JP4651169B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP4651169B2
JP4651169B2 JP2000263517A JP2000263517A JP4651169B2 JP 4651169 B2 JP4651169 B2 JP 4651169B2 JP 2000263517 A JP2000263517 A JP 2000263517A JP 2000263517 A JP2000263517 A JP 2000263517A JP 4651169 B2 JP4651169 B2 JP 4651169B2
Authority
JP
Japan
Prior art keywords
film
insulating film
semiconductor device
interlayer insulating
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000263517A
Other languages
English (en)
Other versions
JP2002076307A (ja
JP2002076307A5 (ja
Inventor
俊二 中村
昌俊 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000263517A priority Critical patent/JP4651169B2/ja
Priority to US09/815,012 priority patent/US6537874B2/en
Publication of JP2002076307A publication Critical patent/JP2002076307A/ja
Priority to US10/342,180 priority patent/US20030109124A1/en
Publication of JP2002076307A5 publication Critical patent/JP2002076307A5/ja
Application granted granted Critical
Publication of JP4651169B2 publication Critical patent/JP4651169B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造技術に係り、特に、DRAM型の記憶素子を有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
DRAMは、1トランジスタ、1キャパシタで構成できる半導体記憶装置であり、従来より高密度・高集積化された半導体記憶装置を製造するための構造や製造方法が種々検討されている。特に、DRAMにおけるキャパシタの構造は高集積化に多大な影響を与えるため如何にして装置の高集積化を阻害せずに所望の蓄積容量を確保するかが重要である。
【0003】
高集積化を図るためにはメモリセル面積を縮小することが不可欠であり、キャパシタの形成される面積をも小さくする必要がある。そこで、柱状やシリンダ状のキャパシタ構造を採用することにより高さ方向にキャパシタの表面積を広げ、キャパシタが形成される領域の床面積を増加することなく所望の蓄積容量を確保することが提案されている。
【0004】
シリンダ状のキャパシタ構造を有する従来の半導体装置の製造方法について図41乃至図43を用いて説明する。なお、柱状のキャパシタ構造を有する従来の半導体装置の製造方法も、基本的な製造プロセスは同じである。
【0005】
まず、シリコン基板100上に、通常のMOSトランジスタの製造方法と同様にして、ゲート電極102及びソース/ドレイン拡散層104、106を有するメモリセルトランジスタと、ゲート電極108及びソース/ドレイン拡散層110を有する周辺回路用トランジスタを形成する。
【0006】
次いで、メモリセルトランジスタ及び周辺回路用トランジスタを覆う層間絶縁膜118上に、プラグ112を介してソース/ドレイン拡散層104に電気的に接続されたビット線114と、プラグ115を介してソース/ドレイン拡散層110に電気的に接続された配線層116とを形成する。なお、図示する断面にはビット線114は現れないため、ビット線114は点線で示している。
【0007】
次いで、ビット線114及び配線層116が形成された層間絶縁膜118上に、層間絶縁膜120を形成する(図41(a))。
【0008】
次いで、層間絶縁膜120、118に、プラグ122を介してソース/ドレイン拡散層106に電気的に接続されたプラグ124を埋め込む(図41(b))。
【0009】
次いで、プラグ124が埋め込まれた層間絶縁膜120上に、例えばCVD法により、例えばシリコン窒化膜よりなるエッチングストッパ膜126と、例えばシリコン酸化膜よりなる層間絶縁膜128と、例えばシリコン窒化膜よりなるエッチングストッパ膜130と、例えばシリコン酸化膜よりなる層間絶縁膜132と、例えばアモルファスシリコン膜よりなるハードマスク134とを順次形成する。
【0010】
次いで、通常のリソグラフィー技術及びエッチング技術により、ハードマスク134、層間絶縁膜132、エッチングストッパ膜130、層間絶縁膜128、エッチングストッパ膜126をパターニングし、プラグ124に達する開口部136を形成する(図41(c))。
【0011】
次いで、開口部136の内壁及び底部に沿って形成され、プラグ124に接続された蓄積電極138を形成する(図42(a))。
【0012】
次いで、エッチングストッパ膜130をストッパとして、層間絶縁膜132を等方的にエッチングし、蓄積電極138の外表面を露出する(図42(b))。
なお、エッチングストッパ膜130及び層間絶縁膜128は、このエッチング工程以降において蓄積電極138が倒れたり剥がれたりするのを防止するための支持体として機能する。
【0013】
次いで、全面に、例えばCVD法により、例えばTa25やBST膜などよりなる誘電体膜を堆積し、これら誘電体膜よりなり蓄積電極138を覆うキャパシタ誘電体膜140を形成する。
【0014】
次いで、全面に、例えばCVD法により導電膜を堆積してパターニングし、この導電膜よりなりキャパシタ誘電体膜140を介して蓄積電極138を覆うプレート電極142を形成する(図43(a))。
【0015】
こうして、蓄積電極138、キャパシタ誘電体膜140、プレート電極142を有し、メモリセルトランジスタのソース/ドレイン拡散層106に電気的に接続されたキャパシタを形成する。
【0016】
次いで、全面に、例えばCVD法によりシリコン酸化膜を堆積してその表面を平坦化し、シリコン酸化膜よりなる層間絶縁膜144を形成する。
【0017】
次いで、通常のリソグラフィー技術及びエッチング技術を用い、層間絶縁膜144、エッチングストッパ膜130、層間絶縁膜128、エッチングストッパ膜126、層間絶縁膜120を貫くコンタクトホール146を形成する。
【0018】
次いで、コンタクトホール146内に、配線層116に接続されたプラグ148を形成する(図43(b))。
【0019】
次いで、プラグ148等に接続された配線層(図示せず)等を形成する。
【0020】
こうして、1トランジスタ、1キャパシタによりメモリセルが構成されたDRAMが製造されていた。
【0021】
このように、上記従来の半導体装置の製造方法では、エッチングストッパ膜130及び層間絶縁膜128を設けることにより、プロセス途中において蓄積電極138が倒れたり剥離したりするのを防止しつつ、シリンダ状のキャパシタを有する半導体装置を製造することができる。
【0022】
一方、このような支持体を用いずに蓄積電極138の剥離等を防止する技術も提案されている。蓄積電極138の支持体を用いない従来の他の半導体装置の製造方法について図44乃至図46を用いて説明する。
【0023】
まず、図41(a)に示す半導体装置の製造方法と同様にして、シリコン基板100上に、メモリセルトランジスタ、周辺回路用トランジスタ、ビット線114、配線層116、層間絶縁膜118、120等を形成する(図44(a))。
【0024】
次いで、層間絶縁膜120上に、例えばCVD法により、例えばシリコン窒化膜よりなるエッチングストッパ膜126を形成する。
【0025】
次いで、通常のリソグラフィー技術及びエッチング技術によりエッチングストッパ膜126をパターニングし、プラグ122と後に形成する蓄積電極138とを接続するためのコンタクトホールの形成予定領域のエッチングストッパ膜126を除去する。
【0026】
次いで、パターニングしたエッチングストッパ膜126上に、例えばCVD法により、例えばシリコン酸化膜よりなる層間絶縁膜132と、例えばアモルファスシリコン膜よりなるハードマスク134とを順次形成する。
【0027】
次いで、通常のリソグラフィー技術及びエッチング技術によりハードマスク134をパターニングし、蓄積電極138の形成予定領域のハードマスク134を除去する(図44(b))。
【0028】
次いで、ハードマスク134をマスクとして、エッチングストッパ膜126をストッパとして、層間絶縁膜132、120、118を異方性エッチングし、層間絶縁膜132、エッチングストッパ膜126、層間絶縁膜120、118を貫きプラグ122に達する開口部を形成する(図45(a))。
【0029】
次いで、開口部136の内壁及び底部に沿って形成され、プラグ122に接続された蓄積電極138を形成する(図45(b))。
【0030】
次いで、エッチングストッパ膜126をストッパとして、層間絶縁膜132を等方的にエッチングし、蓄積電極138の外表面を露出する(図46(a))。
【0031】
なお、蓄積電極138は、プラグ122に接続するプラグを兼ねており、層間絶縁膜118、120に埋め込むように形成されているので、このエッチング工程以降において蓄積電極138が倒れたり剥がれたりするのを防止することができる。したがって、先に述べた半導体装置の製造方法のように、エッチングストッパ膜130、層間絶縁膜128等の支持体を設ける必要はない。
【0032】
次いで、先に述べた半導体装置の製造方法と同様にして、キャパシタ誘電体膜140、プレート電極142、層間絶縁膜144、プラグ148等を形成する(図46(b))。
【0033】
こうして、1トランジスタ、1キャパシタによりメモリセルが構成されたDRAMが製造されていた。
【0034】
このように、従来の他の半導体装置の製造方法では、蓄積電極をプラグと一体形成するので、蓄積電極を支える支持体を別途設ける必要はない。また、エッチングストッパ膜130、層間絶縁膜128の厚さ分だけプラグ148が貫く絶縁膜の厚さが薄くなる。したがって、これら絶縁膜の形成工程を削減することができるとともに、コンタクトホール146の開口とプラグ148を構成するためのプラグ材の埋め込みとが容易になるので、製造工程の簡略化と製造コストの削減を図ることができる。
【0035】
【発明が解決しようとする課題】
しかしながら、図41乃至図43に示す上記従来の半導体装置の製造方法を適用した場合、上述したように、蓄積電極138の支持体を形成する工程を追加する必要があり、また、プラグ148を埋め込むためのコンタクトホール146が深くなるので、製造コストの増加を招来し、加工自体も困難であった。
【0036】
また、シリンダ状の蓄積電極138を採用した場合、プラグ124は薄い蓄積電極138を介して外気に接するので、キャパシタ誘電体膜140の形成工程で基板が酸化性雰囲気に曝されると蓄積電極138を介してプラグ124の上面が酸化され、蓄積電極138とプラグ124とのコンタクト特性が劣化することがあった。
【0037】
一方、図44乃至図46に示す上記従来の半導体装置の製造方法を適用した場合、図41乃至図43に示す半導体装置の上記課題を解決することができるが、エッチングストッパ膜126又はハードマスク134のパターニングの際の位置合わせずれにより、蓄積電極138のプラグ122に対するコンタクト不良や、エッチングによる下地構造の破壊をもたらすことがあった。
【0038】
蓄積電極138はハードマスク134をマスクとして開口される開口部136内に形成されるが、図47に示すように、そのパターンはビット線114の延在方向に伸びる扁平的な形状である。このため、エッチングストッパ膜126及びハードマスク134のパターニングにおいては、特にワード線(ゲート電極102)の延在方向に対する位置合わせが厳しくなる。
【0039】
ハードマスク134のパターニングの際の位置ずれがワード線の延在方向に生じ、図48に示すようにハードマスク134の開口パターンの縁にエッチングストッパ膜126の開口パターンが重なると、層間絶縁膜120、118に形成される開口部136のワード線延在方向に位置する2つの辺は、一方がエッチングストッパ膜126により規定され、他方がハードマスク134により規定されるため、エッチングストッパ膜126に形成されたパターンよりも開口幅の狭い開口部136が層間絶縁膜120、118に形成されることとなる。この結果、マイクロローディング効果によってエッチングが困難となり、蓄積電極138とプラグ122とのコンタクト面積が減少してしまい、最悪の場合には蓄積電極138とプラグ122とのコンタクトがとれなくなる(図49(a))。特に、このエッチングをビット線に対して自己整合的に行う場合、ビット線の側壁に形成されたエッチングストッパ膜の形状を反映して底細り形状となるため、マイクロローディングの影響は顕著に現れる。
【0040】
なお、これらの現象は、エッチングストッパ膜126のパターニングがワード線の延在方向に生じた場合にも同様である。
【0041】
また、たとえコンタクトを開口することができたとしても、蓄積電極138の形成後に層間絶縁膜132をエッチングすると、層間絶縁膜132の下にはエッチングストッパ膜126が形成されていない領域が存在するため、層間絶縁膜132のエッチングと同時に層間絶縁膜120、118等がエッチングされ、下地構造にダメージを与えることとなる(図49(b))。
【0042】
このため、蓄積電極138を支える支持体を別途設けることなく蓄積電極138の剥がれや倒れを防止し、開口部136の形成過程における位置合わせずれによるコンタクト不良や下地構造の破壊をもたらすことのない半導体装置の構造及びその製造方法が望まれていた。
【0043】
本発明の目的は、蓄積電極を支える支持体を別途設けることなく蓄積電極の剥がれや倒れを防止し、また、位置合わせずれによるコンタクト不良や下地構造の破壊をもたらすことのない半導体装置及びその製造方法を提供することにある。
【0044】
【課題を解決するための手段】
上記目的は、基板上に、コンタクトホールが形成された第1の絶縁膜を形成する工程と、前記第1の絶縁膜上及び前記コンタクトホールの内壁及び底部に、前記第1の絶縁膜と第1の電極との密着性を高め或いは前記基板と前記第1の電極との間の反応を抑止する導電膜を形成する工程と、前記導電膜上に、前記導電膜が形成された前記コンタクトホール内に空洞が残存するように第2の絶縁膜を形成する工程と、前記第2の絶縁膜に、前記空洞に達する開口部を形成する工程と、前記コンタクトホール内及び前記開口部内に、前記基板に電気的に接続された前記第1の電極を形成する工程と、前記第1の電極を形成する工程の後に、前記導電膜をストッパとして前記第2の絶縁膜を除去する工程と、前記第2の絶縁膜を除去する工程の後に、前記第1の絶縁膜上の前記導電膜をエッチングする工程と、前記導電膜エッチングする工程の後に、前記第1の電極上に誘電体膜を形成する工程と、前記誘電体膜上に、前記誘電体膜を介して前記第1の電極と対向する第2の電極を形成する工程とを有することを特徴とする半導体装置の製造方法によっても達成される。
【0047】
【発明の実施の形態】
[第1実施形態]
本発明の第1実施形態による半導体装置及びその製造方法について図1乃至図15を用いて説明する。
【0048】
図1は本実施形態による半導体装置の構造を示す平面図、図2は本実施形態による半導体装置の構造を示す概略断面図、図3乃至図12、図14及び図15は本実施形態による半導体装置の製造方法を示す工程断面図、図13は位置ずれが生じた場合のパターンレイアウトを示す平面図である。
【0049】
はじめに、本実施形態による半導体装置の構造について図1及び図2を用いて説明する。なお、図1はメモリセル領域の平面図を示すものであり、図1のA−A′線に沿った断面が図2(a)の左側の部分に相当し、図1のB−B′線に沿った断面が図2(b)の断面図に相当する。また、図2(a)の右側の部分は周辺回路領域を示している。
【0050】
図2(a)に示すように、シリコン基板10上には、素子領域を画定する素子分離膜12が形成されている。素子領域上には、ゲート電極20とソース/ドレイン拡散層26、28とを有するメモリセルトランジスタと、ゲート電極22とソース/ドレイン拡散層30とを有する周辺回路用トランジスタとが形成されている。ゲート電極20は、図1に示すようにワード線を兼ねる導電膜としても機能する。メモリセルトランジスタ及び周辺回路用トランジスタが形成されたシリコン基板10上には、層間絶縁膜32、46が形成されている。層間絶縁膜46上には、プラグ40を介してソース/ドレイン拡散層26に接続されたビット線52と、ソース/ドレイン拡散層30に接続された配線層54とが形成されている。ビット線52は、図1に示すように、ワード線と交わる方向に延在して複数形成されている。ビット線52及び配線層54が形成された層間絶縁膜46上には、層間絶縁膜56が形成されている。層間絶縁膜56上には、コンタクトホール58内に形成されたバリアメタル60及びプラグ42を介してソース/ドレイン拡散層28に接続されたシリンダ状の蓄積電極72が形成されている。蓄積電極72上には、キャパシタ誘電体膜74を介してプレート電極76が形成されている。こうして、蓄積電極72、キャパシタ誘電体膜74、プレート電極76により構成されたキャパシタが形成されている。キャパシタが形成された層間絶縁膜56上には、エッチングストッパ膜64、層間絶縁膜78が形成されている。層間絶縁膜78、エッチングストッパ膜64、層間絶縁膜56には、配線層54に達するコンタクトホール80が形成されており、コンタクトホール80内にはプラグ82が埋め込まれている。
【0051】
こうして、1トランジスタ、1キャパシタよりなるメモリセルを有するDRAMが構成されている。
【0052】
このように本実施形態による半導体装置は、層間絶縁膜46、56に埋め込まれたプラグを兼ねる蓄積電極72を有する点においては、図44乃至図46に示す従来の半導体装置と同様である。本実施形態による半導体装置の主たる特徴は、位置合わせずれの有無に関わらず層間絶縁膜46、56に形成されたコンタクトホール58の開口径がほぼ一定であり、図48に示すような位置合わせずれが生じた場合であっても層間絶縁膜46、56に形成されたコンタクトホール58内に蓄積電極72の一部が埋め込まれていることにある(図2(b)参照)。
【0053】
蓄積電極72の形状的な特徴について考慮すると、蓄積電極72を層間絶縁膜46、56に埋め込まれた部分(コンタクト部)と層間絶縁膜56上に突出する部分(突出部)とに分けて考えた場合、コンタクト部の上面に突出部が形成されていない領域が存在する点、突出部の下面にコンタクト部が形成されていない領域が存在する点、コンタクト部と突出部とが同一の導電層によって構成されている点が挙げられる。換言すれば、蓄積電極72は、コンタクトホール58内に形成されたコンタクト部と、コンタクト部の上面の一部に接続するように形成され層間絶縁膜56上に突出する突出部とを有し、コンタクト部と突出部とが同一の導電層によって構成されていると表現することができる。
【0054】
蓄積電極72のこのような形状は後述する本発明に特有の製造方法に起因するものであるが、このような構造となることにより、位置合わせずれによるコンタクト不良やエッチングの際の下層構造の破壊を防止することができる。また、蓄積電極72は層間絶縁膜46、56に一部が埋め込まれるように形成されているので、工程途中で倒れたり剥がれたりすることもない。
【0055】
次に、本実施形態による半導体装置の製造方法について図3乃至図15を用いて説明する。なお、図3乃至図7において、各図右側は周辺回路領域の工程断面図を表し、各図左側は図1のA−A′線断面における工程断面図を表している。また、図8乃至図12、図14及び図15は、図1のB−B′線断面における工程断面図を表している。
【0056】
まず、半導体基板10の主表面上に、例えばSTI(Shallow Trench Isolation)法により素子分離膜12を形成する。
【0057】
次いで、素子分離膜12により画定された複数の素子領域上に、例えば熱酸化法により、シリコン酸化膜よりなるゲート絶縁膜14、16を形成する。なお、ゲート絶縁膜14はメモリセルトランジスタのゲート絶縁膜であり、ゲート絶縁膜16は周辺回路用トランジスタのゲート絶縁膜であるものとする。
【0058】
次いで、全面に、例えばCVD法により、例えば多結晶シリコン膜とシリコン窒化膜とを順次堆積した後、この積層膜をパターニングし、上面がシリコン窒化膜18により覆われた多結晶シリコン膜よりなるゲート電極20、22を形成する。ここで、ゲート電極20はメモリセルトランジスタのゲート電極であり、ゲート電極22は周辺回路トランジスタのゲート電極であるものとする。なお、ゲート電極20、22は、多結晶シリコン膜に限られるものではなく、ポリサイド構造、ポリメタル構造、或いは、金属膜等を適用してもよい。
【0059】
次いで、ゲート電極20、22をマスクとしてイオン注入を行い、ゲート電極20の両側のシリコン基板10中にソース/ドレイン拡散層26、28を形成し、ゲート電極22の両側のシリコン基板10中にLDD領域或いはエクステンション領域を形成する。
【0060】
次いで、全面に、例えばCVD法により、例えばシリコン窒化膜を堆積した後にエッチバックし、ゲート電極20、22及びシリコン窒化膜18の側壁にシリコン窒化膜よりなるサイドウォール絶縁膜24を形成する。
【0061】
次いで、ゲート電極22及びサイドウォール絶縁膜24をマスクとしてイオン注入を行い、ゲート電極22の両側のシリコン基板10中に、高不純物濃度のソース/ドレイン拡散層30を形成する。
【0062】
こうして、メモリセル領域に、ゲート電極20と、その両側のシリコン基板10中に形成されたソース/ドレイン拡散層26、28とを有するメモリセルトランジスタを形成し、周辺回路領域に、ゲート電極22と、その両側のシリコン基板10中に形成されたソース/ドレイン拡散層30とを有する周辺回路トランジスタを形成する(図3(a)、図8(a))。
【0063】
次いで、全面に、例えばCVD法により例えばシリコン酸化膜を堆積した後、CMP(化学的機械的研磨:Chemical Mechanical Polishing)法等によりシリコン窒化膜18が露出するまでその表面を研磨し、表面が平坦化されたシリコン酸化膜よりなる層間絶縁膜32を形成する。
【0064】
次いで、通常のリソグラフィー技術及びエッチング技術により、層間絶縁膜32に、ソース/ドレイン拡散層26に達するコンタクトホール34と、ソース/ドレイン拡散層28に達するコンタクトホール36と、ソース/ドレイン拡散層30に達するコンタクトホール38とを、ゲート電極20、22及びサイドウォール絶縁膜24に対して自己整合的に形成する(図3(b)、図8(b))。
【0065】
次いで、層間絶縁膜32に開口されたコンタクトホール34、36、38内に、プラグ40、42、44をそれぞれ埋め込む(図3(c)、図8(c))。例えば、CVD法により多結晶シリコン膜を堆積してエッチバックすることによりコンタクトホール34、36、38内のみに多結晶シリコン膜を残存させた後、イオン注入法により多結晶シリコン膜にドーピングして低抵抗化し、ドープトポリシリコンよりなるプラグ40、42、44を形成する。
【0066】
次いで、全面に、例えばCVD法により、例えば膜厚50〜100nmのシリコン酸化膜を堆積し、シリコン酸化膜よりなる層間絶縁膜46を形成する。
【0067】
次いで、通常のリソグラフィー技術及びエッチング技術により、プラグ40に達するコンタクトホール48と、プラグ44に達するコンタクトホール50とを層間絶縁膜46に形成する(図3(d)、図8(d))。なお、図3(d)に示す断面にはプラグ40に達するコンタクトホール48は現れないが、他の構成要素との位置関係を明確にするため、以降の図面において点線で表すこととする。
【0068】
次いで、全面に、例えばCVD法により、Ti(チタン)膜、TiN(窒化チタン)膜及びW(タングステン)膜を順次堆積してパターニングし、プラグ40を介してソース/ドレイン拡散層26に接続されたビット線52と、プラグ44を介してソース/ドレイン拡散層30に接続された配線層54とを形成する。
【0069】
次いで、全面に、例えばCVD法により、例えば膜厚500nmのシリコン酸化膜を堆積し、CMP法によりその表面を研磨し、表面が平坦化されたシリコン酸化膜よりなる層間絶縁膜56を形成する(図4(a)、図9(a))。なお、図4(a)に示す断面にはビット線52は現れないが、他の構成要素との位置関係を明確にするため、以降の図面において点線で表すこととする。
【0070】
次いで、通常のリソグラフィー技術及びエッチング技術により、層間絶縁膜46、56に、プラグ42に達するコンタクトホール58を形成する。なお、ビット線52を覆うシリコン窒化膜などよりなるストッパ膜を形成しておき、ビット線52に自己整合でコンタクトホール58を開口するようにしてもよい。
【0071】
次いで、全面に、例えばCVD法により、例えば膜厚10nmのTi(チタン)膜と、例えば膜厚20nmのTiN(窒化チタン)膜と、例えば膜厚500nmのW(タングステン)膜とを堆積する。
【0072】
次いで、CMP法或いはエッチバック法により、層間絶縁膜56の表面が露出するまで、Ti膜、TiN膜及びW膜を平坦的に除去し、コンタクトホール58内にTi膜、TiN膜及びW膜を埋め込む。こうして、コンタクトホール58の内壁及び底部に沿って形成されたTi膜及びTiN膜よりなるバリアメタル60と、バリアメタル60が形成されたコンタクトホール58に埋め込まれたW膜よりなるダミープラグ62とを形成する(図4(b)、図9(b))。
【0073】
ここで、ダミープラグ62を構成する材料には、バリアメタル60を構成する材料及び層間絶縁膜56に対してエッチング選択性を確保しうる材料を適用する。Wのほか、Al(アルミ)、Ti(チタン)、Cu(銅)、C(炭素)等の導電性材料、層間絶縁膜56よりもエッチングレートが速いSOG(Spin On Glass)膜、BPSG(Boro-Phospho-Silicate Glass)膜、BSG(Boro-Silicate Glass)膜などの絶縁膜、全体のプロセス温度を低温化できる場合には有機膜などを適用することができる。
【0074】
また、バリアメタル60を構成する材料には、ダミープラグ62及び下地の電極材等と反応し難く、また、後に形成する蓄積電極72に対して密着性に優れた材料を適用する。TiN膜のほか、WN(窒化タングステン)膜、NbN(窒化ニオブ)膜、TiSi(チタンシリサイド)膜、WSi(タングステンシリサイド)膜、CoSi(コバルトシリサイド)膜などを適用することができる。
【0075】
また、下部電極とのコンタクト抵抗を下げるため、本実施形態による半導体装置のように、これらバリアメタル材料と下地電極との間にコンタクトメタルを挟んだ多層膜構造(例えば、TiN+Ti、WN+Ti)を適用してもよい。なお、本明細書では、バリアメタル材と下地電極との間に挿入するこのようなコンタクトメタルをも含めてバリアメタル60と呼ぶこととし、図面においてもバリアメタル60のみを記載する。
【0076】
なお、バリアメタル60及びダミープラグ62を構成する材料として通常の電極プラグを構成する材料を選択し、バリアメタル60及びダミープラグ62の形成と同時に周辺回路領域に通常の電極プラグを形成するようにしてもよい。
【0077】
次いで、全面に、例えばCVD法により、例えば膜厚40nm程度のシリコン窒化膜を堆積し、シリコン窒化膜よりなるエッチングストッパ膜64を形成する。
【0078】
次いで、エッチングストッパ膜64上に、例えばCVD法により、例えば膜厚700nmのシリコン酸化膜を堆積し、シリコン酸化膜よりなる層間絶縁膜66を形成する。
【0079】
次いで、層間絶縁膜66上に、例えばCVD法により、例えば膜厚50nmのアモルファスシリコン膜を堆積し、アモルファスシリコン膜よりなるハードマスク68を形成する。
【0080】
なお、ハードマスク68は厚い層間絶縁膜66をエッチングする際にフォトレジスト膜だけでは十分なマスク性を得られない場合を考慮したものであり、フォトレジスト膜に十分な耐性があるときには必ずしも形成する必要はない。
【0081】
次いで、通常のリソグラフィー技術及びエッチング技術により、蓄積電極72の形成予定領域のハードマスク68を除去する(図4(c)、図9(c))。
【0082】
次いで、ハードマスク68をマスクとして、層間絶縁膜66、エッチングストッパ膜64を異方性エッチングし、層間絶縁膜66及びエッチングストッパ膜64を貫き、ダミープラグ62を露出する開口部70を形成する(図5(a)、図10(a))。
【0083】
次いで、ウェットエッチングなどの等方性エッチングにより、ダミープラグ62を選択的に除去する。この際、等方的なエッチングを適用することにより、開口部70内に露出した部分から徐々にエッチングしてコンタクトホール58内のすべてのダミープラグ62を除去することができる。このエッチングにより、コンタクトホール58内には、内壁及び底部に沿って形成されたバリアメタル60のみが残存することになる(図5(b)、図10(b))。
【0084】
ダミープラグ62をW膜により形成する場合、例えばCF4+O2+Cl2ガスを用いた等方性ドライエッチングを適用することにより、層間絶縁膜56、66、エッチングストッパ膜64及びバリアメタル60を除去することなく選択的にダミープラグ62を除去することができる。なお、ダミープラグ62として、Al、Ti、Cuを用いた場合には例えば希塩酸によるウェットエッチングを、Cを用いた場合には例えば400℃程度の低温酸素アニールを、SOG、BPSG、BSGを用いた場合には例えばVapor HFによるエッチングを、それぞれ適用することにより、ダミープラグ62の選択除去が可能である。
【0085】
次いで、全面に、例えばCVD法により例えば膜厚30nmのRu膜を堆積する。
【0086】
次いで、全面に、例えばスピンコート法により、例えばSOG膜(図示せず)を堆積する。SOG膜は、後工程での研磨により蓄積電極72を形成する際に蓄積電極72の内側の領域を保護する内側保護膜として機能するものであり、SOG膜の代わりに例えばフォトレジスト膜を適用してもよい。
【0087】
次いで、例えばCMP法により、層間絶縁膜66が表面に露出するまで、SOG膜、Ru膜、及び、ハードマスク68を平坦に除去する。こうして、Ru膜よりなり、開口部70の内壁及び底部に沿って形成され、バリアメタル60を介してコンタクトホール58内に埋め込まれ、プラグ42に電気的に接続された蓄積電極72を形成する(図6(a)、図11(a))。蓄積電極72は、層間絶縁膜46、56、エッチングストッパ膜64によって下層部分が支持されるため、後工程において倒れたり剥がれ落ちたりするのを防止することができる。
【0088】
なお、蓄積電極72を構成するための導電膜は、後に形成するキャパシタ誘電体膜74との相性に応じて適宜選択する。例えば、キャパシタ誘電体膜74としてTa25のような誘電体膜を用いる場合には、蓄積電極72としてRu(ルテニウム)、RuOx(酸化ルテニウム)、W(タングステン)、WN(窒化タングステン)、TiN(窒化チタン)などを用いることができる。また、キャパシタ誘電体74としてBST(BaSrTiOx)やST(SrTiOx)のような誘電体膜を用いる場合には、蓄積電極72としてはPt(プラチナ)、Ru、RuOx、W、SRO(SrRuO3)などを用いることができる。また、キャパシタ誘電体膜74としてON(SiO2/SiN)膜などの誘電体膜を用いる場合には、蓄積電極72としてドープトポリシリコンなどを用いることができる。更に、キャパシタ誘電体膜74としてPZTのような誘電体膜を用いる場合には、蓄積電極62としてPtなどを用いることができる。その他、TiOx(酸化チタン)、SiN(窒化シリコン)、SiON(窒化酸化シリコン)、Al23(アルミナ)、SBT(SrBiTiOx)などの誘電体膜を用いる場合にも、これら誘電体膜との相性に応じて適宜選択すればよい。
【0089】
次いで、例えば弗酸水溶液を用いたウェットエッチングなどの等方性エッチングにより、エッチングストッパ膜64をストッパとして層間絶縁膜66を選択的にエッチングし、蓄積電極72の外表面を露出する。(図6(b)、図11(b))。この際、層間絶縁膜66の下面はすべてエッチングストッパ膜64と接しているので、層間絶縁膜66のエッチングの際にエッチング液がエッチングストッパ膜64の下層に入り込んで下地構造を破壊することはない。
【0090】
なお、図示しないが、蓄積電極72を形成する際に用いたSOG膜よりなる表面保護膜は、このエッチングと同時に、或いは、このエッチングに先立って除去される。
【0091】
次いで、全面に、例えばCVD法により、例えば膜厚10〜30nmのTa25膜或いはBST膜を堆積し、Ta25或いはBSTよりなるキャパシタ誘電体膜74を形成する。
【0092】
次いで、全面に、例えばCVD法により、例えば膜厚50〜300nmのRu膜を堆積した後、通常のリソグラフィー技術及びエッチング技術によりこのRu膜をパターニングし、Ru膜よりなるプレート電極76を形成する(図7(a)、図12(a))。
【0093】
次いで、全面に、例えばCVD法により、例えば膜厚900nmのシリコン酸化膜を堆積し、CMP法によりその表面を研磨し、表面が平坦化されたシリコン酸化膜よりなる層間絶縁膜78を形成する。
【0094】
次いで、通常のリソグラフィー技術及びエッチング技術により、層間絶縁膜78、エッチングストッパ膜64、層間絶縁膜56を貫き、配線層54に達するコンタクトホール80を形成する。
【0095】
次いで、導電膜を堆積した後、層間絶縁膜78の表面が露出するまでこの導電膜を平坦的に除去し、コンタクトホール80内に埋め込まれ、配線層54に接続されたプラグ82を形成する(図7(b)、図12(b))。
【0096】
こうして、1トランジスタ、1キャパシタよりなるDRAMを製造することができる。
【0097】
次に、上述した本実施形態による半導体装置の製造方法において、ハードマスク68をパターニングする際のリソグラフィー工程でワード線の延在方向に位置合わせずれが生じた場合について説明する。
【0098】
ハードマスク68のパターンがワード線(ゲート電極20)の延在方向に位置合ずれして図13に示す平面レイアウトとなった場合、図10(a)に示す開口部70の形成工程では、開口部70の底部にバリアメタル60及びダミープラグ62の一部のみが露出する(図14(a))。
【0099】
次いで、図10(b)に示す工程と同様にしてダミープラグ62を除去すると、コンタクトホール58内のダミープラグ62は完全に除去され、コンタクトホール58の内壁及び底部に沿って形成されたバリアメタル60は開口部70内に露出する(図14(b))。
【0100】
次いで、図11(a)に示す工程において、CVD法などの表面被覆性に優れた成膜方法を用いて蓄積電極72を構成する材料を成長することにより、蓄積電極72を構成する材料によってバリアメタル60が形成されたコンタクトホール58内を埋め込むとともに、開口部70の側壁及び底部に沿って蓄積電極72を形成することができる(図15(a))。
【0101】
これにより、蓄積電極72は、層間絶縁膜46、56、エッチングストッパ膜64によって下層部分が支持されるため、後工程において倒れたり剥がれ落ちたりするのを防止することができる。
【0102】
また、層間絶縁膜66とエッチングストッパ膜64は同一のパターンに加工され、層間絶縁膜66の下面はすべてエッチングストッパ膜64と接しているので、蓄積電極72を形成した後に層間絶縁膜66をエッチングしても、エッチング液がエッチングストッパ膜64の下層に染み込んで下地構造を破壊することはない(図15(b))。
【0103】
また、層間絶縁膜46、56に形成するコンタクトホール58は開口部70の形成前に形成するので、ハードマスク68の位置合わせずれによってコンタクトホール58の開口幅が小さくなったりコンタクトホール58が開口されないようなことはない。
【0104】
このように、本実施形態によれば、下層の層間絶縁膜にダミープラグを形成しておき、上層の層間絶縁膜に蓄積電極の形成に利用する開口部を形成した後にこのダミープラグを除去し、この後にダミープラグを除去したコンタクトホール内に一部が埋め込まれた蓄積電極を形成するので、蓄積電極を支える支持体を別途設けることなく蓄積電極の剥がれや倒れを防止し、また、位置合わせずれによるコンタクト不良や下地構造の破壊を防止することができる。
【0105】
図41乃至図43に示す従来の半導体装置と比較すると、本実施形態では蓄積電極の支持体を設ける必要がないので、蓄積電極を埋め込むための開口部や周辺回路のプラグを形成するためのコンタクトホールを支持体分浅くすることができ、また、支持体を形成する工程分だけ製造工程数を短縮することができるという極めて有利な効果を奏することができる。
【0106】
また、図44乃至図46に示す従来の半導体装置と比較すると、製造工程は若干増加するが、下層の層間絶縁膜に形成するコンタクトホールと上層の層間絶縁膜に形成する開口部とを同時に形成する必要がないのでエッチングが容易であり、また、位置合わせずれによるコンタクト不良や下地構造の破壊を防止することができるという極めて有利な効果を奏することができる。
【0107】
[第2実施形態]
本発明の第2実施形態による半導体装置及びその製造方法について図16乃至図24を用いて説明する。なお、図1乃至図15に示す第1実施形態による半導体装置及びその製造方法と同一の構成要素には同一の符号を付し説明を省略し或いは簡略にする。
【0108】
図16は本実施形態による半導体装置の構造を示す概略断面図、図17乃至図24は本実施形態による半導体装置の製造方法を示す工程断面図である。
【0109】
はじめに、本実施形態による半導体装置の構造について図16を用いて説明する。なお、図16(a)は図1のA−A′線に沿った断面図、図16(b)は図1のB−B′線に沿った断面図である。
【0110】
本実施形態による半導体装置は、図16に示すように、基本的な構造は図2に示す第1実施形態による半導体装置と同様である。本実施形態による半導体装置の製造方法はバリアメタル60を層間絶縁膜56上にも残存するように形成する点で第1実施形態による半導体装置の製造方法と異なっており、この相違点に基づき、最終的なバリアメタル60の形状も相違する。すなわち、本実施形態による半導体装置では、バリアメタル60の一部が層間絶縁膜56上に延在し(図16(a)参照)、また、位置合わせずれが発生するとコンタクトホール58の上端部分にバリアメタル60が形成されない領域が生じることがある(図16(b)参照)。
【0111】
次に、本実施形態による半導体装置の製造方法について図17乃至図24を用いて説明する。なお、以下の説明では、ワード線の延在方向に位置合わせずれが生じた場合の工程断面図に基づいて本実施形態による半導体装置の製造方法を説明する。図17乃至図20において、各図右側は周辺回路領域の工程断面図を表し、各図左側は図1のA−A′線断面における工程断面図を表している。また、図21乃至図24は図1のB−B′線断面における工程断面図を表している。
【0112】
まず、例えば図3(a)乃至図4(a)及び図8(a)乃至図9(a)に示す第1実施形態による半導体装置の製造方法と同様にして、メモリセルトランジスタ、周辺回路用トランジスタ、ビット線52、層間絶縁膜46、56等を形成する。
【0113】
次いで、通常のリソグラフィー技術及びエッチング技術により、層間絶縁膜46、56に、プラグ42に達するコンタクトホール58を形成する。
【0114】
次いで、全面に、例えばCVD法により、例えば膜厚5〜10nmのTi膜と、例えば膜厚5〜20nmのTiN膜と、例えば膜厚500nmのW膜とを堆積する。
【0115】
次いで、CMP法或いはエッチバック法により、TiN膜の表面が露出するまで、W膜を平坦的に除去する。こうして、層間絶縁膜56上、コンタクトホールの内壁及び底部に沿って形成されたTi膜及びTiN膜よりなるバリアメタル60と、バリアメタル60が形成されたコンタクトホール内に選択的に埋め込まれたW膜よりなるダミープラグ62とを形成する(図17(a)、図21(a))。この際、バリアメタル60及びダミープラグ62の形成と同時に、これらTiN膜及びW膜よりなる通常の電極プラグを周辺回路領域に形成するようにしてもよい。
【0116】
なお、層間絶縁膜56上に延在して形成されたバリアメタル60は、第1実施形態による半導体装置及びその製造方法におけるエッチングストッパ膜64を兼ねる膜としても機能する。
【0117】
次いで、全面に、例えばCVD法により、例えば膜厚700nmのシリコン酸化膜を堆積し、シリコン酸化膜よりなる層間絶縁膜66を形成する。
【0118】
次いで、層間絶縁膜66上に、例えばCVD法により、例えば膜厚50nmのアモルファスシリコン膜を堆積し、アモルファスシリコン膜よりなるハードマスク68を形成する。
【0119】
次いで、通常のリソグラフィー技術及びエッチング技術により、蓄積電極72の形成予定領域のハードマスク68を除去する(図17(b)、図21(b))。
【0120】
次いで、ハードマスク68をマスクとして、バリアメタル60及びダミープラグ62をストッパとして、層間絶縁膜66を異方性エッチングし、層間絶縁膜66を貫き、ダミープラグ62を露出する開口部70を形成する(図18(a)、図22(a))。
【0121】
次いで、ウェットエッチングなどの等方性エッチングにより、ダミープラグ62を選択的に除去する。この際、等方的なエッチングを適用することにより、位置合わせずれが生じた場合であっても、開口部70内に露出した部分から徐々にエッチングしてコンタクトホール58内のすべてのダミープラグ62を除去することができる。このエッチングにより、コンタクトホール58内には、内壁及び底部に沿って形成されたバリアメタル60のみが残存することになる(図18(b)、図22(b))。
【0122】
次いで、例えば図6(a)及び図11(a)に示す第1実施形態による半導体装置の製造方法と同様にして、Ru膜よりなり、開口部70の内壁及び底部に沿って形成され、バリアメタル60を介してコンタクトホール58内に埋め込まれ、プラグ42に電気的に接続された蓄積電極72を形成する(図19(a)、図23(a))。蓄積電極72は、層間絶縁膜46、56によって下層部分が支持されるため、後工程において倒れたり剥がれ落ちたりするのを防止することができる。
【0123】
次いで、例えば弗酸水溶液を用いたウェットエッチングなどの等方性エッチングにより、バリアメタル60をストッパとして層間絶縁膜66を選択的にエッチングし、蓄積電極72の外表面を露出する。(図19(b)、図23(b))。この際、層間絶縁膜66の下面はすべてバリアメタル60と接しているので、層間絶縁膜66のエッチングの際にエッチング液がバリアメタル60の下層に入り込んで下地構造を破壊することはない。
【0124】
次いで、バリアメタル60を、例えば硫酸と過酸化水素とを含む水溶液により、蓄積電極72、層間絶縁膜56に対して選択的にエッチングする(図20(a)、図24(a))。このエッチングは、周辺回路領域に延在するバリアメタル60を除去すること、及び、バリアメタル60と後に形成するキャパシタ誘電体膜74との相性が悪い場合を考慮したものであり、少なくとも、層間絶縁膜56と蓄積電極72との間に間隙84が形成されるまでバリアメタル60をエッチングすることが望ましい。このエッチングにより、位置合わせずれが生じた領域では、コンタクトホール58の上端部分にバリアメタル60が形成されていない領域(間隙86)が形成される(図24(a)参照)。
【0125】
なお、バリアメタル60とキャパシタ誘電体膜74とが接してもキャパシタの特性劣化をもたらさないような場合には、必ずしも間隙が形成されるまでエッチングをする必要はない。なお、バリアメタル(密着層)とキャパシタ誘電体膜との相性によるキャパシタ特性の劣化を防止する技術に関しては、同一出願人による特願平10−315370号明細書に詳述されている。
【0126】
次いで、例えば図7(a)乃至図7(b)及び図12(a)乃至図12(b)に示す第1実施形態による半導体装置の製造方法と同様にして、キャパシタ誘電体膜74、プレート電極76、層間絶縁膜78、プラグ82等を形成する(図20(b)、図24(b))。
【0127】
こうして、1トランジスタ、1キャパシタよりなるDRAMを製造することができる。
【0128】
このように、本実施形態によれば、下層の層間絶縁膜にダミープラグを形成しておき、上層の層間絶縁膜に蓄積電極の形成に利用する開口部を形成した後にこのダミープラグを除去し、この後にダミープラグを除去したコンタクトホール内に一部が埋め込まれた蓄積電極を形成するので、蓄積電極を支える支持体を別途設けることなく蓄積電極の剥がれや倒れを防止し、また、位置合わせずれによるコンタクト不良や下地構造の破壊を防止することができる。
【0129】
また、本実施形態による半導体装置ではバリアメタルによりエッチングストッパ膜を兼ねるので、第1実施形態による半導体装置の製造方法と比較して製造工程数を削減することができる。
【0130】
[第3実施形態]
本発明の第3実施形態による半導体装置及びその製造方法について図25乃至図29を用いて説明する。なお、図1乃至図24に示す第1及び第2実施形態による半導体装置及びその製造方法と同一の構成要素には同一の符号を付し説明を省略し或いは簡略にする。
【0131】
図25は本実施形態による半導体装置の構造を示す概略断面図、図26乃至図29は本実施形態による半導体装置の製造方法を示す工程断面図である。
【0132】
はじめに、本実施形態による半導体装置の構造について図25を用いて説明する。なお、図25は、図1のB−B′線に沿った断面図である。
【0133】
本実施形態による半導体装置は、図25に示すように、基本的な構造は図16に示す第2実施形態による半導体装置と同様である。本実施形態による半導体装置の製造方法はダミープラグ62を形成しないことに主たる特徴があり、この特徴に基づき、最終的な装置構造も図16に示す第2実施形態による半導体装置とは異なっている。すなわち、本実施形態による半導体装置では、位置合わせずれが発生すると層間絶縁膜78が層間絶縁膜56の側壁部分(コンタクトホール58の上端部分)に延在して形成されることがある。
【0134】
次に、本実施形態による半導体装置の製造方法について図26乃至図29を用いて説明する。なお、以下の説明では、ワード線の延在方向に位置合わせずれが生じた場合の工程断面図に基づいて本実施形態による半導体装置の製造方法を説明する。図26において、各図右側は周辺回路領域の工程断面図を表し、各図左側は図1のA−A′線断面における工程断面図を表している。また、図27乃至図29は図1のB−B′線断面における工程断面図を表している。
【0135】
まず、例えば図3(a)乃至図4(a)及び図8(a)乃至図9(a)に示す第1実施形態による半導体装置の製造方法と同様にして、メモリセルトランジスタ、周辺回路用トランジスタ、ビット線52、これらを覆う層間絶縁膜46、56等を形成する。
【0136】
次いで、通常のリソグラフィー技術及びエッチング技術により、層間絶縁膜46、56に、プラグ42に達するプラグ42に達するコンタクトホール58を形成する。
【0137】
次いで、全面に、例えばCVD法により、例えば膜厚5〜10nmのTi膜と、例えば膜厚5〜20nmのTiN膜とを堆積する。こうして、Ti膜及びTiN膜よりなるバリアメタル60を形成する。
【0138】
次いで、全面に、例えばCVD法により、例えば膜厚700nmのシリコン酸化膜を堆積し、シリコン酸化膜よりなる層間絶縁膜66を形成する。この際、少なくとも成膜初期段階において、表面被覆性に劣る成膜条件を用いて層間絶縁膜66を形成する。
【0139】
一般的に、カバレッジを良くするには、成膜時の温度を低く、供給ガス量を少なくして、成膜時の圧力をなるべく低く設定する。その逆に、カバレッジを悪くするには、成膜時の温度を高く、成膜時の圧力をなるべく高く設定する。また、コンタクトホール58内に空洞88を残存する条件はコンタクトホール58のアスペクト比にも依存する。アスペクト比が小さいほどコンタクトホール58の底部に空洞88が形成されにくく、アスペクト比が大きい場合には空洞88は形成されやすい。したがって、層間絶縁膜66の形成にあたっては、これらの点を考慮して成膜条件を設定する必要がある。
【0140】
例えば、コンタクトホール58の開口径が約0.2μm以下、アスペクト比が2以上の場合、例えば成膜温度を400℃、成膜ガスとしてSiH4+O2を用いて層間絶縁膜66を成膜することにより、コンタクトホール58内に空洞88を残存することができる。
【0141】
表面被覆性に劣る条件を用いることにより堆積物はコンタクトホール58内に入りにくくなり、コンタクトホール58内に空洞88を残存するように層間絶縁膜66を形成することができる。位置合わせずれが発生した領域では、コンタクトホール58の上端部分、すなわち層間絶縁膜56の側壁部分に延在して層間絶縁膜66が形成されることになる。
【0142】
次いで、層間絶縁膜66上に、例えばCVD法により、例えば膜厚50nmのアモルファスシリコン膜を堆積し、アモルファスシリコン膜よりなるハードマスク68を形成する。
【0143】
次いで、通常のリソグラフィー技術及びエッチング技術により、蓄積電極72の形成予定領域のハードマスク68を除去する(図26(a)、図27(a))。
【0144】
次いで、ハードマスク68をマスクとして、バリアメタル60をストッパとして、層間絶縁膜66を異方性エッチングする。この際、コンタクトホール58内にはダミープラグが形成されていないので、開口部70内にはコンタクトホール58の内壁及び底部に沿って形成されたバリアメタル60が露出する(図26(b)、図27(b))。
【0145】
次いで、例えば図6(a)及び図11(a)に示す第1実施形態による半導体装置の製造方法と同様にして、Ru膜よりなり、開口部70の内壁及び底部に沿って形成され、バリアメタル60を介してコンタクトホール58内に埋め込まれ、プラグ42に電気的に接続された蓄積電極72を形成する(図28(a))。蓄積電極72は、層間絶縁膜46、56によって下層部分が支持されるため、後工程において倒れたり剥がれ落ちたりするのを防止することができる。
【0146】
なお、この工程以降におけるビット線52の延在方向に沿った工程断面図は、図19(a)乃至図20(b)に示す第2実施形態による半導体装置の製造方法と同様である。
【0147】
次いで、例えば弗酸水溶液を用いたウェットエッチングなどの等方性エッチングにより、バリアメタル60をストッパとして層間絶縁膜66を選択的にエッチングし、蓄積電極72の外表面を露出する。(図28(b))。この際、層間絶縁膜66の下面はすべてバリアメタル60と接しているので、層間絶縁膜66のエッチングの際にエッチング液がバリアメタル60の下層に入り込んで下地構造を破壊することはない。
【0148】
次いで、バリアメタル60を、例えば硫酸と過酸化水素とを含む水溶液により、蓄積電極72、層間絶縁膜56に対して選択的にエッチングする。このエッチングは、周辺回路領域に延在するバリアメタル60を除去すること、及び、バリアメタル60と後に形成するキャパシタ誘電体膜74との相性が悪い場合を考慮したものであり、少なくとも、層間絶縁膜56と蓄積電極72との間に間隙84が形成されるまでバリアメタル60をエッチングすることが望ましい。このエッチングにより、位置合わせずれが生じた領域では、コンタクトホール58の上端部分にバリアメタル60が形成されていない領域(間隙86)が形成される(図29(a))。
【0149】
次いで、例えば図7(a)乃至図7(b)及び図12(a)乃至図12(b)に示す第1実施形態による半導体装置の製造方法と同様にして、キャパシタ誘電体膜74、プレート電極76、層間絶縁膜78、プラグ82等を形成する(図29(b))。
【0150】
こうして、1トランジスタ、1キャパシタよりなるDRAMを製造することができる。
【0151】
このように、本実施形態によれば、ダミープラグの代わりに下層の層間絶縁膜に空洞を形成しておき、この空洞に接続される開口部を形成し、空洞内に一部が埋め込まれた蓄積電極を形成するので、蓄積電極を支える支持体を別途設けることなく蓄積電極の剥がれや倒れを防止し、また、位置合わせずれによるコンタクト不良や下地構造の破壊を防止することができる。
【0152】
また、本実施形態による半導体装置の製造方法ではダミープラグの成膜工程やダミープラグをコンタクトホール内に選択的に埋め込むためのCMP工程やエッチバック工程が不要であるので、製造工程を短縮化してコストを低減しうるという効果もある。
【0153】
[第4実施形態]
本発明の第4実施形態による半導体装置及びその製造方法について図30乃至図34を用いて説明する。なお、図1乃至図29に示す第1乃至第3実施形態による半導体装置及びその製造方法と同一の構成要素には同一の符号を付し説明を省略し或いは簡略にする。
【0154】
図30は本実施形態による半導体装置の構造を示す概略断面図、図31乃至図34は本実施形態による半導体装置の製造方法を示す工程断面図である。
【0155】
はじめに、本実施形態による半導体装置の構造について図30を用いて説明する。なお、図30(a)は図1のA−A′線に沿った断面図であり、図30(b)はB−B′線に沿った断面図である。
【0156】
本実施形態による半導体装置は、図30に示すように、基本的な構造は図2に示す第1実施形態による半導体装置と同様である。本実施形態による半導体装置は、コンタクトホール58の内壁及び底部にバリアメタル60を残存する代わりに、層間絶縁膜46、56、エッチングストッパ膜64と蓄積電極72との間の密着性を高めるための密着層90を形成していることに特徴がある。バリアメタル60の代わりに密着層90を利用する結果、密着層90の一部が層間絶縁膜56上に延在し(図30(a)参照)、また、位置合わせずれが発生するとコンタクトホール58内の蓄積電極72上に密着層90が延在する領域が生じることになる(図30(b)参照)。
【0157】
なお、第1乃至第3実施形態におけるバリアメタル60と本実施形態による密着層90とは基本的に同じ機能を有するものであり、名称の違いに実質的な意味があるわけではない。形成する工程が互いに異なるため、便宜上これらを別々の名称で表現しているだけである。
【0158】
次に、本実施形態による半導体装置の製造方法について図31乃至図34を用いて説明する。なお、以下の説明では、ワード線の延在方向に位置合わせずれが生じた場合の工程断面図に基づいて本実施形態による半導体装置の製造方法を説明する。図31及び図32において、各図右側は周辺回路領域の工程断面図を表し、各図左側は図1のA−A′線断面における工程断面図を表している。また、図33及び図34は図1のB−B′線断面における工程断面図を表している。
【0159】
まず、例えば図3(a)乃至図5(b)及び図8(a)乃至図10(b)に示す第1実施形態による半導体装置の製造方法と同様にして、層間絶縁膜66及びエッチングストッパ膜64に開口部70を形成し、ダミープラグ62を選択的に除去する。
【0160】
次いで、コンタクトホール58内のバリアメタル60を除去する(図31(a)、図33(a))。なお、図4(b)及び図9(b)に示す工程においてバリアメタル60を形成せず、コンタクトホール58内にダミープラグ62のみを形成しておき、前の工程においてダミープラグ62のみを除去するようにしてもよい。
【0161】
次いで、全面に、例えばCVD法により、例えば膜厚5〜10nmのTi膜と、例えば膜厚5〜20nmのTiN膜と、例えば膜厚30nmのRu膜とを堆積する。なお、Ru膜は蓄積電極72となる膜であり、Ti膜及びTiN膜は蓄積電極72とプラグ42或いは蓄積電極72とエッチングストッパ膜64及び層間絶縁膜46、56との間の密着性を高めるための密着層90となる膜である。
【0162】
なお、密着層90を構成するための導電膜は蓄積電極72とプラグ42或いは蓄積電極72とエッチングストッパ膜64及び層間絶縁膜46、56との間の密着性に優れた材料とする。例えば、蓄積電極72としてRu(ルテニウム)、Pt(プラチナ)、W(タングステン)、SRO(SrRuO3)などを用いる場合には、密着層90としてTiN(窒化チタン)やWN(窒化タングステン)或いは、Ti+TiNやTi+WN等の多層膜などを用いることができる。本実施形態では、蓄積電極72としてRu膜を想定し、密着層90をTi膜とTiN膜により構成するものとする。なお、密着層90とキャパシタ誘電体膜との相性は良好であることが望ましいが、これら膜の相性が悪い場合であっても、後述の手段によりキャパシタ特性の劣化を防止することができる。
【0163】
次いで、例えば図6(a)及び図11(a)に示す第1実施形態による半導体装置の製造方法と同様にして、Ru膜よりなり、密着層90を介して開口部70の内壁及び底部に形成され、密着層90を介してコンタクトホール58内に埋め込まれ、プラグ42に電気的に接続された蓄積電極72を形成する(図31(b)、図33(b))。蓄積電極72は、層間絶縁膜46、56、エッチングストッパ膜64によって下層部分が支持されるため、後工程において倒れたり剥がれ落ちたりするのを防止することができる。
【0164】
次いで、例えば弗酸水溶液を用いたウェットエッチングなどの等方性エッチングにより、エッチングストッパ膜64をストッパとして層間絶縁膜66を選択的にエッチングし、蓄積電極72の外表面を露出する。(図32(a)、図34(a))。この際、層間絶縁膜66の下面はすべてエッチングストッパ膜64と接しており、また、密着層90とエッチングストッパ膜64等との密着性がすぐれているので、層間絶縁膜66のエッチングの際にエッチング液がエッチングストッパ膜64の下層に入り込んで下地構造を破壊することはない。
【0165】
次いで、密着層90を、例えば硫酸と過酸化水素とを含む水溶液により、蓄積電極72、エッチングストッパ膜64、層間絶縁膜56に対して選択的にエッチングする(図32(b)、図34(b))。このエッチングは、密着層90と後に形成するキャパシタ誘電体膜74との相性が悪い場合を考慮したものであり、少なくとも、エッチングストッパ膜64と蓄積電極72との間に間隙84が形成されるまで密着層90をエッチングすることが望ましい。密着層90とキャパシタ誘電体膜74との相性がよい場合には、密着層90を除去する必要はない。
【0166】
次いで、例えば図7(a)乃至図7(b)及び図12(a)乃至図12(b)に示す第1実施形態による半導体装置の製造方法と同様にして、キャパシタ誘電体膜74、プレート電極76、層間絶縁膜78、プラグ82等を形成する。
【0167】
こうして、1トランジスタ、1キャパシタよりなるDRAMを製造することができる。
【0168】
このように、本実施形態によれば、下層の層間絶縁膜にダミープラグを形成しておき、上層の層間絶縁膜に蓄積電極の形成に利用する開口部を形成した後にこのダミープラグを除去し、この後にダミープラグを除去したコンタクトホール内に一部が埋め込まれた蓄積電極を形成するので、蓄積電極を支える支持体を別途設けることなく蓄積電極の剥がれや倒れを防止し、また、位置合わせずれによるコンタクト不良や下地構造の破壊を防止することができる。
【0169】
[第5実施形態]
本発明の第5実施形態による半導体装置及びその製造方法について図35乃至図37を用いて説明する。なお、図1乃至図34に示す第1乃至第4実施形態による半導体装置及びその製造方法と同一の構成要素には同一の符号を付し説明を省略し或いは簡略にする。
【0170】
図35は本実施形態による半導体装置の構造を示す概略断面図、図36及び図37は本実施形態による半導体装置の製造方法を示す工程断面図である。
【0171】
はじめに、本実施形態による半導体装置の構造について図35を用いて説明する。なお、図35は図1のA−A′線に沿った断面図である。
【0172】
本実施形態による半導体装置は、図35に示すように、周辺回路領域に蓄積電極72を形成する際に利用した層間絶縁膜66が残存していることに特徴がある。このように層間絶縁膜66を残存することにより、メモリセル領域と周辺回路領域とのグローバル段差を緩和することができ、層間絶縁膜78を平坦化する工程やプラグ82等の配線層を形成する際のリソグラフィー工程を容易にすることができる。
【0173】
次に、本実施形態による半導体装置の製造方法について図36及び図37を用いて説明する。なお、図36及び図37において、各図右側は周辺回路領域の工程断面図を表し、各図左側は図1のA−A′線断面における工程断面図を表している。
【0174】
まず、例えば図3(a)乃至図6(a)に示す半導体装置の製造方法と同様にして、層間絶縁膜66の内壁及び底部に沿って形成された蓄積電極72を形成する(図36(a))。
【0175】
なお、本実施形態では、図4(b)に示す工程において、層間絶縁膜56上にエッチングストッパ膜64を形成し、エッチングストッパ膜64、層間絶縁膜56、46を貫きプラグ42に達するコンタクトホール58を開口し、このコンタクトホール58内にバリアメタル60及びダミープラグ62を形成する。
【0176】
次いで、層間絶縁膜66と蓄積電極72との間へのエッチング液の染み込みを利用して、或いは、周辺回路領域を覆うレジストマスクを利用して、メモリセル領域の層間絶縁膜66を選択的に除去する(図36(b))。なお、エッチング液の染み込みを利用した層間絶縁膜66のエッチング方法は、例えば、本願発明者の一部が共同発明者として加わっている、特願2000−104361号明細書、特願2000−185176号明細書に詳述されている。
【0177】
層間絶縁膜66と蓄積電極72との間へのエッチング液の染み込みを利用してメモリセル領域の層間絶縁膜66を選択的に除去する場合、蓄積電極72と層間絶縁膜66との間の密着性が劣る材料系によってこれらを構成し、界面へのエッチング液の染み込みを促進する。このとき、エッチングストッパ膜64と蓄積電極72との間、層間絶縁膜52と蓄積電極との間にもエッチング液が染み込む虞があるが、エッチングストッパ膜64の端部はこの膜との密着性に優れたバリアメタル60と接しているので、エッチングストッパ膜64よりも下層にエッチング液が染み込んで層間絶縁膜56、46等がエッチングされるようなことはない。
【0178】
本実施形態による半導体装置のようにプラグ42に接続されるコンタクトプラグを兼ねる蓄積電極72を形成する場合、層間絶縁膜66と蓄積電極72との間へのエッチング液の染み込みを利用して層間絶縁膜を除去するためには、コンタクトプラグ部分にはバリアメタル(密着層)を形成し、シリンダ状の突出部分にはバリアメタル(密着層)を形成しないか或いは特願2000−185176号明細書に記載されているようにバリアメタルと層間絶縁膜との間に選択除去膜を形成しておく必要がある。しかしながら、本発明では、コンタクトホール58内にバリアメタル60のみを残存し、その後に蓄積電極72を形成するため、バリアメタル60は蓄積電極72のコンタクトプラグ部分にのみ選択的に形成されることになる。したがって、本発明は、エッチング液の染み込みを利用して層間絶縁膜66を除去する手法を採用するうえで極めて好ましい構造を提供するものである。
【0179】
なお、本実施形態においてエッチングストッパ膜64を形成した後にコンタクトホール58を形成しているのは、エッチングストッパ膜64よりも下層へのエッチング液の染み込みを防止するためである。したがって、界面へのエッチング液の染み込みを利用して層間絶縁膜66を除去する手法を採用しない場合、第1及び第4実施形態のように、コンタクトホール58、バリアメタル60、ダミープラグ62を形成した後にエッチングストッパ膜64を形成してもよい。
【0180】
次いで、全面に、例えばCVD法により、例えば膜厚10〜30nmのTa25膜或いはBST膜を堆積し、Ta25或いはBSTよりなるキャパシタ誘電体膜74を形成する。
【0181】
次いで、全面に、例えばCVD法により、例えば膜厚50〜300nmのRu膜を堆積した後、通常のリソグラフィー技術及びエッチング技術によりこのRu膜をパターニングし、Ru膜よりなるプレート電極76を形成する(図7(a)、図37(a))。
【0182】
次いで、全面に、例えばCVD法により、例えば膜厚200〜500nmのシリコン酸化膜を堆積し、CMP法によりその表面を研磨し、表面が平坦化されたシリコン酸化膜よりなる層間絶縁膜78を形成する。
【0183】
次いで、通常のリソグラフィー技術及びエッチング技術により、層間絶縁膜78、66、エッチングストッパ膜64、層間絶縁膜56を貫き、配線層54に達するコンタクトホール80を形成する。
【0184】
次いで、導電膜を堆積した後、層間絶縁膜78の表面が露出するまでこの導電膜を平坦的に除去し、コンタクトホール80内に埋め込まれ、配線層54に接続されたプラグ82を形成する(図37(b))。
【0185】
こうして、1トランジスタ、1キャパシタよりなるDRAMを製造することができる。
【0186】
このように、本実施形態によれば、下層の層間絶縁膜にダミープラグを形成しておき、上層の層間絶縁膜に蓄積電極の形成に利用する開口部を形成した後にこのダミープラグを除去し、この後にダミープラグを除去したコンタクトホール内に一部が埋め込まれた蓄積電極を形成するので、蓄積電極を支える支持体を別途設けることなく蓄積電極の剥がれや倒れを防止し、また、位置合わせずれによるコンタクト不良や下地構造の破壊を防止することができる。
【0187】
また、蓄積電極を形成する際に利用した層間絶縁膜を周辺回路領域に残存するので、メモリセル領域と周辺回路領域とのグローバル段差を緩和することができ、層間絶縁膜を平坦化する工程やプラグ等の配線層を形成する際のリソグラフィー工程を容易にすることができる。
【0188】
また、本発明による半導体装置は、エッチング液の染み込みを利用して層間絶縁膜を除去する手法を採用するうえで好ましい構造を有しているため、メモリセル領域の層間絶縁膜を選択的に除去する過程において別途リソグラフィー工程を設ける必要はない。
【0189】
[変形実施形態]
本発明は上記実施形態に限らず種々の変形が可能である。
【0190】
例えば、上記第1乃至第5実施形態ではシリンダ状の蓄積電極72を有する半導体装置に本発明を適用する場合を説明したが、柱状の蓄積電極を有する半導体装置においても本発明を適用することができる。この場合、図6(a)等に示す工程において、蓄積電極72を構成する材料が開口部70内を完全に埋め込むように形成すればよい。第1実施形態による半導体装置及びその製造方法に適用した場合、図38(a)及び図38(b)に示すような構造となる。なお、図38(a)は図1のA−A′線に沿った断面図であり、図38(b)は図1のB−B′線に沿った断面図(位置ずれが生じたとき)である。
【0191】
また、上記第1及び第5実施形態では、例えば図4(b)に示すように、コンタクトホール58内にバリアメタル60及びダミープラグ62を形成したが、コンタクトホール58内にダミープラグ62のみを形成してもよい(図39(a))。プラグ42を構成する物質と蓄積電極72を構成する物質との間に必要以上の反応が生じないような場合には、このような構成を採用することができる。また、バリアメタル60は、コンタクトホール58の底部のみに形成してもよい(図39(b))。このときのバリアメタルは、プラグ42の上部に予め形成されたものであってもよい。
【0192】
また、上記第1及び第5実施形態では、コンタクトホール58内のダミープラグ62をすべて除去したが、必ずしもすべてのダミープラグ62を除去する必要はない。例えば、図39(c)に示すようにコンタクトホール58の上部領域のみのダミープラグ62を除去し、図39(d)に示すようにコンタクトホール58内で蓄積電極72とダミープラグ62及びバリアメタルとが接するようにしてもよい。この場合、ダミープラグ62を構成する材料としては、蓄積電極72を構成する材料と必要以上に反応しない材料を選択することが望ましい。また、図39(e)に示すようにコンタクトホール58の上部領域のバリアメタル60をも除去し、図39(f)に示すようにコンタクトホール58内で蓄積電極72の下面がダミープラグ62及びバリアメタル60に接するようにしてもよい。また、図39(g)に示すようにコンタクトホール58の上部領域のバリアメタル60及びすべてのダミープラグ62を除去し、図39(h)に示すようにコンタクトホール58内で蓄積電極72とバリアメタル60とが接するようにしてもよい。また、第2実施形態において、図39(c)に示すと同様に、ダミープラグ62の一部をコンタクトホール58内に残存するようにしてもよい。
【0193】
また、上記第1及び第4実施形態では、エッチングストッパ膜64を層間絶縁膜66と同時にパターニングし、層間絶縁膜66及びエッチングストッパ膜64を貫く開口部70を形成したが、第5実施形態と同様にして、コンタクトホール58の形成前にエッチングストッパ膜64を形成しておき、エッチングストッパ膜64、層間絶縁膜56,46を貫くコンタクトホール58を形成し、この後にバリアメタル60、ダミープラグ62、層間絶縁膜66等を形成するようにしてもよい。また、層間絶縁膜66を構成する材料として層間絶縁膜56、バリアメタル60及びダミープラグ62を構成する材料とエッチング特性の異なる膜を適用すれば、エッチングストッパ膜64を形成する必要はない。
【0194】
また、バリアメタル60の形成後、ダミープラグ62の形成前に、蓄積電極72を成膜する際のシードとなるシード層92を形成しておき(図39(i))、蓄積電極72の成長過程において蓄積電極72を構成する材料がコンタクトホール58内で成長しやすいようにしてもよい(図39(j))。
【0195】
なお、蓄積電極72とバリアメタル60とが少なくとも一部で接続されていれば蓄積電極72とプラグ42との電気的な接続は確保できるので、蓄積電極72を構成する材料によってコンタクトホール58内を完全に埋め込む必要はない。すなわち、コンタクトホール58内の蓄積電極72に鬆が入ったり、例えば図40に示すようにコンタクトホール58の上部のみに蓄積電極72が形成されてその下部が空洞94として残存していても、本発明の実現上何ら問題はない。
【0196】
また、上記実施形態では、本発明をDRAMのキャパシタに適用する場合として説明しているが、DRAMに限られるものではなく、多数のキャパシタを必要とする半導体集積回路装置に適用されるものであり、特に、DRAMと同様な構成を有する強誘電体メモリ(FeRAM)に適用することによって、高集積度のFeRAMを製造することができる。
【0197】
また、上記実施形態では、ビット線の上層にキャパシタを配置するCOB(Capacitor Over Bit Line)構造に本発明を適用した場合について示したが、本発明はキャパシタと周辺回路領域の層間絶縁膜に関わるものであり、ビット線の位置との直接的な関連はない。したがって、本発明は、キャパシタの上層にビット線を配置するCUB(Capacitor Under Bit Line)構造においても同様に適用することができる。
【0198】
また、上記実施形態では、蓄積電極72を埋め込むための開口部70を形成する工程に本発明を適用した場合について示したが、本発明は、下層絶縁膜にコンタクトホールを形成し、エッチングストッパ膜を介して形成された上層絶縁膜にコンタクトホールより広い開口部を形成する半導体装置の製造方法に広く適用することができる。例えば、デュアルダマシンプロセスにおけるビアホール及び配線溝の開口に、本発明を適用してもよい。
【0199】
以上詳述したように、本発明による半導体装置及びその製造方法の特徴をまとめると以下の通りとなる。
【0200】
(付記1) 基板に達するコンタクトホールが形成された第1の絶縁膜と、前記コンタクトホール内に形成されたコンタクト部と、前記コンタクト部の上面の一部に接続するように形成され、前記第1の絶縁膜上に突出する突出部とを有し、前記コンタクト部と前記突出部とが同一の導電層によって構成されている第1の電極と、前記蓄積電極上に形成された誘電体膜と、前記誘電体膜上に形成され、前記第1の電極に対向する第2の電極とを有することを特徴とする半導体装置。
【0201】
なお、本明細書にいう「基板」とは、シリコン基板などの半導体基板そのもののみならず、トランジスタ、配線層、絶縁膜等が形成された半導体基板をも含むものである。
【0202】
(付記2) 付記1記載の半導体装置において、前記コンタクトホールの内壁及び底部に、前記第1の絶縁膜と前記第1の電極との密着性を高め、或いは、前記基板と前記第1の電極との間の反応を抑止する導電膜を更に有することを特徴とする半導体装置。
【0203】
(付記3) 付記2記載の半導体装置において、前記導電膜は、前記第1の絶縁膜上に延在して形成されていることを特徴とする半導体装置。
【0204】
(付記4) 付記2又は3記載の半導体装置において、前記導電膜は、前記コンタクト部の前記上面上に延在して形成されていることを特徴とする半導体装置。
【0205】
(付記5) 付記1乃至3のいずれか1項に記載の半導体装置において、前記第1の絶縁膜上に前記誘電体膜を介して形成された第2の絶縁膜を更に有し、前記第2の絶縁膜は、前記コンタクトホール内に延在して形成されていることを特徴とする半導体装置。
【0206】
(付記6) 基板上に、コンタクトホールが形成された第1の絶縁膜を形成する工程と、前記コンタクトホール内にダミープラグを形成する工程と、前記ダミープラグが埋め込まれた前記第1の絶縁膜上に第2の絶縁膜を形成する工程と、前記第2の絶縁膜に、前記ダミープラグの少なくとも一部を露出する開口部を形成する工程と、前記開口部を介して前記ダミープラグを選択的に除去する工程と、前記コンタクトホール内及び前記開口部内に、前記基板に電気的に接続された第1の電極を形成する工程とを有することを特徴とする半導体装置の製造方法。
【0207】
(付記7) 付記6記載の半導体装置の製造方法において、前記ダミープラグを除去する工程では、前記コンタクトホールの底部に前記ダミープラグの少なくとも一部を残存することを特徴とする半導体装置の製造方法。
【0208】
(付記8) 基板上に、コンタクトホールが形成された第1の絶縁膜を形成する工程と、前記第1の絶縁膜上に、前記コンタクトホール内に空洞が残存するように第2の絶縁膜を形成する工程と、前記第2の絶縁膜に、前記空洞に達する開口部を形成する工程と、前記コンタクトホール内及び前記開口部内に、前記基板に電気的に接続された第1の電極を形成する工程とを有することを特徴とする半導体装置の製造方法。
【0209】
(付記9) 付記6乃至8のいずれか1項に記載の半導体装置の製造方法において、前記第1の電極を形成する工程の後に、前記第2の絶縁膜を選択的に除去する工程と、前記第1の電極上に誘電体膜を形成する工程と、前記誘電体膜上に、前記誘電体膜を介して前記第1の電極と対向する第2の電極を形成する工程とを更に有することを特徴とする半導体装置の製造方法。
【0210】
(付記10) 付記6乃至9のいずれか1項に記載の半導体装置の製造方法において、前記第1の絶縁膜を形成する工程の後に、少なくとも前記コンタクトホールの内壁及び底部に、前記第1の絶縁膜と前記第1の電極との密着性を高め或いは前記基板と前記第1の電極との間の反応を抑止する導電膜を形成する工程を更に有することを特徴とする半導体装置の製造方法。
【0211】
(付記11) 付記6乃至9のいずれか1項に記載の半導体装置の製造方法において、前記開口部を形成する工程の後に、前記開口部の内壁及び底部並びに前記コンタクトホールの内壁及び底部に、前記第1の絶縁膜と前記第1の電極との密着性を高め或いは前記基板と前記第1の電極との間の反応を抑止する導電膜を形成する工程を更に有することを特徴とする半導体装置の製造方法。
【0212】
(付記12) 付記10記載の半導体装置の製造方法において、前記導電膜を形成する工程では、前記第1の絶縁膜上に延在して前記導電膜を形成し、前記第2の絶縁膜を除去する工程では、前記導電膜をストッパとして前記第2の絶縁膜を除去することを特徴とする半導体装置の製造方法。
【0213】
(付記13) 付記9乃至11のいずれか1項に記載の半導体装置の製造方法において、前記第1の絶縁膜を形成する工程と前記第2の絶縁膜を形成する工程との間に、前記第1の絶縁膜及び前記第2の絶縁膜とエッチング特性の異なる第3の絶縁膜を形成する工程を更に有し、前記第2の絶縁膜を除去する工程では、前記第3の絶縁膜をストッパとして前記第2の絶縁膜を除去することを特徴とする半導体装置の製造方法。
【0214】
(付記14) 付記9乃至11のいずれか1項に記載の半導体装置の製造方法において、前記第1の絶縁膜を形成する工程では、少なくとも表面領域のエッチング特性が前記第2の絶縁膜のエッチング特性とは異なる前記第1の絶縁膜を形成し、前記第2の絶縁膜を除去する工程では、前記第1の絶縁膜をストッパとして前記第2の絶縁膜を除去することを特徴とする半導体装置の製造方法。
【0215】
(付記15) 付記9乃至14のいずれか1項に記載の半導体装置の製造方法において、前記基板は、前記第1の電極及び前記第2の電極が形成された領域を含む第1の領域と、前記第1の領域と異なる第2の領域とを有し、前記第2の絶縁膜を除去する工程では、前記第1の領域の前記第2の絶縁膜を選択的に除去することを特徴とする半導体装置の製造方法。
【0216】
(付記16) 基板上に、コンタクトホールが形成された第1の絶縁膜を形成する工程と、前記コンタクトホール内にダミープラグを形成する工程と、前記ダミープラグが埋め込まれた前記第1の絶縁膜上に第2の絶縁膜を形成する工程と、前記第2の絶縁膜に、前記ダミープラグの少なくとも一部を露出する開口部を形成する工程と、前記開口部を介して前記ダミープラグを選択的に除去する工程と、前記コンタクトホール内及び前記開口部内に、前記基板に電気的に接続された導電膜を形成する工程とを有することを特徴とする半導体装置の製造方法。
【0217】
(付記17) 基板上に、コンタクトホールが形成された第1の絶縁膜を形成する工程と、前記第1の絶縁膜上に、前記コンタクトホール内に空洞が残存するように第2の絶縁膜を形成する工程と、前記第2の絶縁膜に、前記空洞に達する開口部を形成する工程と、前記コンタクトホール内及び前記開口部内に、前記基板に電気的に接続された導電膜を形成する工程とを有することを特徴とする半導体装置の製造方法。
【0218】
なお、付記16及び17にいう「導電膜」は、蓄積電極などの電極のみならず、埋め込み配線などの配線層をも含むものである。
【0219】
【発明の効果】
以上の通り、本発明によれば、下層の層間絶縁膜にダミープラグを形成しておき、上層の層間絶縁膜に蓄積電極の形成に利用する開口部を形成した後にこのダミープラグを除去し、この後にダミープラグを除去したコンタクトホール内に一部が埋め込まれた蓄積電極を形成するので、蓄積電極を支える支持体を別途設けることなく蓄積電極の剥がれや倒れを防止し、また、位置合わせずれによるコンタクト不良や下地構造の破壊を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による半導体装置の構造を示す平面図である。
【図2】本発明の第1実施形態による半導体装置の構造を示す概略断面図である。
【図3】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その1)である。
【図4】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その2)である。
【図5】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その3)である。
【図6】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その4)である。
【図7】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その5)である。
【図8】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その6)である。
【図9】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その7)である。
【図10】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その8)である。
【図11】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その9)である。
【図12】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その10)である。
【図13】位置ずれが生じた場合のパターンレイアウトを示す平面図である。
【図14】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その11)である。
【図15】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その12)である。
【図16】本発明の第2実施形態による半導体装置の構造を示す概略断面図である。
【図17】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その1)である。
【図18】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その2)である。
【図19】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その3)である。
【図20】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その4)である。
【図21】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その5)である。
【図22】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その6)である。
【図23】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その7)である。
【図24】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その8)である。
【図25】本発明の第3実施形態による半導体装置の構造を示す概略断面図である。
【図26】本発明の第3実施形態による半導体装置の製造方法を示す工程断面図(その1)である。
【図27】本発明の第3実施形態による半導体装置の製造方法を示す工程断面図(その2)である。
【図28】本発明の第3実施形態による半導体装置の製造方法を示す工程断面図(その3)である。
【図29】本発明の第3実施形態による半導体装置の製造方法を示す工程断面図(その4)である。
【図30】本発明の第4実施形態による半導体装置の構造を示す概略断面図である。
【図31】本発明の第4実施形態による半導体装置の製造方法を示す工程断面図(その1)である。
【図32】本発明の第4実施形態による半導体装置の製造方法を示す工程断面図(その2)である。
【図33】本発明の第4実施形態による半導体装置の製造方法を示す工程断面図(その3)である。
【図34】本発明の第4実施形態による半導体装置の製造方法を示す工程断面図(その4)である。
【図35】本発明の第5実施形態による半導体装置の構造を示す概略断面図である。
【図36】本発明の第5実施形態による半導体装置の製造方法を示す工程断面図(その1)である。
【図37】本発明の第5実施形態による半導体装置の製造方法を示す工程断面図(その2)である。
【図38】本発明の実施形態の変形例による半導体装置の構造を示す概略断面図(その1)である。
【図39】本発明の実施形態の変形例による半導体装置の構造を示す概略断面図(その2)である。
【図40】本発明の実施形態の変形例による半導体装置の構造を示す概略断面図(その3)である。
【図41】従来の半導体装置の製造方法を示す工程断面図(その1)である。
【図42】従来の半導体装置の製造方法を示す工程断面図(その2)である。
【図43】従来の半導体装置の製造方法を示す工程断面図(その3)である。
【図44】従来の他の半導体装置の製造方法を示す工程断面図(その1)である。
【図45】従来の他の半導体装置の製造方法を示す工程断面図(その2)である。
【図46】従来の他の半導体装置の製造方法を示す工程断面図(その3)である。
【図47】従来の半導体装置の製造方法を示す平面レイアウト図である。
【図48】従来の半導体装置の製造方法における課題を説明する平面レイアウト図である。
【図49】従来の半導体装置の製造方法における課題を説明する概略断面図である。
【符号の説明】
10…シリコン基板
12…素子分離膜
14、16…ゲート絶縁膜
18…シリコン窒化膜
20、22…ゲート電極
24…サイドウォール絶縁膜
26、28、30…ソース/ドレイン拡散層
32、46、56、66、78…層間絶縁膜
34、36、38、48、50、58、80…コンタクトホール
40、42、44、82…プラグ
52…ビット線
54…配線層
60…バリアメタル
62…ダミープラグ
64…エッチングストッパ膜
68…ハードマスク
70…開口部
72…蓄積電極
74…キャパシタ誘電体膜
76…プレート電極
84、86…空隙
88…空洞
90…密着層
92…シード層
94…空洞
100…シリコン基板
102、108…ゲート電極
104、106、110…ソース/ドレイン拡散層
112、115、122、124、148…プラグ
114…ビット線
116…配線層
118、120、128、132、144…層間絶縁膜
126、130…エッチングストッパ膜
134…ハードマスク
136…開口部
138…蓄積電極
140…キャパシタ誘電体膜
142…プレート電極
146…コンタクトホール

Claims (2)

  1. 基板上に、コンタクトホールが形成された第1の絶縁膜を形成する工程と、
    前記第1の絶縁膜上及び前記コンタクトホールの内壁及び底部に、前記第1の絶縁膜と第1の電極との密着性を高め或いは前記基板と前記第1の電極との間の反応を抑止する導電膜を形成する工程と、
    前記導電膜上に、前記導電膜が形成された前記コンタクトホール内に空洞が残存するように第2の絶縁膜を形成する工程と、
    前記第2の絶縁膜に、前記空洞に達する開口部を形成する工程と、
    前記コンタクトホール内及び前記開口部内に、前記基板に電気的に接続された前記第1の電極を形成する工程と、
    前記第1の電極を形成する工程の後に、前記導電膜をストッパとして前記第2の絶縁膜を除去する工程と、
    前記第2の絶縁膜を除去する工程の後に、前記第1の絶縁膜上の前記導電膜をエッチングする工程と、
    前記導電膜エッチングする工程の後に、前記第1の電極上に誘電体膜を形成する工程と、
    前記誘電体膜上に、前記誘電体膜を介して前記第1の電極と対向する第2の電極を形成する工程と
    を有することを特徴とする半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    前記基板は、前記第1の電極及び前記第2の電極が形成された領域を含む第1の領域と、前記第1の領域と異なる第2の領域とを有し、
    前記第2の絶縁膜を除去する工程では、前記第1の領域の前記第2の絶縁膜を選択的に除去する
    ことを特徴とする半導体装置の製造方法。
JP2000263517A 2000-08-31 2000-08-31 半導体装置及びその製造方法 Expired - Fee Related JP4651169B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000263517A JP4651169B2 (ja) 2000-08-31 2000-08-31 半導体装置及びその製造方法
US09/815,012 US6537874B2 (en) 2000-08-31 2001-03-23 Method for fabricating semiconductor device having a capacitor
US10/342,180 US20030109124A1 (en) 2000-08-31 2003-01-15 Semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263517A JP4651169B2 (ja) 2000-08-31 2000-08-31 半導体装置及びその製造方法

Publications (3)

Publication Number Publication Date
JP2002076307A JP2002076307A (ja) 2002-03-15
JP2002076307A5 JP2002076307A5 (ja) 2006-09-28
JP4651169B2 true JP4651169B2 (ja) 2011-03-16

Family

ID=18751056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263517A Expired - Fee Related JP4651169B2 (ja) 2000-08-31 2000-08-31 半導体装置及びその製造方法

Country Status (2)

Country Link
US (2) US6537874B2 (ja)
JP (1) JP4651169B2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289796A (ja) * 2001-03-26 2002-10-04 Nec Corp 半導体装置の製造方法
US6410955B1 (en) * 2001-04-19 2002-06-25 Micron Technology, Inc. Comb-shaped capacitor for use in integrated circuits
US6888217B2 (en) * 2001-08-30 2005-05-03 Micron Technology, Inc. Capacitor for use in an integrated circuit
KR100438782B1 (ko) * 2001-12-29 2004-07-05 삼성전자주식회사 반도체 소자의 실린더형 커패시터 제조방법
JP2003234419A (ja) * 2002-02-08 2003-08-22 Mitsubishi Electric Corp 半導体装置の製造方法およびその方法により製造された半導体装置
JP4103497B2 (ja) 2002-04-18 2008-06-18 ソニー株式会社 記憶装置とその製造方法および使用方法、半導体装置とその製造方法
KR100521362B1 (ko) * 2002-05-28 2005-10-12 삼성전자주식회사 스토리지 노드 형성방법
TW546776B (en) * 2002-06-24 2003-08-11 Winbond Electronics Corp Method of forming contact
US6699766B1 (en) * 2002-07-01 2004-03-02 Lsi Logic Corporation Method of fabricating an integral capacitor and gate transistor having nitride and oxide polish stop layers using chemical mechanical polishing elimination
KR100457161B1 (ko) * 2002-07-18 2004-11-16 주식회사 하이닉스반도체 반도체소자의 저장전극 형성방법
KR100536590B1 (ko) * 2002-09-11 2005-12-14 삼성전자주식회사 강유전체 커패시터 및 그 제조 방법
DE10332600B3 (de) * 2003-07-17 2005-04-14 Infineon Technologies Ag Verfahren zum Herstellen eines elektrisch leitenden Kontaktes
JP3698160B2 (ja) 2004-01-09 2005-09-21 セイコーエプソン株式会社 半導体装置の製造方法
JP4492940B2 (ja) * 2004-05-31 2010-06-30 ルネサスエレクトロニクス株式会社 半導体装置
US6977210B1 (en) * 2004-06-08 2005-12-20 Nanya Technology Corporation Method for forming bit line contact hole/contact structure
US20060263974A1 (en) * 2005-05-18 2006-11-23 Micron Technology, Inc. Methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cell
KR100639219B1 (ko) * 2005-05-27 2006-10-30 주식회사 하이닉스반도체 반도체 소자의 캐패시터 형성방법
KR100720261B1 (ko) * 2006-01-26 2007-05-23 주식회사 하이닉스반도체 반도체 소자 및 그의 제조 방법
KR100807226B1 (ko) * 2006-08-21 2008-02-28 삼성전자주식회사 반도체 장치의 제조 방법
KR100849066B1 (ko) * 2007-02-06 2008-07-30 주식회사 하이닉스반도체 실린더형 엠아이엠 캐패시터 형성방법
WO2010032456A1 (ja) 2008-09-16 2010-03-25 ローム株式会社 半導体記憶装置および半導体記憶装置の製造方法
JP4756080B2 (ja) * 2009-03-25 2011-08-24 株式会社東芝 不揮発性記憶装置の製造方法
JP2010251406A (ja) * 2009-04-13 2010-11-04 Elpida Memory Inc 半導体装置およびその製造方法
JP2010287853A (ja) * 2009-06-15 2010-12-24 Elpida Memory Inc 半導体装置及びその製造方法
KR101742817B1 (ko) * 2011-08-23 2017-06-02 삼성전자 주식회사 반도체 소자 및 그 제조 방법
US8921977B2 (en) * 2011-12-21 2014-12-30 Nan Ya Technology Corporation Capacitor array and method of fabricating the same
WO2021056984A1 (zh) * 2019-09-27 2021-04-01 福建省晋华集成电路有限公司 电接触结构、接触垫版图及结构、掩模板组合及制造方法
CN113394162B (zh) * 2020-03-12 2022-03-18 长鑫存储技术有限公司 电容阵列结构及其形成方法
CN115623776A (zh) * 2021-07-13 2023-01-17 长鑫存储技术有限公司 存储器结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014796A1 (en) * 1998-09-03 2000-03-16 Micron Technology, Inc. Method of forming a silicon contact interface
JP2000150819A (ja) * 1998-11-09 2000-05-30 Nec Corp 半導体記憶装置およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466636A (en) * 1992-09-17 1995-11-14 International Business Machines Corporation Method of forming borderless contacts using a removable mandrel
US5354705A (en) * 1993-09-15 1994-10-11 Micron Semiconductor, Inc. Technique to fabricate a container structure with rough inner and outer surfaces
JPH0974174A (ja) * 1995-09-01 1997-03-18 Texas Instr Japan Ltd 半導体装置及びその製造方法
US5518948A (en) * 1995-09-27 1996-05-21 Micron Technology, Inc. Method of making cup-shaped DRAM capacitor having an inwardly overhanging lip
US5545585A (en) * 1996-01-29 1996-08-13 Taiwan Semiconductor Manufacturing Company Method of making a dram circuit with fin-shaped stacked capacitors
JPH10242147A (ja) * 1997-02-27 1998-09-11 Toshiba Corp 半導体装置およびその製造方法ならびに半導体記憶装置およびその製造方法
US5998257A (en) * 1997-03-13 1999-12-07 Micron Technology, Inc. Semiconductor processing methods of forming integrated circuitry memory devices, methods of forming capacitor containers, methods of making electrical connection to circuit nodes and related integrated circuitry
US5821141A (en) * 1998-01-12 1998-10-13 Taiwan Semiconductor Manufacturing Company, Ltd Method for forming a cylindrical capacitor in DRAM having pin plug profile
KR100301370B1 (ko) * 1998-04-29 2001-10-27 윤종용 디램셀커패시터의제조방법
US6188100B1 (en) * 1998-08-19 2001-02-13 Micron Technology, Inc. Concentric container fin capacitor
US6180484B1 (en) * 1998-08-26 2001-01-30 United Microelectronics Corp. Chemical plasma treatment for rounding tungsten surface spires
US6013550A (en) * 1998-10-09 2000-01-11 Taiwan Semiconductor Manufacturing Company Method to define a crown shaped storage node structure, and an underlying conductive plug structure, for a dynamic random access memory cell
US6159840A (en) * 1999-11-12 2000-12-12 United Semiconductor Corp. Fabrication method for a dual damascene comprising an air-gap
US6359307B1 (en) * 2000-01-29 2002-03-19 Advanced Micro Devices, Inc. Method for forming self-aligned contacts and interconnection lines using dual damascene techniques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014796A1 (en) * 1998-09-03 2000-03-16 Micron Technology, Inc. Method of forming a silicon contact interface
JP2000150819A (ja) * 1998-11-09 2000-05-30 Nec Corp 半導体記憶装置およびその製造方法

Also Published As

Publication number Publication date
US20030109124A1 (en) 2003-06-12
US20020024085A1 (en) 2002-02-28
US6537874B2 (en) 2003-03-25
JP2002076307A (ja) 2002-03-15

Similar Documents

Publication Publication Date Title
JP4651169B2 (ja) 半導体装置及びその製造方法
JP3805603B2 (ja) 半導体装置及びその製造方法
US6576527B2 (en) Semiconductor device and method for fabricating the same
KR100315324B1 (ko) 반도체장치및그제조방법
US20030048679A1 (en) Methods of forming contact holes using multiple insulating layers and integrated circuit devices having the same
JPH10321724A (ja) 半導体装置およびその製造方法
JP4935680B2 (ja) 半導体装置の製造方法
US20020024093A1 (en) Semiconductor device with self-aligned contact structure employing dual spacers and method of manufacturing the same
JP2001217403A (ja) 半導体集積回路装置およびその製造方法
JP2000114474A (ja) 半導体装置及びその製造方法
JP4552946B2 (ja) 半導体記憶装置および半導体記憶装置の製造方法
JP3865517B2 (ja) Dram装置の製造方法
KR100413606B1 (ko) 캐패시터의 제조 방법
JP2002203951A (ja) 半導体記憶装置及びその製造方法
JP2003100912A (ja) 半導体記憶装置及びその製造方法
US6573553B2 (en) Semiconductor device and method for fabricating the same
JP2000100943A (ja) 半導体装置及びその製造方法
JP3871618B2 (ja) 半導体記憶装置及びその製造方法
US7056788B2 (en) Method for fabricating a semiconductor device
JP4001707B2 (ja) 半導体装置の製造方法
JP2004311706A (ja) 半導体装置及びその製造方法
JP4328396B2 (ja) Dramにおけるメモリセルの製造方法
JP3895099B2 (ja) 半導体装置及びその製造方法
JP4829678B2 (ja) 強誘電体メモリ及びその製造方法
JP3942814B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees