JP4641045B2 - 半導体集積回路及びマイクロコンピュータ - Google Patents

半導体集積回路及びマイクロコンピュータ Download PDF

Info

Publication number
JP4641045B2
JP4641045B2 JP2009188474A JP2009188474A JP4641045B2 JP 4641045 B2 JP4641045 B2 JP 4641045B2 JP 2009188474 A JP2009188474 A JP 2009188474A JP 2009188474 A JP2009188474 A JP 2009188474A JP 4641045 B2 JP4641045 B2 JP 4641045B2
Authority
JP
Japan
Prior art keywords
circuit
clock signal
frequency
voltage
control information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009188474A
Other languages
English (en)
Other versions
JP2009271941A5 (ja
JP2009271941A (ja
Inventor
直樹 矢田
康幸 斉藤
康 芝塚
勝則 小池
光彦 奥津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2009188474A priority Critical patent/JP4641045B2/ja
Publication of JP2009271941A publication Critical patent/JP2009271941A/ja
Publication of JP2009271941A5 publication Critical patent/JP2009271941A5/ja
Application granted granted Critical
Publication of JP4641045B2 publication Critical patent/JP4641045B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、クロック同期動作される電子回路、特にクロック同期動作される半導体集積回路に関し、例えばマイクロコンピュータに代表される情報処理装置に適用して有効な技術に関する。
クロック同期動作されるマイクロコンピュータなどの半導体集積回路において水晶振動子を外付けせずに内部発振だけで同期クロック信号を生成するものがある。特許文献1には水晶振動子を外付けせずに内部発振だけで同期クロック信号を生成するマイクロコンピュータについて記載が有る。特許文献2には、水晶振動子を外付けせずに内部発振する内蔵発振器の発振周波数をトリミングする回路について記載がある。
特表平11−510938号公報 特開平10−187273号公報
本発明者は、先ず同期クロックの生成に振動子を用いる場合の問題点について検討した。水晶発振を用いて半導体集積回路を動作させる場合は、容量素子と水晶振動子を付けたりする必要性が生じる。そのための実装面積と部品が必要になる。さらに、水晶振動子の端子は、外来ノイズ(EMS:Electro Magnetic Susceptibility)に弱く、顧客のシステム構成時の信頼性で問題となる場合がある。さらに、水晶振動子が取り付けられる半導体集積回路の端子には充放電を生ずるので、輻射ノイズ(EMI:Electro Magnetic Interference)の問題が発生する。また、水晶振動子の端子に波形整形用の容量が接続するので消費電流も多くなる。更に、センサやネットワーク家電などには外部端子数が極端に少ない少ピンマイコンと称されるマイクロコンピュータが用いられる。小ピンマイコンの場合には水晶発振用の端子の削減は外部端子数削減に大きく寄与することができる。
更に本発明者は同期クロックの生成に振動子を用いない場合について検討した。同期クロックの生成に振動子を用いない場合に発振周波数はプロセスばらつきの影響を大きく受けて数10パーセント変動する。更に、プロセスばらつきによる影響ほどではないが、電源電圧変動や温度変化による影響も受けて10数パーセント変動する。特に通信を確立するには、数パーセントのクロック精度が必要で、プロセスばらつき、半導体集積回路外部電圧変動、温度変動に対して強い構成にすることが必要になる。また、固定周波数の内部発振では、マイクロコンピュータを実装したシステムに対するテストでは高い周波数とか低い周波数でテストすることが必要になるので、出荷後もフレキシブルに周波数を変更できる構成が求められている。
本発明の目的は高精度で内蔵発振を行うことができる半導体集積回路を提供することにある。
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
すなわち、半導体集積回路において高精度で内蔵発振を行うことができる。
本発明の一例に係るマイクロコンピュータを例示するブロック図である。 内部発振回路モジュールの第1の例を示すブロック図である。 比較回路24の一例を示す論理回路図である。 内部発振回路モジュールの第2の例を示すブロック図である。 内部発振回路モジュールの第3の例を示すブロック図である。 内部発振回路モジュールの第4の例を示すブロック図である。 内部発振回路モジュールの第5の例を示すブロック図である。 図4の内部発振回路モジュールに対応される詳細な回路を例示する回路図である。 ボルテージフォロアアンプ(VFAMP)の一例を示す回路図である。 MOSトランジスタのVgs・Ids特性を例示する説明図である。 図6の内部発振回路モジュールに対応される詳細な回路を例示する回路図である。 図11のUDCUNTに代えて採用可能なカウンタ(CUNT)を例示するブロック図である。 図11の変形例を示す回路図である。 バイアス回路の別の例を示す回路図である。 図2で説明した内部発振周波数設定動作を例示するフローチャートである。 外部比較による内部発振周波数設定動作を例示するフローチャートである。 CPUを用いずに周波数比較判定動作を行う図6の例による内部発振周波数設定動作のを例示するフローチャートである。 図8の構成におけるVCOの温度依存性に関するシミュレーション結果を例示する説明図である。 VLTに着目して温度補償を行う内部発振回路モジュールの回路例を示す回路図である。 図19に示されるのオペアンプ62、64を例示する回路ずである。 図19に示されるのオペアンプ63を例示する回路ずである。 図22は、図19の構成におけるVCOの温度依存性に関するシミュレーション結果を例示する説明図である。 図23は、マイクロコンピュータ特に汎用マクロコンピュータの製造工程における周波数設定工程を例示するフローチャートである。 図24は、図24にはマイクロコンピュータ特にカスタムLSIの製造工程における周波数設定工程を例示するフローチャートである。 図25は、内部発振クロック周波数を逐次動的に調整する内部発振回路モジュールを備えたマイクロコンピュータを例示するブロック図である。 図26は、図23の内部発振回路モジュールに対応される詳細な回路を例示する回路図である。 図27は、図26の時定数回路の充放電動作によって生成される一定区間(Ts)を例示するタイミングチャートである。 図28は、区間発生回路71の別の例を示す回路図である。 図29は、図28の時定数回路の充放電動作によって生成される一定区間(Ts)を例示するタイミングチャートである。
1.実施の形態の概要
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
〔1〕《外部クロック信号周波数を指標とする周波数調整》
本発明に係る半導体集積回路は、記憶回路(20)と、前記記憶回路に保持された制御情報に基いて内部クロック信号(VCLK)を生成する発振回路(23)と、外部で生成される外部クロック信号(RCLK)の周波数に内部クロック信号の周波数を一致させる制御情報を生成する論理回路(2、40)とを有し、前記内部クロック信号を内部回路の同期動作に用いる。プロセスばらつきにより発振回路の発振周特性(発振周波数)に誤差(不所望な変動)を生じても、水晶振動子の外付けや外部クロック信号の入力を必要とせずに、内部クロック信号周波数を目的周波数の外部クロック信号周波数に一致させることができる。要するに、プロセスばらつきによる周波数誤差を補償することができる。
内部クロック信号周波数を目的周波数の外部クロック信号周波数に一致させる制御情報の取得を所定の動作モードの指示に応答して行う。所定の動作モードを指定すればそのような制御情報の取得を任意に行うことができる。目的周波数を変更して制御情報の取得を任意に行うことも可能である。
前記論理回路による制御情報の生成処理をクロック同期で行う場合の形態として、第1は、記憶回路に初期的に与えられる制御情報に基づいて生成されるクロック信号に同期する形態、第2は、外部クロック信号に同期する形態、第3は、所定動作モードの指示に応答して発振動作される別の発振回路で生成されるクロック信号に同期する形態である。
前記論理回路で一度取得した制御情報の利用効率という観点より、前記論理回路で生成された制御情報を格納する不揮発性記憶装置(6)を設け、前記不揮発性記憶装置に格納された制御情報はパワーオンリセットに応答して前記記憶回路にロードされる。
《制御情報の生成形態》
第1の形態はクロックカウンタを用いる。即ち、内部クロック信号及び外部クロック信号の夫々の周波数に応答する情報をサンプリングするサンプリング回路(31)を有し、前記論理回路(2)はサンプリング回路でサンプリングされた情報を用いて内部クロック信号と外部クロック信号の周波数比較を行って内部クロック信号周波数を外部クロック信号周波数に一致させる制御情報を生成する。このとき前記論理回路は例えばCPU(中央処理装置)であり、前記記憶回路はCPUによってアクセス可能なレジスタである。
第2の形態は内蔵比較回路を用いる。内部クロック信号と外部クロック信号の周波数の相異を比較する比較回路(24)を有し、前記論理回路は前記比較回路による比較結果を用いて内部クロック信号周波数を外部クロック信号周波数に一致させる制御情報を生成する。このとき前記論理回路は例えばCPUであり、前記記憶回路はCPUによってアクセス可能なレジスタである。
第3の形態はアップダウンカウンタを用いる。即ち、前記記憶回路はカウンタ(42)であり、前記論理回路は内部クロック信号と外部クロック信号の周波数の相異を比較し、比較結果を用いて前記カウンタをアップカウント又ダウンカウントする。
第4の形態は周波数の外部比較結果を用いる。前記論理回路は、内部クロック信号と外部クロック信号の周波数比較結果をラッチ回路(32)など介して外部から入力し、入力した比較結果を参照して内部クロック信号周波数を外部クロック信号周波数に一致させる制御情報を生成する。
《定電流領域利用による温度依存補償》
本発明の具体的な形態として、前記記憶回路が保持する制御データを変換基準電圧に対してアナログ変換するD/A変換回路(21)と、前記D/A変換回路の出力電圧に基づいて決定される動作電源電圧に応ずるバイアス電圧を形成するバイアス回路(22)とを更に有し、前記発振回路は、前記D/A変換回路の出力電圧に基づいて決定される電圧(Vfdd)を動作電源電圧とし、前記バイアス電圧によって発振周波数が制御される電圧制御発振回路とされる。このとき、前記バイアス回路は温度変化に対してドレイン・ソース間電流の変化が小さくされるゲート・ソース間電圧条件を満足するMOSトランジスタを備えた定電流回路(M7,Rf,M8)を有し、前記MOSトランジスタのドレイン電圧を制御電圧として出力する。前記定電流回路は前記D/A変換回路の出力電圧に基づいて動作電源電圧が変化されたとき、その変化がゲート・ソース間電圧条件を満足する範囲において、バイアス電圧を変化させることができると共に、温度変化による変動については抑止若しくは緩和することができる。この構成は、ゲート・ソース間電圧条件を満足する範囲において、という点で周波数可変の範囲は大きく制限される。要するに、ほぼ一定周波数での用途に限定される。
具体的な形態として、前記定電流回路は、電源電圧をソースに受けゲート・ドレイン間が短絡されたpチャンネル型の第1MOSトランジスタ(M7)と、回路の接地電圧をソースに受けゲート・ドレイン間が短絡されたnチャンネル型の第2MOSトランジスタ(M8)と、第1MOSトランジスタのドレインに一端が結合され第2MOSトランジスタのドレインに他端が結合された抵抗素子(Rf)とを有し、第1MOSトランジスタのドレイン電圧と第2MOSトランジスタのドレイン電圧を制御電圧として出力する。
前記D/A変換回路の出力が低インピーダンスであることを考慮すると、前記D/A変換回路の出力電圧はボルテージフォロアアンプ(47)を介して電圧制御発振回路及びバイアス回路の動作電源電圧として供給されるのが望ましい。スタンバイ時にボルテージフォロアアンプを非活性にすることにより発振回路とバイアス回路の動作電源を遮断することができ、低消費電力に資する事ができる。
電源変動に対する補償を考慮する場合には、電源電圧と温度の変動に対する電圧変動が補償された基準電圧を発生する基準電圧発生回路(45)を更に有し、前記D/A変換回路は前記基準電圧を変換基準電圧として入力することが望ましい。
《VLTに着目した温度依存補償》
温度依存補償に対する別の形態では、前記記憶回路が保持する制御データを変換基準電圧に対してアナログ変換するD/A変換回路と、D/A変換回路の出力電圧に基づいてバイアス電圧(VGP,VGN)を形成するバイアス回路とを更に有し、前記発振回路はCMOS回路形式のリングオシレータ部(51)を有し当該リングオシレータ部に対する電流制御用の前記バイアス電圧によって発振周波数が制御される電圧制御発振回路とされる。このとき、前記バイアス回路は、発振回路にCMOS回路の論理閾値電圧変動を抑制する方向の動作電源電圧を印加して温度変化によるリングオシレータ部の発振周波数変動を補償する。
具体的な形態として、前記電圧制御発振回路はリングオシレータ部を構成する奇数段のCMOSインバータ遅延段(50)を有し、前記バイアス回路は、前記CMOSインバータ遅延段の論理閾値電圧を模擬する論理閾値電圧模擬回路部(65)を有し、前記論理閾値電圧模擬回路の出力を用いて発振回路の動作電源電圧を変化させる。電源変動に対する補償を考慮する場合には、電源電圧と温度の変動に対する電圧変動が補償された基準電圧を発生する基準電圧発生回路を更に有し、前記D/A変換回路は前記基準電圧を変換基準電圧として入力することが望ましい。
〔2〕《クロック信号周波数の動的な自動調整》
本発明の別の観点による半導体集積回路は、記憶回路と、前記記憶回路に保持された制御情報に基いて内部クロック信号を生成する発振回路と、周期的に発生するパルスの一定区間毎に前記内部クロック信号を計数し計数値を期待値に一致させる方向に制御情報を更新する論理回路(70)とを有し、前記内部クロック信号を内部回路の同期動作に用いる。計数値の期待値が目的周波数と相関される。よって、目的周波数に応ずる期待値にしたがって、周期的に発生するパルスの一定区間を基準に内部クロック信号周波数を動的且つ自動的に調整することができる。発振回路の発振周波数をパルスの周期毎に動的に調整するから、原理的には一定区間に対して温度依存性及び電源電圧依存性が無ければよい。
本発明の具体的な形態として、周期的にパルスの一定区間を発生する区間発生回路(71)を有し、この区間発生回路は、パルス発生回路(72)と、パルス発生回路から発生されるパルスの所定位相点から充電動作又は放電動作の何れかを行なうCR時定数回路(73)と、CR時定数回路で得られる電圧が規定電圧に到達するのを検出する検出回路(74)を有し、所定位相点から検出回路による検出タイミングまでを前記一定区間とする。CR時定数回路における温度依存性は実質的に無視し得る程小さい。
前記規定電圧は基準電圧発生回路で発生される基準電圧に基づいて形成され、前記基準電圧は電源電圧と温度の変動に対する電圧変動が補償された電圧であることが望ましい。一定区間に対して電源電圧依存性も無くなる。発振回路には電源電圧依存性及び温度依存性が有っても実質的な問題はない。
本発明の具体的な形態として前記記憶回路は例えばアップダウンカウンタ(42)である。前記アップダウンカウンタはパルス発生回路から発生されるパルスに同期してアップカウント又はダウンカウントを行なう。
本発明の具体的な形態として前記記憶回路が保持する制御データを変換基準電圧に対してアナログ変換するD/A変換回路と、D/A変換回路の出力電圧に応じて変化されるバイアス電圧を形成するバイアス回路とを更に有し、前記発振回路は、前記バイアス電圧によって発振周波数が制御される電圧制御発振回路である。D/A変換回路に対する電源依存補償を考慮するなら、前記D/A変換回路は、基準電圧発生回路で発生される基準電圧を変換基準電圧として入力すればよい。
本発明の具体的な形態として、不揮発性記憶装置を更に有し、前記不揮発性記憶装置は、パワーオンリセットに応答して前記記憶回路に初期的にロードされる制御情報と、前記論理回路にロードされる前記期待値を保有する。半導体集積回路の出荷時に予め制御情報と期待値とを不揮発性メモリに格納しておけばよい。不揮発性メモリが電気的に書き換え可能であればユーザは少なくとも期待値を書き換えることによって発振周波数を任意に選択することができる。
〔3〕《分周回路》
前記発振回路から出力されるクロック信号を分周する分周回路を有してよい。前記分周回路は可変分周回路であることが望ましい。半導体集積回路の出荷時に最高動作周波数に内部発振周波数を合わせるように制御情報を不揮発性メモリに格納しておく。ユーザは可変分周器で任意周波数を選択すればよい。
2.実施の形態の詳細
《マイクロコンピュータ》
図1には本発明の一例に係るマイクロコンピュータが例示される。同図に示されるマイクロコンピュータ1は、例えばCMOS集積回路製造技術により単結晶シリコンのような1個の半導体基板(半導体チップ)に形成される。
マイクロコンピュータ1は、特に制限されないが、制御信号バスCBUS、内部アドレスバスiAB、内部データバスiDB、周辺アドレスバスPAB、周辺データバスPDBを有し、それらには所定の回路モジュールが結合される。前記回路モジュールとしてマイクロコンピュータ1は、中央処理装置(CPU)2、CPU2のワーク領域などに利用されるランダムアクセスメモリ(RAM)3、バスステートコントローラ(BSC)4、内部発振回路モジュール(OSCMDL)5、フラッシュメモリなどの電気的に書換え可能な不揮発性メモリ(不揮発性記憶装置、NVMRY)6、アナログ・ディジタル変換モジュール(ADCMDL)7、ディジタル・アナログ変換モジュール(DACMDL)8、汎用入出力ポート(IO)9、前記ADC7に接続されるアナログ入力回路(AIN)10、前記DAC8に接続されるアナログ出力回路(AOUT)11、モード制御回路(MDCTL)13及びその他周辺回路モジュール(PRPHMDL)12を有する。
CPU2は命令をフェッチしフェッチした命令を解読して制御信号を生成する命令制御部と、前記制御信号によりオペランドを用いて演算処理などを行う実行部とを有する。NVMRY6は制御データやCPU2の制御プログラムなどを保有する。OSCMDL5は振動子の外付けを要することなく内部発振を行ってクロック信号CLKを発生する。クロック信号CLKは内蔵回路モジュールがクロック同期動作されるときの動作基準クロック信号などに用いられる。ここでは代表的に一つのクロック信号をCLKを図示するが、動作速度の異なる回路モジュールを含んだり、動作モードに応じて動作速度が可変にされる場合などに対応して、実際には周波数の異なる数種類のクロック信号が発生されて対応する回路モジュールに供給される。MDCTL13にはモード信号MD0〜MD2及びリセット信号RESが供給される。マイクロコンピュータ1はリセット信号RES等によってリセットが指示されるとCPU2等のオンチップ回路モジュールが初期化される。リセット信号RESによるリセット指示が解除されると、CPU2は所定のスタートアドレスから命令をリードし、プログラムを実行開始する。スタートアドレスはモード信号MD0〜MD2等によって指示される動作モードに応じて決定される。
《プロセスばらつきによる周波数変動の補償》
図2には内部発振回路モジュール5の第1の例が示される。内部発振回路モジュール5は、記憶回路としての制御データレジスタ(CDREG)20、前記CDREG20にロードされた制御情報をディジタル・アナログ変換するディジタル・アナログ変換回路(DAC)21、D/A変換回路21の出力を受けて制御電圧を形成するバイアス回路(BIAS)22、前記制御電圧に応ずる周波数で発振する電圧制御発振回路(VCO)23、電圧制御発振回路23で生成する内部クロック信号VCLKの周波数と外部クロック信号RCLKの周波数を比較可能な比較回路(CMP)24、比較回路24による比較結果を保持するモニタレジスタ(MREG)25、D/A変換の変換基準電圧などに用いるクランプ電源回路(CRMP)29、内部クロック信号又は外部クロック信号を選択するセレクタ(CSEL)26、セレクタ26の出力を分周する分周回路(CDIV)27を有する。前記制御データレジスタ20及びモニタレジスタ25はCPU2のアドレス空間に配置され、内部バス28を介してアクセス可能にされる。バス28は前記制御信号バスCBUS、内部アドレスバスiAB、内部データバスiDB、周辺アドレスバスPAB及び周辺データバスPDBを総称する。クロックセレクタ26のクロック選択はモード制御回路13によって制御される。分周回路27の分周比はリセット動作で初期値に設定され、その後、CPU2による命令実行を介して可変にされる。前記モニタレジスタ25は周波数設定モードによる周波数設定動作の終了を外部に通知するクロック取込み信号FNCKの出力レジスタにも兼用される。前記外部クロック信号RCLKの入力端子、クロック取込み信号FNCKの出力端子、及び内部クロック信号VCLKの出力端子は専用端子であっても兼用端子であってもよい。
モード制御回路MDCTLはパワーオンリセット時に、不揮発性メモリ6の所定領域6cdから制御情報を制御データレジスタ20にロードする。モード信号MD0〜MD2によって指示される動作モードが周波数設定モードであれば、リセット解除時にセレクタ26は外部クロック信号RCLKを選択し、CPU2は外部クロック信号RCLKを基にするクロック信号CLKに同期して周波数設定プログラムを実行する。CDREG20に初期セットされた制御情報に応じてDAC21が出力するDA変換出力に基づいて制御電圧が形成され、これによってVCO23の発振周波数が決まる。CPU2は定期的にモニタレジスタ25を参照し、周波数比較回路24による比較結果が一致したか否を判別する。不一致のときCPU2は制御データレジスタ20をアクセスして、内部クロック信号周波数を外部クロック信号周波数に一致させる方向に制御情報を更新する。判別結果が一致すると、CPU2は制御データレジスタ20の制御情報を不揮発性メモリ6の所定領域6cdに格納して、周波数設定プログラムの実行を終了する。周波数設定プログラムの実行を終了する時、CPU2はMREG25を介してクロック取込み終了信号FNCKを外部に出力する。これを受けて外部ではクロック信号RCLKの発生などを停止する。
モード信号MD0〜MD2によって指示される動作モードが通常モードであれば、リセット解除時にセレクタ26は内部クロック信号を選択する。周波数設定モードで取得されて不揮発性メモリ6に保存された制御情報はパワーオンリセット時に既に制御データレジスタ20にイニシャルロードされるので、リセット解除時には、その周波数設定モードで取得された制御情報に基づいてVCO23は発振動作を行うことができ、マイクロコンピュータ1は内部クロック信号VCLKで規定されるクロック信号CLKに同期して、データ処理が可能にされる。このように、不揮発性メモリ6の所定領域6cdに格納された制御情報を制御データレジスタ20にロードして再利用するので、常に前記外部クロック信号RCLKと同じ目的周波数の内部クロック信号VCLKを内部発振回路モジュール5だけで生成することができる。即ち、プロセスばらつきによりVCO23の発振特性に誤差を生じても水晶振動子の外付けや外部クロック信号の入力を必要とせずにVCO23を目的周波数で発振動作させる事ができる。プロセスばらつきによる発振特性の変動(発振周波数の変動)を補償することができる。
リセット解除時にモード信号MD0〜MD2によって指示される動作モードが第1テストモードであれば、セレクタ26は外部クロック信号を選択し、動作モードが第2テストモードであれば、セレクタ26は内部クロック信号を選択する。
図15には前述の内部発振周波数設定動作のフローチャートが例示される。電源印加及びモード信号MD0〜MD2の入力、並びに外部クロック信号RCLKが入力されて、マイクロコンピュータ1はパワーオンリセットされる(S1)。リセット解除されると、周波数設定モードを指示するモード信号MD0〜MD2の状態にしたがって、CPU2は周波数設定プログラムを実行開始する(S2)。CPU2は周波数設定プログラムにしたがってCDREG20に制御情報の初期値をセットする(S3)。その後、MREG25の値を読み出し(S4)、内部クロック信号周波数が外部クロック信号周波数に一致したかを判定し(S5)、不一致であればCDREG20に次の制御情報をセットする(S6)。一致を検出したときはCDREG20の制御情報を不揮発性記憶装置6の所定領域6cdに格納して、処理の終了を外部に通知する(S7)。その後はリセットを経て通常モード(ユーザモード)等で動作可能になる。
図3には前記比較回路24の一例が示される。ここに示される比較回路24は位相比較によって周波数の相異を検出しようとする。即ち、内部クロック信号VCLKと外部クロック信号RCLKの位相差を4個のリセット優先形式のRS型フリップフロップによって検出し、内部クロック信号VCLKが外部クロック信号RCLKの位相よりも進んでいるとき出力Xはハイレベル(論理値“1”)、遅れている時はローレベル(論理値“0”)にされ、それ以外の場合には出力Xは高インピーダンスにされる。モニタレジスタ25は位相比較結果を定期的に所定のタイミングでラッチする。特に図示はしないが、クロックカウンタとマグニチュードコンパレータを用いて比較回路24を構成してもよい。即ち、内部クロック信号VCLKをクロック端子に入力する第1カウンタと、外部クロック信号VCLKをクロック端子に入力する第2カウンタを設け、双方のカウンタに対し、並列的にカウンタクリア、カウント開始指示、カウント停止指示、カウント値出力、及び出力カウント値に対するマグニチュードコンパレータによる大小比較を行って、その比較結果をモニタレジスタ25に保持させれば良い。
図4には内部発振回路モジュール5の第2の例が示される。この例では、図2のCMP24及びMREG25に代えてサンプリング回路31を有する。サンプリング回路31は内部クロック信号VCLKをクロック端子に入力する第1カウンタ(CUNTi)31Aと、外部クロック信号VCLKをクロック端子に入力する第2カウンタ(CUNTo)31Bとを有する。このときCPU2は、周波数設定モードに応答して行う定期的な前記モニタレジスタ25のリード動作に代えて、第1及び第2カウンタ31A,31Bのクリア、カウント開始指示、カウント停止指示、カウント値リード、及びリード値比較の動作を定期的に行う。比較結果に応ずる動作は図2と同じであるからその詳細な説明は省略する。CPU2の処理負担は僅かに増えるが図2同様の効果を得ることができる。サンプリング回路31は、クロックカウンタを用いる構成に代えて、内部クロック信号と外部クロック信号の位相比較を行ない、その比較結果をラッチ回路に保持し、CPU2によりアクセス可能にする構成に置き換えても良い。このとき位相比較には図3の回路等を用いればよい。図4の内部発振回路モジュール5を利用する場合も内部発振周波数設定動作のフローは図15と同様になる。
図5には内部発振回路モジュール5の第3の例が示される。この例では周波数比較を外部で行い、周波数設定モードで必要なCPU2の制御プログラムを外部のテストホスト(THOST)36から入力する構成とした。テストホスト36等を介して外部からCPU2の制御プログラムを受取る通信インタフェース(COMIF)39と、外部で行なわれた比較結果を受取るラッチ回路(LAT)32を有する。外部には周波数比較を行うためにパルスジェネレータ(EXPG)33で生成される外部クロック信号RCLKと前記VCO23で生成される内部クロック信号VCLKの周波数比較を行う周波数比較回路(EXCMP)35が設けられる。マイクロコンピュータ1に周波数設定モードが設定されると、CPU2は外部クロック信号RCLKを利用してクロック同期動作され、周波数設定用の制御プログラムを通信インタフェース31を介して外部からダウンロードし、例えばRAM3の所定領域に格納する。CPU2はRAM3に格納した制御プログラムを実行し、所定インターバルでラッチ回路32に保持されている比較結果を取り込み、一致するまで、THOST36から、内部クロック信号周波数を外部クロック信号周波数に一致させる方向に更新された制御データを制御データレジスタ20に受取って内部クロック信号周波数を更新する処理を行う。その他の周波数設定動作は図2と同じであるからその詳細な説明を省略する。
特に図5では発振周波数精度の低い低精度発振回路(LPOSC)37を有し、クロックセレクタ(CSEL)38は前記発振回路37の発振出力、外部クロック信号RCLK、又は内部クロック信号VCLKを選択可能にされる。例えばクロック周波数設定モードでは外部クロック信号RCLKに代えて前記発振回路37の出力を選択してもよい。発振周波数精度が低いとはプロセスばらつき、電源電圧変動及び温度変化に対する発振周波数の変動を補償することを行っていないという意味である。VCOに関してはその詳細を後述するように電源電圧変動及び温度変化に対する発振周波数変動を補償できるようになっている。
図16には外部比較による内部発振周波数設定動作のフローチャートが例示される。電源印加及びモード信号MD0〜MD2の入力、並びに外部クロック信号RCLKが入力されて、マイクロコンピュータ1はパワーオンリセットされる(S11)。リセット解除されると、周波数設定モードを指示するモード信号MD0〜MD2の状態にしたがって、CPU2は所定のインタフェースプログラムを実行開始する(S12)。CPU2はTHOST36と通信を確立し周波数設定用の制御プログラムをRAM3に転送し、転送した周波数設定用の制御プログラムを実行開始する(S13)。CPU2はその制御プログラムにしたがって、外部から供給されてくる制御情報をCDREG20にセットする(S14)。THOST36は内部クロック信号周波数と外部クロック信号周波数とを比較する(S15)。マイクロコンピュータ1は外部の比較結果を取り込んで内部クロック信号周波数が外部クロック信号周波数に一致したかを判定し(S16)、不一致であればTHOST36よりCDREG20に次の制御情報を受取る(S17)。一致を検出したときはCDREG20の制御情報を不揮発性記憶装置6の所定領域6cdにストアして、処理の終了をTHOST36に通知する(S18)。その後はリセットを経て通常モード(ユーザモード)等で動作可能になる。
図6には内部発振回路モジュール5の第4の例が示される。この例では周波数比較結果に対する制御情報の更新をCPU2を用いず内部発振回路モジュール5内部で行うように構成した。周波数比較を行うために例えば前記サンプリング回路31、比較制御回路(CMOCTL)40、アップダウンカウンタ(UDCUNT)42、及び不揮発性レジスタ(NVREG)41を有する。モード制御回路MDCTLはパワーオンリセット時に、不揮発性レジスタ41から制御情報をアップダウンカウンタ42にプリセットする。これによってVCO23はプリセットされた制御情報に基いて形成されるバイアス電圧に従って発振動作可能にされる。リセット解除時にモード信号MD0〜MD2によって指示される動作モードが周波数設定モードであれば、比較制御回路(CMOCTL)40が起動され、また、セレクタ26は外部クロック信号RCLKを選択し、マイクロコンピュータ1は外部クロック信号RCLKを基にするクロック信号CLKに同期動作可能にされる。サンプリング回路31は内部クロック信号VCLKと外部クロック信号RCLKのカウント値をサンプリングし、比較制御回路40は前記カウント価を逐次入力して双方の大小比較を行う。大小比較結果が不一致の場合にはUDCUNT42に対するアップカウント又はダウンカウントを行って内部クロック信号の周波数を外部クロック信号の周波数に近付けるようにする。大小比較が一致の時は、UDCUNT42が保持する制御情報をNVREG41に内部転送して保持させ、外部に信号FNCKで周波数設定動作の終了を通知して、処理を終了する。
図17には前述のCPU2を用いずに周波数比較判定動作を行う図6の例による内部発振周波数設定動作のフローチャートが例示される。電源印加及びモード信号MD0〜MD2の入力、並びに外部クロック信号RCLKが入力されて、マイクロコンピュータ1はパワーオンリセットされる(S21)。リセット解除されると、周波数設定モードを指示するモード信号MD0〜MD2の状態にしたがって、CMPCTL40が動作を開始する(S22)。CMPCTL40はCDREG20に制御情報の初期値をセットする(S23)。その後、CMPCTL40はサンプリング回路31によるサンプリングデータを読み出し(S24)、内部クロック信号周波数が外部クロック信号周波数に一致したかを判定し(S25)、不一致であればCDREG20に次の制御情報をセットする(S26)。一致を検出したときはCDREG20の制御情報を不揮発性記憶装置6の所定領域6cdにストアして、処理の終了を外部に通知する(S27)。その後はリセットを経て通常モード(ユーザモード)等で動作可能になる。
図7には内部発振回路モジュール5の第5の例が示される。この例では、マイクロコンピュータ1の外付け不揮発性メモリ6Aに制御情報を格納するようにしたものである。不揮発性メモリ6Aはパワーオンリセット時における制御情報のイニシャルロード、周波数設定モードで取得された制御情報のストアに利用される。その他の構成は図2と同様である。外付け不揮発性メモリ6Aの利用は図4乃至図6の構成にも適用可能である。
《発振回路の動作電源電圧補償及び温度補償》
図8には図4の内部発振回路モジュール5に対応される詳細な回路例が示される。前記クランプ回路29は基準電圧発生回路(VRFG)45とボルテージフォロアアンプ(VFAMP)46によって構成される。前記基準電圧発生回路45は温度や電源電圧の変動に対して電圧変動が補償された基準電圧Vrefを発生する。基準電圧発生回路45は例えば一対のMOSトランジスタの閾値電圧の差を用いて基準電圧を発生する。前記ボルテージフォロアアンプ46は図9に例示されるように差動入力MOSトランジスタM1,M2を持つ差動アンプを主体に、一方の差動入力MOSトランジスタM1のゲートには基準電圧Vrefが供給され、他方の入力MOSトランジスタM2のゲートには出力MOSトランジスタM3のドレインが帰還されて構成される。スタンバイ信号STBYがハイレベルにされるとボルテージフォロアアンプ46は電流直流パスが遮断されて非活性にされる。前記クランプ回路29は温度や電源電圧Vccの変動に対して安定した(電圧変動が補償された)クランプ電圧Cvddを出力することができる。
クランプ電圧CvddはDAC21の変換基準電圧として利用される。DAC21は例えば、シリーズ抵抗Rとシャント抵抗rの抵抗網を有し、各シャント抵抗rの一端には制御情報によってオン・オフされるCMOSスイッチSWを介してクランプ電圧Cvddが印加される、所謂R2R形態回路構成とされる。CMOSスイッチSWはCDREG20の対応ビットによりスイッチ制御される。C1は安定化容量である。RWはCDREG20に対するリード・ライト制御信号である。
したがって、制御情報に従ってDAC21から出力される電圧Vbiasも温度や電源電圧Vccの変動に対して安定した電圧になる。前記D/A変換回路21の出力は低インピーダンスであるから、電圧Vbiasは図9に示される回路構成を有するボルテージフォロアアンプ(VFAMP)47を通してVCO23とBIAS22の動作電源電圧Vfddとされる。VCO23と共にBIAS22の動作電源電圧Vfddは温度や電源電圧Vccの変動に対して安定化される。要するにVCO23の動作電源電圧補償が行われる。
VCO23は奇数個のCMOSインバータ遅延段50から成るリングオシレータ部51を有する。CMOSインバータ遅延段50はCMOSインバータの動作電源側にはpチャンネル型の電流制限MOSトランジスタM5を有し、回路の接地電圧側にnチャンネル型の電流制限MOSトランジスタM6を有して構成される。電流制限MOSトランジスタM5のゲートにバイアス電圧VGPが供給され、電流制限MOSトランジスタM6のゲートにバイアス電圧VGNが供給されて、CMOSインバータ遅延段50のコンダクタンスが制御される。リングオシレータ部51はスタンバイ信号STBYがハイレベルのとき発振動作を停止し、スタンバイ信号STBYがローレベルに反転されると発振動作を開始する。CMOSインバータ遅延段50の過渡応答時間はバイアス電圧VGP,VGNによって制御され、これによってVCO23の発振周波数が制御可能にされる。C2は安定化容量である。
バイアス回路22はバイアス電圧VGP,VGNを形成し、温度変化によるその変動を補償するように構成される。すなわち、前記バイアス回路22は、動作電源電圧vfddをソースに受けゲート・ドレイン間が短絡されたpチャンネル型の第1MOSトランジスタM7と、回路の接地電圧vssをソースに受けゲート・ドレイン間が短絡されたnチャンネル型の第2MOSトランジスタM8と、第1MOSトランジスタM7のドレインに一端が結合され第2MOSトランジスタM8のドレインに他端が結合された抵抗素子Rfとから定電流回路を構成する。このバイアス回路22は、第1MOSトランジスタM7のドレイン電圧をバイアスVGPとして出力し、第2MOSトランジスタM8のドレイン電圧をバイアス電圧VGNとして出力する。図10に例示されるMOSトランジスタのVgs・Ids特性が示すように、MOSトランジスタには温度に対してIdsが一定とされる領域があり、この領域で第1MOSトランジスタM7及び第2MOSトランジスタM8を動作させるように抵抗Rfの値を決定している。これにより、第1MOSトランジスタM7及び第2MOSトランジスタM8には温度変化に対してドレイン・ソース間電流の変化が小さくされるゲート・ソース間電圧の条件が満足される。要するに、バイアス回路22は温度変化に対しても定電流を流す。VCO23はそのバイアス電圧VGP,VGNを電流制限MOSトランジスタM5,M6に受けてコンダクタンス制御されるから、バイアス回路22同様に温度変化に対しても定電流を流すことができ、これによって、内部クロック信号VCLKの周波数に対して温度補償を実現することができる。
バイアス回路22による温度補償は図10に例示されるような特性を満足するゲート・ソース間電圧を満足することが条件になるから、動作電源電圧vfddを大きく変化させることは不都合である。この点において、図8の構成は、周波数可変の範囲が大きく制限される。要するに、ほぼ一定周波数での用途に限定される。
図18には図8の構成におけるVCOの温度依存性に関するシミュレーション結果が例示される。VCO電圧すなわち制御電圧が異なる幾つかの例を挙げており、例示された発振周波数は対応する制御電圧に対して温度依存性が緩和されている。前述したように、図8の構成は、ほぼ一定周波数での用途に限定されており、図18では4種類の回路のシミュレーション結果を示していることになる。
図8の例ではリングオシレータ部51による発振出力に対してレベルシフタ(SHFT)52でvfddレベルからからVccレベルへのレベルシフトが行なわれ、レベルシフト出力は分周器(DIV)53で1/2分周されて内部クロック信号VCLKとされる。分周器53はデューティー補正を考慮して設けられており、更にタイミングが厳しければ分周比を大きくし、また、タイミングが厳しくなければ分周器53を不採用にしてもよい。尚、分周器53による分周比を大きくするということはリングオシレータ部51の発振周波数を高くすることを意味する。
尚、図8においてRW1はカウンタ31Aに対するリード・ライト制御信号、RW2はカウンタ31Bに対するリード・ライト制御信号を意味する。スタート信号STARTはカウンタ31A,31Bのクリア端子(clear)に入力され、例えばローレベルでカウント値クリア、ハイレベルでカウント開始を指示する。
図11には図6の内部発振回路モジュール5に対応される詳細な回路例が示される。アップダウンカウンタ42は、カウンタ初期化信号CINTにてクリアされ、データバスIDBを介してCPU2から初期値がプリセット可能にされる。クリア又はプリセットされたアップダウンカウンタ42は、CMPCTL40からのアップクロックUCcuntとダウンクロックDCcuntによってアップカウント又はダウンカウントされる。CMPCTL40はスタート信号STARTによって比較動作が指示され、比較動作一致を示すロックモニタ信号LMNTは周波数設定動作終了信号FNCKと不揮発性レジスタNVREGに対する書き込みパルスとして利用される。
図12には図11のUDCUNT42に代えて採用可能なカウンタ(CUNT)42Aが例示される。カウンタ42Aのカウント動作はアップカウントのみとされる。カウンタ42Aに初期設定されるプリセット値は期待値より小さくされることが必要になる。CMPCTL40による不一致の比較判定毎にカウントクロックCcuntが変化されることによってカウンタ42Aがカウントアップされる。
図13には図11の変形例が示される。図11との相違点はUDCUNT42に代えて制御データレジスタ(CDREG)20Aを採用した事である。CDREG20Aは内部データバスIDBを介してCMPCTL40によりアクセス可能にされる。CMPCTL40に対するアクセス指示はレジスタアクセス信号RACCにより与えられる。この構成において、CMPCTL40は、サンプリング回路31によるクロックカウント値の比較結果の大小に応じてCDREG20Aに制御情報を書き換える。クロックカウント値の差が大きければ制御情報の更新量の絶対値を大きくする。CDREG20Aに対するプリセットもCMPCTL40が行ってもよい。
図14にはバイアス回路の別の例が示される。図8等の例では図10のように温度に対する定電流領域の使用に限定したが、ここではそのような制限を設けない時の例である。バイアス回路22はバイアス電圧Vbiasによってコンダクタンス制御されるnチャンネル型のMOSトランジスタM10を3個並列に有し、MOSトランジスタM10にはゲート・ドレインが接続された負荷MOSトランジスタM11を介してVfddからVssへの電流経路が形成される。その電流径路の中間ノードNcは一方の制御電圧VGPとされる。また、前記中間ノードNcをゲートに受けるpチャンネル型MOSトランジスタM12とゲート・ドレインが接続された負荷MOSトランジスタM13によって別の電流径路が形成され、MOSトランジスタM13のドレインが他方の制御電圧VGNとされる。バイアス回路22の入力電圧Vbiasのレベルが高くなると、ノードNcのレベルが下がり、MOSトランジスタM12のコンダクタンスが大きくなり、これによってVGPのレベルが下がり、VGNのレベルが上昇する。この結果、図8等で説明したCMOS遅延段50の動作電流が増えて発振周波数が高くされる。バイアス回路22の入力電圧Vbiasのレベルが低くなると、その逆で、ノードNcのレベルが上がり、VGPのレベル上昇、VGNのレベル降下を生じ、この結果、図8等で説明したCMOS遅延段50の動作電流が減って発振周波数が低くされる。図14の例では温度補償という観点より、温度補償回路55を設け、ノードNcに温度補償に必要な電流を供給する。特に図示はしないが、温度補償回路55は、例えばVCOのVLT(論理閾値電圧)変動による周波数変動が問題になる場合は、論理閾値電圧発生回路とオペアンプ等を用いて構成することができる。尚、56はモストランジスタM10のゲート入力を制御する選択スイッチ回路であり、端子SWONからの入力と端子inからの入力が選択可能である。端子SWONからの入力が選択されると対応するMOSトランジスタM10のコンダクタンスはVbiasとは無関係に一定に保持される。M14、M15は制御電圧VGPをVdff、VGNをVssに固定するMOSトランジスタである。
《VLTに着目した温度依存補償》
図19にはVLTに着目して温度補償を行う内部発振回路モジュール5の回路例が示される。主としてここではBIAS5の別の回路例について詳細に説明する。ここではDAC21にも別の回路構成を採用しており、制御情報TRM0〜TRM5の値に従ってスイッチ回路SW0〜SW63で直列抵抗回路60の分圧タップを選択して、ノードNdacにアナログ電圧を得る。61で示される回路はノードNdacのアナログ電圧に対応した電流を生成する回路であり、その電流値を信号SELで切り換え可能になっている。
バイアス回路22は3個のオペアンプ62〜64を有する。オペアンプ62、64は図20に例示される回路構成を有する。オペアンプ63は図21に例示される回路構成を有する。オペアンプ62の出力によってコンダクタンスが制御されるpチャンネル型MOSトランジスタM20と前記直列抵抗回路60は電源電圧Vccと回路の接地電圧Vssとの間に電流経路を形成する。オペアンプ62は反転入力端子Nに前記直列抵抗回路60による分圧電圧が帰還され、非反転入力端子にクランプ回路29の出力電圧Cvddが供給され、その差電圧に応ずる出力電圧によってMOSトランジスタM20のコンダクタンスを制御する。要するに、DAC21の変換基準電圧である直列抵抗回路60の動作電圧がクランプ電圧Cvddにされる。オペアンプ63はノードNdacのアナログ変換電圧Vbiasに等しい電圧をMOSトランジスタM21のドレインに形成するように当該MOSトランジスタM21のコンダクタンスを制御する。よってこのMOSトランジスタM21に流れる電流は上記アナログ変換電圧Vbiasと回路61内の抵抗によって決まり、電源電圧Vccに対して一定な定電流性を有する。またその電流は所定のミラー比でMOSトランジスタM22に伝達される。MOSトランジスタM22はVccとVssの間で直列されたnチャンネル型MOSトランジスタM23,M24と共に電流経路を構成している。前記MOSトランジスタM22のドレイン電圧は一方の制御電圧VGNとしてVCO23に供給される。
バイアス回路22は論理閾値電圧模擬回路65を有する。論理閾値電圧模擬回路65はCMOSインバータの入出力を短絡させた回路構成を有し、短絡入出力端子Nioにはその動作電源電圧に対する論理閾値電圧(VLT)を形成する。前記論理閾値電圧模擬回路65はVccとVssの間で直列されたpチャンネル型MOSトランジスタM26と電流経路を形成する。オペアンプ64は、その反転入力端子(N)に論理閾値電圧模擬回路65のノードNioが帰還接続され、非反転入力端子(P)にクランプ回路29の出力電圧Cvddが供給され、その差電圧に従ってMOSトランジスタM26のコンダクタンスを負帰還制御する。MOSトランジスタM26のドレインにはCvddとVLTによって決まる電圧が形成される。例えば2×Cvddのような電圧が形成される。この電圧はVCO23の動作電源電圧とされる。
バイアス回路22はCMOS遅延段50のダミー回路50daを有する。ここではCMOS遅延段50は電流制限MOSトランジスタM5,M6が中央部に配置され、その外側にCMOSインバータを構成するpチャンネル型MOSトランジスタM28とnチャンネル型MOSトランジスタM29が配置されている。ダミー回路50daはMOSトランジスタM28da,M5da,M6da,M29daによって構成される。MOSトランジスタM29daのゲートにはMOSトランジスタM26のドレイン電圧が供給され、MOSトランジスタM28daのゲートにはVssが供給され、MOSトランジスタM6daのゲートには前記一方の制御電圧VGNが供給され、これによって前記MOSトランジスタM5daに流れる電流をVCO23の各CMOS遅延段50に鏡映可能にするために、前記MOSトランジスタM5daのコモンゲート・ドレイン端子の電圧を他方の制御電圧VGPとする。
上記MOSトランジスタM5da、M6daに流れる電流は、前記MOSトランジスタM21に流れる定電流のミラー電流であり、よって制御電圧VGN、及びVGPを受けるVCO23内の各CMOS遅延段50における電流制限MOSトランジスタM5,M6のドレイン電流も定電流性を有することになる。該定電流によって次段のCMOS遅延段50におけるMOSトランジスタM28,M29から成るCMOSインバータのゲート容量が充放電駆動され、その充放電時定数が遅延要素となる。上記定電流は、クランプ電圧Cvddを基準に形成されたD/A変換電圧Vbiasと抵抗とから生成され、またVCO23の動作電源電圧もCvddを基準として形成された電圧であるため、プロセスばらつきに対する補償と電源変動に対する補償を実現できる。また更に論理閾値電圧模擬回路65によって、その論理閾値電圧VLTがCvddと等しくなるような電圧がMOSトランジスタM26から出力され、これがVCO23の動作電源電圧として与えられるため、CMOS遅延段50におけるMOSトランジスタM28,M29から成るCMOSインバータの論理閾値電圧を常に一定に制御することができ、温度変化に対してもリングオシレータ部の発振周波数変動を補償できる。
例えば、温度上昇に伴って上記CMOSインバータの論理閾値電圧が上昇しようとする場合、MOSトランジスタM26のドレイン電圧、すなわちVCO23の動作電源電圧は低下し、上記CMOSインバータの論理閾値電圧の変動を抑制する。温度上昇に伴ってCMOSインバータの論理閾値電圧が上昇するということは、nチャンネル型MOSトランジスタに対するpチャンネル型MOSトランジスタの電流駆動能力が相対的に向上したことを意味する。電源電圧を低下させて論理閾値電圧を一定に制御することは、pチャンネル型MOSトランジスタ側が動作開始した時のソース・ゲート間電圧VGSを狭める方向に制御することとなり、電流駆動能力の向上を抑制することになる。
CMOS遅延段50の出力遅延は、前記したように電流制限MOSトランジスタM5,M6の定電流による次段ゲート容量の充放電時間が主要素であるが、各CMOS遅延段50の出力が反転開始した直後はCMOSインバータを構成するMOSトランジスタM28,M29の特性も介在する。例えばCMOS遅延段50の出力が0Vから上昇開始するときは、MOSトランジスタM28がOFF状態からON状態へ移行するが、この移行期間中MOSトランジスタM28の出力電流特性が出力電圧の上昇に影響を及ぼすことになる。出力が下降する場合におけるMOSトランジスタM29に関しても同様である。よって上記の如くCMOSインバータの論理閾値電圧を一定に制御することによって、CMOS遅延段50の遅延特性におけるMOSトランジスタM28,M29の影響を一定とすることができる。これにより、制御電圧VGN、VGP及びVCO23の動作電源電圧は、クランプ電圧Cvddを基準に形成されたD/A変換電圧Vbias、及び前記論理閾値電圧VLTと相関する電圧にされるから、前述のようにプロセスばらつきに対する補償と電源変動に対する補償を実現する。更に、論理閾値電圧模擬回路65がリングオシレータ部にCMOS回路の論理閾値電圧変動による電流変化を相殺する方向の電流を与えるから、温度変化によるリングオシレータ部の発振周波数変動を補償することもできる。
尚、図19では分周器の図示を省略している。
図22には図19の構成におけるVCOの温度依存性に関するシミュレーション結果が例示される。例示された発振周波数において温度依存性が緩和されている。
《周波数設定工程》
図23には前記マイクロコンピュータ1の製造工程における周波数設定工程が例示される。ここではマイクロコンピュータ1は汎用マイクロコンピュータを想定する。即ち、図19に例示されるように設定可能な周波数が限定的でない内部発振回路モジュールを採用するマイクロコンピュータを対象とする。
製造元では、ウェーハプロセス(P1)、テスト(P2)を行った後、不揮発性メモリ6の所定領域6cdに、顧客仕様に合わせてデフォルト動作周波数を決定する制御情報が書き込まれる(P3)。尚、テスト(P2)では、内部発振を用いないで外部クロック信号を用いてテストを行い、或いは最初テスタで内部発振周波数をあわせ込み、その後、内部発振周波数を変更しながら行っても良い。マイクロコンピュータの出荷後、デフォルト設定周波数に対しテストなどでユーザが使用したい周波数が変わったときは、周波数設定モードによりユーザ任意の周波数を内部発振周波数に設定するように制御情報を取得し、取得した新たな制御情報によって所定領域6cdの制御情報を書き換える(P4)。その後、通常モード(ユーザモード)では設定された内部発振周波数でシステム動作可能になる。
図24にはマイクロコンピュータ1の製造工程における周波数設定工程の別の例が示される。ここではカスタムLSIを想定する。即ち、図8に例示されるように設定可能な周波数が限定的な内部発振回路モジュールを採用するマイクロコンピュータであってもよい。
製造元では、ウェーハプロセス(P1)、テスト(P2)を行った後、不揮発性メモリ6の所定領域6cdに、顧客が要求する任意動作周波数を決定する制御情報が書き込まれる(P3A)。出荷後は、通常モード(ユーザモード)において設定された内部発振周波数でシステム動作可能になる。出荷後の周波数変更を想定する必要はない。
《クロック信号周波数の動的調整》
図25には内部発振クロック周波数を逐次動的に調整する内部発振回路モジュールを備えたマイクロコンピュータ1が示される。ここに示す内部発振回路モジュール5は、周波数設定のために外部クロック信号RCLKを必要とせず、周期的にパルスの一定区間を発生する区間発生回路(ITVG)71を設け、周期的に発生するパルスの一定区間毎に前記内部クロック信号VCLKを計数し計数値を期待値に一致させる方向に制御情報を逐次更新する比較制御回路(CMPCTL)70を採用する。ここでは、制御情報を格納する記憶回路として、CPU2によりプリセット可能なアップダウンカウンタ(UDCUNT)42を用い、前記比較制御回路70によってアップダウンカウンタ(UDCUNT)42アップカウントとダウンカウントを制御するようになっている。
図26には図23の内部発振回路モジュール5に対応される詳細な回路例が示される。前記区間発生回路(ITVG)71は、パルス発生回路(PLSG)72と、パルス発生回路72から発生されるパルスの所定位相点から充電動作又は放電動作の何れかを行なうCR時定数回路(CRTC)73と、CR時定数回路73で得られる電圧が規定電圧に到達するのを検出する検出回路(DTC)74とを有する。
パルス発生回路72は低精度の内部発振器(LPOSC)76とその出力クロック信号を計数するリングカウンタ(RGCUNT)77から成る。リングカウンタ77の最上位ビットDnはカウントアップパルスFstrを出力する。カウントアップパルスFstrはカウントアップまでローレベルとされ、カウントアップ毎にハイレベルにされる。
CR時定数回路73は抵抗Rtcと容量Ctcの並列回路を有し、pチャンネル型のMOSスイッチM31を介してクランプ電圧Cvddに接続される。MOSスイッチM31はカウントアップパルスFstrのハイレベルによってオン状態にされ、これによってCtcが充電され、カウントアップパルスFstrのローレベルによってオフ状態にされ、容量Ctcが放電される。時定数回路73によって得られる充放電電圧はNtmとして図示される。充放電時間を規定する時定数は抵抗Ttcの値をトリミングすることによって決定される。電圧トリミング手法は特に制限されずアルミマスタスライス又はヒューズプログラムによって行なうようになっている。尚、抵抗Rtcの抵抗値はMOSスイッチM31のオン抵抗が見えないくらいのサイズにされる。要するに前者は後者を無視し得る程に大きな抵抗値を持つ。
検出回路74は、前記充放電電圧Ntmを、基準電圧Vrefを抵抗分圧して得られる判定レベルVintと比較する。Cstpは検出回路74による比較結果信号である。
CRTC73による充電電圧はクランプ電圧Cvddによって規定され、温度変動及び電源電圧Vcc変動に対して安定化されている。抵抗Rtc及び容量Ctcによて規定される時定数も温度や電源電圧Vcc変動に依存しない。また判定レベルVintも温度や電源電圧Vcc変動に依存しない。従って、図27に示されるように、時定数回路の放電開始から電圧Ntmが判定レベルVintに到達する時間Tsは一定となる。Fstrの立下りから検出回路による一致出力(Cstpの立下り)までが一定区間となる。時間Tsは例えば100msのような時間とされる。
CMPCTL70は内部クロック信号VCLKのクロックカウンタ80を有し、このクロックカウンタ80は、信号Fstrの立下りタイミングでクリアされ、その後、信号Cstpの立下りまで内部クロック信号VCLKを計数する。この計数期間は時間Tsに一定期間とされる。しかもこの期間は温度や電源電圧Vcc変動に依存しない一定期間とされる。この期間Tsで計数された計数値は、比較回路82で周波数設定レジスタ81のプリセット値と比較される。比較回路82はマグニチュードコンパレータとされ、比較結果の大小に応じてFstrを計数クロックとしてUDCUNT42をアップカウント又はダウンカウントし、信号Fstrのサイクル毎に、制御情報が、+1インクリメント、−1デクリメント、又は前値保持される。これにより、パルスの一定区間Tsを基準に、パルスFstrの周期毎に発振回路23の発振周波数を、目的周波数に一致するように、しかも温度や電源電圧Vccの変動に影響されないように、動的に調整することができる。
図28には区間発生回路(ITVG)71の別の例が示される。CR時定数回路73は抵抗Rtcと容量Ctcの直列回路を有し、抵抗Rtcはクランプ電圧Cvddに接続され、前記容量Ctcにnチャンネル型のMOSスイッチM32が並列接続されて構成される。MOSスイッチM32はカウントアップパルスFstrのハイレベルによってオン状態にされ、これによってCtcが放電され、カウントアップパルスFstrのローレベルによってオフ状態にされ、容量Ctcが充電される。時定数回路73によって得られる充放電電圧はNtmとして図示される。充放電時間を規定する時定数は抵抗Ttcの値をトリミングすることによって決定される。その他の構成は図26と同じである。
CRTC73による充電電圧はクランプ電圧Cvddによって規定され、温度変動及び電源電圧Vcc変動に対して安定化されている。抵抗Rtc及び容量Ctcによて規定される時定数も温度や電源電圧Vcc変動に依存しない。また判定レベルVintも温度や電源電圧Vcc変動に依存しない。従って、図29に示されるように、時定数回路の充電開始から電圧Ntmが判定レベルVintに到達する時間Tsは一定となる。Fstrの立下りから検出回路による一致出力(Cstpの立下り)までが一定区間となる。時間Tsは例えば100msのような時間とされる。従って図28の構成についても図26と同様に、パルスの一定区間Tsを基準に、パルスFstrの周期毎に発振回路23の発振周波数を、目的周波数に一致するように、しかも温度や電源電圧Vccの変動に影響されないように、動的に調整することができる。
以上説明した内蔵発振回路モジュールを半導体集積回路に適用することにより、以下の効果を得る。ユーザ任意の内蔵クロック信号を生成できるので、外部に水晶振動子や容量等の部品が必要なくなり、ボード設計も容易になる。
製造プロセスのばらつき、温度変化、電源変動に対して安定な周波数を内部発振にて得ることができる。
周波数サンプリング用の端子は、他の端子とマルチプレクスできるので水晶振動子を用いる場合に比べて外部端子を2本減らすことができる。
半導体集積回路の顧客が発振周波数を設定できるので、顧客による応用システムの設計期間に余裕ができ、また、応用システムの設計に対してもフレキシビリティが向上する。
周波数をマイクロコンピュータの設計段階で作り込む必要がなく、汎用的なマイコン設計ができるので設計コスト等が削減ができる。
振動子用の端子が無いので、EMS、EMI特性を向上することができる。また、振動子を用いないので、低消費電力化が可能になる。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、不揮発性メモリは電気ヒューズであってもよい。図26のPLSG72は半導体集積回路の外付け回路で構成してもよい。半導体集積回路はマイクロコンピュータに限定されず、CPUを有するシステムオンチップのLSIなど代表されるように同期動作用にクロック信号を必要とする半導体集積回路に広く適用することができる。基準電圧発生回路はバイポーラトランジスタを用いたバンドギャップ型基準電圧発生回路であってもよい。マイクロコンピュータに代表されるデータ処理LSIの内蔵回路モジュールは図1に限定されず適宜変更可能である。
1 マイクロコンピュータ
2 CPU
5 内部発振回路モジュール
6 不揮発性メモリ(不揮発性記憶装置)
6A 不揮発性メモリ
6cd 所定領域
13 モード制御回路
20 制御データレジスタ
21 ディジタル・アナログ変換回路
22 バイアス回路
23 電圧制御発振回路
24 比較回路
25 モニタレジスタ
26 セレクタ
27 分周回路
29 クランプ回路
VCLK 内部クロック信号
RCLK 外部クロック信号
31 サンプリング回路
32 ラッチ回路
33 パルスジェネレータ
35 周波数比較回路
36 テストホスト
37 低精度発振回路
40 比較制御回路
41 不揮発性レジスタ
42 アップダウンカウンタ
45 基準電圧発生回路
46、47 ボルテージフォロアアンプ
Vref 基準電圧
Cvdd クランプ電圧
Vbias D/A変換電圧
VGP,VGN 制御電圧
50 CMOSインバータ遅延段
51 リングオシレータ部
52 レベルシフタ
53 分周器
65 論理閾値電圧模擬回路
70 比較制御回路
71 区間発生回路
72 パルス発生回路
73 CR時定数回路
74 検出回路
80 クロックカウンタ
81 周波数設定レジスタ
82 比較回路

Claims (28)

  1. 記憶回路と、
    外部で生成される外部クロック信号の周波数に内部クロック信号の周波数を一致させる制御情報を生成し前記記憶回路に格納する論理回路と、
    前記記憶回路に保持された制御情報に基づいて内部クロック信号を生成する発振回路と、
    前記制御情報を格納する不揮発性記憶装置と、
    端子を介して前記外部クロック信号が供給され、前記外部クロック信号の周波数に前記内部クロック信号の周波数を一致させるための前記制御情報を生成する第1動作モードと、
    前記発振回路が前記制御情報に基づいて前記内部クロック信号を生成し、前記論理回路に供給する第2動作モードと、を有する半導体集積回路であって
    前記発振回路は、
    前記第1動作モードで生成された前記制御情報に基づいて、前記内部クロック信号の発振周波数を制御可能な電圧制御発振回路と、
    前記制御情報を変換基準電圧に対してアナログ変換するD/A変換回路と、
    前記D/A変換回路の出力電圧に基づいてバイアス電圧を形成するバイアス回路と、
    前記端子を介して供給された外部クロック信号と、前記電圧制御発振回路が生成したクロック信号のいずれかを前記論理回路に供給するための選択回路と、を有し、
    前記電圧制御発振回路は、CMOS回路形式のリングオシレータ部を有し、当該リングオシレータ部に対する電流制御用の前記バイアス電圧によって発振周波数が制御され、
    前記バイアス回路は、前記電圧制御発振回路にCMOS回路の論理閾値電圧変動を抑制する方向の動作電源電圧を印加し、
    前記第1動作モードのとき、前記論理回路は、前記端子を介して外部から供給される外部クロック信号の周波数に前記内部クロック信号の周波数を一致させる方向に制御情報を更新することで、前記内部クロック信号の周波数を調整するための前記制御情報を生成し、
    前記内部クロック信号を内部回路の同期動作に用い、
    前記不揮発性記憶装置に格納された前記制御情報は前記半導体集積回路のリセット後、前記記憶回路にロードされ、
    前記外部クロック信号が供給される端子は汎用入出力ポートを介して他の信号に利用可能にされる兼用端子である、ことを特徴とする半導体集積回路。
  2. 前記第1動作モードとは、周波数設定モードであり、
    前記第2動作モードとは、通常モードであり、
    前記第1動作モードと前記第2動作モードは、半導体集積回路の外部から供給されるモード信号に応じて決定され
    記発振回路が生成した内部クロック信号は、前記半導体集積回路の外部に出力可能とされ、
    前記論理回路は、前記モード信号に応じて前記制御情報を生成することを特徴とする請求項1記載の半導体集積回路。
  3. 前記第1動作モードのとき、前記端子から入力される外部クロック信号に同期して制御情報を生成し格納する動作を行うことを特徴とする請求項2記載の半導体集積回路。
  4. 前記第1動作モードのとき、前記論理回路は外部クロック信号に同期して制御情報を生成する動作を行うことを特徴とする請求項2記載の半導体集積回路。
  5. 前記第1動作モードのとき、リセット解除後に前記記憶回路に初期値が設定され、前記外部クロック信号の周波数に前記内部クロック信号の周波数を一致させる方向に前記記憶回路の値を更新することを特徴とする請求項3または4記載の半導体集積回路。
  6. さらに、前記内部クロック信号及び前記外部クロック信号をサンプリングするサンプリング回路を有し、
    前記論理回路は、前記サンプリング回路でサンプリングされた情報を用いて前記内部クロック信号と前記外部クロック信号の周波数比較を行い、前記内部クロック信号の周波数を前記外部クロック信号の周波数に一致させる方向に制御情報を生成し、
    前記サンプリング回路は、前記内部クロック信号を入力する第1カウンタと、前記外部クロック信号を入力する第2カウンタとを有し、前記第1カウンタ値と前記第2カウンタ値とを比較することで周波数比較を行うことを特徴とする請求項1乃至4の何れか1項に記載の半導体集積回路。
  7. 前記論理回路はCPUであり、前記記憶回路はCPUによってアクセス可能なレジスタであることを特徴とする請求項5または6記載の半導体集積回路。
  8. さらに、前記内部クロック信号と前記外部クロック信号の周波数の相異を比較する比較回路を有し、
    前記論理回路は前記比較回路による比較結果を用いて前記内部クロック信号周波数を前記外部クロック信号周波数に一致させる制御情報を生成することを特徴とする請求項1記載の半導体集積回路。
  9. 前記記憶回路はカウンタであり、
    前記論理回路は前記内部クロック信号と前記外部クロック信号の周波数の相異を比較し、比較結果を用いて前記カウンタをアップカウント又ダウンカウントすることを特徴とする請求項1記載の半導体集積回路。
  10. 前記論理回路は、前記内部クロック信号と前記外部からの外部クロック信号の周波数比較結果を前記半導体集積回路の外部から入力し、入力した比較結果を参照して内部クロック信号周波数を外部クロック信号周波数に一致させる制御情報を生成することを特徴とする請求項1記載の半導体集積回路。
  11. 前記電圧制御発振回路は、前記D/A変換回路の出力電圧に基づいて決定される電圧を動作電源電圧とし、前記バイアス電圧によって発振周波数が制御されることを特徴とする請求項1または5記載の半導体集積回路。
  12. 前記D/A変換回路の出力電圧は、ボルテージフォロアアンプを介して前記電圧制御発振回路及び前記バイアス回路の動作電源電圧として供給されることを特徴とする請求項11記載の半導体集積回路。
  13. さらに、電源電圧と温度の変動に対する電圧変動が補償された基準電圧を発生する基準電圧発生回路を有し、
    前記D/A変換回路は前記基準電圧を変換基準電圧として入力することを特徴とする請求項11記載の半導体集積回路。
  14. 前記バイアス回路は、前記発振回路にCMOS回路の論理閾値電圧変動を抑制する方向の動作電源電圧を印加して温度変化によるリングオシレータ部の発振周波数の変動を補償することを特徴とする請求項記載の半導体集積回路。
  15. 前記電圧制御発振回路はリングオシレータ部を構成する奇数段のCMOSインバータ遅延段を有し、
    前記バイアス回路は、前記CMOSインバータ遅延段の論理閾値電圧を模擬する論理閾値電圧模擬回路部を有し、前記論理閾値電圧模擬回路の出力を用いて発振回路の動作電源電圧を変化させることを特徴とする請求項14記載の半導体集積回路。
  16. さらに、電源電圧と温度の変動に対する電圧変動が補償された基準電圧を発生する基準電圧発生回路を有し、前記D/A変換回路は前記基準電圧を変換基準電圧として入力することを特徴とする請求項14記載の半導体集積回路。
  17. 前記発振回路から出力されるクロック信号を分周する可変分周回路を有し、
    前記可変分周回路は、前記選択回路の出力を入力され、前記第2動作モードのとき、前記内部クロック信号を分周して出力することを特徴とする請求項1または5記載の半導体集積回路。
  18. 以下の特徴を有する半導体集積回路であって、
    中央処理装置と、
    記憶回路と、
    前記記憶回路に保持された制御情報に基づいて内部クロック信号を生成する発振回路と、
    前記制御情報を格納する不揮発性記憶装置と、
    前記発振回路で生成される前記内部クロック信号を第1端子を介して外部へ出力し、前記内部クロック信号の周波数を、前記半導体集積回路の外部で生成されて第2端子から供給される外部クロック信号の周波数に一致する方向に制御する制御情報を生成する周波数設定モードと、
    前記周波数設定モードのときに生成された前記制御情報に基づいて、前記発振回路が内部クロック信号を生成し、前記内部クロック信号を前記中央処理装置へ供給する通常モードと、を有し、
    前記発振回路は、
    前記周波数設定モードで生成された前記制御情報に基づいて、前記内部クロック信号の発振周波数を制御可能な電圧制御発振回路と、
    前記制御情報を変換基準電圧に対してアナログ変換するD/A変換回路と、
    前記D/A変換回路の出力電圧に基づいてバイアス電圧を形成するバイアス回路と、
    前記外部クロック信号と、前記電圧制御発振回路により発振周波数が制御された前記内部クロック信号の何れかを選択するための選択回路と、
    を有し、
    前記電圧制御発振回路は、CMOS回路形式のリングオシレータ部を有し、当該リングオシレータ部に対する電流制御用の前記バイアス電圧によって発振周波数が制御され、
    前記バイアス回路は、前記電圧制御発振回路にCMOS回路の論理閾値電圧変動を抑制する方向の動作電源電圧を印加し、
    前記周波数設定モードのとき、前記中央処理装置は前記外部クロック信号の周波数に前記内部クロック信号の周波数を一致させる方向に制御情報を更新することで、前記内部クロック信号の周波数を調整するための前記制御情報を生成し、
    前記通常モードのとき、前記不揮発性記憶装置に格納された前記制御情報が半導体集積回路のリセット後前記記憶回路にロードされ、前記中央処理装置が前記内部クロック信号に同期して動作可能とされ
    前記第1端子及び前記第2端子は汎用入出力ポートを介して他の信号の入出力に利用可能にされる兼用端子とされ、
    記内部クロック信号は、前記第1端子を介して前記周波数設定モードで前記半導体集積回路の外部に出力可能とされることを特徴とする半導体集積回路。
  19. 記憶回路と、
    外部から端子を介して入力される所定のパルス信号に基づいて内部クロック信号の周波数を調整する制御回路と、
    前記記憶回路に保持された制御情報に基づいて内部クロック信号を生成する発振回路と、
    前記制御情報を格納する不揮発性記憶装置と、を有し、
    前記発振回路は、
    内部クロック信号周波数の設定モードで生成された前記制御情報に基づいて前記内部クロック信号を発生し、CMOS回路形式のリングオシレータ部を有し、前記リングオシレータ部に対する電流制御用の前記バイアス電圧によって制御される電圧制御発振回路と、
    前記制御情報を変換基準電圧に対してアナログ変換するD/A変換回路と、
    前記D/A変換回路の出力電圧に基づいてバイアス電圧を形成し、前記電圧制御発振回路にCMOS回路の論理閾値電圧変動を抑制する方向の動作電源電圧を印加するバイアス回路と、
    前記端子を介して入力される所定のパルス信号と、前記電圧制御発振回路が生成したクロック信号のいずれかを選択するための選択回路と、
    前記選択回路の出力を入力し、通常動作時に、前記内部クロック信号を分周して、任意の周波数に変更可能な可変分周器と、を有し、
    前記制御回路は、前記内部クロック信号周波数の設定モードの時、前記内部クロック信号の周波数と前記所定のパルス信号との周波数比較を行い、前記所定のパルス信号の周波数に一致するように制御するための前記制御情報を生成し、
    前記生成された制御情報は、制御情報生成の終了時に、前記不揮発性記憶装置に格納され、
    前記不揮発性記憶装置に格納された前記制御情報は、前記通常動作時にリセット後に前記記憶回路にロードされ、
    前記通常動作時に、前記発振回路は前記内部クロック信号周波数の設定モードで生成された前記制御情報に基づいて内部クロック信号を生成し、内部回路の同期動作に用い、
    前記所定のパルス信号が供給される端子は汎用入出力ポートを介して他の信号の入出力に兼用される端子である、ことを特徴とする半導体集積回路。
  20. 前記制御回路は、動的に内部クロック信号を調整することが可能であることを特徴とする請求項19記載の半導体集積回路。
  21. 前記制御回路は、前記内部クロック信号の周波数を調整によって前記制御情報を逐次更新することが可能であることを特徴とする請求項20記載の半導体集積回路。
  22. 前記可変分周器は、前記制御回路による命令実行によって、前記内部クロック信号を任意の周波数に調整することが可能であることを特徴とする請求項21記載の半導体集積回路。
  23. 中央処理装置と、
    中央処理装置を含む内部回路の動作に用いる内部クロック信号を生成可能な内部発振回路モジュールと、を有し、
    前記内部発振回路モジュールは、
    制御情報を格納するレジスタと、
    設定モードで生成された前記制御情報に基づいて前記内部クロック信号の発振周波数が制御される電圧制御発振回路と、
    前記制御情報を変換基準電圧に対してアナログ変換するD/A変換回路と、
    前記D/A変換回路の出力電圧に基づいて、前記制御情報に応じたバイアス電圧を形成するバイアス回路と、
    前記電圧制御発振回路の出力を分周するための分周器と、
    端子を介して供給された外部クロック信号と、前記内部発振回路モジュールで生成された内部クロック信号とのいずれかを選択する選択回路と、を有し、
    前記電圧制御発振回路は、CMOS回路形式のリングオシレータ部を有し、当該リングオシレータ部に対する電流制御用の前記バイアス電圧によって発振周波数が制御され、
    前記バイアス回路は、前記電圧制御発振回路にCMOS回路の論理閾値電圧変動を抑制する方向の動作電源電圧を印加し、
    設定モードのとき、前記中央処理装置は、前記端子を介して外部から供給される外部クロック信号の周波数に前記内部クロック信号の周波数を一致させる方向に制御情報を更新することで、前記内部クロック信号の周波数を調整するための前記制御情報を生成し、前記レジスタに前記制御情報の初期値を設定し、前記外部から供給される外部クロック信号の周波数と前記電圧制御発振回路の出力の発振周波数との比較結果が不一致のとき、新たな制御情報を前記レジスタに設定し、前記比較結果が一致の時、前記レジスタに格納された制御情報を不揮発性メモリへ格納し、
    通常モードの時、リセット後、前記不揮発性メモリから前記レジスタに格納された前記制御情報に応じて、前記電圧制御発振回路は、前記内部クロック信号の発振周波数を制御し、前記外部クロック信号が供給される端子は汎用入出力ポートを介して他の信号の入出力に兼用可能にされる、半導体チップに形成されたマイクロコンピュータ。
  24. 前記設定モードで比較結果が不一致のとき、前記内部クロック信号と前記端子を介して外部から供給される外部クロック信号の周波数とを一致させるための新たな制御情報が前記レジスタに設定される請求項23記載のマイクロコンピュータ。
  25. 前記不揮発性メモリは、前記マイクロコンピュータに内蔵されてなる請求項24記載のマイクロコンピュータ。
  26. 前記不揮発性メモリは、前記マイクロコンピュータを形成する半導体チップとは異なる半導体チップに形成されてなる請求項24記載のマイクロコンピュータ。
  27. 中央処理装置と、
    中央処理装置を含む内部回路に供給するための内部クロック信号を生成可能な発振回路と、
    周波数設定モードの時に外部から供給される信号を入力するための端子と、を有し、
    前記発振回路は、
    制御情報を格納するレジスタと、
    前記制御情報を変換基準電圧に対してアナログ変換するD/A変換回路と、
    前記D/A変換回路の出力電圧に基づいて、前記制御情報に応じた制御電圧を生成するバイアス回路と、
    前記バイアス回路の出力する制御電圧に応じて、発振周波数が制御されてなる電圧制御発振回路と、
    前記電圧制御発振回路の出力を分周して内部回路に供給する分周器と、
    前記内部クロック信号と前記外部から供給される信号との何れかを選択する選択回路と、を有し、
    前記電圧制御発振回路は、CMOS回路形式のリングオシレータ部を有し、当該リングオシレータ部に対する電流制御用の前記バイアス電圧によって発振周波数が制御され、
    前記バイアス回路は、前記電圧制御発振回路にCMOS回路の論理閾値電圧変動を抑制する方向の動作電源電圧を印加し、
    周波数設定モードの時、
    前記内部クロック信号の周波数をトリミングするための制御情報を格納するレジスタに初期値が設定され、
    前記端子を介して外部から供給される信号の周波数と前記内部クロック信号の周波数とが比較され、
    前記内部クロック信号と前記外部から供給される信号の周波数とが異なるとき、前記外部から供給される信号の周波数に近づけるため、前記レジスタに格納された制御情報が変更され、
    前記周波数が一致したとき、前記制御情報の変更が終了され、
    通常モードの時、前記周波数設定モードの時に変更された前記制御情報に基づいて電圧制御発振回路の周波数制御が行われ、
    外部から信号が供給される前記端子は汎用入出力ポートを介して他の信号の入出力に兼用可能にされ、一つの半導体基板に形成されたマイクロコンピュータ。
  28. 前記変更された制御情報は、前記周波数設定モードの時に不揮発性メモリに格納され、
    前記通常モードの時に、前記マイクロコンピュータのリセット後、前記不揮発性メモリから読み出されて前記レジスタに格納され、
    前記発振回路は、前記レジスタに格納された制御情報に応じて前記内部クロック信号を生成可能とされる請求項27記載のマイクロコンピュータ。
JP2009188474A 2009-08-17 2009-08-17 半導体集積回路及びマイクロコンピュータ Expired - Fee Related JP4641045B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188474A JP4641045B2 (ja) 2009-08-17 2009-08-17 半導体集積回路及びマイクロコンピュータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188474A JP4641045B2 (ja) 2009-08-17 2009-08-17 半導体集積回路及びマイクロコンピュータ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003203574A Division JP2005049970A (ja) 2003-07-30 2003-07-30 半導体集積回路

Publications (3)

Publication Number Publication Date
JP2009271941A JP2009271941A (ja) 2009-11-19
JP2009271941A5 JP2009271941A5 (ja) 2010-02-04
JP4641045B2 true JP4641045B2 (ja) 2011-03-02

Family

ID=41438374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188474A Expired - Fee Related JP4641045B2 (ja) 2009-08-17 2009-08-17 半導体集積回路及びマイクロコンピュータ

Country Status (1)

Country Link
JP (1) JP4641045B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039830A (ja) * 2004-07-26 2006-02-09 Renesas Technology Corp 半導体集積回路
JP4433311B2 (ja) 2005-09-12 2010-03-17 ソニー株式会社 半導体記憶装置、電子機器及びモード設定方法
CN115208359B (zh) * 2022-09-13 2022-11-25 南京芯惠半导体有限公司 一种基于数模混合自校准环路的弛张振荡器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451344A (en) * 1977-09-29 1979-04-23 Sharp Corp Automatic frequency adjustment system of lsi system
US5061907A (en) * 1991-01-17 1991-10-29 National Semiconductor Corporation High frequency CMOS VCO with gain constant and duty cycle compensation
JPH0983356A (ja) * 1995-09-08 1997-03-28 Kawasaki Steel Corp クロック発生回路
JP3857762B2 (ja) * 1997-02-17 2006-12-13 三洋電機株式会社 発振回路の周波数調整装置
JPH11317080A (ja) * 1998-03-04 1999-11-16 Matsushita Electric Ind Co Ltd 半導体集積回路

Also Published As

Publication number Publication date
JP2009271941A (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
JP2005049970A (ja) 半導体集積回路
US7250821B2 (en) Semiconductor integrated circuit
US8497741B2 (en) High accuracy RC oscillator
JP3340373B2 (ja) プログラム可能な内部クロックを備える集積回路
US7233213B2 (en) Oscillator of semiconductor device
US20180364752A1 (en) Digital on-chip duty cycle monitoring device
JP5242186B2 (ja) 半導体装置
US20090058543A1 (en) Temperature detecting semiconductor device
JP5263791B2 (ja) 半導体装置
US9306543B2 (en) Temperature-compensated high accuracy clock
JP2008054134A (ja) リング発振器及びそれを備えた半導体集積回路及び電子機器
JP2000341119A (ja) クロック発振回路
US20120218034A1 (en) Voltage calibration method and apparatus
JP3488153B2 (ja) クロックデューティ検査回路およびクロックデューティ検査が可能なマイクロコンピュータ
JP4641045B2 (ja) 半導体集積回路及びマイクロコンピュータ
JP5573781B2 (ja) Cr発振回路およびその周波数補正方法
TWI517552B (zh) 振盪器校正電路與方法以及積體電路
JP3830656B2 (ja) 電源電圧調整回路及び半導体装置
US20080036510A1 (en) Signal generating apparatus capable of measuring trip point of power-up signal and method of measuring trip point of power-up signal using the same
KR20220106461A (ko) 클록 생성 회로 및 클록 신호의 생성 방법
JP4413516B2 (ja) 信号タイミング調整システムおよび信号タイミング調整量設定プログラム
JP2013214915A (ja) 発振装置、半導体装置、及び発振装置の動作方法
KR20220064637A (ko) 주파수 생성 장치 및 그의 주파수 보정 방법
CN218938844U (zh) 一种芯片内时钟电路
JP2002232403A (ja) 自動較正機能を有するタイミング発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees