JP4763900B2 - 発光素子の駆動回路 - Google Patents

発光素子の駆動回路 Download PDF

Info

Publication number
JP4763900B2
JP4763900B2 JP2001040227A JP2001040227A JP4763900B2 JP 4763900 B2 JP4763900 B2 JP 4763900B2 JP 2001040227 A JP2001040227 A JP 2001040227A JP 2001040227 A JP2001040227 A JP 2001040227A JP 4763900 B2 JP4763900 B2 JP 4763900B2
Authority
JP
Japan
Prior art keywords
output
circuit
source
semiconductor laser
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001040227A
Other languages
English (en)
Other versions
JP2002246685A (ja
JP2002246685A5 (ja
Inventor
寿樹 仲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001040227A priority Critical patent/JP4763900B2/ja
Publication of JP2002246685A publication Critical patent/JP2002246685A/ja
Publication of JP2002246685A5 publication Critical patent/JP2002246685A5/ja
Application granted granted Critical
Publication of JP4763900B2 publication Critical patent/JP4763900B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Logic Circuits (AREA)
  • Laser Beam Printer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子の駆動回路に関し、より詳細には、レーザビームプリンタの印字に用いられる半導体レーザなどの発光素子の駆動回路に関する。
【0002】
【従来の技術】
レーザビームプリンタ(以下、LBPという。)は、入力された画像データに基づいて、レーザビームにより感光ドラムを走査して、画像を形成する。形成された画像は、感光ドラムにおいて転写材にトナー像として転写され、定着装置において転写材にトナー像を定着させて出力する。LBPには、半導体レーザが使用され、半導体レーザを駆動するための駆動回路が備えられている。
【0003】
図6は、従来の半導体レーザの駆動回路を示す回路図である。半導体レーザ617のカソードには駆動回路619が接続され、半導体レーザ617のアノードには電源601(高電位側の電源)が接続されている。半導体レーザ617を駆動するスイッチング回路610は、NPNトランジスタ611,612の差動回路で構成されている。
【0004】
相補的な画像信号を入力する入力端子603,604は、プリドライバー回路605に接続され、プリドライバー回路605の相補的な出力641,642は、スイッチング回路610を駆動するエミッタフォロアの入力となる。スイッチング回路610を駆動する2つのエミッタフォロアは、それぞれNPNトランジスタ606と負荷抵抗608、NPNトランジスタ607と負荷抵抗609より構成されている。NPNトランジスタ606,607のコレクタは、電源601に接続され、負荷抵抗608,609の他端は、GND(低電位側の電源)602に接続されている。
【0005】
電流源616より供給される電流を、スイッチング回路610に折り返して供給するカレントミラー回路が、NPNトランジスタ613,614,615から構成されている。電流源616は、通常、APC(Auto Power Control)回路(図示せず)により、半導体レーザの発光光量が一定となるように制御されている。
【0006】
駆動回路619とAPC回路とを含めた回路が、半導体基板上に集積化されて発光素子駆動回路を構成する。抵抗618は、集積化されない個別部品からなり、半導体レーザが発光しない場合、駆動回路619内での電力消費を抑える為に、スイッチング回路610の半導体レーザ617と反対側の出力と、電源601との間に接続される。
【0007】
なお、ここではエミッタフォロアの負荷を抵抗としたが、定電流負荷のエミッタフォロアとすることもできる。ただし、抵抗に比較して、回路的にはチップ面積が増加し、コスト的にも不利である。また、エミッタフォロアの代わりに、MOSFETを用いたソースフォロアでも同様の構成をとることができる。
【0008】
電流源616から供給される電流をIとする。NPNトランジスタ613,614で構成されるカレントミラーのミラー比をnとすると、NPNトランジスタ613にNPNトランジスタ614のn倍の電流が流れる。
【0009】
入力端子603の相補的な画像信号がハイ、入力端子604がロウの場合、プリドライバー605の相補的な出力641はハイ、相補的な出力642はロウとなる。従って、NPNトランジスタ606と抵抗608よりなるエミッタフォロアの出力はハイ、NPNトランジスタ607と抵抗609よりなるエミッタフォロアの出力はロウとなる。NPNトランジスタ611,612からなるスイッチング回路のうち、NPNトランジスタ611がオンになり、NPNトランジスタ612がオフになる。NPNトランジスタ613に流れるnIの電流は、NPNトランジスタ611を介して半導体レーザ617に流れ、半導体レーザ617はその電流値に応じた光量で発光する。
【0010】
一方、入力端子603の相補的な画像信号がロウ、入力端子604がハイの場合、プリドライバー605の相補的な出力641はロウ、相補的な出力642はハイとなる。従って、NPNトランジスタ606と抵抗608よりなるエミッタフォロアの出力はロウ、NPNトランジスタ607と抵抗609よりなるエミッタフォロアの出力はハイとなる。NPNトランジスタ611,612からなるスイッチング回路のうち、NPNトランジスタ611がオフになり、NPNトランジスタ612がオンになる。NPNトランジスタ613に流れるnIの電流は、NPNトランジスタ612を介して抵抗618に流れ、半導体レーザ617は消灯する。
【0011】
上述した回路をLBPに使用した場合、発光したレーザ光は、レンズを介して回転ミラーにより反射され、感光ドラムの上を走査する。レーザが消灯して感光ドラム上で光の当たらなかった場所は、帯電せずトナーも着かない。光の当たった場所は、帯電してトナーを吸着する。このトナー像を転写材に定着することによって、入力端子103,104に入力された画像データに応じた画像が、転写材の上に形成される。
【0012】
【発明が解決しようとする課題】
発光素子の駆動回路は、小型化、低価格化、高速化のために、一般的に半導体基板上に集積化される。半導体基板上に集積化された拡散抵抗の場合、抵抗値は数1000ppm/℃程度の正の温度特性をもつため、従来の抵抗負荷のエミッタフォロア回路を用いたスイッチング回路で構成される駆動回路の場合、温度の上昇ともに負荷抵抗値が増大し、エミッタフォロアに流れる電流が減少し、スイッチングスピードが減少してしまうという問題があった。
【0013】
また、定電流負荷のエミッタフォロアを用いたスイッチング回路で構成される駆動回路の場合、電流自体は変化しなくてもバイポーラトランジスタのfが温度と共に減少する為、スイッチングスピードが減少してしまうという問題もあった。
【0014】
LBPに使われる半導体レーザの場合、充分な光量を得る為には10mAの電流を流す必要がある。駆動回路は、電流のスイッチングを行うとともに、発光光量すなわち駆動電流を決めるAPC回路なども内蔵するため、消費電流は増大しチップ温度は増加する傾向がある。また、LBPの筐体の中では、感光ドラムや他の電気部品のため、駆動回路の周囲温度が上昇する。さらに、LBPを高速化、高精度化する為、複数の発光素子を用いて画像の描画を行うことがなされており、1つの駆動回路で複数の発光素子を駆動する場合がある。この場合には、駆動回路の消費電力がチャンネル数の増加に伴い増大し、駆動回路のチップ温度は従来以上に増大する傾向にある。従って、LBPの高速化、高精度化が進むにつれて駆動回路の高温下でのスイッチングスピードの低下により、高精細、高解像度の印字が困難となり、LBPの性能を制限してしまうという問題もあった。
【0015】
本発明は、このような問題に鑑みてなされたもので、第1の目的は、LBPに使用される半導体レーザなどの発光素子に流れる電流のスイッチングを行うスイッチング回路を、抵抗負荷のエミッタフォロアの出力で駆動する発光素子の駆動回路について、温度上昇に伴うスイッチングスピードの低下を改善し、高速なスイッチングが可能な発光素子の駆動回路を提供することにある。
【0016】
第2の目的は、LBPに使用される半導体レーザなどの発光素子のスイッチングを行うスイッチング回路を、抵抗負荷のソースフォロアの出力で駆動する発光素子の駆動回路について、温度上昇に伴うスイッチングスピードの低下を改善し、高速なスイッチングが可能な発光素子の駆動回路を提供することにある。
【0018】
【課題を解決するための手段】
本発明は、このような目的を達成するために、画像信号を入力して該画像信号に応じた出力を行うプリドライバと、半導体レーザと、前記半導体レーザの点灯と消灯を切り替えるスイッチング回路と、バイポーラトランジスタにより構成され、該バイポーラトランジスタのエミッタ出力により前記スイッチング回路を動作させるエミッタフォロア回路であって、前記プリドライバの出力が前記バイポーラトランジスタのベースに接続され、高電位側の電源が前記バイポーラトランジスタのコレクタに接続される、エミッタフォロア回路と、を備え、低電位側の電源と前記バイポーラトランジスタのエミッタとの間に、正の温度特性を持つ負荷抵抗と、負の温度特性を持つ素子が直列に接続されることを特徴とする。
【0020】
また、本発明は、画像信号を入力して該画像信号に応じた出力を行うプリドライバと、半導体レーザと、前記半導体レーザの点灯と消灯を切り替えるスイッチング回路と、MOSFETにより構成され、該MOSFETのソース出力により前記スイッチング回路を動作させるソースフォロア回路であって、前記プリドライバの出力が前記MOSFETのゲートに接続され、高電位側の電源が前記MOSFETのドレインに接続される、ソースフォロア回路と、を備え、低電位側の電源と前記MOSFETのソースとの間に、正の温度特性を持つ負荷抵抗と、負の温度特性を持つ素子が直列に接続されることを特徴とする。
【0025】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の第1の実施形態にかかる発光素子の駆動回路を示した回路図である。半導体レーザ117のカソードには駆動回路119が接続され、半導体レーザ117のアノードには電源101(高電位側の電源)が接続されている。半導体レーザ117を駆動するスイッチング回路110は、NPNトランジスタ111,112の差動回路で構成されている。
【0026】
相補的な画像信号を入力する入力端子103,104は、プリドライバー回路105に接続され、プリドライバー回路105の相補的な出力141,142は、スイッチング回路110を駆動するエミッタフォロアの入力となる。スイッチング回路110を駆動する2つのエミッタフォロアは、それぞれNPNトランジスタ106と負荷抵抗108と直列にダイオードを接続したNPNトランジスタ121と、およびNPNトランジスタ107と負荷抵抗109と直列にダイオードを接続したNPNトランジスタ122とにより構成されている。NPNトランジスタ106,107のコレクタは、電源101に接続され、NPNトランジスタ121,122のエミッタは、GND(低電位側の電源)102に接続されている。
【0027】
電流源116より供給される電流を、スイッチング回路110に折り返して供給するカレントミラー回路が、NPNトランジスタ113,114,115から構成されている。抵抗118は、集積化されない個別部品からなり、半導体レーザが発光しない場合、駆動回路119内での電力消費を抑える為に、スイッチング回路110の半導体レーザ117と反対側の出力と、電源101との間に接続される。
【0028】
本実施形態において、ダイオード接続されたNPNトランジスタは、負の温度特性を持った素子の代表である。負の温度特性とは、一定の電流を流した場合、その両端に現れる電圧が負の温度特性を持つことをいう。すなわち、温度の上昇とともに両端の電圧が減少する。半導体基板上のpn接合を用いたダイオードやダイオード接続されたトランジスタは、順方向電圧が−1〜−2mV/℃の割合で温度上昇とともに変化するため、負の温度特性を持った素子である。またショットキーバリアダイオードも負の温特を持つ。
【0029】
電流源116から供給される電流をIとする。NPNトランジスタ113,114で構成されるカレントミラーのミラー比をnとすると、NPNトランジスタ113にNPNトランジスタ114のn倍の電流が流れる。
【0030】
入力端子103の相補的な画像信号がハイ、入力端子104がロウの場合、プリドライバー105の相補的な出力141はハイ、相補的な出力142はロウとなる。従って、NPNトランジスタ106と抵抗108よりなるエミッタフォロアの出力はハイ、NPNトランジスタ107と抵抗109よりなるエミッタフォロアの出力はロウとなる。NPNトランジスタ111,112からなるスイッチング回路のうち、NPNトランジスタ111がオンになり、NPNトランジスタ112がオフになる。NPNトランジスタ113に流れるnIの電流は、NPNトランジスタ111を介して半導体レーザ117に流れ、半導体レーザ117はその電流値に応じた光量で発光する。
【0031】
一方、入力端子103の相補的な画像信号がロウ、入力端子104がハイの場合、プリドライバー105の相補的な出力141はロウ、相補的な出力142はハイとなる。従って、NPNトランジスタ106と抵抗108よりなるエミッタフォロアの出力はロウ、NPNトランジスタ107と抵抗109よりなるエミッタフォロアの出力はハイとなる。NPNトランジスタ111,112からなるスイッチング回路のうち、NPNトランジスタ111がオフになり、NPNトランジスタ112がオンになる。NPNトランジスタ113に流れるnIの電流は、NPNトランジスタ112を介して抵抗118に流れ、半導体レーザ117は消灯する。
【0032】
エミッタフォロアを構成するNPNトランジスタ106,107のエミッタ電位のハイレベルをVh,ロウレベルをVlとする。負荷抵抗108,109の値をともにR0とする。図6に示した従来例では、ハイレベルを出力するエミッタフォロアの負荷抵抗には、Vh/R0電流が流れる。負荷抵抗を拡散抵抗で構成すると、1000〜2000ppm/℃の温度特性を持っている為、温度が上昇するとエミッタフォロアの負荷に流れる電流Vh/R0は減少する。一例として負荷抵抗が2000ppm/℃の場合50℃の温度上昇で電流は10%減少する。従って、エミッタフォロアを構成するNPNトランジスタ606,607に流れる電流は減少し、fが低下して立ち上がり速度が低下する。さらに、スイッチング回路を放電する際の電流が減少するために立ち下がり速度も低下する。
【0033】
一方、本実施形態においては、ダイオード接続したNPNトランジスタ121,122を負荷抵抗108,109と直列に接続している。ダイオード接続したNPNトランジスタ121,122の順方向電圧は温度の上昇とともに減少するため、負荷抵抗の両端にかかる電圧は増大し抵抗値の増加を補償して、電流の低下を抑制するように作用する。
【0034】
具体的には、ダイオード接続したNPNトランジスタ121,122の順方向電圧Vfを0.7V(基準温度において)、温度係数を−2mV/℃、スイッチング回路を構成するNPNトランジスタ111,112及び電流源として動作するNPNトランジスタ113を飽和させないような電圧Vhを2.4Vとすると、基準電圧において、エミッタフォロアに流れる電流は(Vh−Vf)/R0=1.7V/R0となる。50℃温度が上昇した場合、抵抗値は前述の様に10%増加するが、Vfが0.1V減少するために、
(Vh−Vf)=1.8V/1.1R0〜1.64V/R0
となり、電流値の減少は約3.5%である。温度が上昇しても、上述した従来例ほどには、エミッタフォロアを流れる電流は減少しないので、スイッチング回路の駆動速度を低下させることが少なく、高温になっても半導体レーザの高速なスイッチングが可能となる。
【0035】
なお、発光素子として半導体レーザの例を示したが、半導体レーザに限らず、電流をスイッチング回路でオン,オフする事によって発光を制御する発光素子であれば同様の効果が得られる。また、NPNトランジスタのエミッタフォロアでスイッチング回路を駆動する場合を示したが、PNPトランジスタを用いたエミッタフォロアに関しても同様の効果があることは言うまでもない。
【0036】
本実施形態では、1つの発光素子を駆動する駆動回路に付いて例示したが、スイッチング回路を複数チャンネル分備えた複数の発光素子の駆動回路については、消費電流が1チャンネルの場合より大きく駆動回路の温度上昇が大きくなることから、より大きな効果が得られる。また、負の温度特性を持つ素子の数は、1つに限らず必要に応じて複数であっもよいし、直列であればその順番を問わないことは言うまでもない。
【0037】
図2は、本発明にかかる第1の実施形態の発光素子の駆動回路において複数の負の温度特性を持つ素子を使用した一例を示した回路図である。エミッタフォロアの負荷抵抗108,109と、直列に2つのショットキーバリアダイオード131,132と133,134とを接続した。ショットキーバリアダイオードが1個の場合と比較して、温度上昇に伴って負荷抵抗にかかる電圧増加量が増大するため、高温においてエミッタフォロアに流れる電流の低下をより抑えることができる。
【0038】
図3は、本発明にかかる第1の実施形態の発光素子の駆動回路において単相の画像信号で発光素子のスイッチングを行う一例を示した回路図である。上述した実施形態では、相補的な画像信号に基づいて発光素子のスイッチングを行う例を示した。図3に示した実施形態では、スイッチング回路110の一方の入力を固定電位としておき、他方の電位を単相の画像信号に基づいて変化させ、スイッチング行う。この場合にも上述した実施形態と同様の効果が得られる。
【0039】
入力端子123から入力された単相の画像信号が、プリドライバー124に入力され、プリドライバー124の出力125が、エミッタフォロアを構成するNPNトランジスタ126のベースに接続されている。NPNトランジスタ126のコレクタは、電源101(高電位側の電源)に、エミッタは負荷抵抗127とスイッチング回路110の一方の入力に接続されている。負荷抵抗127のもう一端は、ダイオード接続されたNPNトランジスタ128のアノード側に接続され、カソードは、GND(低電位側の電源)に接続されている。スイッチング回路110のもう一方の入力は、抵抗129,130で与えられる固定電圧が入力されている。
【0040】
半導体レーザ117のスイッチングは、NPNトランジスタ111のオン,オフ、すなわちエミッタフォロアの出力スイッチングスピードで決まる。上述したように、負荷抵抗に直列の負の温度特性を持つ素子を接続することによって、温度の上昇によるスイッチング速度の低下を改善することができる。
【0041】
(第2の実施形態)
図4は、本発明にかかる第2の実施形態の発光素子の駆動回路を示した回路図である。図1に示した第1の実施形態と同一の部分は、同じ番号を付ける。第1の実施形態との差異は、半導体レーザの駆動回路をMOSFETで構成し、スイッチング回路の駆動をソースフォロアで行っている点である。BiCMOSのデバイスを用いれば、バイポーラ・トランジスタとMOSFETとの混在であってもよい。
【0042】
半導体レーザ117のカソードには駆動回路119が接続され、半導体レーザ117のアノードには電源101(高電位側の電源)が接続されている。半導体レーザ117を駆動するスイッチング回路210は、NMOSFET211,212の差動回路で構成している。
【0043】
相補的な画像信号を入力する入力端子103,104は、プリドライバー回路205に接続され、プリドライバー回路205の相補的な出力241,242は、スイッチング回路210を駆動するソースフォロアの入力となる。スイッチング回路210を駆動する2つのソースフォロアは、それぞれNMOSFET206と負荷抵抗208と接合ダイオード221と、およびNMOSFET207と負荷抵抗209と接合ダイオード222とにより構成されている。NMOSFET206,207のドレインは、電源101に接続されている。負荷抵抗208,209の他端は、負の温度特性を持つ接合ダイオード221,222のアノードに接続され、接合ダイオード221,222のカソードは、GND(低電位側の電源)102に接続されている。
【0044】
電流源216より供給される電流を、スイッチング回路210に折り返して供給するカレントミラー回路が、NMOSFET214,215から構成されている。
【0045】
本実施形態においても、上述した第1の実施形態と同様の効果が得られる。スイッチング回路を駆動するソースフォロアを構成するNMOSFET206,207のハイレベルをVh2、ロウレベルをVl2とする。負荷抵抗208,209の抵抗値をともにR1とする。接合ダイオードの順方向電流をVf2として、ハイレベルを出力しているソースフォロアについてみると、ソースフォロアに流れる電流Isは、
Is=(Vh2−Vf2)/R1
となる。半導体基板上の拡散層やポリシリコンで作られる負荷抵抗208,209の抵抗値、すなわち上式の分母は温度の上昇に伴って増加するが、接合ダイオード221,222の順方向電圧が温度上昇に伴って減少するため、上式の分子も増加し電流の減少を改善するよう動作する。従って、温度が上昇してもソースフォロアに流れる電流の減少は抑制され、高温になっても半導体レーザの高速なスイッチングが可能となる。
【0046】
なお、ここではNMOSFETのソースフォロアの例を示したが、PMOSFETのソースフォロアについても同様の効果があることは言うまでもない。
【0047】
(第3の実施例)
図5は、本発明にかかる第3の実施形態の発光素子の駆動回路を示した回路図である。本実施形態においては、半導体レーザに電流を供給するスイッチング回路の駆動を、低電流負荷のエミッタフォロアで行う場合の一例を示す。ここで、定電流負荷とは、抵抗負荷のようにエミッタフォロアの出力電圧によって電流が変る上述した例に比較して、出力電圧に依らずほぼ一定の電流を負荷として流すことを意味し、温度に対して一定という意味ではない。エミッタフォロアの負荷を定電流とする場合、温度依存性が小さくなるような電流源をもとに、エミッタフォロアの負荷の電流を供給すれば、抵抗負荷の時のような温度上昇に伴う電流の減少は防ぐことができる。しかし、バイポーラトランジスタのfが温度の上昇とともに低下するため、エミッタフォロアに流れる電流が温度変化しない場合でもスイッチング回路の駆動が遅くなるという問題が残る。
【0048】
本実施形態においては、半導体レーザの駆動電流をスイッチングするスイッチング回路の駆動を、定電流負荷のエミッタフォロアまたはソースフォロアで行う発光素子の駆動回路について、正の温度特性を持った電流源を用いることにより、高温時にスイッチング速度の低下を防ぐ発光素子の駆動回路を示す。
【0049】
図5において、図1に示した第1の実施形態と同一の部分は、同じ番号を付け説明を省略する。第1の実施形態との相違は、エミッタフォロアの定電流負荷を構成する電流源回路311である。
【0050】
電流源回路311は、ベースが共通接続されたNPNトランジスタ301,302と、NPNトランジスタ301のエミッタに接続された抵抗303と、ベースが共通接続されたPNPトランジスタ304,305とから構成されている。NPNトランジスタ301のコレクタは、PNPトランジスタ304のコレクタ・ベース・ショートに接続カレントミラーを構成する。PNPトランジスタ304,305のエミッタは、電源101(高電位側の電源)に接続され、PNPトランジスタ305のコレクタとエミッタには、スタートアップ用抵抗306が接続されている。
【0051】
抵抗303の他端とNPNトランジスタ302のエミッタは共通接続され、NPNトランジスタ307のコレクタとベース電流補償用のNPNトランジスタ310のベースに接続されている。NPNトランジスタ310のコレクタは、電源101に接続され、エミッタは、NPNトランジスタ307,308,309の共通ベースに接続されている。NPNトランジスタ307,308,309のエミッタは、GND(低電位側の電源)102に接続されカレントミラーを構成している。NPNトランジスタ308のコレクタは、NPNトランジスタ106のエミッタに接続され、309のコレクタはNPNトランジスタ107のエミッタに接続され、それぞれ定電流負荷のエミッタフォロアを構成する。
【0052】
電流源回路311は、ベースが共通接続されたNPNトランジスタ301,302と抵抗303で電流を決定する。NPNトランジスタ301,302のサイズ比をmとする。簡単のために、ベース電流とスタートアップ用の抵抗306に流れる電流を無視すると、この電流源の電流は、下記のように表される。PNPトランジスタ304,305からなるカレントミラーに流れる電流は等しいので、これをI1とし、抵抗303の抵抗値をR303すると、
BE301+I1*R303=VBE302
となって、NPNトランジスタ301,302のサイズ比がmであるから、
I1=(V/R303)*ln(m)
と変形できる。ここでVは、全体温度をT、ボルツマン定数をk,素電荷をqとして、
=kT/q
と表される。
【0053】
ln(m)は定数なので、I1の温度依存性は、VとR303の温度依存性にかかっている。いずれも温度の上昇に伴い増加するが、Vは、室温の300K付近で約26mVであり、単位温度あたりの変化率は約3300ppm/℃となる。一方、半導体基板上に形成し拡散層を用いた抵抗の場合、通常その温度依存性は1000〜2000ppm/℃であるので、V/R303は、温度上昇に伴って増加する。従って、この電流源に流れる電流は温度に対して正の係数を持つ。
【0054】
電流源回路311で決まった電流の2倍(NPNトランジスタ301,302に流れる電流の合計)の値が、NPNトランジスタ307のコレクタ電流となり、カレントミラーを形成するNPNトランジスタ308,309にも同様に正の温度依存性を持った電流が流れることとなる。NPNトランジスタ303、309は、NPNトランジスタ106,107とそれぞれ定電流負荷のエミッタフォロアを構成し、発光素子のスイッチング回路110を駆動する。
【0055】
従って、温度が上昇した場合、NPNトランジスタ106,107のfは低下しようとするが、定電流源の電流が増加し、fを増加させるように作用するため、高温になってもスイッチング速度の低下が避けられ発光素子の高速なスイッチングが可能となる。
【0056】
なお、電流源回路311は、図5に示した回路に限定されず、温度に対して正の依存性を持った電流源であれば、よいことは言うまでもない。また、エミッタフォロアの場合について説明したが、ソースフォロアについても同様に、温度上昇とともに電流値が増加するような電流源回路を用いてソースフォロア回路を構成しても同様の効果が得られる。
【0057】
【発明の効果】
以上説明したように、本発明によれば、画像信号に応じて変化するエミッタフォロアの出力で発光素子に流す電流をスイッチングして駆動を行う場合に、バイポーラトランジスタのエミッタと電源との間に、負の温度特性を有する素子を少なくとも1つと、負荷抵抗とを直列に接続したので、温度の上昇とともに負荷抵抗の両端にかかる電圧は増大し、抵抗値の上昇を補償することにより、負荷抵抗のみの場合と比較して、高温時にエミッタフォロアに流れる電流の低下が改善され、スイッチングスピードの低下を防ぐことが可能となる。これをLBPなどのプリンタに応用すれば、高精細、高解像度の画像を得ることが可能となる。
【0058】
また、本発明によれば、画像信号に応じて変化するエミッタフォロア、またはソースフォロアの出力で発光素子に流す電流をスイッチングして駆動を行う場合に、定電流回路の供給する電流は、正の温度特性を有するので、温度上昇に伴うバイポーラトランジスタやMOSFETのfの低下を補って、高温時のスイッチングスピードの低下を防ぐことが可能となる。これをLBPなどのプリンタに応用すれば、高精細、高解像度の画像を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明にかかる第1の実施形態の発光素子の駆動回路を示した回路図である。
【図2】本発明にかかる第1の実施形態の発光素子の駆動回路において複数の負の温度特性を持つ素子を使用した一例を示した回路図である。
【図3】本発明にかかる第1の実施形態の発光素子の駆動回路において単相の画像信号で発光素子のスイッチングを行う一例を示した回路図である。
【図4】本発明にかかる第2の実施形態の発光素子の駆動回路を示した回路図である。
【図5】本発明にかかる第3の実施形態の発光素子の駆動回路を示した回路図である。
【図6】従来の半導体レーザの駆動回路を示す回路図である。
【符号の説明】
101,601 電源(高電位側の電源)
102,602 GND(低電位側の電源)
103,104,123,603,604 入力端子
105,124,205,605 プリドライバー回路
106,107,111〜115,121,122,126,128,301,302,307〜310,606,607,611〜615 NPNトランジスタ
118,129,130,303,618 抵抗
108,109,127,208,209,608,609 負荷抵抗
110,210,610 スイッチング回路
116,216,616 電流源
117,617 半導体レーザ
119,619 駆動回路
125,241,242,141,142,641,642 相補的な出力
131〜134 ショットキーバリアダイオード
206,207,211,214 NMOSFET
221,222 接合ダイオード
304,305 PNPトランジスタ
306 スタートアップ用抵抗
311 電流源回路

Claims (5)

  1. 画像信号を入力して該画像信号に応じた出力を行うプリドライバと、
    半導体レーザと、
    前記半導体レーザの点灯と消灯を切り替えるスイッチング回路と、
    バイポーラトランジスタにより構成され、該バイポーラトランジスタのエミッタ出力により前記スイッチング回路を動作させるエミッタフォロア回路であって
    前記プリドライバの出力が前記バイポーラトランジスタのベースに接続され、
    高電位側の電源が前記バイポーラトランジスタのコレクタに接続される、
    エミッタフォロア回路と、
    を備え、
    低電位側の電源と前記バイポーラトランジスタのエミッタとの間に、正の温度特性を持つ負荷抵抗と、負の温度特性を持つ素子が直列に接続される
    ことを特徴とする半導体レーザの駆動回路。
  2. 画像信号を入力して該画像信号に応じた出力を行うプリドライバと、
    半導体レーザと、
    前記半導体レーザの点灯と消灯を切り替えるスイッチング回路と、
    MOSFETにより構成され、該MOSFETのソース出力により前記スイッチング回路を動作させるソースフォロア回路であって、
    前記プリドライバの出力が前記MOSFETのゲートに接続され、
    高電位側の電源が前記MOSFETのドレインに接続される、
    ソースフォロア回路と、
    を備え、
    低電位側の電源と前記MOSFETのソースとの間に、正の温度特性を持つ負荷抵抗と、負の温度特性を持つ素子が直列に接続される
    ことを特徴とする半導体レーザの駆動回路。
  3. 前記画像信号は一方がハイのとき他方はローとなる相補的な画像信号であり、
    前記スイッチング回路は差動回路で構成され、
    前記エミッタフォロア回路には、第1エミッタ出力を備えた第1バイポーラトランジスタと、第2エミッタ出力を備えた第2バイポーラトランジスタとを含み、
    前記第1エミッタ出力と前記低電位側の電源との間、及び前記第2エミッタ出力と前記低電位側の電源との間の夫々において、前記正の温度特性を持つ負荷抵抗と、前記負の温度特性を持つ素子が直列に接続され、
    前記プリドライバは、前記相補的な画像信号の入力に応じて逆極性の出力を第1出力端子及び第2出力端子からそれぞれ出力して、前記第1バイポーラトランジスタの第1エミッタ出力及び前記第2バイポーラトランジスタの第2エミッタ出力を制御し、
    前記制御に応じて前記差動回路がオン及びオフすることにより前記半導体レーザの点灯と消灯が切り替えられ、
    ことを特徴とする請求項1に記載の駆動回路。
  4. 前記画像信号は一方がハイのとき他方はローとなる相補的な画像信号であり、
    前記スイッチング回路は差動回路で構成され、
    前記ソースフォロア回路には、第1ソース出力を備えた第1MOSFETと、第2ソース出力を備えた第2MOSFETとを含み、
    前記第1ソース出力と前記低電位側の電源との間、及び前記第2ソース出力と前記低電位側の電源との間の夫々において、前記正の温度特性を持つ負荷抵抗と、前記負の温度特性を持つ素子が直列に接続され、
    前記プリドライバは、前記相補的な画像信号の入力に応じて逆極性の出力を第1出力端子及び第2出力端子からそれぞれ出力して、前記第1MOSFETの第1ソース出力及び前記第2MOSFETの第2ソース出力を制御し、
    前記制御に応じて前記差動回路がオン及びオフすることにより前記半導体レーザの点灯と消灯が切り替えられる、
    ことを特徴とする請求項2に記載の駆動回路。
  5. 前記低電位側の電源はグランドであることを特徴とする請求項1乃至4のいずれか1項に記載の駆動回路。
JP2001040227A 2001-02-16 2001-02-16 発光素子の駆動回路 Expired - Fee Related JP4763900B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040227A JP4763900B2 (ja) 2001-02-16 2001-02-16 発光素子の駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040227A JP4763900B2 (ja) 2001-02-16 2001-02-16 発光素子の駆動回路

Publications (3)

Publication Number Publication Date
JP2002246685A JP2002246685A (ja) 2002-08-30
JP2002246685A5 JP2002246685A5 (ja) 2010-06-17
JP4763900B2 true JP4763900B2 (ja) 2011-08-31

Family

ID=18902874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040227A Expired - Fee Related JP4763900B2 (ja) 2001-02-16 2001-02-16 発光素子の駆動回路

Country Status (1)

Country Link
JP (1) JP4763900B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3963720A4 (en) * 2019-04-29 2022-12-28 Efficient Power Conversion Corporation GAN LASER DIODE DRIVE FET WITH GRID CURRENT REUSE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040185B2 (ja) * 2006-06-21 2012-10-03 ミツミ電機株式会社 発光ダイオード駆動回路
US8242709B2 (en) 2007-07-13 2012-08-14 Mitsubishi Electric Corporation Optical transmitter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890756A (ja) * 1981-11-25 1983-05-30 Mitsubishi Electric Corp モノリシツク基準電流源
JPS59135519A (ja) * 1983-01-21 1984-08-03 Toshiba Corp 電流源回路
JPH04150610A (ja) * 1990-10-15 1992-05-25 Aisin Seiki Co Ltd レベル変換回路
JPH05210986A (ja) * 1991-10-29 1993-08-20 Sony Corp 抵抗体
JPH07240554A (ja) * 1994-02-28 1995-09-12 Fujitsu Ltd 半導体レーザ駆動装置
JP3602992B2 (ja) * 1999-02-15 2004-12-15 日本オプネクスト株式会社 光送信モジュール
JP4116198B2 (ja) * 1999-06-29 2008-07-09 株式会社東芝 光半導体素子駆動回路及び光送受信モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3963720A4 (en) * 2019-04-29 2022-12-28 Efficient Power Conversion Corporation GAN LASER DIODE DRIVE FET WITH GRID CURRENT REUSE

Also Published As

Publication number Publication date
JP2002246685A (ja) 2002-08-30

Similar Documents

Publication Publication Date Title
US6222357B1 (en) Current output circuit with controlled holdover capacitors
JPH11121852A (ja) 発光素子駆動回路
US7485931B2 (en) Semiconductor integrated circuit
JP4763900B2 (ja) 発光素子の駆動回路
US6703790B2 (en) Method for driving a self-scanning light-emitting array
US7642502B2 (en) Photo relay having an insulated gate field effect transistor with variable impedance
US11395386B2 (en) Semiconductor device
JP4337339B2 (ja) 発光ダイオード駆動回路
JP4998440B2 (ja) 発光ダイオード駆動回路
US5349307A (en) Constant current generation circuit of current mirror type having equal input and output currents
JP3593623B2 (ja) 発光素子駆動回路
US7227119B2 (en) Current voltage converter circuit
JP2001287398A (ja) 自己走査型発光素子アレイおよびその駆動方法
JP3332991B2 (ja) 駆動回路
JP4438174B2 (ja) 自己走査型発光素子アレイの駆動方法
JP4269744B2 (ja) モノリシック型発光ダイオード駆動回路
JP3194798B2 (ja) クランプ機能付きスイッチ回路
JP2776709B2 (ja) 電流切換回路
JPH02103984A (ja) 半導体レーザ駆動回路
JP2802441B2 (ja) 複合型半導体定電圧発生回路装置
JP2998334B2 (ja) Ecl型半導体集積回路装置
JP3788029B2 (ja) レーザダイオード駆動回路
JP2570480B2 (ja) レベル変換回路
JP2000286344A (ja) カレントミラー回路及び該回路を用いた発光素子の駆動回路
JP2514220B2 (ja) 駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees