JP4646537B2 - 電子部品の製造方法 - Google Patents

電子部品の製造方法 Download PDF

Info

Publication number
JP4646537B2
JP4646537B2 JP2004089429A JP2004089429A JP4646537B2 JP 4646537 B2 JP4646537 B2 JP 4646537B2 JP 2004089429 A JP2004089429 A JP 2004089429A JP 2004089429 A JP2004089429 A JP 2004089429A JP 4646537 B2 JP4646537 B2 JP 4646537B2
Authority
JP
Japan
Prior art keywords
green sheet
ceramic green
ceramic
sheet layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004089429A
Other languages
English (en)
Other versions
JP2005277166A (ja
Inventor
昭 若崎
山本  誠
裕成 池上
明 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004089429A priority Critical patent/JP4646537B2/ja
Publication of JP2005277166A publication Critical patent/JP2005277166A/ja
Application granted granted Critical
Publication of JP4646537B2 publication Critical patent/JP4646537B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、積層コンデンサや積層セラミック配線基板等のような電子部品の製造方法に関するものである。
近年、電子機器の小型化に伴い、積層コンデンサや積層セラミック配線基板のような電子部品において、小型化および高性能化が望まれている。例えば、積層コンデンサにおいては小型化および高容量化のためにより薄い誘電体層および導体層を多層化したものが求められている。また、積層セラミック配線基板においては小型化および配線導体の高密度化のためにより薄い絶縁層および配線導体層を多層に形成し、配線導体層の幅および間隔もより微細なものが求められている。
このような電子部品は、セラミック粉末に有機バインダー、可塑剤、溶剤等を加えてスラリーとし、ドクターブレード等によりセラミックグリーンシート(以下、グリーンシートともいう)を成形した後、金属粉末を含有する導体ペーストを印刷するなどして前記グリーンシート上に導体層を形成し、ついで複数枚の導体層が形成されたグリーンシートを積層して加圧することにより圧着して積層体を得て、この積層体を焼成することで得られる。
電子部品に対する要求に対応して導体層が形成されたグリーンシートを多数積層すると、導体層が形成された領域が重なる部分とそうでない部分ではその厚み差が大きくなる。このため、積層されたグリーンシートを厚み方向に加圧した場合、導体層が形成された領域が重なる部分においては加圧力が十分に加わるものの、そうでない部分においては加圧力が十分に加わりにくくなるので、不十分な圧着となってしまいやすい。その結果、そのような積層体を焼成すると、圧着が不十分な部分でデラミネーション(層間剥離)が発生するという問題があった。
このようなデラミネーションが電子部品の内部に存在すると、容量値の変化や絶縁破壊が起りやすくなるので電気的な特性が確保できないという問題があった。
この問題に対して、特許文献1では、加圧された際の流動性が高い高流動性部分を有する積層体を用いることが提案されている。積層体を厚み方向に加圧した際に、内部電極が積層されている領域に存在する高流動性部分が残りの部分に移動して残りの部分の厚みが増大しようとすることにより、加圧力が全体に均一に加わることとなるので、デラネーションが生じ難くなるものである。
また、グリーンシート上に形成された導体層の上に別のグリーンシートを積層する場合、この導体層の断面形状にグリーンシートが追従し難いために導体層の周辺に空隙が発生し、この空隙を起因とするデラミネーションが発生しやすいという問題があった。
この問題に対しては、特許文献2では、グリーンシートの少なくとも片面にセラミック粉に対して78体積%以上の樹脂のバインダーを含むセラミック層を設け、この上面に内部導体層を形成することが提案されている。多くのバインダーを含むセラミック層は、バインダーが十分流動し、焼成時のデラミネーションが解消されるものである。
このように、積層体中に高流動性層を形成したり、通常のグリーンシート上に高流動性層が形成されたグリーンシートを積層することによりデラミネーションの発生を解消していた。
特許第3344100号公報 特開昭61−229551号公報
しかしながら、従来の高流動性層の形成方法は、バインダー量や可塑剤量を増加させた高流動性のグリーンシートを通常のグリーンシート上に積層する方法(方法A)、乾燥後に高流動性のセラミック層となるようなスラリーを通常のグリーンシート上に塗布乾燥して形成する方法(方法B)であったので次のような問題点があった。
方法Aでは、通常のグリーンシートのみを用いる場合に対して、高流動性のグリーンシートを成型する工程、高流動性のグリーンシートを穴あけする工程、高流動性のグリーンシートを積層する工程が加わることとなるので、工程数、積層数の増加による、工期の長期化、コストアップ、歩留まり低下、層間の導体接続信頼性の低下といった問題があった。また、高流動性のグリーンシートは厚みが薄く、バインダーや可塑剤を多く含むことから粘着性が高く、変形しやすいものであるので、ハンドリングが容易ではなく、積層時に空気を巻き込んでも抜けにくく、デラミネーションの原因になりやすいという問題があった。
方法Bでは、積層数の増加はなく方法Aに比較して工程数増加が少なく、積層数の増加がないので積層信頼性の低下はないものの、スラリー中の溶剤を十分検討しなければ、スラリー中の溶剤によりその下側の通常のグリーンシートが溶解してしまったり、高流動性層と下のグリーンシートとの密着が不十分となり、剥離や空隙を発生させてしまうという問題があった。
また、従来の高流動性部分を有する積層体を用いる方法においては、高流動性部分を移動させてデラミネーションが発生しないような圧着を行なうためには、例えば厚み方向に180MPaという高い圧力を加える必要がある。このような高い圧力を導体層が形成されたグリーンシートに加えると、グリーンシートや導体パターンの形状が変形してしまうこととなる。その結果、基板の所望の寸法精度が得られないために基板上への部品実装が困難となったり、設計通りの導体パターンの形状が得られないために、特に高周波用配線基板等ではインピーダンス整合等の電気的特性が得られなくなるという問題があった。さらに、配線導体層の間隔が微細な場合の配線導体層間に発生する空隙の問題は解決されないままであった。
また、グリーンシートの少なくとも片面にセラミック粉に対して78体積%以上のバインダーを含むセラミック層を設ける方法においても、2MPaという圧力により圧着しているので、上記のようなグリーンシートや導体パターンの形状の変形という問題があった。特に、キャビティを有するパッケージでキャビティ底部の厚みが薄い場合は、キャビティ底部が変形しやすいものであった。また、30℃程度の温度で圧着するものであるので、78体積%以上のバインダーを含むセラミック層は常温で粘着性の高いものであるため、ハンドリングが容易ではなく、そのために積層時に空気を巻き込みやすいのでデラミネーションが発生してしまう場合があった。
さらには、キャビティを有する電子部品を製造する場合、キャビティとなる貫通穴を形成したグリーンシートとキャビティの底部となる貫通穴が形成されていないグリーンシートとを積層して圧着すると、グリーンシート積層体のキャビティ底部が反ってしまうという問題があった。これは、圧着するための加圧によりキャビティの周囲だけに圧力が加わり、キャビティ周囲のリーンシートが加圧により伸びるのに対して、キャビティ底部には圧力が加わらないのでキャビティ底部のグリーンシートは周囲から押されてしまうことによる。これは、電子部品がより小型でキャビティ底部の厚みがより薄い場合により発生しやすいものであった。キャビティ底部が反ってしまうと、水晶振動子やICチップ等の電子素子を搭載することが困難となってしまう。搭載できても搭載された部品が傾いてしまうので、CCDやC−MOS等の光半導体素子を搭載した場合は受光精度が悪くなってしまうという問題があった。
本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、デラミネーションがなく、高い信頼性と高い寸法精度を有する電子部品の製造方法を提供することである。
本発明の電子部品の製造方法は、第1のセラミックグリーンシート層を形成する工程と、該第1のセラミックグリーンシート層上にセラミックスラリーを塗布し乾燥して第2のセラミックグリーンシート層を形成してセラミックグリーンシートを形成する工程と、前記セラミックグリーンシート上に導体層を形成する工程と、前記導体層が形成された前記セラミックグリーンシートを複数枚積層して加熱することによってセラミックグリーンシート積層体を作製する工程と、前記セラミックグリーンシート積層体を焼成する工程とを具備しており、前記第1のセラミックグリーンシート層の溶解度パラメータと前記セラミックスラリーの溶解度パラメータとの差3乃至8とし、前記第1のセラミックグリーンシート層に前記セラミックグリーンシート積層体を作製する際の加熱時に溶融状態となる溶融成分を含有させ、前記第1のセラミックグリーンシート層に含まれる有機バインダーの添加量をセラミック粉末100質量部に対して19乃至30質量部とするとともに、前記セラミックスラリーに含まれる有機バインダーの添加量をセラミック粉末100質量部に対して10乃至19質量部としたことを特徴とするものである。
また、本発明の電子部品の製造方法は、好ましくは前記溶融成分の融点が35℃乃至100℃であることを特徴とするものである。
また、本発明において好ましくは、前記第1のセラミックグリーンシート層に含まれる有機バインダーの分子量が8万乃至30万であることを特徴とする。
また、本発明において好ましくは、前記第1のセラミックグリーンシート層に含まれる有機バインダーの酸価が0.1乃至0.8KOHmg/gであることを特徴とする。
また、本発明において好ましくは、前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの分子量が10万乃至80万であることを特徴とする。
また、本発明において好ましくは、前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの酸価が0.1乃至5KOHmg/gであることを特徴とするものである。
また、本発明において好ましくは、前記第1のセラミックグリーンシート層に含まれる有機バインダーのガラス転移点が−20乃至0℃であることを特徴とする。
また、本発明において好ましくは、前記第1のセラミックグリーンシート層に含まれる有機バインダーの水酸基価が0.1乃至5KOHmg/gであることを特徴とする。
また、本発明において好ましくは、前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーのガラス転移点が−20乃至20℃であることを特徴とする。
また、本発明において好ましくは、前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれるバインダーの水酸基価が5乃至100KOHmg/gであることを特徴とする。
本発明の電子部品の製造方法によれば、第1のセラミックグリーンシート層を形成する工程と、第1のセラミックグリーンシート層上にセラミックスラリーを塗布し乾燥して第2のセラミックグリーンシート層を形成してセラミックグリーンシートを形成することから、高流動性層としての第2のセラミックグリーンシート層の形成と通常のセラミックグリーンシート層としての第1のセラミックグリーンシート層上への積層とを同時に行なうことにより高流動性のグリーンシートを穴あけする工程および高流動性のグリーンシートを積層する工程がないので、積層数の増加による、工期の長期化、コストアップ、歩留まり低下、層間の導体接続信頼性の低下といった問題を発生させることなく高流動性層を形成することが可能となり、高流動性層の積層時の空気の巻き込みがなく、デラミネーションのない高信頼性の電子部品を得ることが可能となる。
また、第1のセラミックグリーンシート層の溶解度パラメータとセラミックスラリーの溶解度パラメータとの差が3乃至8であることから、第1のセラミックグリーンシート層上にセラミックスラリーを塗布した際、第1のセラミックグリーンシート層とセラミックスラリーが互いに溶解することを抑制するので、第1のセラミックグリーンシート層と第2のセラミックグリーンシート層が混合し同一化してしまうことを防ぐことができるとともに、第1のセラミックグリーンシート層上でセラミックスラリーがはじかれることが無いので、セラミックスラリーが全面に均一に塗布され、剥離や空隙のない均一な第2のセラミックグリーンシート層を形成することができる。
また、本発明の電子部品の製造方法によれば、第1のセラミックグリーンシート層はセラミックグリーンシート積層体を作製する際の加熱時に溶融する溶融成分を含有することから、セラミックグリーンシートは溶融成分を含有する第1のセラミックグリーンシート層と溶融成分を含有しない第2のセラミックグリーンシート層とから成るものとなり、導体層が形成されたセラミックグリーンシートを積層して加熱した際に第1のセラミックグリーンシート層が軟化するので、第1のセラミックグリーンシート層はその下に位置する別のセラミックグリーンシートの第2のセラミックグリーンシート層およびその上に形成された導体パターンの形状に追従して変形することとなる。その結果、導体層周囲や導体層間に空隙が発生することなくセラミックグリーンシート同士が密着することとなり、セラミックグリーンシート積層体を焼成して得られる電子部品はデラミネーションの発生のないものとなる。
また、第1のセラミックグリーンシート層は、加熱時に溶融する溶融成分を含有することから、加熱のみで第1のセラミックグリーンシート層が軟化して接着性を有するものとなるので、大きな加圧力によりセラミックグリーンシートを圧着させる必要がない。そして、導体パターンの形成される第2のセラミックグリーンシート層は加熱時に溶融する溶融成分を含有しないことから、第2のセラミックグリーンシート層は加熱時に変形することはなく、積層したセラミックグリーンシートが位置ずれしないように、また、軟化した第1のセラミックグリーンシート層をその下に位置する別の第2のセラミックグリーンシート層およびその上に形成された導体パターンの形状に追従して変形するのを補助するために押さえる程度では変形しないものである。よって、セラミックグリーンシートおよびその上に形成された導体パターン形状が変形することがなく、得られるセラミックグリーンシート積層体およびそれを焼成して得られる電子部品は高い寸法精度を有するものとなる。
さらに、加熱時に溶融する溶融成分の融点が35℃乃至100℃であるものを用いた場合は、常温では第1のセラミックグリーンシート層が軟化して変形することはないので、積層工程までのハンドリングが容易となり、加熱時にセラミックグリーンシート中のバインダーや可塑剤等の有機成分が分解することがないので、分解ガスによりデラミネーションが発生してしまうことがなく、より好ましいものとなる。
また、第1のセラミックグリーンシート層に含まれる有機バインダーの添加量がセラミック粉末100質量部に対して19乃至30質量部であるので、第1のセラミックグリーンシート層の保形性を維持し、かつ導体層が形成されたセラミックグリーンシートを積層して加熱した際に第1のセラミックグリーンシート層が軟化するので、第1のセラミックグリーンシート層はその下に位置する別のセラミックグリーンシートの第2のセラミックグリーンシート層およびその上に形成された導体パターンの形状に追従して変形するため、加圧によるセラミックグリーンシートへの歪みが無いほどの低い加圧力で圧着でき、かつ寸法ばらつきが小さく、かつ層間での剥離やデラミネーション発生が抑制される
なお、ここで言う有機バインダーの添加量とは、セラミック粉末100質量部に対する有機バインダーの質量部である。
また、第1のセラミックグリーンシート層に含まれる有機バインダーの分子量が8万乃至30万であれば、第1のセラミックグリーンシート層の保形性を維持し、かつ第1のセラミックグリーンシート層に含有する溶融成分が加熱により溶融した際に均一に分散され、かつセラミックグリーンシートを加熱して第1のセラミックグリーンシート層の溶融成分が十分な量を維持でき、かつ加圧によるセラミックグリーンシートへの歪みが無いほどの低い加圧力で圧着でき、かつ寸法ばらつきが小さく、かつ層間での剥離やデラミネーションが発生することなく、より好ましいものとなる。
また、第1のセラミックグリーンシート層に含まれる有機バインダーの酸価が0.1乃至0.8KOHmg/gであれば、第1のセラミックグリーンシート層に含有する溶融成分が加熱により溶融した際に均一に分散され、かつセラミックグリーンシートを加熱して第1のセラミックグリーンシート層の溶融成分が十分な量を維持でき、かつ加圧によるセラミックスリーンシートへの歪みが無いほどの低い加圧力で圧着でき、かつ寸法ばらつきが小さく、かつ層間での剥離やデラミネーションが発生することなく、より好ましいものとなる。
また、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの添加量がセラミック粉末100質量部に対して10乃至19質量部であるので、第2のセラミックグリーンシート層を成形する際に、第1のセラミックグリーンシート層から第2のセラミックグリーンシート層となるセラミックスラリーへの溶融成分の拡散量を減少させ、かつ積層時に第2のセラミックグリーンシート層およびその上に形成された導体パターンの形状に追従して変形するために十分な量の低融点成分が保持されているため、より好ましいものとなる。さらに、第1のセラミックグリーンシート層上にセラミックスラリーを塗布し、乾燥して第2のセラミックグリーンシート層を形成してセラミックグリーンシートを形成した際に、第2のセラミックグリーンシート層の脆化による、セラミックグリーンシートの破けやクラック発生が抑制される
また、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの分子量が10万乃至80万であれば、セラミックグリーンシート加工時の、第2のセラミックグリーンシート層の生変形による寸法ばらつきを抑え、かつ原料成分の不均一な分散による第2のセラミックグリーンシート層内のピンホール等の外観不良の発生を抑えることができ、より好ましいものとなる。
また、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの酸価が0.1乃至5KOHmg/gであれば、セラミックグリーンシートを加熱したときに、無機粉末と有機バインダーの結合不足に起因する、第1のセラミックグリーンシート層から第2のセラミックグリーンシート層への溶融成分の拡散を減少させ、かつ無機粉末同士の凝集による第2のセラミックグリーンシート層内のピンホール等の外観不良の発生を防ぐことができ、より好ましいものとなる。
また、第1のセラミックグリーンシート層に含まれる有機バインダーのガラス転移点が−20乃至0℃であれば、常温における第1のセラミックグリーンシート層の保形性を維持することができるため積層工程までのハンドリングが容易となり、かつ積層する際の加熱時の溶融成分の溶融による第1のセラミックグリーンシート層の軟化がしやくなり、第1のセラミックグリーンシート層を第2のセラミックグリーンシート層およびその上に形成された導体層のパターンの形状に良好に追従させることでき、層間剥離やデラミネーションが発生することなく、より好ましいものとなる。
また、第1のセラミックグリーンシート層に含まれる有機バインダーの水酸基価が0.1乃至5KOHmg/gであれば、第1のセラミックグリーンシート層に含有する溶融成分が加熱により溶融した際に均一に分散され、積層時にセラミックグリーンシートを加熱して第1のセラミックグリーンシート層の溶融成分が十分な量を維持できるため、加圧によるグリーンシートへの歪みが無いほどの低い加圧力で圧着でき、寸法ばらつきが小さく、かつ層間剥離やデラミネーションが発生することなく、より好ましいものとなる。
また、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーのガラス転移点が−20乃至20℃であれば、有機バインダーの硬い性質が強く現われるために第2のセラミックグリーンシート層が強固となり、積層する際の加熱時に第1のセラミックグリーンシート層が軟化して第2のセラミックグリーンシート層およびその上に形成された導体パターンの形状へ追従するのに伴う微小な寸法変形を抑制することができるため、寸法ばらつきが小さく、より好ましいものとなる。
また、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの水酸基価が5乃至100KOHmg/gであれば、水酸基のもつ電荷が無機粉末表面に存在する電荷との引き寄せ合いによりセラミックスラリー中に溶媒和が形成され、そのことでセラミックグリーンシートが均一な状態で成形されるので第2のセラミックグリーンシート層に含有する無機粉末および有機バインダーが均一に分散され、積層する際の加熱時に第1のセラミックグリーンシート層の溶融成分が第2のセラミックグリーンシート層およびその上に形成された導体パターンの形状へ追従するのに伴う微小な寸法変形を抑制することができるため、寸法ばらつきが小さく、より好ましいものとなる。
また、キャビティを有する電子部品を製造する場合、大きな加圧力によりセラミックグリーンシートを圧着させる必要がないので、キャビティ周囲部とキャビティ底部との加圧によるグリーンシートの伸びの違いによるキャビティ底部の反りの発生を抑えることが可能となり、キャビティ底部に電子素子を精度よく確実に搭載することが可能な電子部品を得ることができる。
このように、本発明の製造方法によれば、セラミックグリーンシート間に空隙を発生させることがなく、セラミックグリーンシートや導体層の変形を抑えたセラミックグリーンシート積層体を得ることが可能となり、本発明の製造方法により作製された電子部品はデラミネーションがなく、高い寸法精度を有する電子部品となる。
本発明の電子部品の製造方法について以下に詳細に説明する。図1は本発明の電子部品の製造方法の実施の形態の一例を示す工程毎の断面図であり、1は支持体、2は第1のセラミックグリーンシート層、3はセラミックスラリー、4はセラミックグリーンシート、5は導体層、6はセラミックグリーンシート積層体である。
まず図1(a)に示すように表面が離型処理されたペットフィルムや紙等から成る支持体1上に第1のセラミックグリーンシート層2を形成し、ついで図1(b)に示すように、第1のセラミックグリーンシート層2上にセラミックスラリー3を塗布して乾燥することにより、第1のセラミックグリーンシート層2の上に第2のセラミックグリーンシート層3’が形成されたセラミックグリーンシート4を形成する。このとき第1のセラミックグリーンシート層2の溶解度パラメータとセラミックスラリー3の溶解度パラメータとの差が3乃至8であることが重要である。
第1のセラミックグリーンシート層2上にセラミックスラリー3を塗布してセラミックグリーンシート4を形成することから、高流動性層としての第2のセラミックグリーンシート層の形成と通常のセラミックグリーンシート層としての第1のセラミックグリーンシート層2上への積層とを同時に行なうことにより高流動性のグリーンシートを穴あけする工程および高流動性のグリーンシートを積層する工程がないので、積層数の増加による、工期の長期化、コストアップ、歩留まり低下、層間の導体接続信頼性の低下といった問題を発生させることなく高流動性層を形成することが可能となり、高流動性層の積層時の空気の巻き込みがなく、デラミネーションのない高信頼性の電子部品を得ることが可能となる。
また、第1のセラミックグリーンシート層2の溶解度パラメータとセラミックスラリー3の溶解度パラメータとの差を3乃至8とすることによって、第1のセラミックグリーンシート層2上にセラミックスラリー3を塗布した際、第1のセラミックグリーンシート層2とセラミックスラリー3が互いに溶解することを抑制するので、第1のセラミックグリーンシート層2と第2のセラミックグリーンシート層3’が混合、同一化してしまうことを防ぐことができる。また、第1のセラミックグリーンシート層2上にセラミックスラリー3を塗布した際、第1のセラミックグリーンシート層2上のセラミックスラリー3がはじかれること無く塗布することができるので、セラミックスラリー3の塗布時に気泡の巻き込みによる空隙も無くデラミネーションの発生を防ぐことができる。
ここで、溶解度パラメータ(Solubility Parameter)とは、有機成分の性質が似通ったものは相溶けやすいという性質をもとに数値化したものであり、SP値とも呼ばれるものである。溶解度パラメータの値が近いもの同士は溶解しやすいことを示すものであるので、有機成分の溶解力を示す指標として用いられる。
本発明の第1のセラミックグリーンシート層2およびセラミックスラリー3の溶解度パラメータは、各々に含まれる有機成分の溶解度パラメータと各有機成分の体積分率から算出した。例えば、第1のセラミックグリーンシート層2中に2つの有機成分が含まれ、それぞれの溶解度パラメータが5,7で、体積分率がそれぞれ70%,30%である場合の第1のセラミックグリーンシート層2の溶解度パラメータは5×0.7+7×0.3=5.6とした。また、例えばセラミックスラリー3中に3つの有機成分が含まれ、それぞれの溶解度パラメータが5,7,9で、体積分率がそれぞれ70%,20%,10%である場合のセラミックスラリー3の溶解度パラメータは5×0.7+7×0.2+9×0.1=5.8とした。なお、本発明の有機成分の溶解度パラメータは、講談社出版「溶剤ハンドブック」(浅原昭三ほか編、1976年初版)による溶解度パラメータのデータを使用した。
本発明における第1のセラミックグリーンシート層2およびセラミックスラリー3は、セラミック粉末、有機バインダー(バインダー)、溶剤等を混合したものが用いられ、セラミック粉末の分散性やセラミックグリーンシート4の硬度や強度を調整するために分散剤や可塑剤を添加してしてもよい。第1のセラミックグリーンシート層2を従来のような高流動層とする場合は、第1のセラミックグリーンシート層2はセラミックスラリー3より有機バインダーまたは可塑剤の量を多く含有させればよい。また、第1のセラミックグリーンシート層2は、後述するセラミックグリーンシート積層体6を作製する工程において加熱時に溶融状態となる溶融成分を含有している。これら、有機バインダー、溶剤、可塑剤および溶融成分が上述した溶解度パラメータを算出するときの各有機成分である。
セラミック粉末としては、例えばセラミック配線基板であれば、Al,AlN,ガラスセラミック粉末(ガラス粉末とフィラー粉末との混合物)等が挙げられ、積層コンデンサであればBaTiO系,PbTiO系等の複合ペロブスカイト系セラミック粉末が挙げられ、電子部品に要求される特性に合わせて適宜選択される。
ガラスセラミック粉末のガラス成分としては、例えばSiO−B系、SiO−B−Al系,SiO−B−Al−MO系(ただし、MはCa,Sr,Mg,BaまたはZnを示す),SiO−Al−MO−MO系(ただし、MおよびMは同一または異なってCa,Sr,Mg,BaまたはZnを示す),SiO−B−Al−MO−MO系(ただし、MおよびMは上記と同じである),SiO−B−M O系(ただし、MはLi,NaまたはKを示す,SiO−B−Al−M O系(ただし、Mは上記と同じである),Pb系ガラス,Bi系ガラス等が挙げられる。
また、ガラスセラミック粉末のフィラー粉末としては、例えばAl,SiO,ZrOとアルカリ土類金属酸化物との複合酸化物,TiOとアルカリ土類金属酸化物との複合酸化物,AlおよびSiOから選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等のセラミック粉末が挙げられる。
有機バインダーとしては、従来よりセラミックグリーンシートに使用されているものが使用可能であり、例えばアクリル系(アクリル酸,メタクリル酸またはそれらのエステルの単独重合体または共重合体,具体的にはアクリル酸エステル共重合体,メタクリル酸エステル共重合体,アクリル酸エステル−メタクリル酸エステル共重合体等),ポリビニルブチラ−ル系,ポリビニルアルコール系,アクリル−スチレン系,ポリプロピレンカーボネート系,セルロース系等の単独重合体または共重合体が挙げられる。焼成工程での分解、揮発性を考慮すると、アクリル系バインダーがより好ましい。
溶剤としては、上記のセラミック粉末と有機バインダーとを良好に分散させて混合できるようなものであればよく、トルエン,ケトン類,アルコール類の有機溶媒や水等が挙げられる。これらの中で、トルエン,メチルエチルケトン,イソプロピルアルコール等の蒸発係数の高い溶剤はスラリー塗布後の乾燥工程が短時間で実施できるので好ましい。
第1のセラミックグリーンシート層2に含有される溶融成分は、セラミックグリーンシート積層体6を作製する際の加熱時に溶融状態となるものであり、炭化水素,脂肪酸,エステル,脂肪アルコール,多価アルコール等が挙げられる。スラリーを調整する際の溶媒への溶解性を考慮すると、分子量が小さくかつ極性を有する炭化水素,エステル,脂肪アルコール,多価アルコールが好ましい。さらに上述したアクリルバインダーとの相溶性を考慮すると、エステル,脂肪アルコール,多価アルコールがより好ましい。
溶融成分は上記のものの中でも、その融点が35乃至100℃であるものが好ましい。これは、この範囲の融点のものを用いると、常温では第1のセラミックグリーンシート層2が軟化して変形することはないので、積層工程までのハンドリングが容易となり、セラミックグリーンシート積層体6を作製する工程における加熱時にセラミックグリーンシート4中のバインダーや可塑剤等の有機成分が分解することがないので、分解ガスによりデラミネーションが発生してしまうことがないからである。融点が35乃至100℃である溶融成分としては具体的には、ヘキサデカノール,ポリエチレングリコール,ポリグリセロール,ステアリルアミド,オレイルアミド,エチレングリコールモノステアレート,パラフィン,ステアリン酸,シリコーン等が挙げられる。
第1のセラミックグリーンシート層2に含有される溶融成分の含有量は、使用するバインダー成分およびその量や、使用する溶融成分により異なるが、溶融成分が溶融した状態で第1のセラミックグリーンシート層2が軟化し、その下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体パターンの形状に追従して変形するような量であればよい。
また、第1のセラミックグリーンシート層2に含まれる有機バインダーの添加量は、セラミック粉末100質量部に対して19乃至30質量%である。上記添加量が19質量%よりも低いと、溶融成分が溶融した状態で第1のセラミックグリーンシート層2が充分に軟化しない。そのため、第1のセラミックグリーンシート層2上にセラミックスラリー3を塗布して乾燥して形成したセラミックグリーンシート4と、その下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変化しないため、加圧によるセラミックグリーンシート4への歪みが無いほどの低い加圧力で圧着できず、層間での剥離やデラミネーションが発生する。また、上記添加量が30質量部よりも高いと、有機バインダーの流動性が過剰となり、常温での第1のセラミックグリーンシート層2の保形性が得られず、かつ加圧によるセラミックグリーンシートへの歪みが無いほどの低い加圧力で圧着しても流動により積層寸法ずれが大きく、かつ焼成時の有機バインダーの分解ガスが過剰なため、ブクやピンホール、デラミネーションの発生が顕著となる。
なお、ここで言う有機バインダーの添加量とは、セラミック粉末100質量部に対する有機バインダーの質量部である。
また、第1のセラミックグリーンシート層2に含まれる有機バインダーの分子量は8万乃至30万であることが好ましい。上記分子量が8万よりも低いと、常温での有機バインダーの流動性が過剰となり、第1のセラミックグリーンシート層2の保形性が得られず、かつ加圧によるグリーンシートへの歪みが無いほどの低い加圧力で圧着しても流動により積層寸法ずれが大きく、かつ第2のセラミックグリーンシート層3’およびその上に形成された導体パターン上に第1のセラミックグリーンシート層2の有機バインダーが過剰に多くなるため、焼成時の有機バインダーの分解ガスがセラミックグリーンシート4内部で局所的に過剰に発生し、ブクやピンホール、デラミネーションの発生が顕著となる。
また、上記分子量が30万を超えると、有機バインダー同士が絡まりやすくなり、凝集が顕著となる。そのため、第1のセラミックグリーンシート層2に含有される溶融成分が均一に分散されず、かつ第1のセラミックグリーンシート層2に含有する溶融成分が加熱により溶融した際に均一に分散されず、かつセラミックグリーンシート4を加熱しても第1のセラミックグリーンシート層2の溶融成分が充分な量を維持できず、溶融成分が溶融した状態で第1のセラミックグリーンシート層2が充分に軟化せず、かつその下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変化しないため、セラミックグリーンシート積層体6を形成する際に、加圧によるグリーンシートへの歪みが無いほどの低い加圧力で圧着できず、層間での剥離やデラミネーションが発生する。
また、第1のセラミックグリーンシート層2に含まれる有機バインダーの酸価は0.1乃至0.8KOHmg/gであることが好ましい。上記酸価が0.1KOHmg/gよりも低いと、無機粉末と有機バインダーの結合性が弱くなり、第1のセラミックグリーンシート層2の内部に無機粉末と有機バインダーがそれぞれ凝集し、不均一な状態で存在するため、有機バインダーと相溶して第1のセラミックグリーンシート層2に含有される溶融成分も均一に分散されない。そのため、セラミックグリーンシート4を加熱して溶融成分が溶融した状態でも第1のセラミックグリーンシート層2が充分に軟化せず、かつその下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変化しないため、セラミックグリーンシート積層体6を形成する際に、加圧によるグリーンシートへの歪みが無いほどの低い加圧力で圧着できず、層間での剥離やデラミネーションが発生する。
また、上記酸価が0.8KOHmg/gを超えると、有機バインダーの結合性が過剰に強くなり、有機バインダー同士で凝集してしまう。そのため、有機バインダーと溶融成分が相溶しにくくなり、第1のセラミックグリーンシート層2に含有される溶融成分が均一に分散されない。そのため、セラミックグリーンシート4を加熱して溶融成分が溶融した状態でも第1のセラミックグリーンシート層2が充分に軟化せず、その下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変化しないため、セラミックグリーンシート積層体6を形成する際に加圧によるグリーンシートへの歪みが無いほどの低い加圧力で圧着できず、層間での剥離やデラミネーションが発生する。
また、第2のセラミックグリーンシート層3となるセラミックスラリーに含まれる有機バインダーの添加量は、10乃至19質量部である。上記添加量が10質量部よりも少なければ、第2のセラミックグリーンシート層3の密度が低く、第1のセラミックグリーンシート層2内の溶融成分が拡散しやすくなり、積層する際の加熱時にセラミックグリーンシート4はその下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変化するために必要な溶融成分量を保持できず、層間剥離やデラミネーションが発生する。また、第2のセラミックグリーンシート層3に含まれる無機粉末と有機バインダーとが充分に結合しないために、第2のセラミックグリーンシート層3の強度が弱くなり、セラミックグリーンシート4が破けたり、クラックが発生しやすくなる。
また、上記添加量が19質量部より多ければ、第2のセラミックグリーンシート層3に含まれる有機バインダーの添加量が第1のセラミックグリーンシート層2に含まれる有機バインダーとほぼ同程度の添加量となるため拡散しやすく、積層する際の加熱時にセラミックグリーンシート4はその下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変化するために必要な溶融成分量を保持できず、層間剥離やデラミネーションが発生する。さらに、第2のセラミックグリーンシート層3に含まれる無機粉末の充填率が低下するために、焼成後に緻密な焼結体が得られなくなり、焼結体中にボイドや欠け等の欠陥が生じやすくなる傾向がある。
また、第2のセラミックグリーンシート層3となるセラミックスラリーに含まれる有機バインダーの分子量は10万乃至80万であることが好ましい。分子量が10万よりも低いと、積層する際の加熱時の第1のセラミックグリーンシート層2の変形に対して、第2のセラミックグリーンシート層3も変形するため、寸法ばらつきが大きくなる。さらに、有機バインダー同士がお互いに絡み合う機会が減少することから、セラミックスラリーの粘度、降伏値が下がり過ぎ、スラリー塗布後の乾燥工程において加熱された空気が当ることにより、セラミックグリーンシート4が破けたり、クラックが発生しやすくなる。さらに、分子鎖が長くなり、有機バインダー同士がお互いに絡み合う機会が増加することから、セラミックスラリーの粘度、降伏値が上がり過ぎ、塗布した後のレベリング性が悪化し、セラミックグリーンシート4の厚みばらつきが大きくなる傾向がある。上記分子量が80万を超えると、有機バインダー同士の結合力が強くなり、第2のセラミックグリーンシート層3に含有される原料成分が均一に分散されないため、第2のセラミックグリーンシート層3内にピンホール等の外観不良が発生し、製品での絶縁不良の要因となる。
また、第2のセラミックグリーンシート層3となるセラミックスラリーに含まれる有機バインダーの酸価は0.1乃至5KOHmg/gであることが好ましい。酸価が0.1KOHmg/gよりも低いと、無機粉末と有機バインダーの結合性が弱くなり、積層する際の第1のセラミックグリーンシート層2の変形に対して、第2のセラミックグリーンシート層3も変形するため、寸法ばらつきが大きくなり、かつ第2のセラミックグリーンシート層3の無機粉末と有機バインダーの分散性が悪くなり、第2のセラミックグリーンシート層3内でピンホール等の外観不良が発生する。また、上記酸価が5KOHmg/gを超えると、無機粉末と有機バインダーの結合性が過剰に強くなることにより無機原料同士の結合による凝集が発生し、第2のセラミックグリーンシート層3内にピンホール等の外観不良が発生し、製品での絶縁不良の要因となる。
また、第1のセラミックグリーンシート層2に含まれる有機バインダーのガラス転移点が−20乃至0℃であることが好ましい。ガラス転移点が−20℃より低いと、常温で有機バインダーの軟らかい性質が強く現われるためにセラミックグリーンシート4同士の付着が発生する。また、上記ガラス転移点が0℃より高いと、積層する際の加熱時の溶融成分の溶融によるセラミックグリーンシート4の軟化が不十分となり、セラミックグリーンシート4はその下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変化しないため、セラミックグリーンシート積層体6を形成する際に加圧によるセラミックグリーンシート4への歪みが無いほどの低い加圧力で圧着できず、層間剥離やデラミネーションが発生する。
また、第1のセラミックグリーンシート層2に含まれる有機バインダーの水酸基価は0.1乃至5KOHmg/gであることが好ましい。水酸基価が0.1KOHmg/gよりも低いと、無機粉末と有機バインダーの結合性が弱くなり、第1のセラミックグリーンシート層2内部に無機粉末と有機バインダーが不均一な状態で存在する。そのため、第1のセラミックグリーンシート層2に含有される溶融成分が加熱により溶融した際に均一に分散されず、セラミックグリーンシート4を加熱しても第1のセラミックグリーンシート層2の溶融成分が十分な量を維持できず、加圧によるグリーンシートへの歪みが無いほどの低い加圧力で圧着できず、層間剥離やデラミネーションが発生する。また、上記水酸基価が5KOHmg/gを超えると、無機粉末とバインダーの結合性が過剰に強くなり、第1のセラミックグリーンシート層2に含有される溶融成分が加熱により溶融した際に均一に分散されず、セラミックグリーンシート4を加熱して第1のセラミックグリーンシート層2の溶融成分が十分な量を維持できず、加圧によるグリーンシートへの歪みが無いほどの低い加圧力で圧着できず、層間剥離やデラミネーションが発生する。
また第2のセラミックグリーンシート層3となるセラミックスラリーに含まれる有機バインダーのガラス転移点が−20乃至20℃であることが好ましい。ガラス転移点が−20℃より低いと、常温で有機バインダーの軟らかい性質が強く現われるためにセラミックグリーンシート4同士の付着が発生する。また、上記ガラス転移点が20℃より高いと、セラミックグリーンシート4の保形性が不十分となり取り扱う際に割れや欠けを生じやすくなる。
また、第2のセラミックグリーンシート層3となるセラミックスラリーに含まれる有機バインダーの水酸基価は5乃至100KOHmg/gであることが好ましい。水酸基価が5KOHmg/gよりも低いと、無機粉末と有機バインダーの結合性が弱くなり、第2のセラミックグリーンシート層3内部に無機粉末と有機バインダーが不均一な状態で存在する。そのため、第2のセラミックグリーンシート層3の粗な部分が加圧時に変形しやすく寸法変形を抑えることが難しくなる。さらに、焼結体の第2のセラミックグリーンシート層3の粗な部分によって、層間にデラミネ−ションが生じやすくなる。また、上記水酸基価が100KOHmg/gを超えると、有機バインダーの結合性が過剰に強くなり、無機粉末と結合せずに有機バインダー同士で結合する。そのため、第2のセラミックグリーンシート層3内部に無機粉末と有機バインダーが不均一な状態で存在する。そのため、第2のセラミックグリーンシート層3の粗な部分が加圧時に変形しやすく寸法変形を抑えることが難しくなる。さらに、焼結体の第2のセラミックグリーンシート層3の粗な部分によって、層間にデラミネ−ションが生じやすくなる。
PETフィルム等の支持体上に第1のセラミックグリーンシート層2を形成する方法としては、周知のグリーンシート成型法を用いればよく、ドクターブレード法,リップコーター法,ダイコーター法等により乾燥後に第1のセラミックグリーンシート層2となるセラミックスラリーを塗布して乾燥する方法が挙げられる。
第1のセラミックグリーンシート層2上へのセラミックスラリー3の塗布は、支持体1上に第1のセラミックグリーンシート層2が形成されたものを所定の寸法にカットしたり、巻き取っておいたりして、あらためてセラミックスラリー3を塗布して乾燥してもよいし、支持体上に第1のセラミックグリーンシート層2を形成した後に連続してセラミックスラリー3を塗布してもよい。あらためてセラミックスラリー3を塗布して乾燥する方法は、カットや巻き取るといった工程数の増加に加えて、この工程でのセラミックグリーンシート層2の表面の損傷や異物付着によりセラミックスラリー3を塗布した際のボイドの原因となり品質の低下が考えられるので、連続してセラミックスラリー3を塗布する方が好ましい。
第1のセラミックグリーンシート層2上にセラミックスラリー3を塗布する方法としては、ロールコーター法,ドクターブレード法,リップコーター法,ダイコーター法,スロットコーター法,カーテンコーター法等が挙げられるが、特にダイコーター法やスロットコーター法、カーテンコーター法等の押し出し式の方法が好ましい。これらの塗布方法は非接触式なので、第1のセラミックグリーンシート層2上にセラミックスラリー3を形成する際にダイコーターやスロットコーター,カーテンコーター等の塗工装置の塗工ヘッドが第1のセラミックグリーンシート層2を傷つけてしまうことなくセラミックグリーンシート4を形成することができるのでよい。
第1のセラミックグリーンシート層2の厚さは、導体層とセラミックグリーンシートとの段差を埋めるために、導体層の厚みより厚くなるように形成される。
次に図1(c)に示すように、セラミックグリーンシート上に導体層5を形成する。セラミックグリーンシート4上に導体層5を形成する方法としては、例えば導体材料粉末をペースト化したものをスクリーン印刷法やグラビア印刷法等により印刷したり、めっき法や蒸着法等により所定パターン形状の金属膜を形成するようなセラミックグリーンシート4上に直接形成する方法、あるいは印刷により所定パターン形状に形成した導体厚膜や所定パターン形状に加工した金属箔、めっき法や蒸着法等により形成した所定パターン形状の金属膜をセラミックグリーンシート4上に転写する方法がある。導体材料としては、例えばW,Mo,Mn,Au,Ag,Cu,Pd(パラジウム),Pt(白金)等の1種または2種以上が挙げられ、2種以上の場合は混合、合金、コーティング等のいずれの形態であってもよい。
導体層5はセラミックグリーンシート4の第2のセラミックグリーンシート層3’上に形成されるのが好ましい。これは、第2のセラミックグリーンシート層3’は加熱時に溶融する溶融成分を含有しないことから、第2のセラミックグリーンシート層3’は加熱時に変形することはないので、その上に導体層5を形成することにより導体層5を変形させないようにするためである。
なお、導体層5を形成する前に必要に応じて上下の層間の導体層5同士を接続するためのビアホール導体やスルーホール導体等の貫通導体を形成してもよい。これら貫通導体は、パンチング加工やレーザ加工等によりセラミックグリーンシート4に形成した貫通孔に、導体材料粉末をペースト化したもの(導体ペースト)を印刷やプレスにより充填し埋め込む等の手段によって形成される。
キャビティを有する電子部品を製造する場合、次の積層体を作製する工程より前に、キャビティ形状の貫通穴を金型による打ち抜き等によりセラミックグリーンシート4の一部に形成しておく。貫通穴の形成は、キャビティの内壁面への導体層5の形成の有無や形成方法に応じて、導体層5を形成する前でもよいし、形成した後でもよい。
次に図1(d)に示すように、位置合わせして積み重ねたセラミックグリーンシート4を、加熱および加圧して圧着することでセラミックグリーンシート積層体6を作製する。加熱、加圧の条件は用いる有機バインダー等の種類や量により異なるが、概ね30〜100℃、2〜20MPaである。このとき、セラミックグリーンシート4同士の接着性を向上するために、溶剤と有機バインダーや可塑剤等を混合した接着剤を用いてもよい。
第1のセラミックグリーンシート2となるセラミックスラリーが溶融成分を含む場合、すなわち第1のセラミックグリーンシート層2が溶融成分を含む場合は、位置合わせして積み重ねたセラミックグリーンシート4を、溶融成分が溶融状態となり第1のセラミックグリーンシート層2が軟化して変形する程度の温度つまり溶融成分の融点程度の温度で加熱することでセラミックグリーンシート積層体6を作製する。また、このとき、積層したセラミックグリーンシート4が位置ずれしないように、また、軟化した第1のセラミックグリーンシート層2を第2のセラミックグリーンシート層3’およびその上に形成された導体層5のパターン形状に追従して変形するのを補助するために押さえる程度の加圧(0.1〜1MPa)を行なうと、より精度よく確実な圧着が可能となる。
セラミックグリーンシート積層体6を作製する工程において、第1のセラミックグリーンシート層2は加熱時に溶融する溶融成分を含有することから、導体層5が形成されたセラミックグリーンシート4を積層して加熱した際に第1のセラミックグリーンシート層2が軟化するので、第1のセラミックグリーンシート層2はその下に位置する別のセラミックグリーンシート4の第2のセラミックグリーンシート層3’およびその上に形成された導体層5の形状に追従して変形することとなる。これにより導体層5の周囲や導体層5間に空隙が発生することなくセラミックグリーンシート4同士が密着することとなり、セラミックグリーンシート積層体6を焼成して得られる電子部品はデラミネーションの発生のないものとなる。
また、第1のセラミックグリーンシート層2は、加熱時に溶融する溶融成分を含有することから、加熱のみで第1のセラミックグリーンシート層2が軟化して接着性を有するものとなるので、大きな加圧力によりセラミックグリーンシート4を圧着させる必要がない。そして、導体層5の形成される第2のセラミックグリーンシート層3’は加熱時に溶融する溶融成分を含有しないことから、第2のセラミックグリーンシート層3’は加熱時に変形することはなく、積層したセラミックグリーンシート4が位置ずれしないように、また、軟化した第1のセラミックグリーンシート層2を第2のセラミックグリーンシート層3’およびその上に形成された導体層5のパターンの形状に追従して変形するのを補助するために押さえる程度では変形しないものである。よって、セラミックグリーンシート4およびその上に形成された導体層の形状が変形することがなく、さらに加圧によるグリーンシートへの歪がなく得られるセラミックグリーンシート積層体6およびそれを焼成して得られる電子部品は高い寸法精度を有するものとなる。
例えば、加熱時に溶融する溶融成分を含有しない第1のセラミックグリーンシート層2を用いた場合、セラミックグリーンシート積層体6および電子部品の寸法精度は±0.5%(寸法誤差)程度であったが、本発明の溶融成分を含有する第1のセラミックグリーンシート層2を用いた場合、セラミックグリーンシート積層体6および電子部品の寸法精度は±0.3%程度となり、大幅に向上することが実験により判明した。
また、キャビティを有する電子部品を製造する場合、大きな加圧力によりセラミックグリーンシートを圧着させる必要がないので、キャビティ周囲部とキャビティ底部との加圧によるグリーンシートの伸びの違いによるキャビティ底部の反りの発生を抑えることが可能となり、キャビティ底部に電子素子を精度よく確実に搭載することが可能な電子部品を得ることができる。
図1(d)の最下部に位置するセラミックグリーンシートとしては、第2のセラミックグリーンシート層3’のみで構成されるセラミックグリーンシート4’を用いればよい。積層コンデンサのように表面に導体層5が露出しないような電子部品の場合は、図1(d)の最上部に位置するセラミックグリーンシート4には導体層5が形成されていないセラミックグリーンシート4を用いればよく、積層セラミック配線基板のような両面に導体層5が露出するような電子部品の場合は、最下部のセラミックグリーンシート4’の両面に導体層5を形成したものを用いればよい。
そして最後に、セラミックグリーンシート積層体6を焼成することにより本発明の電子部品が作製される。焼成する工程は有機成分の除去とセラミック粉末の焼結とから成る。有機成分の除去は100〜800℃の温度範囲でセラミックグリーンシート積層体6を加熱することによって行い、有機成分を分解、揮発させ、焼結温度はセラミック組成により異なり、約800〜1600℃の範囲内で行なう。焼成雰囲気はセラミック粉末や導体材料により異なり、大気中、還元雰囲気中、非酸化性雰囲気中等で行なわれ、有機成分の除去を効果的に行なうために水蒸気等を含ませてもよい。
焼成後の電子部品はその表面に露出した導体層5の表面には、導体層5の腐食防止のために、または半田や金属ワイヤ等の外部基板や電子部品との接続手段の良好な接続のために、NiやAuのめっきを施すとよい。
セラミック材料としてガラスセラミックスのような低温焼結材料を用いる場合は、セラミックグリーンシート積層体6の上下面にさらに拘束グリーンシートを積層して焼成し、焼成後に拘束シートを除去するようにすれば、より高寸法精度のセラミック基板を得ることが可能となる。拘束グリーンシートは、Al等の難焼結性無機材料を主成分とするグリーンシートであり、焼成時に収縮しないものである。この拘束グリーンシートが積層された積層体は、収縮しない拘束グリーンシートにより積層平面方向(xy平面方向)の収縮が抑制され、積層方向(z方向)にのみ収縮するので、焼成収縮に伴う寸法ばらつきが抑制される。このときの拘束グリーンシートも本発明のセラミックグリーンシート4と同様の溶融成分を含む第1のセラミックグリーンシート層2と第2のセラミックグリーンシート層3’とを有する構成にすると、拘束グリーンシートを積層して圧着する際にも大きな加圧力を必要とせず、得られる電子部品はより高寸法精度のものとなるのでよい。
また、拘束グリーンシートには難焼結性無機成分に加えて、焼成温度以下の軟化点を有するガラス成分、例えばセラミックグリーンシート4中のガラスと同じガラスを含有させるとよい。焼成中にこのガラスが軟化してセラミックグリーンシート4と結合することによりセラミックグリーンシート4と拘束グリーンシートとの結合が強固なものとなり、より確実な拘束力が得られるからである。このときのガラス量は難焼結性無機成分とガラス成分を合わせた無機成分に対して0.5〜15質量部とすると拘束力が向上し、かつ拘束グリーンシートの焼成収縮が0.5%以下に抑えられる。
焼成後、拘束シートを除去する。除去方法としては、例えば研磨,ウォータージェット,ケミカルブラスト,サンドブラスト,ウェットブラスト(砥粒と水とを空気圧により噴射させる方法)等が挙げられる。
以上のような方法で作製された電子部品は、その内部にデラミネーションを有さず寸法精度の高いものであるので、電子部品として要求される優れた電気特性や気密性の高いものとなる。
本発明の実施例について以下に詳細に説明する。
まず、アルミナ粉末と、表1の第1のセラミックグリーンシート層に示すような有機バインダーと溶融成分とイソプロピルアルコールとを混合した第1のセラミックスラリーを、PETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。続いて、表1のセラミックスラリーに示すような有機バインダーと溶剤を混合して作製したセラミックスラリーを、第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することによりセラミックグリーンシートを作製した。
なお、第1のセラミックグリーンシート層と第2のセラミックグリーンシート層が2層に形成させているかどうかを確認するため、第1のセラミックスラリーのアルミナ粉末に金属顔料として三酸化クロムを添加した。試料4および試料7のみにおいて、その後セラミックグリーンシートを積層して80℃、0.5MPaで加圧することで積層体を作製した。
Figure 0004646537
試料1のセラミックグリーンシートの断面を観察すると、第1のセラミックグリーンシート層と第2のセラミックグリーンシート層の界面において、金属顔料の三酸化クロムの緑色が薄くなっており、若干の拡散が見られたものの、第2のセラミックグリーンシート層まで拡散しておらず、きちんと2層が形成されていた。
試料2〜4のセラミックグリーンシートの断面は拡散もなく剥離もなく、第1のセラミックグリーンシート層と第2のセラミックグリーンシート層とが形成されていた。また、試料4のセラミックグリーンシートにおいては積層体の断面まで観察し、デラミネーションもなく積層できていることを確認した。
これに対して、試料6および試料7は、セラミックグリーンシート層上にセラミックスラリーを塗布した際にセラミックグリーンシートの変形が見られた。また、試料5試料6および試料7は、第2のセラミックグリーンシートの表面にまで三酸化クロムの緑色で着色されており、第1のセラミックグリーンシート層と第2のセラミックグリーンシート層が混合し、同一化していた。
また、試料8においては、セラミックグリーンシート層上にセラミックスラリーを塗布した際にセラミックスラリーのはじけが見られ、気泡を巻き込んだ。さらに、積層体の断面を観察し、セラミックグリーンシート層間で剥離とデラミネーションが発生していた。
このように、第1のセラミックスラリーの溶解度パラメータと第2のセラミックスラリーの溶解度パラメータとの差を3乃至8とすることによって、第1のセラミックグリーンシート層と第2のセラミックグリーンシート層が混合、同一化してしまうことを防ぐことができる。また、塗布時にセラミックスラリーがはじかれることなく塗布できることより気泡の巻き込みによる層間での剥離とデラミネーションを防ぐことができる。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を18,19,20,25,30,32,35質量部で各々調合し、溶融成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより混合し、セラミックスラリーを調製した。
次に、これらの第1のセラミックグリーンシート層用のセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂をセラミック粉末100質量部に対して、固形分で10質量部、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合してセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することにより、セラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。
導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。その際の剥離強度は、セラミックグリーンシート積層体の任意のセラミックグリーンシートを層間で剥離した際の剥離発生箇所を双眼顕微鏡にて観察し、剥離箇所が第2のセラミックグリーンシート内である場合を良品とした。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションの観察を行い、セラミック層間のデラミネーションを調査した。第1のセラミックスラリーに含まれる有機バインダー量別の評価結果を表2に示す。
Figure 0004646537
表2で、第1のセラミックグリーンシート層の保形性の欄が「○」は、第1のセラミックグリーンシート層を成形した後、それを5枚重ねて常温で24時間放置しても、互いの第1のセラミックグリーンシート層がくっつくことが無く保形性を維持していたことを示す。「△」は、第1のセラミックグリーンシート層の成形はできたが、成形後にそれを5枚重ねて常温で24時間放置すると、互いの第1のセラミックグリーンシート層がくっついてしまい、保形性を維持できなかったことを示す。また、剥離強度の欄が「○」は、セラミックグリーンシート積層体を剥離した際に、剥離箇所が第2のセラミックグリーンシート層内であったことを示す。「△」は、剥離箇所が第2のセラミックグリーンシート層外であったことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。また、内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。また、ブク/ピンホール有無の欄が「○」は、焼結体内部にブクやピンホールがないことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にブクやピンホールが見られたことを示す。
表2より、第1のセラミックグリーンシート層に含まれる有機バインダーの添加量が19質量部未満の試料No.1は、剥離箇所は第2のセラミックグリーンシート層外であり、かつ焼結体内部にデラミネーションが発生した。
また、上記添加量が30質量部より大きい試料No.6,7は、第1のセラミックグリーンシート層の保形性が得られず、かつ積層寸法の寸法ばらつきが±0.05%以上であり、かつ焼結体内部にデラミネーション、ブク/ピンホールが見られた。
これに対して、上記添加量が19乃至30質量部の試料No.2,3,4,5は、第1のセラミックグリーンシート層の保形性が得られ、かつ剥離箇所は第2のセラミックグリーンシート層内で、積層寸法の寸法ばらつきが±0.05%よりも小さく、焼結体内部のデラミネーションが無く、ブク/ピンホールも見られなかった。
実施例2と同様に、第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を固形分で20質量部、メタクリル酸メチル樹脂の分子量を4万,8万,10万,20万,30万,36万,50万で各々調合し、低融点成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより40時間混合し、セラミックスラリーを調製した。
次に、これらの第1のセラミックグリーンシート層用のセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂をセラミック粉末100質量部に対して固形分で10質量部、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合してセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することによりセラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。
導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションの観察を行い、セラミック層間のデラミネーションを調査した。第1のセラミックスラリーに含まれる有機バインダーの分子量別の評価結果を表3に示す。
Figure 0004646537
表3で、第1のセラミックグリーンシート層の保形性の欄が「○」は、第1のセラミックグリーンシート層を成形した後、それを5枚重ねて常温で24時間放置しても、互いの第1のセラミックグリーンシート層がくっつくことが無く保形性を維持していたことを示す。「△」は、第1のセラミックグリーンシート層の成形はできたが、成形後に第1のセラミックグリーンシート層を5枚重ねて常温で24時間放置すると、互いの第1のセラミックグリーンシートがくっついてしまい、保形性を維持できなかったことを示す。また、剥離強度の欄が「○」は、セラミックグリーンシート積層体を剥離した際に、剥離箇所が第2のセラミックグリーンシート内であったことを示す。「△」は、剥離箇所が第2のセラミックグリーンシート層外であったことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。また、内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。また、ブク/ピンホール有無の欄が「○」は、焼結体内部にブクやピンホールがないことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にブクやピンホールが見られたことを示す。
表3より、第1のセラミックグリーンシート層に含まれる有機バインダーの分子量が8万未満の試料No.1は、第1のセラミックグリーンシート層の保形性が得られず、焼結体内部にデラミネーションおよびブク/ピンホールが見られ、かつ積層寸法の寸法バラツキが±0.05%以上であった。
また、上記分子量が30万より大きい試料No.6,7は、剥離箇所は第2のセラミックグリーンシート層外であり、かつ焼結体内部にデラミネーションが発生した。
これに対して、上記分子量が8万乃至30万の試料No.2,3,4,5は、第1のセラミックグリーンシート層の保形性が得られ、剥離箇所は第2のセラミックグリーンシート層内で、積層寸法の寸法バラツキが±0.05%よりも小さく、焼結体内部のデラミネーションが無く、かつブク/ピンホールも見られなかった。
実施例3と同様に、第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を固形分で20質量部、メタクリル酸メチル樹脂の有機バインダーの酸価を0.0,0.1,0.5,0.8,0.9,1.5KOHmg/gで各々調合し、低融点成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより40時間混合し、セラミックスラリーを調製した。
次に、これらの第1のセラミックグリーンシート層用のセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂をセラミック粉末100質量部に対して固形分で10質量部、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合してセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することによりセラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。
導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションの観察を行い、セラミック層間のデラミネーション及びブクやピンホールの発生の有無及び製品寸法を調査した。第1のセラミックスラリーに含まれる有機バインダーの酸価別の評価結果を表4に示す。
Figure 0004646537
表4で、剥離強度の欄が「○」は、セラミックグリーンシート積層体を剥離した際に、剥離箇所が第2のセラミックグリーンシート層内であったことを示す。「△」は、第2のセラミックグリーンシート層外であったことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。また、内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。
表4より、第1のセラミックグリーンシート層に含まれる有機バインダーの酸価が0.1KOHmg/g未満の試料No.1は、剥離箇所は第2のセラミックグリーンシート層外であり、積層寸法の寸法バラツキが±0.05%以上であり、焼結体内部にデラミネーションが発生していた。
また、上記酸価が0.8KOHmg/gより大きい試料No.5,6は、剥離箇所は第2のセラミックグリーンシート層外であり、積層寸法の寸法バラツキが±0.05%以上であり、焼結体内部にデラミネーションが発生していた。
これに対して、上記酸価が0.1乃至0.8KOHmg/gの試料No.2,3,4は、剥離箇所は第2のセラミックグリーンシート層内で、積層寸法の寸法バラツキが±0.05%よりも小さく、焼結体内部のデラミネーションが無かった。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を20質量部で調合し、溶融成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより混合し、セラミックスラリーを調製した。
次に、このセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂を、セラミック粉末100質量部に対して固形分で8,9,10,12,15,17,19,20,21質量部を各々添加し、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合して第2のセラミックグリーンシート層となるセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することにより、セラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。その際の剥離強度は、セラミックグリーンシート積層体の任意のセラミックグリーンシートを層間で剥離した際の剥離発生箇所を双眼顕微鏡にて観察し、剥離箇所が第2のセラミックグリーンシート内である場合を良品とした。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクション(断面)の観察を行い、セラミック層間のデラミネーションを調査した。そして、第1のセラミックスラリーに含まれる有機バインダー量別の評価結果を表5に示す。
Figure 0004646537
表5おける剥離強度の欄が「○」は、セラミックグリーンシート積層体を剥離した際に、剥離箇所が第2のセラミックグリーンシート層内であったことを示す。「△」は、第2のセラミックグリーンシート層外であったことを示す。また、内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。また、シート外観の欄が「○」は、セラミックグリーンシートを成型したときのセラミックグリーンシートに破れ、クラックが発生していないことを示す。一方、「△」はセラミックグリーンシートの一部に破れ、クラックの発生が見られたことを示す。
表5の結果から、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの添加量が10質量部未満の試料No.1、2は、剥離箇所は第2のセラミックグリーンシート層外であり、かつ焼結体内部にデラミネーションが発生し、かつセラミックグリーンシート成型後にセラミックグリーンシート表面にクラックが確認された。
また、上記添加量が19質量部より大きい試料No.8,9も、同様に剥離箇所は第2のセラミックグリーンシート層外であり、かつ焼結体内部にデラミネーションが発生した。
これに対して、上記添加量が10乃至19質量部の試料No.3〜7は、剥離箇所は第2のセラミックグリーンシート内でかつデラミネーションが無く、セラミックグリーンシートの外観も良く優れたものであった。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を20質量部で調合し、溶融成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより混合し、セラミックスラリーを調製した。
次に、このセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂を、セラミック粉末100質量部に対して固形分で10質量部を添加し、このメタクリル酸メチル樹脂の分子量を8万,10万,20万,30万,50万,70万,80万,85万,90万で各々調合した。また、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合して第2のセラミックグリーンシート層となるセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することにより、セラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。その際の剥離強度は、セラミックグリーンシート積層体の任意のセラミックグリーンシートを層間で剥離した際の剥離発生箇所を双眼顕微鏡にて観察し、剥離箇所が第2のセラミックグリーンシート内である場合を良品とした。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションの観察を行い、セラミック層間のデラミネーションを調査した。第1のセラミックスラリーに含まれる有機バインダー量別の評価結果を表6に示す。
Figure 0004646537
表6中の内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。また、シート外観の欄が「○」は、セラミックグリーンシートを成型したときのセラミックグリーンシートに破れ、クラックが発生していないことを示す。一方、「△」はセラミックグリーンシートの一部に破れ、クラックの発生が見られたことを示す。また、セラミックグリーンシートの厚みばらつきの欄が「○」は、3σ(標準偏差の3倍)が平均厚みの5%以内を示し、一方、「△」は5%以上であったことを示す。
表3の結果から、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの分子量が10万未満の試料No.1は、焼結体内部にデラミネーションが発生し、かつ積層寸法の寸法ばらつきが0.05%以上であった。また、セラミックグリーンシート成型後にセラミックグリーンシート表面に、クラックが確認された。
また、上記分子量が80万より大きい試料No.8,9は、焼結体内部にデラミネーションが発生し、かつ積層寸法の寸法ばらつきが0.05%以上であり、かつセラミックグリーンシート厚みばらつきが、3σ(標準偏差の3倍)が平均厚みの5%以上であった。
これに対して、上記分子量が10万乃至80万の試料No.2〜7は、内層デラミネーションが無く、寸法ばらつきと、セラミックグリーンシート厚みばらつきも優れたものであった。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を20質量部で調合し、溶融成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより混合し、セラミックスラリーを調製した。
次に、このセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂を、セラミック粉末100質量部に対して固形分で10質量部添加し、このメタクリル酸メチル樹脂の酸価を0,0.1,2.5,4,5,5.5KOHmg/gで各々調合した。また、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合して第2のセラミックグリーンシート層となるセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することにより、セラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。その際の剥離強度は、セラミックグリーンシート積層体の任意のセラミックグリーンシートを層間で剥離した際の剥離発生箇所を双眼顕微鏡にて観察し、剥離箇所が第2のセラミックグリーンシート内である場合を良品とした。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションの観察を行い、セラミック層間のデラミネーションを調査した。第1のセラミックスラリーに含まれる有機バインダー量別の評価結果を表7に示す。
Figure 0004646537
表7中の内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。
表7の結果から、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの酸価が0.1KOHmg/g未満の試料No.1は、焼結体内部にデラミネーションが発生し、かつ積層寸法の寸法ばらつきが0.05%以上であった。
また、上記酸価が5KOHmg/gより大きい試料No.6は、焼結体内部にデラミネーションが発生し、かつ積層寸法の寸法ばらつきが0.05%以上であった。
これに対して、上記酸価が0.1乃至5KOHmg/gの試料No.2〜5は、内層デラミネーションが無く、かつ寸法ばらつきに優れたものであった。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を固形分で20質量部、メタクリル酸メチル樹脂の有機バインダーのガラス転移点を−25,−20,−10,−5,0,5,10℃で各々調合し、溶融成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより40時間混合し、セラミックスラリーを調製した。
次に、このセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂を、セラミック粉末100質量部に対して固形分で10質量部、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合してセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することによりセラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションの観察を行い、セラミック層間のデラミネーションの有無及び製品寸法を調査した。第1のセラミックグリーンシート層に含まれる有機バインダーのガラス転移点別の評価結果を表8に示す。
Figure 0004646537
表8で、第1のセラミックグリーンシート層の保形性の欄が「○」は、第1のセラミックグリーンシート層を成形した後、それを5枚重ねて常温で24時間放置しても、互いの第1のセラミックグリーンシート層がくっつくこと無く保形性を維持していたことを示す。「△」は、第1のセラミックグリーンシート層の成形はできたが、成形後に第1のセラミックグリーンシート層を5枚重ねて常温で24時間放置すると互いの第1のセラミックグリーンシート層がくっついてしまい、保形性を維持できなかったことを示す。また、剥離強度の欄が「○」は、セラミックグリーンシート積層体を剥離した際に、剥離箇所が第2のセラミックグリーンシート層内であったことを示す。「△」は、第2のセラミックグリーンシート層外であったことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。また、内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。
表8より、第1のセラミックグリーンシート層に含まれる有機バインダーのガラス転移点が−20℃よりも低い試料No.1は、第1のセラミックグリーンシート層の保形性が維持できず、かつ積層寸法の寸法ばらつきが0.05%以上であった。
また、上記ガラス転移点が0℃より高い試料No.6,7は、剥離箇所が第2のセラミックグリーンシート層外であり、かつ積層寸法の寸法ばらつきが0.05%以上であり、かつ焼結体内部にデラミネーションが発生していた。
これに対して、上記ガラス転移点が0乃至−20℃の試料No.2〜5は、第1のセラミックグリーンシート層の保形性が得られ、かつ剥離箇所が第2のセラミックグリーンシート層内で、かつ積層寸法の寸法ばらつきが±0.05%よりも小さく、焼結体内部のデラミネーションが無かった。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を固形分で20質量部、メタクリル酸メチル樹脂の有機バインダーの水酸基価を0,0.1,1,3,4,5,5.5,6KOHmg/gで各々調合し、低融点成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより40時間混合し、セラミックスラリーを調製した。
次に、このセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂を、セラミック粉末100質量部に対して固形分で10質量部、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合してセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することによりセラミックグリーンシートを作製した。
このセラミックグリーンシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。
それから、得られたセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションの観察を行い、セラミック層間のデラミネーションの有無及び製品寸法を調査した。第1のセラミックグリーンシートの有機バインダーの水酸基価別の評価結果を表9に示す。
Figure 0004646537
表9における剥離強度の欄が「○」は、セラミックグリーンシート積層体を剥離した際に、剥離箇所が第2のセラミックグリーンシート層内であったことを示す。「△」は、第2のセラミックグリーンシート層外であったことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。また、層間デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。
表9より、第1のセラミックグリーンシート層に含まれる有機バインダーの水酸基価が0.1KOHmg/g未満の試料No.1は、剥離箇所は第2のセラミックグリーンシート層外であり、かつ積層寸法の寸法ばらつきが±0.05%以上であり、かつ焼結体内部にデラミネーションが発生していた。
また、上記水酸基価が5KOHmg/gより大きい試料No.7,8は、剥離箇所は第2のセラミックグリーンシート層外であり、かつ積層寸法の寸法ばらつきが±0.05%以上であり、かつ焼結体内部にデラミネーションが発生していた。
これに対して、上記水酸基価が0.1乃至5KOHmg/gの試料No.2〜6は、剥離箇所は第2のセラミックグリーンシート層内で、かつ積層寸法の寸法ばらつきが±0.05%よりも小さく、かつ焼結体内部のデラミネーションが無かった。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を20質量部で調合し、溶融成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより混合し、セラミックスラリーを調製した。
次に、このセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂を、セラミック粉末100質量部に対して固形分で10質量部添加し、このメタクリル酸メチル樹脂のガラス転移点を−22,−20,0,10,20,25℃で各々調合した。また、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合して第2のセラミックグリーンシート層となるセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することにより、セラミックグリーンシートを作製した。
このセラミックグリーンシートを用い、常温で取り扱う際のセラミックグリーンシート同士の付着や、シートの割れ欠けの評価を行った。そして、第2のセラミックグリーンシート層に含まれる有機バインダーのガラス転移点別の評価結果を表10に示す。
Figure 0004646537
表10におけるシート付着の欄が「○」は、セラミックグリーンシートを常温で取り扱う際にセラミックグリーンシート同士が付着せずに取り扱いが容易であったことを示す。一方、「△」は常温で重ねるだけでセラミックグリーンシート同士が付着し取り扱いが難しいものであったことを示す。シート割れ欠けの欄が「○」は常温で取り扱う際にセラミックグリーンシートに割れや欠けが起こらずに取り扱いが容易であったことを示す。一方「△」は常温で取り扱う際にセラミックグリーンシートに割れや欠けが起こり、取り扱いが難しいものであったことを示す。
表2より、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーのガラス転移点が−20℃未満の試料No.1は、シート付着が発生した。
また、上記ガラス転移点が20℃より大きい試料No.6は、シート割れや欠けが発生した。
これに対して、上記ガラス転移点が−20万乃至20の試料No.2〜5は、シート付着が無く、かつシート割れや付着も発生しなかった。
第1のセラミックグリーンシート層用に、平均粒径1μmのアルミナを90質量部、焼結助剤としてシリカ、マグネシア、カルシアと、着色顔料として遷移金属の酸化物(三酸化クロム)とを合わせて10質量部の割合で調合したセラミック粉末100質量部に対して、メタクリル酸メチル樹脂を20質量部で調合し、溶融成分としてヘキサデカノールを固形分で10質量部、トルエン及び酢酸エチルを溶媒としてボールミルにより混合し、セラミックスラリーを調製した。
次に、このセラミックスラリーをPETフィルム上にリップコーター法により厚さ50μmで塗布し、乾燥させて第1のセラミックグリーンシート層を形成した。
続いて、第1のセラミックグリーンシート層用のセラミックスラリーと同様の割合で調合したセラミック粉末と有機バインダーとしてメタクリル酸メチル樹脂を、セラミック粉末100質量部に対して固形分で10質量部添加し、このメタクリル酸メチル樹脂の水酸基価を0,3,5,10,20,40,60,80,100,104,110KOHmg/gで各々調合した。また、可塑剤としてフタル酸ジブチルを1質量部添加し、トルエン及び酢酸エチルを溶媒としてボールミルにより混合して第2のセラミックグリーンシート層となるセラミックスラリーを調製し、先に形成しておいた第1のセラミックグリーンシート層上にダイコーター法により厚さ100μmで塗布し、乾燥することにより、セラミックグリーンシートを作製した。
このセラミックシートの第2のセラミックグリーンシート層上に、タングステンを主成分とする導体ペーストを用いスクリーン印刷法により10〜20μmの厚みで所定パターンに印刷し、導体層を形成した。導体層を形成したセラミックグリーンシートをそれぞれ4層重ねあわせて、厚み方向に0.5MPaの圧力および80℃の温度で加熱圧着してセラミックグリーンシート積層体を作製した。
このセラミックグリーンシート積層体中の有機バインダー等の有機成分や、有機成分が分解した後に残留するカーボンを除去するため、7.33×10Paの水蒸気を含んだ窒素雰囲気中に約1000℃の温度で1時間保持する熱処理を行った後、還元雰囲気中にて約1600℃の温度で1時間保持して評価用のセラミック焼結体を作製した。
この焼結体のクロスセクションを行い、セラミック層間のデラミネーションの有無及び製品寸法を調査した。そして、第2のセラミックグリーンシート層に含まれる有機バインダーの水酸基価別の評価の結果を表11に示す。
Figure 0004646537
表11における内層デラミネーション有無の欄が「○」は、焼結体内部にデラミネーションが見られず優れていたことを示す。「△」は、セラミックグリーンシート積層体の形成に問題は無いものの、焼結体内部にデラミネーションが見られたことを示す。また、積層寸法の欄が「○」は、積層後の寸法を3次元測定機で測定し、寸法ばらつきが±0.05%よりも小さいものであったことを示す。「△」は、製品寸法に問題は無いものの、寸法ばらつきが±0.05%以上であったことを示す。
表11の結果から、第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの水酸基価が5KOHmg/g未満の試料No.1,2は、焼結体内部にデラミネーションが発生し、かつ積層寸法の寸法ばらつきが0.05%以上であった。
また、上記水酸基価が100KOHmg/gより大きい試料No.10,11は、焼結体内部にデラミネーションが発生し、かつ積層寸法の寸法ばらつきが0.05%以上であった。
これに対して、上記水酸基価が5乃至100KOHmg/gの試料No.3〜9は、内層デラミネーションが無く、かつ寸法ばらつき優れたものであった。
なお本発明は、上述の実施の形態の例に限定されず、本発明の要旨を逸脱しない範囲であれば、種々の変更は可能である。例えば、上述の実施の形態の例では、無機粉末と有機バインダーと溶媒を添加混合してセラミックスラリーを作製したが、セラミックグリーンシートに柔軟性を付与するために可塑剤を添加してもよく、また無機粉末の分散性を高めるために分散剤を添加してもよい。
(a)〜(d)は、本発明の電子部品の製造方法の実施の形態の一例を示す工程毎の断面図である。
符号の説明
1・・・支持体
2・・・第1のセラミックグリーンシート層
3・・・セラミックスラリー
3’・・・第2のセラミックグリーンシート層
4・・・セラミックグリーンシート
5・・・導体層
6・・・セラミックグリーンシート積層体

Claims (10)

  1. 第1のセラミックグリーンシート層を形成する工程と、該第1のセラミックグリーンシート層上にセラミックスラリーを塗布し乾燥して第2のセラミックグリーンシート層を形成してセラミックグリーンシートを形成する工程と、前記セラミックグリーンシート上に導体層を形成する工程と、前記導体層が形成された前記セラミックグリーンシートを複数枚積層して加熱することによってセラミックグリーンシート積層体を作製する工程と、前記セラミックグリーンシート積層体を焼成する工程とを具備しており、前記第1のセラミックグリーンシート層の溶解度パラメータと前記セラミックスラリーの溶解度パラメータとの差3乃至8とし、前記第1のセラミックグリーンシート層に前記セラミックグリーンシート積層体を作製する際の加熱時に溶融状態となる溶融成分を含有させ、前記第1のセラミックグリーンシート層に含まれる有機バインダーの添加量をセラミック粉末100質量部に対して19乃至30質量部とするとともに、前記セラミックスラリーに含まれる有機バインダーの添加量をセラミック粉末100質量部に対して10乃至19質量部としたことを特徴とする電子部品の製造方法。
  2. 前記溶融成分の融点が35乃至100℃であることを特徴とする請求項記載の電子部品の製造方法。
  3. 前記第1のセラミックグリーンシート層に含まれる有機バインダーの分子量が8万乃至30万であることを特徴とする請求項記載の電子部品の製造方法。
  4. 前記第1のセラミックグリーンシート層に含まれる有機バインダーの酸価が0.1乃至0.8KOHmg/gであることを特徴とする請求項記載の電子部品の製造方法。
  5. 前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの分子量が10万乃至80万であることを特徴とする請求項記載の電子部品の製造方法。
  6. 前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの酸価が0.1乃至5KOHmg/gであることを特徴とする請求項記載の電子部品の製造方法。
  7. 前記第1のセラミックグリーンシート層に含まれる有機バインダーのガラス転移点が−20乃至0℃であることを特徴とする請求項記載の電子部品の製造方法。
  8. 前記第1のセラミックグリーンシート層に含まれる有機バインダーの水酸基価が0.1乃至5KOHmg/gであることを特徴とする請求項記載の電子部品の製造方法。
  9. 前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーのガラス転移点が−20乃至20℃であることを特徴とする請求項記載の電子部品の製造方法。
  10. 前記第2のセラミックグリーンシート層となるセラミックスラリーに含まれる有機バインダーの水酸基価が5乃至100KOHmg/gであることを特徴とする請求項記載の電子部品の製造方法。
JP2004089429A 2004-01-27 2004-03-25 電子部品の製造方法 Expired - Fee Related JP4646537B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089429A JP4646537B2 (ja) 2004-01-27 2004-03-25 電子部品の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004018865 2004-01-27
JP2004050576 2004-02-25
JP2004089429A JP4646537B2 (ja) 2004-01-27 2004-03-25 電子部品の製造方法

Publications (2)

Publication Number Publication Date
JP2005277166A JP2005277166A (ja) 2005-10-06
JP4646537B2 true JP4646537B2 (ja) 2011-03-09

Family

ID=35176483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089429A Expired - Fee Related JP4646537B2 (ja) 2004-01-27 2004-03-25 電子部品の製造方法

Country Status (1)

Country Link
JP (1) JP4646537B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101970A (ja) * 1991-10-08 1993-04-23 Matsushita Electric Ind Co Ltd 積層磁器コンデンサおよびその製造方法
JPH05319943A (ja) * 1992-05-19 1993-12-03 Nitto Denko Corp 積層焼成体の製造方法
JPH06231992A (ja) * 1993-01-28 1994-08-19 Mitsubishi Materials Corp 積層セラミックコンデンサ用グリーン体の製造方法
JPH08213274A (ja) * 1995-02-03 1996-08-20 Taiyo Yuden Co Ltd 積層セラミック電子部品の製造方法
JP2001167971A (ja) * 1999-12-13 2001-06-22 Murata Mfg Co Ltd 積層型セラミック電子部品およびその製造方法
JP2002260954A (ja) * 2001-03-02 2002-09-13 Tdk Corp セラミックグリーン体およびセラミック電子部品の製造方法
JP2003276017A (ja) * 2002-03-27 2003-09-30 Kyocera Corp セラミックグリーンシート及びその製法並びにセラミック積層体の製法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101970A (ja) * 1991-10-08 1993-04-23 Matsushita Electric Ind Co Ltd 積層磁器コンデンサおよびその製造方法
JPH05319943A (ja) * 1992-05-19 1993-12-03 Nitto Denko Corp 積層焼成体の製造方法
JPH06231992A (ja) * 1993-01-28 1994-08-19 Mitsubishi Materials Corp 積層セラミックコンデンサ用グリーン体の製造方法
JPH08213274A (ja) * 1995-02-03 1996-08-20 Taiyo Yuden Co Ltd 積層セラミック電子部品の製造方法
JP2001167971A (ja) * 1999-12-13 2001-06-22 Murata Mfg Co Ltd 積層型セラミック電子部品およびその製造方法
JP2002260954A (ja) * 2001-03-02 2002-09-13 Tdk Corp セラミックグリーン体およびセラミック電子部品の製造方法
JP2003276017A (ja) * 2002-03-27 2003-09-30 Kyocera Corp セラミックグリーンシート及びその製法並びにセラミック積層体の製法

Also Published As

Publication number Publication date
JP2005277166A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4849846B2 (ja) 電子部品の製造方法
JP2006237266A (ja) 電子部品の製造方法
JP4991158B2 (ja) 電子部品の製造方法
JP4562409B2 (ja) 電子部品の製造方法
JP4895653B2 (ja) 電子部品の製造方法
JP4953626B2 (ja) セラミック電子部品の製造方法
JP4721742B2 (ja) 電子部品の製造方法
JP4646537B2 (ja) 電子部品の製造方法
JP2006100448A (ja) 電子部品の製造方法
JP4471924B2 (ja) 電子部品の製造方法
JP4726566B2 (ja) 電子部品の製造方法
JP4638169B2 (ja) 電子部品の製造方法
JP2005277167A (ja) 電子部品の製造方法
JP4683891B2 (ja) 導体形成用シートおよび導体の形成方法ならびに電子部品の製造方法
JP4095468B2 (ja) ガラスセラミック基板の製造方法
JP4480434B2 (ja) 電子部品の製造方法
JP2006066627A (ja) 電子部品の製造方法
JP4771819B2 (ja) 電子部品の製造方法
JP4570423B2 (ja) 電子部品の製造方法
JP4610274B2 (ja) 電子部品の製造方法
JP3872289B2 (ja) ガラスセラミック基板の製造方法
JP3909200B2 (ja) ガラスセラミック基板の製造方法
JP2006121016A (ja) 電子部品の製造方法
JP2005277162A (ja) 電子部品の製造方法
JP2006093483A (ja) 電子部品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees