JP4784969B2 - マスクブランク用のガラス基板の製造方法、マスクブランクの製造方法、反射型マスクブランクの製造方法、露光用マスクの製造方法、及び反射型マスクの製造方法 - Google Patents

マスクブランク用のガラス基板の製造方法、マスクブランクの製造方法、反射型マスクブランクの製造方法、露光用マスクの製造方法、及び反射型マスクの製造方法 Download PDF

Info

Publication number
JP4784969B2
JP4784969B2 JP2005094844A JP2005094844A JP4784969B2 JP 4784969 B2 JP4784969 B2 JP 4784969B2 JP 2005094844 A JP2005094844 A JP 2005094844A JP 2005094844 A JP2005094844 A JP 2005094844A JP 4784969 B2 JP4784969 B2 JP 4784969B2
Authority
JP
Japan
Prior art keywords
glass substrate
mask blank
mask
polishing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005094844A
Other languages
English (en)
Other versions
JP2005316448A (ja
Inventor
康孝 栃原
今朝広 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005094844A priority Critical patent/JP4784969B2/ja
Publication of JP2005316448A publication Critical patent/JP2005316448A/ja
Application granted granted Critical
Publication of JP4784969B2 publication Critical patent/JP4784969B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、マスクブランク用のガラス基板、マスクブランク、マスクブランク用のガラス基板の製造方法、及び研磨装置に関する。
半導体デバイス等の半導体装置に形成される電子回路は、転写マスクに形成されたマスクパターンを回路原板とし、露光等の方法によりこのマスクパターンを転写して形成されている。電子回路は、近年、急速に高密度化、高精度化が図られている。従って、転写マスクに形成されるマスクパターンについても、高密度化、高精度化が図られている。このような観点から、この転写マスクを製造するためのマスクブランク及びマスクブランク用のガラス基板も、高精度に製造される必要がある。
従来、このようなマスクブランクや、マスクブランク用のガラス基板を得る方法としては、例えば、下記特許文献1に記載の技術や、特許文献2に記載の技術が提供されている。
例えば、特許文献1に記載の技術においては、ブラシ毛を備える回転ブラシを利用して、例えば板状体の端部を所定の方法を用いて研磨することにより、高精度の仕上げ面を効率よく得ている。また、例えば特許文献2に記載の技術においては、板状ガラス基板の面取斜面部を含む領域をブラッシングし、稜線部分を丸く形成せしめることにより、マスク基板の製造工程中において、欠け等が生じることを防止している。
特許第2585727号公報 特許第2866684号公報
最近では、半導体デバイスの電子回路の線幅を、極めて微細化することが求められている。例えば、65nmデザインルールで製造される半導体装置や、65nmデザインルール以下の、例えば45nmデザインルールで製造される半導体装置が要求されるようになってきた。従って、転写マスク、マスクブランク、マスクブランク用のガラス基板においても、従来に要求されていた精度や清浄度では必ずしも十分とは言えない状況になってきた。
また、転写マスクとしても、従来から用いられているKrFエキシマレーザー光(波長248nm)で露光するための転写マスクに代替して、ArFエキシマレーザー光(波長193nm)やFエキシマレーザー光(波長157nm)等の波長の短い光で露光するための転写マスクが盛んに開発されている。更には、EUV光(extreme ultraviolet rays)を用いて転写を行う反射型の転写マスクについても盛んに開発が行われている。このEUV光としては、例えば、波長が0.2nm〜100nm程度の極紫外光が利用される。
このような短波長光を用いる場合、マスクブランク又はマスクブランク用のガラス基板において、これまでは問題とされなかった欠陥やパーティクルが問題となる場合がある。
そこで、本発明 は、上記の課題を解決できる、マスクブランク用のガラス基板、マス
クブランク、マスクブランク用のガラス基板の製造方法、及び研磨装置を提供することを目的とする。
また、本発明は、例えば65nmデザインルール或いはそれ以下である、従来に比べて微細なデザインルールで製造される半導体デバイス等を製造する場合において、特に好適な転写マスクの得られるマスクブランク、マスクブランクの製造方法、マスクブランク用のガラス基板、マスクブランク用のガラス基板の製造方法、及びマスクブランク用のガラス基板の研磨装置を提供することを第2の目的とする。
更に、本発明は、ArFエキシマレーザ露光型マスク、F2エキシマレーザ露光型マスク、又は反射型マスク等の、従来に比べてより短波長の光を利用して露光する転写マスクを製造する場合において、特に好適なマスクブランク、マスクブランクの製造方法、マスクブランク用のガラス基板、マスクブランク用のガラス基板の製造方法、及びマスクブランク用のガラス基板の研磨装置を提供することを第3の目的とする。
本発明者が上述の課題について鋭意研究を行ったところ、従来用いられていたマスクブランク用のガラス基板の研磨においては、端面部分、特に角部近傍に隣接して存在する端面の曲面状の部分を鏡面とすることが困難であることが原因の一つであると突き止めた。更に、面取斜面部分の鏡面品質が不十分であることも原因の一つであることを突き止めた。具体的には、ガラス基板の端面の曲面状の部分や、面取斜面部分の鏡面品質が不十分であることにより、マスクブランク用のガラス基板主表面の鏡面研磨で用いた研磨砥粒が洗浄で完全に除去しきれずに残留し、発塵の原因となり、マスクブランクやマスクブランク用の基板における欠陥、パーティクルとなったり、また、工程間搬送や、収納ケース出し入れ時に、搬送治具や収納ケースの基板保持部等が上記端面部分に接触することにより発塵し、マスクブランクやマスクブランク用の基板における欠陥、パーティクルとなることがわかった。また、マスクブランク用のガラス基板は、マスクパターンを形成するための薄膜を対向主表面上にスパッタリング等で成膜する際、基板ホルダーにセットして成膜が行われる。マスクパターンを形成するための薄膜は、EB描画の際にチャージアップ防止のためにガラス基板の面取斜面部分まで通常成膜される。また、スパッタ粒子がガラス基板の端面の曲面状の部分にまで回りこむことがある。これらの面取斜面部分や曲面状の部分の鏡面品質が不十分だと、これらの箇所に形成された薄膜の膜付着力が十分でないことにより、膜剥がれが発生し、発塵の原因となり、マスクブランクにおける欠陥、パーティクルとなることがわかった。薄膜の膜付着力が弱いことの原因としては、ガラス基板の対向主表面に比べて、面取斜面部分や曲面状の部分に形成される膜厚が非常に薄いこと、基板ホルダーからの脱ガスが原因により、基板ホルダーに近い面取斜面部分や曲面状の部分に形成された薄膜の組成が変化すること等が考えられる。
本発明は、この知見を元にして完成されたものである。本発明は、以下の構成を有するものである。
(構成1)対向主表面と、該対向主表面の外縁に隣接する端面を有するガラス基板であって、ガラス基板を平面視したときに、該基板の角部近傍に隣接する曲面状の端面部分を備え、この曲面状の端面部分は、算術平均表面粗さRaで0.5nm以下である鏡面とされた、マスクブランク用のガラス基板。
(構成2)対向主表面と、該対向主表面の外縁に隣接する端面を有するガラス基板であって、前記端面は、側面部と、この側面部と主表面との間に形成された面取斜面部を備え、この面取斜面部は、算術平均表面粗さRaで0.5nm以下である鏡面とされた、マスクブランク用のガラス基板。
(構成3)構成1又は2に記載のマスクブランク用のガラス基板であって、前記主表面は、算術平均粗さRaで0.2nm以下である鏡面とされた、マスクブランク用のガラス基板。
(構成4)構成1乃至3の何れかに記載のマスクブランク用のガラス基板の少なくとも前記対向主表面の一方に、マスクパターンを形成するための薄膜が成膜されたマスクブランク。
(構成5)構成1乃至3の何れかに記載のマスクブランク用のガラス基板の少なくとも前記対向主表面の一方、及び、前記面取斜面部及び/又は前記曲面状の端面部分に、マスクパターンを形成するための薄膜が成膜されたマスクブランク。
(構成6)表面がガラス基板よりも軟質な材料からなる回転可能な円筒状部材をガラス基板の外縁に隣接する端面に接触させて、該端面を鏡面にするマスクブランク用のガラス基板の製造方法であって、前記円筒状部材の回転軸を前記ガラス基板の主表面に対して交差する方向に配向させ、前記円筒状部材と前記ガラス基板の端面とを、前記外縁に沿って相対的に移動させるとともに、前記ガラス基板の角部近傍に隣接する少なくとも一つの端面部分を鏡面にすることを特徴とする、マスクブランク用のガラス基板の製造方法。
(構成7)表面がガラス基板よりも軟質な材料からなる回転可能な円筒状部材をガラス基板の外縁に隣接する端面に接触させて、該端面を鏡面にするマスクブランク用のガラス基板の製造方法であって、前記端面は、側面部と、この側面部と主表面との間に形成された面取斜面部を有し、前記円筒状部材の回転軸を該面取斜面部の短手方向に配向させ、前記円筒状部材と前記ガラス基板の端面とを、前記外緑に沿って相対的に移動させるとともに、前記面取斜面部を鏡面にすることを特徴とする、マスクブランク用のガラス基板の製造方法。
(構成8)構成6又は7に記載のマスクブランク用のガラス基板の製造方法であって、前記端面にコロイダルシリカ研磨砥粒を供給して鏡面研磨することを特徴とするマスクブランク用のガラス基板の製造方法。
(構成9)構成6乃至8の何れか1に記載のマスクブランク用のガラス基板の製造方法であって、前記円筒状部材により前記端面を鏡面にした後に、前記ガラス基板の主表面にコロイダルシリカ研磨砥粒を供給して主表面の鏡面研磨を行うマスクブランク用のガラス基板の製造方法。
(構成10)ガラス基板の端面に研磨ブラシを接触させて、研磨ブラシとガラス基板の端面とを相対的に移動させるブラシ研磨加工を行い、その後に、構成6又は7に記載の端面を鏡面にすることを特徴とする、マスクブランク用のガラス基板の製造方法。
(構成11)構成6乃至10の何れかに記載のマスクブランク用のガラス基板の製造方法により得られたガラス基板の少なくとも前記対向主表面の一方に、マスクパターンを形成するための薄膜を成膜する、マスクブランクの製造方法。
(構成12)構成6乃至10の何れかに記載のマスクブランク用のガラス基板の製造方法により得られたガラス基板の少なくとも前記対向主表面の一方、及び、前記面取斜面部及び/または前記曲面状の端面部分に、マスクパターンを形成するための薄膜を成膜する、マスクブランクの製造方法。
(構成13)マスクブランク用のガラス基板を研磨する研磨装置であって、表面がガラス基板よりも軟質な材料からなる回転可能な円筒状部材と、前記円筒状部材の回転軸を前記マスクブランク用ガラス基板の主表面に対して交差する方向に配向させて、前記円筒状部材を保持する円筒状部材保持部と、前記ガラス基板の外縁に隣接する端面に前記円筒状部材を接触させながら、前記円筒状部材と前記ガラス基板の端面とを、前記外縁に沿って相対的に移動させることにより、前記円筒状部材に、前記ガラス基板の角部近傍に隣接する少なくとも一つの端面部分を研磨させる研磨制御部とを備える研磨装置。
(構成14)主表面の外縁に隣接する端面であって、側面部と、この側面部と主表面との間に形成された面取斜面部を有する端面を備えるマスクブランク用のガラス基板を研磨する研磨装置であって、表面がガラス基板よりも軟質な材料からなる回転可能な円筒状部材と、前記円筒状部材の回転軸を前記面取斜面部の短手方向に配向させて、前記円筒状部材を保持する円筒状部材保持部と、前記ガラス基板の前記面取斜面部に前記円筒状部材を接触させながら、前記円筒状部材と前記ガラス基板の端面とを、前記外緑に沿って相対的に移動させることにより、前記円筒状部材に、前記面取斜面部を研磨させる研磨制御部とを備える研磨装置。
本発明によれば、短波長光を用いて半導体デバイスを製造するのに適したマスクブランク、及び/又はマスクブランク用ガラス基板の提供することができる。また、マスクブランク用ガラス基板の端面を、高い精度で鏡面研磨することができる。また、マスクブランク用ガラス基板の端面を研磨するのに適した研磨装置を、提供することができる。
以下、本発明に係る実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施形態に係るガラス基板10の一例を示す。図1(a)は、ガラス基板10の斜視図である。図1(b)は、ガラス基板10の断面図である。ガラス基板10は、マスクブランク用のガラス基板であり、例えば石英ガラスにより形成される。本例は、例えばArFレーザー光(波長193nm)、又はFレーザー光(波長157nm)等の短波長光を用いて半導体デバイスを製造するのに適したマスクブランク、及び/又はマスクブランク用ガラス基板の提供を目的とする。
本例において、ガラス基板10は、四角形状の板状体であり、2つの対向主表面2と、端面1とを有する。2つの対向主表面2は、この板状体の上面及び下面であり、互いに対向するように形成されている。また、2つの対向主表面2の少なくとも一方は、マスクパターンが形成されるべき主表面である。
端面1は、この板状体の側面であり、対向主表面2の外縁に隣接する。本例において、端面1は、平面状の端面部分1d、及び曲面状の端面部分1fを有する。平面状の端面部分1dは、一方の対向主表面2の辺と、他方の対向主表面2の辺とを接続する面であり、側面部1a、及び面取斜面部1bを含む。側面部1aは、平面状の端面部分1dにおける、対向主表面2とほぼ垂直な部分(T面)である。面取斜面部1bは、側面部1aと対向主表面2との間における面取りされた部分(C面)であり、側面部1aと対向主表面2との間に形成される。
曲面状の端面部分1fは、ガラス基板10を平面視したときに、ガラス基板10の角部10a近傍に隣接する部分(R部)であり、側面部1c及び面取斜面部1eを含む。ここで、ガラス基板10を平面視するとは、例えば、対向主表面2と垂直な方向から、ガラス基板10を見ることである。また、ガラス基板10の角部10aとは、例えば、対向主表面2の外縁における、2辺の交点近傍である。2辺の交点とは、2辺のそれぞれの延長線の交点であってよい。本例において、曲面状の端面部分1fは、ガラス基板10の角部10aを丸めることにより、曲面状に形成されている。
側面部1cは、平面状の端面部分1dの側面部1aに接続される曲面であり、この側面部1cを挟んで隣接する2つの側面部1aを、滑らかに接続する。側面部1cは、側面部1aとほぼ同じ幅を有してよい。面取斜面部1eは、側面部1cと対向主表面2との間における、面取りされた部分(R部のC面)である。面取斜面部1eは、面取斜面部1bとほぼ同じ幅を有してよい。
本例のガラス基板10は、ArFエキシマレーザー露光型マスク、F2エキシマレーザー露光型マスク又は反射型マスクとされるマスクブランク用のガラス基板である。ガラス基板10は、65nmデザインルールの半導体製造用として使用されるマスクパターンが形成されるマスクブランク用のガラス基板であってよい。
また、ガラス基板10は、例えば45nmデザインルール等の、65nmデザインルールの半導体製造用として使用されるマスクパターンよりも微細なマスクパターンが形成されるマスクブランク用のガラス基板であってもよい。ガラス基板10は、縮小露光用のレチクルとされるマスクブランク用のガラス基板であってもよい。ガラス基板10は、例えば、超紫外線(EUV:extreme ultraviolet rays)露光型マスクとされるマスクブランク用のガラス基板であってもよい。この超紫外線露光型マスクは、反射型マスクであってよい。また、超紫外線(EUV光)とは、例えば、波長が0.2nm〜100nm程度の極紫外光であってよい。
図2は、ガラス基板10を製造する製造方法の一例を示すフローチャートである。本例の製造方法は、最初に、石英ガラスで形成された、四角形状の基板を準備する(S102)。この基板は、例えば、ガラス基板10を製造するための荒ずり(粗研削)後のガラス基板であり、例えば、面取り加工され、かつ所定の端面(側面部及び/又は面取斜面部)表面粗さに仕上げられている。
そして、次に、酸化セリウム(CeO)研磨砥粒を用いて、1回目の端面研磨を行う(S104)。この酸化セリウム研磨砥粒は、例えばクラスタサイズで1μm程度の大きさを有する。本例において、工程104は、ガラス基板10の端面1となるべき面(以下、基板の端面という)を、例えば、研磨ブラシを用いて研磨する。
そして、次に、SiC研磨砥粒及びAl研磨砥粒を用いて、ガラス基板10の対向主表面2となるべき面(以下、基板の主表面という)に対して、主表面ラッピングを行う(S106)。本例において、工程S106は、最初にSiC研磨砥粒を用いてラッピングを行い、その後に、Al研磨砥粒を用いてラッピングを行う。
そして、次に、研磨パッド及び酸化セリウム研磨砥粒を用いて、主表面研磨を行う(S108)。工程S108は、基板の主表面に対する、一次ポリシング工程である。
そして、次に、研磨ブラシ及び酸化セリウム研磨砥粒を用いて、基板の端面に対する2回目の研磨を行う(S110)。工程110は、例えば、ガラス基板の端面に研磨ブラシを接触させて、研磨ブラシとガラス基板の端面とを相対的に移動させるブラシ研磨加工を行う。
そして、次に、研磨パッド及び酸化セリウム研磨砥粒を用いて、基板の主表面を、更に研磨する(S112)。工程S112は、例えば二次ポリシング工程等の、基板の主表面に対する、鏡面研磨前の仕上げの研磨工程である。
そして、次に、基板の端面に対する3回目の研磨として、端面にコロイダルシリカ研磨砥粒を供給しながら表面がガラス基板よりも軟質な材料からなる回転可能な円筒状部材を用い、端面を鏡面研磨する(S114)。円筒状部材は、具体的には、円筒状のウレタン表面を研磨パッドを作製するのと同様の方法により発泡させ微小孔が形成された円筒状の研磨パッドや、円筒状支持部材の表面に研磨パッドを固定させたものが研磨パッドが挙げられる。これにより、ガラス基板10の端面1を鏡面に仕上げる。この研磨パッドは、例えば発泡ウレタンにより形成される。この研磨パッドは、AskerC硬度で55程度の硬度を有するのが好ましい。また、コロイダルシリカ研磨砥粒は、例えば粒子径40nm程度(例えば20〜100nm、より好ましくは30〜50nm)であるのが好ましい。また、スラリーはアルカリ性とするのが好ましく、スラリーPHは、10.2程度(例えば9〜12、より好ましくは10.0〜10.5)とするのが好ましい。
そして、工程S114において研磨パッド等の表面がガラス基板よりも軟質な材料からなる円筒状部材により端面を研磨した後に、この基板の主表面にコロイダルシリカ研磨砥粒を供給して、研磨パッドにより、主表面の鏡面研磨を行う(S116)。これにより、ガラス基板10の対向主表面2を鏡面に仕上げる。本例において、対向主表面2は、算術平均粗さRaで0.2nm以下である鏡面とされる。
本例によれば、基板の主表面及び端面のそれぞれに対し、酸化セリウム及びコロイダルシリカを順次用いた研磨を行うことにより、ガラス基板10の対向主表面2及び端面1を、高い精度で仕上げることができる。
尚、上述のS104の1回目の端面研磨は省略しても構わない。
ここで、例えば対向主表面2に対して端面1の表面粗さが大きい場合、対向主表面2の精度を高めたとしても、端面1からの発塵等により、問題が生じてしまう場合がある。しかし、本例によれば、対向主表面2及び端面1の両方を、高い精度で鏡面研磨することにより、端面1からの発塵を、適切に防止することができる。
本例によれば、主表面の鏡面研磨の前に予め、端面、特に、端面の曲面状部分や端面の面取斜面部分を確実に所定の鏡面としているので、例えば、主表面の鏡面研磨で用いた研磨砥粒が端面に残留する問題を防止することもできる。このため、マスクブランク用のガラス基板、マスクブランクの発塵を低減することができる。これにより、後工程、又は露光環境での発塵を、適切に防ぐことができる。
また、本例によれば、対向主表面2及び端面1の両方を、高い精度で鏡面研磨すること、また、主表面の鏡面研磨の前に予め、端面、特に、端面の曲面状部分や端面の面取斜面部分を確実の所定の鏡面としているので、ガラス基板上にマスクパターンを形成するための薄膜をスパッタリング等で成膜する際、対向主表面だけでなく、端面の曲面状部分や端面の面取斜面部分に上記薄膜が形成されても、薄膜の膜付着力が十分となり、膜剥がれが発生せず、マスクブランクにおける欠陥、パーティクル発生を適切に防ぐことができる。
図3及び図4は、工程S114を更に詳しく説明する図である。図3は、工程S114で用いられる研磨装置100の構成の一例を示す側面図である。尚、以下の説明において、ガラス基板10の端面1及び対向主表面2とは、端面1及び対向主表面2として研磨されるべき面である。
本例において、研磨装置100は、マスクブランク用のガラス基板を研磨する研磨装置であって、表面がガラス基板よりも軟質な材料からなる円筒状部材としての研磨パッド20、円筒状部材としての研磨パッドを保持する円筒状部材保持部としてのパッド保持部52、研磨制御部54、及び基板保持部56を備える。研磨パッド20は、ワークであるガラス基板10の端面1を研磨するためのポリシャである。本例において、研磨パッド20は、所定の軸方向の回転軸を中心として回転可能な円筒状であり、ガラス基板10端面1と線接触する。また、研磨パッド20は、例えば発泡ウレタンにより形成されており、コロイダルリシリカ研磨砥粒とともに用いられる。研磨パッド20は、回転軸近傍の内部から表面までの全体が、一体に形成されるのが好ましい。この場合、端面1を、適切な硬度で、押圧することができる。研磨パッド20は、中心軸部分に、表面部とは別体の心棒を有してもよい。
パッド保持部52は、研磨パッド20を、回転可能に保持する。本例において、パッド保持部52は、研磨パッド20の回転軸を対向主表面2に対して交差する方向に配向させて、研磨パッド20を保持する。パッド保持部52は、研磨パッド20の回転軸を、この回転軸と、端面1における長手方向とがほぼ垂直になる方向に、配向させてよい。
研磨制御部54は、ガラス基板10と研磨パッド20との相対位置を制御することにより、研磨パッド20に、端面1を鏡面研磨させる。本例において、研磨制御部54は、研磨パッド20を、ガラス基板10の厚さ方向と平行な軸方向に揺動させながら、矢印30で示す方向に回転させる。これにより、研磨制御部54は、この回転軸を加工軸として、研磨パッド20にガラス基板10を研磨させる。また、この場合、研磨パッド20においてガラス基板10と接触する面を、清浄に保つことができる。研磨制御部54は、ガラス基板10を、研磨パッド20の回転に伴って回転させてよい。
また、研磨制御部54は、基板保持部56を移動させることにより、研磨パッド20に対するガラス基板10の逃げ及び押しつけを制御する。これにより、研磨制御部54は、研磨の強さを一定に保つ。本例において、研磨制御部54は、ガラス基板10の保持に要する圧力に基づき、この圧力が一定になるようにフィードバック制御しながら、基板保持部56を移動させる。
基板保持部56は、バッキング材102、複数の保持部104、及び複数のロードセル106を有する。バッキング材102は、ガラス基板10の対向主表面2を覆う層状体であり、ガラス基板10を保持するための圧力から、対向主表面2を保護する。保持部104は、バッキング材102を介して対向主表面2を押圧する部材であり、ガラス基板10の上面側及び下面側のそれぞれに設けられることにより、ガラス基板10を保持する。これにより、基板保持部56は、ガラス基板10の上面及び下面の両側からの圧力で、ワークであるガラス基板10を保持する。また、ロードセル106は、それぞれの保持部104に対応して設けられた加重センサであり、対応する保持部104がガラス基板10に与える圧力を検知して、研磨制御部54に通知する。
研磨制御部54は、この通知に基づき、ガラス基板10の保持に要する圧力を検知する。本例によれば、ワーク押さえである基板保持部56に加重センサを設けることにより、研磨の強さを、高い精度で検出することができる。また、これにより、ガラス基板10の端面1を、高い精度で鏡面研磨することができる。また、本例において、研磨装置100は、ガラス基板10を、枚葉式に一枚ずつ研磨する。これにより、ガラス基板10の研磨を、各ガラス基板10毎に適切に、行うことができる。
図4は、工程S114における研磨方法の概要を示す上面図である。本例において、研磨制御部54(図3参照)は、矢印30の方向への研磨パッド20の回転に伴って、基板保持部56(図3参照)に保持されたガラス基板10を、矢印32に示す方向に回転させる。これにより、研磨制御部54は、ガラス基板10の外縁に隣接する端面1に研磨パッド20を接触させながら、研磨パッド20と端面1とを、この外縁に沿って相対的に移動させる。尚、ガラス基板10の外縁とは、例えば、対向主表面2を上下方向の面とした場合の側面であり、対向主表面2の外縁であってよい。
ガラス基板10の回転に伴い、研磨パッド20は、端面1における平面状の端面部分1d及び曲面状の端面部分1fのそれぞれと、順次接触する。これにより、研磨制御部54は、研磨パッド20を、ガラス基板10の端面1の全周に渡って移動させる。本例によれば、端面1の全周を、適切に、鏡面研磨することができる。研磨制御部54は、研磨パッド20に、端面1を、全周に渡って同一の条件で研磨させるのが好ましい。研磨制御部54は、研磨パッド20に、ガラス基板10の外縁を、全周に渡って同一の速度で移動させてよい。
尚、端面1の全周とは、対向主表面2の外縁に沿った、4つの平面状の端面部分1d、
及び4つの曲面状の端面部分1fに渡る一周である。この一周は、例えば側面部の一周でもよく、面取斜面部の一周でもよい。ここで、側面部の一周とは、それぞれの平面状の端面部分1dにおける側面部1a(図1参照)と、それぞれの曲面状の端面部分1fにおける側面部1c(図1参照)を含む一周である。また、面取斜面部の一周とは、それぞれの平面状の端面部分1dにおける面取斜面部1b(図1参照)と、それぞれの曲面状の端面部分1fにおける面取斜面部1e(図1参照)を含む一周である。
図4(a)は、平面状の端面部分1dと研磨パッド20とが接触している状態を示す図である。図4(b)は、曲面状の端面部分1fと研磨パッド20とが接触している状態を示す図である。
平面状の端面部分1dと研磨パッド20とが接触している場合、研磨制御部54は、ガラス基板10を、所定の圧力で、研磨パッド20に押しつける。そして、ガラス基板10の回転により、曲面状の端面部分1fと研磨パッド20とが接触した場合、研磨制御部54は、ガラス基板10を逃がすことにより、この圧力を一定に保つ。そのため、本例によれば、端面1の全周に渡って、研磨の強さを一定に保つことができる。また、これにより、端面1の全周を、連続的に研磨することができる。本例によれば、端面1の全周を、高い精度で鏡面研磨することができる。
尚、他の例において、研磨制御部54は、研磨パッド20に、端面1の一部を研磨させてもよい。この場合、研磨制御部54は、研磨パッド20に、例えば、曲面状の端面部分1fと、この曲面状の端面部分1fを挟んで隣接する複数の平面状の端面部分1dを、研磨させてよい。この場合も、これらの部分を、高い精度で、鏡面研磨することができる。
図5は、基板保持部56の構成、及び工程S114における研磨方法を、更に詳しく説明する図である。本例において、基板保持部56は、回転部110、回転ステージ112、及びワーク保持軸108を有している。回転部110は、バッキング材102、保持部104、及びロードセル106を含む部分であり、研磨パッド20の回転に伴い、ガラス基板10とともに、矢印32の方向に回転する。
回転ステージ112は、回転部110を回転可能に保持する台座であり、回転部110を上下から挟むように設けられる。ワーク保持軸108は、回転ステージ112を傾斜可能に保持する軸であり、回転部110の上下の回転ステージ112を、上下方向から支持する。また、本例において、ワーク保持軸108は、研磨制御部54(図3参照)の指示に応じて、例えば図5(b)に示すように、回転部110とともにガラス基板10を傾斜させる。
図5(a)は、ガラス基板10のT面を研磨する方法の一例を示す。この場合、ワーク保持軸108は、ガラス基板10を水平に保つ。そのため、研磨パッド20は、軸方向をガラス基板10の対向主表面2(図1参照)と垂直にして、ガラス基板10の端面1(図1参照)と接触する。
そして、ロードセル106により検出される圧力の負荷に応じたフィードバック制御により、ガラス基板10を研磨パッド20に押しつける圧力(全体押し圧)を一定に保ちながら、研磨制御部54は、研磨パッド20及びガラス基板10を回転させる。これにより、研磨パッド20は、端面1における、側面部1a及び側面部1c(図1参照)を含む全周を研磨する。本例によれば、端面1を、全周に渡って、均一な鏡面に研磨することができる。尚、均一な鏡面とは、例えば、算術平均表面粗さRaのばらつきが所定の範囲内である鏡面である。
ここで、他の例においては、端面1を、例えば平面状の研磨パッドを用いて研磨することも考えられる。しかし、この場合、例えば平面状の端面部分1dと曲面状の端面部分1f(図1参照)との形状の違いにより、例えば曲面状の端面部分1fに、研磨ムラが生じてしまう場合も考えられる。
また、端面1を、例えば研磨ブラシにより研磨するとすれば、端面1に傷が付いてしまう場合がある。また、石英ガラスで形成されたガラス基板10を研磨する場合に、研磨ブラシとコロイダルシリカ研磨砥粒を用いると、コロイダルシリカ研磨砥粒がガラス基板10に付着してしまい、適切に研磨できない場合も考えられる。
しかし、本例において、研磨パッド20は、基板の厚さ方向に軸方向を有し、かつ端面1に対して線接触する。また、研磨制御部54は、フィードバック制御により、全体押し圧を一定に保っている。この場合、研磨パッド20は、平面状の端面部分1dと曲面状の端面部分1fとを、同じ条件で研磨することができる。そのため、本例によれば、研磨パッド20を端面1に沿って移動させることにより、端面1の全周を、高い精度で研磨することができる。また、円筒状の研磨パッド20を回転させながら研磨を行うことにより、研磨パッド20の接触面を、清浄に保ち、コロイダルシリカ研磨砥粒の付着を、適切に防ぐことができる。そのため、本例によれば、ガラス基板10の端面1を、高い精度で、鏡面研磨することができる。
図5(b)は、ガラス基板10のC面を研磨する方法の一例を示す。この場合、ワーク保持軸108は、ガラス基板10を傾斜させて保つ。そのため、研磨パッド20は、軸方向をガラス基板10の対向主表面2に対して傾かせて、ガラス基板10の端面1と接触する。この場合、パッド保持部52は、例えば、研磨パッド20の回転軸を面取斜面部の短手方向に配向させて、研磨パッド20を保持する。
そして、研磨制御部54は、面取斜面部1b及び/又は面取斜面部1e(図1参照)に研磨パッド20を接触させながら、研磨パッド20と端面1とを、対向主表面2の外緑に沿って相対的に移動させる。そして、これにより、研磨制御部54は、研磨パッド20に、面取斜面部1b及び/又は面取斜面部1eを研磨させる。
この場合も、研磨制御部54は、全体押し圧を一定に保ちながら、ガラス基板10を回転させる。これにより、研磨パッド20は、端面1における、面取斜面部1b及び面取斜面部1eを含む全周を研磨する。この場合も、端面1を、全周に渡って、均一な鏡面に研磨することができる。
尚、他の例においては、例えば研磨ボックスの底面に設けられた平行溝等により、端面1のT面とC面を同時に研磨することも考えられる。しかし、この場合、各面の位置だしは困難であり、面取斜面部であるC面に研磨ムラが生じ、十分な研磨精度が得られない場合も考えられる。
しかし、本例によれば、面取斜面部1b、eを、側面部1a、cを研磨する場合と同様の精度で、適切に研磨することができる。そのため、本例によれば、端面1の全周を、研磨ムラを生じさせずに、高い精度で研磨することができる。
ここで、端面1の研磨精度が低い場合、端面1にスクラッチ等が発生する場合がある。
そして、例えば端面1にスクラッチ等が存在すると、その内部に、パーティクルや研磨砥粒等の異物が入り込む場合ある。そのため。端面1の粗さが大きい場合には、異物の残留が生じてしまう場合がある。また、この異物が後に脱落することにより、例えば以降の工程加工中に微小欠陥を発生させる場合や、洗浄槽を汚染させてしまう場合がある。
また、例えばArFレーザー光、又はFレーザー光等の短波長光用のマスクブランク、又はマスクブランク用ガラス基板においては、許容される異物のサイズは極めて小さくなっており、ガラス基板10の全体に渡って、このようなスクラッチ等をなくすことが求められている。このような用途においては、例えば端面1の一部にスクラッチが生じている場合であっても、問題が生じてしまう場合がある。
本例によれば、例えば曲面状の端面部分1fや面取斜面部1b、e等も含め、端面1の全周を、高い精度で鏡面研磨することができる。また、これにより、ガラス基板10の全体を、高い精度で鏡面研磨することができる。そのため、本例によれば、短波長光を用いて半導体デバイスを製造するのに適したマスクブランク用ガラス基板を、適切に製造することができる。
尚、端面1は、例えば、全周に渡って、算術平均表面粗さRaで0.5nm以下、より好ましくは0.3nm以下の鏡面に研磨されてよい。端面1は、全周に渡って、2乗平均粗さRMSで0.5nm以下、より好ましくは0.3nm以下の鏡面に研磨されてよい。端面1は、全周に渡って、最大高さRmaxで10nm、より好ましくは5nm以下の鏡面に研磨されてよい。
また、端面1は、全周に渡って、算術平均表面粗さRa、又は2乗平均粗さRMSでデザインルールの約1/100以下、より好ましくは1/200以下の鏡面に研磨されてよい。端面1は、全周に渡って、最大高さRmaxでデザインルールの1/5以下、より好ましくは1/10以下の表面粗さの鏡面に研磨されてよい。端面1は、全周に渡って、AFM(原子間力顕微鏡)により傷が観測されないような鏡面に研磨されるのが好ましい。端面1は、例えばアルカリ加速等の、所定のアルカリ処理を行った場合にもAFM(原子間力顕微鏡)により傷が観測されないような鏡面に研磨されるの好ましい。
この場合、曲面状の端面部分1fも、上記と同様の精度の鏡面に研磨されてよい。例えば、曲面状の端面部分fは、算術平均表面粗さRaで0.5nm以下、より好ましくは0.3nm以下である鏡面とされてよい。また、面取斜面部1b及び曲面状の端面部分1fも、上記と同様の精度の鏡面に研磨されてよく、例えば、算術平均表面粗さRaで0.5nm以下、より好ましくは0.3nm以下である鏡面とされてよい。
図6は、本例のガラス基板10を用いたマスクブランク50の構成の一例を示す。マスクブランク50は、ガラス基板10と、薄膜12とを有する。薄膜12は、マスクパターンを形成するための薄膜であり、ガラス基板10の上方の対向主表面2上に形成される。本例において、薄膜12は、例えば遮光膜、又は位相シフト膜等であり、端面1の少なくとも一部を更に覆うように形成されている。
本例によれば、端面1を高い精度で鏡面研磨することにより、薄膜12の付着強度を高めることができる。また、これにより、例えば後工程、又はは露光環境における発塵を防ぐことができる。本例によれば、短波長光を用いて半導体デバイスを製造するのに適したマスクブランクを、適切に製造することができる。
図7は、工程S114における研磨方法、及び研磨装置100の構成の他の例を示す。
図7(a)は、この研磨方法を示す。図7(b)は、この研磨方法に用いられる研磨装置100の構成の一例を示す。尚、以下に説明する点を除き、図7において、図3〜5と同じ符号を付した構成は、図3〜5における構成と、同一又は同様の機能を有するため、説明を省略する。
本例において、ガラス基板10は、水平又は所定の角度に傾けられた状態で固定される。そして、研磨制御部54は、回転する研磨パッド20を、軸方向に揺動させながら、ガラス基板10の周りを周回するように、端面1に沿って移動させる。研磨パッド20は、矢印30の方向に回転しながら、矢印34a〜cの方向へ、順次移動する。また、研磨制御部54は、ガラス基板10に対する研磨パッド20の逃げ及び押しつけを制御することにより、研磨の強さを一定に保つ。本例においても、端面1を適切に、鏡面研磨することができる。
尚、本発明における表面粗さとは、例えば、原子間力顕微鏡(AFM)等により測定されるものであって、算術平均表面粗さRaとは、例えば、日本工業規格(JIS)B0601に従うものである。
(実施例1)
上述の実施の形態における基板の端面に対する研磨(S114)として、コロイダルシリカ研磨砥粒の粒子径として100nm、スラリーPHを10.2、硬度(Asker−C)が55の研磨パッドを用いて、ガラス基板の四隅(角部)近傍に隣接する部分(曲面状の端面部分:R部)の鏡面研磨を行い、マスクブランク用ガラス基板を得た。
対向主表面、面取斜面部、及び、R部の算術平均粗さRaを原子間力顕微鏡(AFM)(測定エリア:10μm□)で複数箇所測定したところ、主表面の表面粗さはRa=0.14nm、面取斜面部の表面粗さはRa=0.65nm、R部の表面粗さはRa=0.50nmであった。
(実施例2〜3)
上述の実施例1におけるコロイダルシリカ研磨砥粒の粒子径として80nm(実施例2)、40nm(実施例3)とした以外は、実施例1と同様にして、ガラス基板の四隅(角部)近傍に隣接する部分(R部)の鏡面研磨を行い、マスクブランク用ガラス基板を得た。
対向主表面、面取斜面部、及び、R部の算術平均粗さRaを原子間力顕微鏡(AFM)(測定エリア:10μm□)で複数箇所測定したところ、実施例2のマスクブランク用ガラス基板は、主表面の表面粗さはRa=0.15nm、面取斜面部の表面粗さRa=0.63nm、R部の表面粗さはRa=0.27nm、実施例3のマスクブランク用ガラス基板は、主表面の表面粗さはRa=0.15nm、面取斜面部の表面粗さRa=0.63nm、R部の表面粗さはRa=0.19nmであった。
(実施例4)
上述の実施の形態における基板の端面に対する研磨(S114)として、コロイダルシリカ研磨砥粒の粒子径として100nm、スラリーPHを10.2、硬度(Asker−C)が55の研磨パッドを用いて、ガラス基板の面取斜面部の鏡面研磨を行い、マスクブランク用ガラス基板を得た。
対向主表面、面取斜面部、及び、R部の算術平均粗さRaを原子間力顕微鏡(AFM)(測定エリア:10μm□)で複数箇所測定したところ、主表面の表面粗さはRa=0.15nm、面取斜面部の表面粗さはRa=0.47nm、R部の表面粗さはRa=0.67nmであった。
(実施例5〜6)
上述の実施例4におけるコロイダルシリカ研磨砥粒の粒子径として80nm(実施例5)、40nm(実施例6)とした以外は、実施例4と同様にして、ガラス基板の面取斜面部の鏡面研磨を行い、マスクブランク用ガラス基板を得た。
対向主表面、面取斜面部、及び、R部の算術平均粗さRaを原子間力顕微鏡(AFM)(測定エリア:10μm)で複数箇所測定したところ、実施例5のマスクブランク用ガラス基板は、主表面の表面粗さはRa=0.14nm、面取斜面部の表面粗さはRa=0.24nm、R部の表面粗さはRa=0.66nm、実施例6のマスクブランク用ガラス基板は、主表面の表面粗さはRa=0.14nm、面取斜面部の表面粗さはRa=0.19nm、R部の表面粗さはRa=0.65nmであった。
(実施例7〜9)
上述の実施例1〜3で用いたコロイダルシリカ研磨砥粒(100nm(実施例7)、80nm(実施例8)、40nm(実施例9))を用いて、ガラス基板の四隅(角部)近傍に隣接する部分(R部)及び面取斜面部の鏡面研磨を行い、マスクブランク用ガラス基板を得た。
対向主表面、面取斜面部、及び、R部の算術平均粗さRaを原子間力顕微鏡(AFM)(測定エリア:10μm)で複数箇所測定したところ、実施例7のマスクブランク用ガラス基板は、主表面の表面粗さはRa=0.15nm、面取斜面部の表面粗さはRa=0.48nm、R部の表面粗さはRa=0.49nm、実施例8のマスクブランク用ガラス基板は、主表面の表面粗さRa=0.14nm、面取斜面部の表面粗さはRa=0.24nm、R部の表面粗さはRa=0.26nm、実施例9のマスクブランク用ガラス基板は、主表面の表面粗さRa=0.14nm、面取斜面部の表面粗さはRa=0.16nm、R部の表面粗さはRa=0.17nmであった。
(比較例1)
上述の実施例において、コロイダルシリカ研磨砥粒を使用した端面に対する鏡面研磨を行わなかった以外は、実施の形態におけるS102からS116の各研磨を行い、マスクブランク用ガラス基板を得た。
対向主表面、面取斜面部、及び、R部の算術平均粗さRaを原子間力顕微鏡(AFM)(測定エリア:10μm□)で複数箇所測定したところ、主表面の表面粗さはRa=0.15nm、面取斜面部の表面粗さはRa=0.67nm、R部の表面粗さはRa=0.68nmであった。
上述の実施例1〜9、比較例1のガラス基板をスパッタリング装置内の基板ホルダーにセットし、Crターゲットを用いて、CrN/CrCN/CrONの積層膜からなる遮光膜をガラス基板上にスパッタ成膜してArFエキシマレーザー露光用マスクブランクを作製した。遮光膜は、ガラス基板の主表面全面及び面取斜面部全面に形成され、さらに、R部の約半分の領域に形成されていた。尚、遮光膜表面を純水を用いたスクラブ洗浄を行った後、乾燥した。
遮光膜表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて、0.06μm以上の大きさのパーティクル、ピンホールの個数を測定した。
その結果、実施例1のガラス基板を用いて作製したマスクブランクは47個、実施例2のガラス基板を用いて作製したマスクブランクは35個、実施例3のガラス基板を用いて作製したマスクブランクは20個、実施例4のガラス基板を用いて作製したマスクブランクは22個、実施例5のガラス基板を用いて作製したマスクブランクは17個、実施例6のガラス基板を用いて作製したマスクブランクは13個、実施例7のガラス基板を用いて作製したマスクブランクは9個、実施例8のガラス基板を用いて作製したマスクブランクは5個、実施例9のガラス基板を用いて作製したマスクブランクは2個であった。比較例1のガラス基板を用いて作製したマスクブランクは493個であった。
また、上述の実施例9と、比較例1のガラス基板をスパッタリング装置内の基板ホルダーにセットし、MoターゲットとSiターゲットを用いて、Mo/Siの積層膜からなる多層反射膜と、Crターゲットを用いて、CrN膜からなるバッファー層と、TaBターゲットを用いて、TaBN膜からなる吸収体層をガラス基板上にスパッタ成膜してEUV露光用反射型マスクブランクを作製した。多層反射膜とバッファー層は、ガラス基板の主表面略全面に形成され、吸収体層は、ガラス基板の主表面及び面取斜面部全面に形成されていた。
吸収体膜表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて、0.06μm以上の大きさのパーティクル、ピンホールの個数を測定した。
その結果、実施例9のガラス基板を用いて作製した反射型マスクブランクは7個、比較例1のガラス基板を用いて作製した反射型マスクブランクは1035個であった。
尚、比較例1のガラス基板を用いて作製したArFエキシマレーザー露光用マスクブランクとEUV露光用反射型マスクブランクの欠陥原因を分析したところ、研磨剤成分や、搬送治具、収納ケースの基板保持具の成分だけでなく、遮光膜や、吸収膜の成分も含まれていた。ガラス基板の面取斜面部を観察したところ、一部の箇所に膜剥がれが観察された。面取斜面部に形成されている遮光膜や吸収膜の成分をオージエ電子分光法により深さ方向の成分分析を行ったところ、ガラス基板主表面に形成されている吸収膜の組成比に比べ酸素が多く含まれていることが確認された。これは、成膜時に使用する基板ホルダーに含まれている酸素ガス(基板ホルダーを洗浄する際に残存したものと推定される)が、基板ホルダーに近接しているガラス基板の面取斜面部に形成される遮光膜や吸収膜の組成比に影響したものと考えられる。
実施例1〜9のガラス基板を用いて作製したArFエキシマレーザー露光用マスクブランクとEUV露光用反射型マスクブランクの欠陥原因には、遮光膜や吸収膜要因はなく、搬送治具、収納ケースの基板保持具の成分が若干含まれているだけであった。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
マスクブランク、及び/又はマスクブランク用ガラス基板に好適に適用できる。また、
マスクブランク用ガラス基板を研磨する研磨装置に好適に適用できる。
本発明の一実施形態に係るガラス基板10の一例を示す図である。図1(a)は、ガラス基板10の斜視図である。図1(b)は、ガラス基板10の断面図である。 ガラス基板10を製造する製造方法の一例を示すフローチャートである。 工程S114で用いられる研磨装置100の構成の一例を示す側面図である。 工程S114における研磨方法の概要を示す上面図である。図4(a)は、平面状の端面部分1dと研磨パッド20とが接触している状態を示す図である。図4(b)は、曲面状の端面部分1fと研磨パッド20とが接触している状態を示す図である。 基板保持部56の構成、及び工程S114における研磨方法を、更に詳しく説明する図である。図5(a)は、ガラス基板10のT面を研磨する方法の一例を示す。図5(b)は、ガラス基板10のC面を研磨する方法の一例を示す。 ガラス基板10を用いたマスクブランク50の構成の一例を示す図である。 工程S114における研磨方法、及び研磨装置100の構成の他の例を示す。図7(a)は、この研磨方法を示す。図7(b)は、この研磨方法に用いられる研磨装置100の構成の一例を示す。
符号の説明
1・・・端面1、1a・・・側面部、1b・・・面取斜面部、1c・・・側面部、1d・・・平面状の端面部分、1e・・・面取斜面部、1f・・・曲面状の端面部分、2・・・対向主表面2、10・・・ガラス基板、10a・・・角部、12・・・薄膜、20・・・研磨パッド、30・・・矢印、32・・・矢印、34・・・矢印、50・・・マスクブランク、52・・・パッド保持部、54・・・研磨制御部、56・・・基板保持部、100・・・研磨装置、102・・・パッキング材、104・・・保持部、106・・・ロードセル、108・・・ワーク保持軸、110・・・回転部、112・・・回転ステージ

Claims (13)

  1. ArFエキシマレーザー光を露光光とする露光用マスクまたはEUV光を露光光とする反射型マスクを製造するために用いられ、対向主表面と、該対向主表面の外縁に隣接する端面を有するガラス基板を用いるマスクブランク用のガラス基板の製造方法であって、
    前記ガラス基板は、前記対向主表面の角部近傍の外縁に隣接する端面に曲面状の部分を備え、
    前記曲面状の部分を含む端面は、側面部と、該側面部および前記主表面の間に形成された面取斜面部とを備え、
    コロイダルシリカ研磨砥粒を用いて前記端面を研磨し、前記曲面状の部分および面取り斜面部を含む端面を算術平均表面粗さRaで0.5nm以下である鏡面にする端面研磨工程と
    前記端面研磨工程後、コロイダルシリカ研磨砥粒を用いて対向する主表面を研磨し、算術平均表面粗さRaで0.2nm以下である鏡面にする主表面研磨工程と、
    を備えることを特徴とするマスクブランク用のガラス基板の製造方法
  2. ArFエキシマレーザー光を露光光とする露光用マスクまたはEUV光を露光光とする反射型マスクを製造するために用いられ、対向主表面と、該対向主表面の外縁に隣接する端面を有するガラス基板を用いるマスクブランク用のガラス基板の製造方法であって、
    前記端面は、側面部と、側面部および主表面間に形成された面取斜面部を備え、
    コロイダルシリカ研磨砥粒を用いて前記面取斜面部を含む端面を研磨し、算術平均表面粗さRaで0.5nm以下である鏡面にする端面研磨工程と
    前記端面研磨工程後、コロイダルシリカ研磨砥粒を用いて対向する主表面を研磨し、算術平均表面粗さRaで0.2nm以下である鏡面にする主表面研磨工程と、
    を備えることを特徴とするマスクブランク用のガラス基板の製造方法
  3. 65nmデザインルールあるいはそれ以下のデザインルールにおけるマスクパターンを形成するためのマスクブランクに用いられるガラス基板であることを特徴とする請求項1又は2に記載のマスクブランク用のガラス基板の製造方法。
  4. 前記端面研磨工程は、表面がガラス基板よりも軟質な材料からなる回転可能な円筒状部材を前記ガラス基板の端面に接触させ、前記円筒状部材とガラス基板の端面とを相対的に移動させ、前記端面を鏡面にすることを特徴とする請求項1乃至3の何れかに記載のマスクブランク用のガラス基板の製造方法。
  5. 前記円筒状部材は、表面に発泡させた微小孔が形成された円筒状の研磨パッドからなる、または円筒状支持部材の表面に発泡ウレタンの研磨パッドを固定させた構造からなることを特徴とする請求項4に記載のマスクブランク用のガラス基板の製造方法。
  6. 前記円筒状部材の回転軸を前記ガラス基板の主表面に対して交差する方向に配向させ、前記円筒状部材と前記ガラス基板の端面とを、前記外縁に沿って相対的に移動させるとともに、
    前記ガラス基板の角部近傍に隣接する少なくとも一つの端面部分を鏡面にすることを特徴とする請求項1乃至5の何れかに記載のマスクブランク用のガラス基板の製造方法。
  7. 前記円筒状部材の回転軸を前記面取斜面部の短手方向に配向させ、
    前記円筒状部材と前記ガラス基板の端面とを、前記外緑に沿って相対的に移動させるとともに、前記面取斜面部を鏡面にすることを特徴とする請求項1乃至5の何れかに記載のマスクブランク用のガラス基板の製造方法。
  8. 酸化セリウム研磨砥粒を用い、前記ガラス基板の端面に研磨ブラシを接触させて、研磨ブラシとガラス基板の端面とを相対的に移動させるブラシ研磨加工を行い、その後に、前記端面研磨工程を行うことを特徴とする請求項1乃至7の何れかに記載のマスクブランク用のガラス基板の製造方法。
  9. 請求項1乃至の何れかに記載のマスクブランク用のガラス基板の製造方法で製造されたマスクブランク用のガラス基板の少なくとも前記対向主表面の一方に、マスクパターンを形成するための薄膜が成膜されることを特徴とするマスクブランクの製造方法
  10. 請求項1乃至の何れかに記載のマスクブランク用のガラス基板の製造方法で製造されたマスクブランク用のガラス基板の少なくとも前記対向主表面の一方、及び、前記面取斜面部に、マスクパターンを形成するための薄膜が成膜されることを特徴とするマスクブランクの製造方法
  11. 請求項9または10に記載のマスクブランクの製造方法で製造されたマスクブランクの薄膜に、65nmデザインルールあるいはそれ以下のデザインルールにおけるマスクパターンが形成されることを特徴とする露光用マスクの製造方法。
  12. 請求項1乃至8の何れかに記載のマスクブランク用のガラス基板の製造方法で製造されたマスクブランク用のガラス基板における一方の主表面に、EUV露光光を反射する多層反射膜が成膜され、前記主表面に成膜された多層反射膜上および面取斜面部にマスクパターンを形成するための吸収体層が成膜されることを特徴とする反射型マスクブランクの製造方法。
  13. 請求項12に記載の反射型マスクブランクの製造方法で製造された反射型マスクブランクに、65nmデザインルールあるいはそれ以下のデザインルールにおけるマスクパターンが形成されることを特徴とする反射型マスクの製造方法。
JP2005094844A 2004-03-30 2005-03-29 マスクブランク用のガラス基板の製造方法、マスクブランクの製造方法、反射型マスクブランクの製造方法、露光用マスクの製造方法、及び反射型マスクの製造方法 Active JP4784969B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094844A JP4784969B2 (ja) 2004-03-30 2005-03-29 マスクブランク用のガラス基板の製造方法、マスクブランクの製造方法、反射型マスクブランクの製造方法、露光用マスクの製造方法、及び反射型マスクの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004099887 2004-03-30
JP2004099887 2004-03-30
JP2005094844A JP4784969B2 (ja) 2004-03-30 2005-03-29 マスクブランク用のガラス基板の製造方法、マスクブランクの製造方法、反射型マスクブランクの製造方法、露光用マスクの製造方法、及び反射型マスクの製造方法

Publications (2)

Publication Number Publication Date
JP2005316448A JP2005316448A (ja) 2005-11-10
JP4784969B2 true JP4784969B2 (ja) 2011-10-05

Family

ID=35443865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094844A Active JP4784969B2 (ja) 2004-03-30 2005-03-29 マスクブランク用のガラス基板の製造方法、マスクブランクの製造方法、反射型マスクブランクの製造方法、露光用マスクの製造方法、及び反射型マスクの製造方法

Country Status (1)

Country Link
JP (1) JP4784969B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333124A (ja) * 2004-04-22 2005-12-02 Asahi Glass Co Ltd 反射型マスク用低膨張硝子基板および反射型マスク
JP4780607B2 (ja) * 2006-01-25 2011-09-28 Hoya株式会社 磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラス基板、及び磁気ディスクの製造方法。
JP5410654B2 (ja) * 2007-04-09 2014-02-05 Hoya株式会社 フォトマスクブランクの製造方法、反射型マスクブランクの製造方法、フォトマスクの製造方法、及び反射型マスクの製造方法
JP5085966B2 (ja) * 2007-04-09 2012-11-28 Hoya株式会社 フォトマスクブランクの製造方法、反射型マスクブランクの製造方法、フォトマスクの製造方法、及び反射型マスクの製造方法
US8722189B2 (en) * 2007-12-18 2014-05-13 Hoya Corporation Cover glass for mobile terminals, manufacturing method of the same and mobile terminal device
JP5640744B2 (ja) * 2008-12-17 2014-12-17 旭硝子株式会社 反射型マスク用低膨張ガラス基板およびその加工方法
JP4839411B2 (ja) * 2009-02-13 2011-12-21 Hoya株式会社 マスクブランク用基板、マスクブランクおよびフォトマスク
DE102009011622B4 (de) * 2009-03-04 2018-10-25 Siltronic Ag Epitaxierte Siliciumscheibe und Verfahren zur Herstellung einer epitaxierten Siliciumscheibe
JP5534222B2 (ja) * 2010-03-08 2014-06-25 旭硝子株式会社 ガラス基板
CN102194626B (zh) * 2010-03-08 2015-11-25 旭硝子株式会社 玻璃基板
TWI419096B (zh) * 2010-11-25 2013-12-11 Au Optronics Corp 基板結構以及面板結構
WO2014021235A1 (ja) * 2012-07-31 2014-02-06 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP5818861B2 (ja) * 2013-11-07 2015-11-18 Hoya株式会社 マスクブランク及びその製造方法、並びにマスク
JP6398902B2 (ja) * 2014-08-19 2018-10-03 信越化学工業株式会社 インプリント・リソグラフィ用角形基板及びその製造方法
US20160266482A1 (en) * 2015-03-10 2016-09-15 Asahi Glass Company, Limited Glass substrate for mask blank
KR102547935B1 (ko) * 2016-06-24 2023-06-27 삼성디스플레이 주식회사 기판 연마장치
JP6763359B2 (ja) * 2016-08-25 2020-09-30 信越化学工業株式会社 角型ガラス基板及びその製造方法
JP6717211B2 (ja) * 2017-01-16 2020-07-01 Agc株式会社 マスクブランク用基板、マスクブランク、およびフォトマスク
JP7253373B2 (ja) * 2018-12-28 2023-04-06 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、透過型マスクブランク、透過型マスク、及び半導体装置の製造方法
JP7327567B2 (ja) * 2021-05-27 2023-08-16 Agc株式会社 導電膜付基板および反射型マスクブランク

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055827B2 (ja) * 1979-05-02 1985-12-06 日本真空技術株式会社 フオトマスク基板の加工法
JPS5646227A (en) * 1979-09-21 1981-04-27 Shin Etsu Chem Co Ltd Mask substrate for electronic device
JPH02204345A (ja) * 1989-01-31 1990-08-14 Hoya Corp ガラス基板
US5288546A (en) * 1992-07-31 1994-02-22 Kimberly-Clark Corporation Attachment tape finger tab
JP3046003B2 (ja) * 1998-08-10 2000-05-29 ホーヤ株式会社 電子デバイス用ガラス基板及びその製造方法
JP2000356849A (ja) * 1999-06-15 2000-12-26 Mito Asahi Fine Glass Co Ltd フォトマスク用基板
JP2004029735A (ja) * 2002-03-29 2004-01-29 Hoya Corp 電子デバイス用基板、該基板を用いたマスクブランクおよび転写用マスク、並びにこれらの製造方法、研磨装置および研磨方法
JP2006011434A (ja) * 2002-03-29 2006-01-12 Hoya Corp マスクブランク用基板、マスクブランクおよび転写用マスクの製造方法
JP3764734B2 (ja) * 2002-07-17 2006-04-12 Hoya株式会社 マスクブランクスの製造方法
JP2004302280A (ja) * 2003-03-31 2004-10-28 Hoya Corp マスクブランクス用基板の製造方法、及びマスクブランクスの製造方法、並びに転写マスクの製造方法

Also Published As

Publication number Publication date
JP2005316448A (ja) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4784969B2 (ja) マスクブランク用のガラス基板の製造方法、マスクブランクの製造方法、反射型マスクブランクの製造方法、露光用マスクの製造方法、及び反射型マスクの製造方法
US10620527B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
US10295900B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
EP1758962B1 (en) Polishing method for glass substrate, and glass substrate
KR101257133B1 (ko) 마스크 블랭크용 글라스 기판 및 이것을 제조하기 위한연마 방법
JP5332249B2 (ja) ガラス基板の研磨方法
US9598305B2 (en) Synthetic quartz glass substrate and making method
KR101875790B1 (ko) 반사형 마스크 블랭크 및 그 제조방법, 반사형 마스크 그리고 반도체 장치의 제조방법
KR20150097484A (ko) 마스크 블랭크용 기판처리장치, 마스크 블랭크용 기판처리방법, 마스크 블랭크용 기판의 제조방법, 마스크 블랭크의 제조방법 및 전사용 마스크의 제조방법
JP2010194705A (ja) 半導体用合成石英ガラス基板の加工方法
JP2006011434A (ja) マスクブランク用基板、マスクブランクおよび転写用マスクの製造方法
KR20140027314A (ko) 마스크 블랭크용 기판, 마스크 블랭크, 반사형 마스크 블랭크, 전사 마스크, 및 반사형 마스크, 그리고 그들의 제조방법
JP2006126816A (ja) マスクブランク用基板、マスクブランク、露光用マスク、半導体デバイスの製造方法、及びマスクブランク用基板の製造方法
JP4508779B2 (ja) マスクブランク用基板の製造方法、マスクブランクの製造方法、及び露光用マスクの製造方法
JP2004302280A (ja) マスクブランクス用基板の製造方法、及びマスクブランクスの製造方法、並びに転写マスクの製造方法
JP6297321B2 (ja) 機能膜付き基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
KR101167869B1 (ko) 유리 기판의 연마 방법 및 유리 기판

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

R150 Certificate of patent or registration of utility model

Ref document number: 4784969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250