のカー効果について、(a),(b)はカー回転角と磁場の大きさとの関係を示すグラフであり、(b)は素子構造を示す図である。 比較例2に係る光変調素子のカー効果について、(a),(b)はカー回転角と磁場の大きさとの関係を示すグラフであり、(b)は素子構造を示す図である。 比較例3に係る光変調素子のカー効果について、(a),(b)はカー回転角と磁場の大きさとの関係を示すグラフであり、(b)は素子構造を示す図である。
符号の説明
10 光変調器
11 光変調素子
12 上部透明電極
13 下部電極
14 基板
18 偏光フィルタ
19 GRB時分割照明器
21 第1ピンド膜層(磁性膜層)
22 第2ピンド膜層(磁性膜層)
23 非磁性中間膜層
24 自由磁化膜層
25 保護膜層
30 表示装置
40 ホログラフィ装置
50 ホログラム記憶装置
70 偏光軸
71 (正方向)回転した偏光軸
72 (負方向)回転した偏光軸

Claims (8)

  1. 2層以上の磁性膜層と、非磁性中間膜層と、自由磁化膜層と、保護膜層とがこの順序で積層されたスピンバルブ型またはトンネル電流型の磁気抵抗素子構造を有し、前記磁性膜層と前記自由磁化膜層における磁化の方向が膜面に垂直な方向であり、前記自由磁化膜層における磁化状態を変化させることによって前記保護膜層を介して前記自由磁化膜層へ入射する光の偏光方向に対してその反射光の偏光方向を変化させる光変調素子であって、
    前記自由磁化膜層は、GdFeから形成され、
    前記保護膜層Ru膜層のみからなり、前記自由磁化膜層に接しており、
    前記Ru膜層の膜厚が3〜5nmであることを特徴とする光変調素子。
  2. 反強磁性を示す垂直磁化材料からなる前記磁性膜層と、
    強磁性を示す垂直磁化材料からなる前記磁性膜層と、
    Cuからなる前記非磁性中間膜層と、
    GdFeからなる前記自由磁化膜層と、
    Ruからなる保護膜層とがこの順序で積層されたことを特徴とする請求項1に記載の光変調素子。
  3. 前記自由磁化膜層のGdFe膜は、GdとFeとの元素比(at%)が30対70であるGd 30 Fe 70 により形成されていることを特徴とする請求項1または請求項2に記載の光変調素子。
  4. 請求項1から請求項のいずれか1項に記載の光変調素子が二次元アレイ状に配置され、前記光変調素子を介して上下にそれぞれに配置されて、前記二次元アレイ状に配置されたそれぞれの光変調素子に電圧を印加するための一対の電極である上部電極および下部電極を備え、上部側から入射する光を変調する光変調器であって、
    前記上部電極は、透明電極材料で形成されていることを特徴とする光変調器。
  5. 請求項に記載の光変調器と、
    前記光変調器から出射した光を投影するスクリーンと、を備えたことを特徴とする表示装置。
  6. 物体光と参照光とによって形成された干渉縞を撮像する撮像手段と、
    前記撮像手段に記録された画像信号を前記請求項に記載の光変調器を用いて再生する画像再生手段と、を具備することを特徴とするホログラフィ装置。
  7. 所定の情報を2系統の光を用いて記録媒体に記録するホログラム記録装置であって、
    前記請求項に記載の光変調器と、
    前記2系統の光が前記記録媒体に入射する際の当該記録媒体での状態変化を位相情報として検出する撮像手段と、を備え、
    前記撮像手段が検出した前記位相情報に基づき、前記2系統の光のうちの少なくとも1系統の光変調を前記光変調器を用いて行うことを特徴とするホログラム記録装置。
  8. 前記2系統の光の光変調をそれぞれ前記光変調器を用いて行うことを特徴とする請求項に記載のホログラム記録装置。
JP2008118278A 2008-04-30 2008-04-30 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置 Expired - Fee Related JP5054604B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118278A JP5054604B2 (ja) 2008-04-30 2008-04-30 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118278A JP5054604B2 (ja) 2008-04-30 2008-04-30 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置

Publications (2)

Publication Number Publication Date
JP2009265561A JP2009265561A (ja) 2009-11-12
JP5054604B2 true JP5054604B2 (ja) 2012-10-24

Family

ID=41391455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118278A Expired - Fee Related JP5054604B2 (ja) 2008-04-30 2008-04-30 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置

Country Status (1)

Country Link
JP (1) JP5054604B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218043B (zh) 2014-09-05 2018-03-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444241B2 (ja) * 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
JP4829850B2 (ja) * 2006-08-31 2011-12-07 日本放送協会 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置
JP4939149B2 (ja) * 2006-09-05 2012-05-23 日本放送協会 多素子空間光変調器およびこれを備えた映像表示装置
JP2008091551A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 磁気抵抗効果素子、磁気記憶装置、および磁気メモリ装置

Also Published As

Publication number Publication date
JP2009265561A (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4829850B2 (ja) 光変調器、表示装置、ホログラフィー装置、及びホログラム記録装置
JP2011060918A (ja) スピン注入磁化反転素子、磁気ランダムアクセスメモリ、光変調器、表示装置、ホログラフィ装置、ホログラム記録装置および光変調器の製造方法
JP2010020114A (ja) 磁気光学式空間光変調器
JP5782334B2 (ja) 空間光変調器およびその画素駆動方法
JP2008064825A (ja) 多素子空間光変調器およびこれを備えた映像表示装置
JP5507894B2 (ja) 磁気光学素子と光変調器と磁気光学制御素子及び画像表示装置
JP5054604B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JPH118120A (ja) 磁気光学素子
JP6017190B2 (ja) 光変調素子の製造方法
JP7174564B2 (ja) 磁壁移動型デバイスのデータ記録方法および記録装置
JP5054640B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP2010232374A (ja) 磁気抵抗素子ならびにこれを用いた磁気ランダムアクセスメモリおよび空間光変調器
JP5054636B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP5679690B2 (ja) スピン注入磁化反転素子ならびにこれを用いた磁気ランダムアクセスメモリおよび空間光変調器
JP6017165B2 (ja) 空間光変調器
JP5281522B2 (ja) 空間光変調器
JP5873363B2 (ja) 光変調素子および空間光変調器
JP2012230143A (ja) スピン注入型磁化反転素子、光変調素子および空間光変調器
JP2012141402A (ja) 空間光変調器
JP2017054009A (ja) 空間光変調器
JP2011180355A (ja) 光変調素子および空間光変調器
JP2010060586A (ja) 光変調素子および空間光変調器
JP5581171B2 (ja) 光変調素子およびこれを用いた空間光変調器
JP2009092968A (ja) 空間光変調素子
JP5836857B2 (ja) 光変調素子および空間光変調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees