JP4695736B2 - ヘテロ接合バイポーラトランジスタ - Google Patents

ヘテロ接合バイポーラトランジスタ Download PDF

Info

Publication number
JP4695736B2
JP4695736B2 JP07447799A JP7447799A JP4695736B2 JP 4695736 B2 JP4695736 B2 JP 4695736B2 JP 07447799 A JP07447799 A JP 07447799A JP 7447799 A JP7447799 A JP 7447799A JP 4695736 B2 JP4695736 B2 JP 4695736B2
Authority
JP
Japan
Prior art keywords
collector
bipolar transistor
layer
heterojunction bipolar
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07447799A
Other languages
English (en)
Other versions
JP2000269231A5 (ja
JP2000269231A (ja
Inventor
田中  均
大介 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP07447799A priority Critical patent/JP4695736B2/ja
Publication of JP2000269231A publication Critical patent/JP2000269231A/ja
Publication of JP2000269231A5 publication Critical patent/JP2000269231A5/ja
Application granted granted Critical
Publication of JP4695736B2 publication Critical patent/JP4695736B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トランジスタに関し、さらに詳しくはヘテロ接合バイポーラトランジスタに関するものである。
【0002】
【従来の技術】
近年、動作の高速性に優れる化合物半導体を用いたヘテロ接合バイポーラトランジスタ(HBT)の作成がなされつつある。ここで、ヘテロ接合バイポーラトランジスタは、高電流駆動能力を有するとともに高効率・高線形性を持ち、単一の電源で動作するものであるため、例えば携帯電話端末のパワーアンプとしての用途などが期待されている。
【0003】
従来のnpn型バイポーラトランジスタの構造は図1に示される。図1に示されるように、このバイポーラトランジスタは、半絶縁性GaAsからなる半導体基板1と、半導体基板1の上に形成されたi- GaAsからなるバッファ層3と、バッファ層3の上に形成されたn+ - GaAsからなるコレクタコンタクト層(サブコレクタ層ともいう。)5と、コレクタコンタクト層5の上に形成されたn- - GaAsからなるコレクタ層9と、コレクタ層9の上に形成されたp+ - GaAsからなるベース層11と、ベース層11の上に形成されたn−AlGaAsからなるエミッタ層15と、エミッタ層15の上に形成されたn+ - In GaAsからなるエミッタコンタクト層17と、コレクタコンタクト層5の上に設けられたコレクタ電極7と、ベース層11の上に設けられたベース電極13と、エミッタコンタクト層17の上に設けられたエミッタ電極19とから構成される。そして、この縦型のバイポーラトランジスタをパワーアンプとして用いた場合に高効率を得るためには、動作時のオン抵抗の低減が必要不可欠となる。そこで、従来はオン抵抗を低減するために、エミッタコンタクト層17に高濃度かつバンドギャップの小さいInGaAsからなる半導体を用いてエミッタ抵抗を低減すると同時に、コレクタコンタクト層5を高濃度にしてコレクタ抵抗を低減していた。しかしながら、エミッタ抵抗は、バイポーラトランジスタを用いたパワーアンプにおいて増幅時の熱暴走を避けるための負のフィードバックとして機能するものでもあるため、安定動作を担保する必要から、このエミッタ抵抗の値を低減するには限界がある。従って、オン抵抗の低減のためには、コレクタ抵抗の低減が非常に重要になる。
【0004】
ここで、コレクタシート抵抗やコレクタコンタクト抵抗を低減するために、シリコンをドープしたコレクタコンタクト層5の高濃度化が図られているが、5x1018cm-3の濃度を超えると逆にキャリアが減少するため、かえって抵抗値の上昇を招くこととなる。また、コレクタシート抵抗の低減はコレクタコンタクト層5を厚くすることで実現されるが、あまり厚すぎるとイオン注入による素子間分離が困難になる。また、この場合にメサで素子間分離を行うと、段差が大きくなって配線の断線につながるなどの弊害が生じる。また、他のドーパントソースを使用するとさらに高濃度のドーピングが可能であるが、Teの場合のようにコレクタコンタクト層5に高濃度にドーピングすることにより、結晶中に欠陥が発生し、バイポーラトランジスタの特性が劣化する。以上より、従来の構造では更なるコレクタ抵抗の低減は望めないこととなる。
【0005】
一方、エミッタコンタクト層17には通常InGaAsを用いるが、InGaAsは半導体基板1のGaAsとの格子不整合が大きく、成長中にこの不整合に起因する転位が発生するため結晶表面が荒れる。これにより、エミッタコンタクト層17に付けるエミッタ電極19の接触抵抗が大きくなることから、一般にInGaAsの成長温度を大きく下げて表面荒れを低減することが行われる。しかしながら、この場合には結晶成長工程が煩雑になるとともに、所望の結晶を得る成長条件の範囲が狭いという問題が生じる。また、本質的には欠陥のない結晶を用いてデバイスを作成することが望ましい。
【0006】
【発明が解決しようとする課題】
本発明は、上述の問題点を解消するためになされたもので、現状のプロセス技術を用いてコレクタ抵抗を低減することによって、より動作特性がよく、かつ、安定に動作するバイポーラトランジスタを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的は、GaAsによって形成された半導体基板の上にコレクタコンタクト層と、該コレクタコンタクト層の第一の領域に形成された第一導電型のコレクタ層と、コレクタコンタクト層の第二の領域に形成されたコレクタ電極と、コレクタ層の上に形成された第二導電型のベース層と、該ベース層の第一の領域に形成されたベース電極と、ベース層の第二の領域に形成された第一導電型のエミッタ層と、該エミッタ層の上に形成されたエミッタコンタクト層と、該エミッタコンタクト層の上に形成されたエミッタ電極とを有するヘテロ接合バイポーラトランジスタであって、コレクタコンタクト層とエミッタコンタクト層のうち少なくとも一方は、半導体基板と格子整合するIII −V族化合物半導体材料によって形成され、該III −V族化合物半導体材料が窒素を含むことを特徴とするヘテロ接合バイポーラトランジスタを提供することにより達成される。
【0008】
また、本発明の目的は、さらに半導体基板がGaAsによって形成され、コレクタコンタクト層またはエミッタコンタクト層のうち少なくともいずれか一方の少なくとも一部はGaInNAsによって形成されたヘテロ接合バイポーラトランジスタを提供することにより達成される。また、本発明の目的は、さらに上記のGaInNAsによって形成された層にシリコンが10 19 cm-3以上ドーピングされたヘテロ接合バイポーラトランジスタを提供することによっても達成できる。
【0009】
以上の手段によれば、本発明において従来のヘテロ接合バイポーラトランジスタのコレクタ抵抗またはエミッタ抵抗が低減される。
【0010】
【発明の実施の形態】
以下において、本発明の実施の形態を図面を参照して説明する。
[実施の形態1]
図2は、本発明の実施の形態1に係るヘテロ接合バイポーラトランジスタの構成を示す図である。図2に示されるように、このヘテロ接合バイポーラトランジスタは、図1に示された従来のヘテロ接合バイポーラトランジスタと同様な構成を有するが、コレクタコンタクト層20がn+ - GaInNAsによって形成される点で相違する。なお、エミッタ層15はInGaPその他によって形成しても良い。
【0011】
ここで上記n+ - GaInNAsの組成は、半導体基板1のGaAsにほぼ格子整合するようなものとされる。具体的には、Ga1-x Inx y As1-y のx, yをGaAsに格子整合するように選ぶ。なおこのyは、0からわずかに増していくと、バンドギャップが小さくなるとともにコンダクションバンド端が下がる。そして、一般的にGaAsとほぼ格子整合するGaInNAs中のIn, Nの組成とバンドギャップEgの関係は図3に示される。そして例えば、上記一般式においてx=0.08, y=0.025の組成を有するGaInNAsはGaAsに格子整合し、この時のバンドギャップは1.0evとなると共に、コンダクションバンド端はGaAsより0.35ev下がる。バンドギャップが小さくなるとシリコンのドーピング濃度の上限値が上がっていくため、1x1019cm-3以上のドーピング濃度が可能となる。また、コンダクションバンド端が下がってくると、GaInNAsに接触するコレクタ電極7のショットキーバリアの高さが低くなって、コレクタコンタクト抵抗が下がる効果がある。なお、コレクタコンタクト抵抗率とコレクタ抵抗の関係は図4に示される。ここで、図1に示される従来のヘテロ接合バイポーラトランジスタにおけるコレクタ抵抗は、おおよそ3Ωである。
【0012】
なお、それぞれ、バッファ層3の厚さは100nmであり、コレクタコンタクト層の厚さは500nmでキャリア濃度が2x1019cm-3であり、コレクタ層9の厚さは600nmでキャリア濃度が3x1016cm-3であり、ベース層11の厚さは70nmでキャリア濃度が4x1019cm-3であり、エミッタ層15の厚さは30nmでキャリア濃度が3x1017cm-3であり、エミッタコンタクト層17の厚さは100nmでキャリア濃度が3x1019cm-3である。また、図示はしていないが、エミッタ層15とエミッタコンタクト層17との間には下から順に、n- - GaAsからなり厚さ120nmでキャリア濃度が3x1016cm-3の層と、n+ - GaAsからなり厚さ180nmでキャリア濃度が3x1018cm-3の層とがある。
【0013】
次に、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタの製造工程を説明する。まず、図5(a)に示されるように、半導体基板1の上にバッファ層3、コレクタコンタクト層5、コレクタ層9、ベース層11、エミッタ層15、エミッタコンタクト層17を順次積層する。そして、エミッタ電極19をエミッタコンタクト層17の上に蒸着あるいはスパッタなどにより形成する。次に、図5(b)に示されるように、エミッタメサをウェットエッチングあるいはドライエッチングによって形成した後、素子間のコレクタコンタクト層5をイオン注入によって不活性化させる。次に、図6(a)に示されるように、ベース電極13をベース層11の上に蒸着により形成する。次に、図6(b)に示されるように、ベースメサをウェットエッチングあるいはドライエッチングにより形成する。そして最後に、図6(c)に示されるようにコレクタ電極7をコレクタコンタクト層5の上に蒸着により形成する。なお、こののち配線工程をへてデバイスが完成される。
【0014】
また、上記製造工程は、図7に示されるMOCVD(Metal- OrganicChemical VaporDeposition )炉を使用することによって実現される。ここで例えば、窒素は、DMHy(Dimethylhydrazine)を用いることにより反応器25内の台26上に置かれたウエーハ27に供給される。そして、この窒素の供給量はMFC(mass flow controller)21と圧力制御バルブ23によって調整される。
【0015】
上記のような本実施の形態1に係るヘテロ接合バイポーラトランジスタによれば、コレクタ電極7に接触するコレクタコンタクト層20をGaInNAsで形成することにより、格子不整合による転位の発生を招くことなくコレクタ抵抗の低減を実現できる。そして、このコレクタ抵抗の低減によりヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できるため、従来よりも効率の良いパワーアンプを得ることができる。ここで、図8はコレクタ抵抗(Rc)を低減した時の出力電力(Pout )とゲイン(Ga)の増大を示す図である。図8に示されるように、出力電力とゲインの双方とも、Rcが3Ωのときより1. 5Ωの時の方が大きい値となっていることがわかる。また、コレクタ抵抗を変化させた時の電力付加効率(PAE)の変化が、図9に示される。図9に示されるように、Rcが3Ωのときより1. 5Ωの時の方がPAEも大きい値となっていることがわかる。
【0016】
なお、ヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できることから、高周波動作における動作特性の向上も見込まれる。
[実施の形態2]
図10は、本発明の実施の形態2に係るヘテロ接合バイポーラトランジスタの構成を示す図である。図10に示されるように、このヘテロ接合バイポーラトランジスタは、図1に示された従来のヘテロ接合バイポーラトランジスタと同様な構成を有するが、エミッタコンタクト層30がn+ - GaInNAsによって形成される点で相違するものである。
【0017】
このヘテロ接合バイポーラトランジスタも、上記実施の形態1にかかるヘテロ接合バイポーラトランジスタと同様に製造されるが、エミッタ電極19に接触するエミッタコンタクト層30をGaInNAsで形成することにより、格子不整合による転位の発生を招くことなくエミッタ抵抗の低減を実現できる。そして、このエミッタ抵抗の低減によりヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できるため、従来よりも効率の良いパワーアンプを得ることができる。
[実施の形態3]
図11は、本発明の実施の形態3に係るヘテロ接合バイポーラトランジスタの構成を示す図である。図11に示されるように、このヘテロ接合バイポーラトランジスタは、図1に示された従来のヘテロ接合バイポーラトランジスタと同様な構成を有するが、コレクタコンタクト層20とエミッタコンタクト層30が共にn+ - GaInNAsによって形成される点で相違するものである。
【0018】
このヘテロ接合バイポーラトランジスタも、上記実施の形態1にかかるヘテロ接合バイポーラトランジスタと同様に製造されるが、コレクタ電極7及びエミッタ電極19にそれぞれ接触するコレクタコンタクト層20とエミッタコンタクト層30をGaInNAsで形成することにより、格子不整合による転位の発生を招くことなくコレクタ抵抗及びエミッタ抵抗の低減を実現できる。そして、このコレクタ抵抗とエミッタ抵抗の低減によりヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できるため、従来よりも効率の良いパワーアンプを得ることができる。
[実施の形態4]
図12は、本発明の実施の形態4に係るヘテロ接合バイポーラトランジスタの構成を示す図である。図12に示されるように、このヘテロ接合バイポーラトランジスタは、図1に示された従来のヘテロ接合バイポーラトランジスタと異なり、バッファ層3の上にエミッタコンタクト層30とエミッタ層15及びエミッタ電極19を備え、ベース層11の上にコレクタ層9とn+ - InGaAsからなるコレクタコンタクト層40及びコレクタ電極7とを備えるコレクタアップ型の構成を有する点で相違する。ここで、エミッタコンタクト層30がn+ - GaInNAsによって形成される。
【0019】
このヘテロ接合バイポーラトランジスタも、上記実施の形態1にかかるヘテロ接合バイポーラトランジスタと同様に製造されるが、エミッタ電極19に接触するエミッタコンタクト層30をGaInNAsで形成することにより、格子不整合による転位の発生を招くことなくエミッタ抵抗の低減を実現できる。そして、このエミッタ抵抗の低減によりヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できるため、従来よりも効率の良いパワーアンプを得ることができる。
【0020】
またさらには、本実施の形態に係るヘテロ接合バイポーラトランジスタによれば、フィードバック容量も大幅に低減できるため、高利得かつ低歪みのパワーアンプの実現が可能となる。なお、この低歪み性は、デジタル携帯電話に使用されるトランジスタにとって重要な特性の一つである。
[実施の形態5]
図13は、本発明の実施の形態5に係るヘテロ接合バイポーラトランジスタの構成を示す図である。図13に示されるように、このヘテロ接合バイポーラトランジスタは、図12に示された実施の形態4に係るヘテロ接合バイポーラトランジスタと同様なコレクタアップ型の構成を有するが、エミッタコンタクト層60がn+ - GaAsにより形成され、コレクタコンタクト層50がn+ - GaInNAsによって形成される点で相違する。
【0021】
このヘテロ接合バイポーラトランジスタも、上記実施の形態1にかかるヘテロ接合バイポーラトランジスタと同様に製造されるが、コレクタ電極7に接触するコレクタコンタクト層50をGaInNAsで形成することにより、格子不整合による転位の発生を招くことなくコレクタ抵抗の低減を実現できる。そして、このコレクタ抵抗の低減によりヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できるため、従来よりも効率の良いパワーアンプを得ることができる。
【0022】
またさらには、本実施の形態に係るヘテロ接合バイポーラトランジスタによっても、フィードバック容量が大幅に低減できるため、高利得かつ低歪みのパワーアンプの実現が可能となる。
[実施の形態6]
図14は、本発明の実施の形態6に係るヘテロ接合バイポーラトランジスタの構成を示す図である。図14に示されるように、このヘテロ接合バイポーラトランジスタは、図13に示された実施の形態5に係るヘテロ接合バイポーラトランジスタと同様なコレクタアップ型の構成を有するが、エミッタコンタクト層30がn+ - GaInNAsによって形成される点で相違する。
【0023】
このヘテロ接合バイポーラトランジスタも、上記実施の形態1にかかるヘテロ接合バイポーラトランジスタと同様に製造されるが、コレクタ電極7及びエミッタ電極19にそれぞれ接触するコレクタコンタクト層50とエミッタコンタクト層30をGaInNAsで形成することにより、格子不整合による転位の発生を招くことなくエミッタ抵抗及びコレクタ抵抗の低減を実現できる。そして、このエミッタ抵抗とコレクタ抵抗の低減によりヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できるため、従来よりも効率の良いパワーアンプを得ることができる。
【0024】
またさらには、本実施の形態に係るヘテロ接合バイポーラトランジスタによっても、フィードバック容量が大幅に低減できるため、高利得かつ低歪みのパワーアンプの実現が可能となる。
[実施の形態7]
図15は、本発明の実施の形態7に係るヘテロ接合バイポーラトランジスタの構成を示す図である。図15に示されるように、このヘテロ接合バイポーラトランジスタは、図1に示された従来のヘテロ接合バイポーラトランジスタと同様な構成を有するが、バッファ層3の上にはコレクタ層9が形成され、コレクタ層9の上には再成長によるコレクタコンタクト層70がn+ - GaInNAsによって形成される点で相違するものである。また、このコレクタコンタクト層70の上にコレクタ電極7が形成される。
【0025】
この本実施の形態7にかかるヘテロ接合バイポーラトランジスタによれば、コレクタ電極7に接触する再成長によるコレクタコンタクト層70をGaInNAsで形成することにより、格子不整合による転位の発生を招くことなくコレクタ抵抗の低減を実現できる。そして、このコレクタ抵抗の低減によりヘテロ接合バイポーラトランジスタ動作時のオン抵抗を低減できるため、従来よりも効率の良いパワーアンプを得ることができる。
【0026】
なお、コレクタアップ型のヘテロ接合バイポーラトランジスタにおいて、エミッタコンタクト層が再成長により形成された場合も、本実施の形態に係るヘテロ接合バイポーラトランジスタと同様な効果を奏する。
【0027】
【発明の効果】
上述の如く、本発明によれば、オン抵抗が低減され動作特性が改善されたヘテロ接合バイポーラトランジスタを得ることができる。
【図面の簡単な説明】
【図1】図1は、従来のヘテロ接合バイポーラトランジスタの構成を示す図である。
【図2】図2は、本発明の実施の形態1に係るヘテロ接合バイポーラトランジスタの構成を示す図である。
【図3】図3は、GaAsとほぼ格子整合するGaInNAs中のIn, Nの組成とバンドギャップの関係を示す図である。
【図4】図4は、コレクタコンタクト抵抗率とコレクタ抵抗の関係を示す図である。
【図5】図5(a), (b)は、本発明の実施の形態1に係るヘテロ接合バイポーラトランジスタの第一及び第二の製造工程を説明するための図である。
【図6】図6(a)〜(c)は、本発明の実施の形態1に係るヘテロ接合バイポーラトランジスタの第三から第五の製造工程を説明するための図である。
【図7】図7は、本発明の実施の形態1に係るヘテロ接合バイポーラトランジスタを製造するための装置を示す図である。
【図8】図8は、コレクタ抵抗の大きさによる出力電力及びゲインの変化を示す図である。
【図9】図9は、コレクタ抵抗の大きさによる電力付加効率の変化を示す図である。
【図10】図10は、本発明の実施の形態2に係るヘテロ接合バイポーラトランジスタの構成を示す図である。
【図11】図11は、本発明の実施の形態3に係るヘテロ接合バイポーラトランジスタの構成を示す図である。
【図12】図12は、本発明の実施の形態4に係るヘテロ接合バイポーラトランジスタの構成を示す図である。
【図13】図13は、本発明の実施の形態5に係るヘテロ接合バイポーラトランジスタの構成を示す図である。
【図14】図14は、本発明の実施の形態6に係るヘテロ接合バイポーラトランジスタの構成を示す図である。
【図15】図15は、本発明の実施の形態7に係るヘテロ接合バイポーラトランジスタの構成を示す図である。
【符号の説明】
1 半導体基板
3 バッファ層
7 コレクタ電極
9 コレクタ層
11 ベース層
13 ベース電極
15 エミッタ層
17, 30, 60 エミッタコンタクト層
19 エミッタ電極
20, 40, 50, 70 コレクタコンタクト層

Claims (2)

  1. GaAsによって形成された半導体基板の上に、コレクタコンタクト層と、該コレクタコンタクト層の第一の領域に形成された第一導電型のコレクタ層と、前記コレクタコンタクト層の第二の領域に形成されたコレクタ電極と、前記コレクタ層の上に形成された第二導電型のベース層と、該ベース層の第一の領域に形成されたベース電極と、前記ベース層の第二の領域に形成された第一導電型のエミッタ層と、該エミッタ層の上に形成されたエミッタコンタクト層と、該エミッタコンタクト層の上に形成されたエミッタ電極とを有するヘテロ接合バイポーラトランジスタであって、前記コレクタコンタクト層と前記エミッタコンタクト層のうち少なくとも一方は、前記半導体基板と格子整合するIII−V族化合物半導体材料によって形成され、該III−V族化合物半導体材料が窒素を含み、
    前記コレクタコンタクト層または前記エミッタコンタクト層のうち少なくともいずれか一方の少なくとも一部はGaInNAsによって形成されたヘテロ接合バイポーラトランジスタ。
  2. 前記GaInNAsによって形成された層に、シリコンが1019 cm-3以上ドーピングされた請求項に記載のヘテロ接合バイポーラトランジスタ。
JP07447799A 1999-03-18 1999-03-18 ヘテロ接合バイポーラトランジスタ Expired - Fee Related JP4695736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07447799A JP4695736B2 (ja) 1999-03-18 1999-03-18 ヘテロ接合バイポーラトランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07447799A JP4695736B2 (ja) 1999-03-18 1999-03-18 ヘテロ接合バイポーラトランジスタ

Publications (3)

Publication Number Publication Date
JP2000269231A JP2000269231A (ja) 2000-09-29
JP2000269231A5 JP2000269231A5 (ja) 2006-05-11
JP4695736B2 true JP4695736B2 (ja) 2011-06-08

Family

ID=13548402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07447799A Expired - Fee Related JP4695736B2 (ja) 1999-03-18 1999-03-18 ヘテロ接合バイポーラトランジスタ

Country Status (1)

Country Link
JP (1) JP4695736B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795871B1 (fr) * 1999-07-01 2001-09-14 Picogiga Sa Transistor iii-v a heterojonction, notamment transistor a effet de champ hemt ou transistor bipolaire a heterojonction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364031A (ja) * 1989-08-02 1991-03-19 Fujitsu Ltd バイポーラ半導体装置
JPH0637355A (ja) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Iii−v族合金半導体およびその製造方法
JP2000012559A (ja) * 1998-06-24 2000-01-14 Nec Corp 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364031A (ja) * 1989-08-02 1991-03-19 Fujitsu Ltd バイポーラ半導体装置
JPH0637355A (ja) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Iii−v族合金半導体およびその製造方法
JP2000012559A (ja) * 1998-06-24 2000-01-14 Nec Corp 半導体装置

Also Published As

Publication number Publication date
JP2000269231A (ja) 2000-09-29

Similar Documents

Publication Publication Date Title
JP2003297849A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
WO2014126120A1 (ja) バイポーラトランジスタ
EP0740350A1 (en) Compound semiconductor device having reduced resistance
JP5108694B2 (ja) pn接合を有する薄膜結晶ウエハ及びその製造方法
JP2007189200A (ja) トランジスタ用エピタキシャルウエハおよびトランジスタ
JP4695736B2 (ja) ヘテロ接合バイポーラトランジスタ
US7157749B2 (en) Bipolar transistor with a GaAs substrate and a SiGe base or collector
JP2002359249A (ja) 化合物半導体装置及びその製造方法
JP5487708B2 (ja) トランジスタ素子用エピタキシャルウェハの製造方法
JP4158683B2 (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ
JP2004140038A (ja) 薄膜結晶ウェーハの製造方法及び半導体デバイス並びにその製造方法
US7923752B2 (en) Thin-film crystal wafer having pn junction and method for fabricating the wafer
JP4774137B2 (ja) ヘテロ・バイポーラ半導体装置
JP2005032897A (ja) ヘテロ接合バイポーラトランジスタ
JP3709832B2 (ja) ヘテロ接合バイポーラトランジスタ
JP5543302B2 (ja) 化合物半導体ウェーハの製造方法及び化合物半導体素子
JP2001203216A (ja) 半導体エピタキシャルウエハ
JP2004022835A (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ
WO1998053502A1 (fr) Dispositif a semi-conducteur et son procede de fabrication
JP2000323491A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
JPH11330087A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
JP2004281702A (ja) 半導体装置
US20180061948A1 (en) Epitaxial wafer for hetero-junction bipolar transistor and hetero-junction bipolar transistor
JP2004207546A (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びそれを用いて作製したヘテロ接合バイポーラトランジスタ
JP2003077928A (ja) 半導体エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees