JP4629145B2 - 冷却システム、及び携帯機器 - Google Patents

冷却システム、及び携帯機器 Download PDF

Info

Publication number
JP4629145B2
JP4629145B2 JP2009014445A JP2009014445A JP4629145B2 JP 4629145 B2 JP4629145 B2 JP 4629145B2 JP 2009014445 A JP2009014445 A JP 2009014445A JP 2009014445 A JP2009014445 A JP 2009014445A JP 4629145 B2 JP4629145 B2 JP 4629145B2
Authority
JP
Japan
Prior art keywords
bubble trap
unit
filter
heat exchange
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009014445A
Other languages
English (en)
Other versions
JP2009117861A (ja
Inventor
敦 小松
祐幸 岡野
勝巳 今田
徹 二宮
祐介 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009014445A priority Critical patent/JP4629145B2/ja
Publication of JP2009117861A publication Critical patent/JP2009117861A/ja
Application granted granted Critical
Publication of JP4629145B2 publication Critical patent/JP4629145B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、冷却システムなどに用いることができ、特に、安定吐出特性を向上させた小型ポンプを用いた冷却システム及び携帯機器に関する。
従来のダイアフラム型の小型ポンプには、例えばPZTのような圧電素子からなる振動板を適用することで超小型化をはかったものが提案されている。図18にその一例を示す。
図中の300は圧電基板310と振動板320とにより構成された圧電振動板、330は液体の流れを制御する吸排弁、340は加圧室500および流路を形成する筐体である。振動板320に圧電基板310を貼り合わせることにより、ダイアフラムとなる圧電振動板300を構成し、該圧電振動板300の圧電基板310に対して交流電圧を印加することにより、圧電振動板300を凹または凸に変形させる。その時に生じる加圧室500の容積の変化および弁330の動きによりポンプとしての機能を発揮させる。
次に図19A及び図19Bを用いて吸排時の弁の動きおよび圧電振動板の動きについてより詳細に説明する。図19A及び図19Bにおいて矢印10は液体の流動方向を示す。
図19Aは小型ポンプの吸入動作を示す図であり、図19Bは吐出動作を示す図である。両図に示すように、交流電圧を印加して圧電振動板300を加圧室500の容積が大きくなる方向に変形させることにより、搬送流体を吸入弁330aを通して加圧室500内に吸い込み(図19A)、圧電振動板300を加圧室500の容積が小さくなる方向に変形させることにより、加圧室500内に吸い込んだ流体を、排出弁330bを通して吐出口から吐出する構成となっている(図19B)。
しかしながら、上記の従来のダイアフラム型の小型ポンプは、モータの回転運動を運動変換機構を用いて往復運動に変換してダイアフラムを駆動するポンプに比して、きわめて形状の小さいものとすることができるものの、ダイアフラムの面積を大きくすることが困難であるために、ポンプ能力としては吐出流量がかなり小さかった。例えば、直径25mmのユニモルフ型圧電振動板を駆動源として用い、交流100Vrmsで駆動した場合には、60Hz駆動で30cm3/min程度の流量しか得ることができなかった。
そこで、本発明は、大吐出流量と安定した吐出流量特性とを兼ね備えた小型ポンプを用いた冷却システムと携帯機器を提供することを目的とする。
上記の目的を達成するために、本発明の冷却システムは、液体が流入する吸入流路、及び液体が流出する吐出流路を有する小型ポンプ部と、前記小型ポンプ部内への気泡の進入を阻害する気泡トラップ部とを備える小型ポンプと、内部熱交換ユニットと、外部熱交換ユニットと、これらを連結する配管とを有し、前記気泡トラップ部が、前記内部熱交換ユニット及び前記外部熱交換ユニットのうちの一方又は両方の少なくとも一部として配置されていることを特徴とする。
本発明の冷却システムが有する小型ポンプは、小型ポンプ部内への気泡の進入を阻害する気泡トラップ部を備えているので、小型ポンプ部内に気泡が侵入せず、その結果、大吐出流量と安定した吐出流量特性とを兼ね備えている。
本発明の冷却システムは、上記小型ポンプを備えているので、安定かつ高い冷却能力を備えた小型の冷却システムを構成できる。
また、本発明の携帯機器は、本発明の冷却システムを備えているので、高性能で小型の携帯機器を提供できる。
本発明者らは、ダイアフラム型の小型ポンプの吐出流量を増大させるために、ダイアフラムの共振現象を利用して駆動を行うことにより、ダイアフラムのストロークを拡大することを試みた。
ところが、ダイアフラムの共振現象を用いると、従来のモータを用いたダイアフラムポンプに比べて、ポンプ内への気泡の混入による影響が大きいことが分かった。また、共振現象を用いていない他のダイアフラム型ポンプにおいても、気泡の混入により特性が変化していることを見出した。従って、ポンプ内への気泡の混入を防止することにより、大吐出流量と吐出流量特性の安定化が図れる可能性があると考えて、鋭意検討を進め、本発明を完成した。
本発明の小型ポンプは、小型ポンプ部内への気泡の進入を阻害する気泡トラップ部を備えているので、小型ポンプ部内に気泡が侵入せず、その結果、大吐出流量と安定した吐出流量特性とを兼ね備えた小型ポンプを提供することができる。
本発明の小型ポンプ部の大きさは特に限定はないが、携帯機器に組み込むことができる程度であることが好ましく、具体的には、高さ、幅、奥行きのいずれか一つの寸法が40mm以下であることが好ましい。また、その流量についても特に限定はないが、最大流量が1×10-33/min程度以下であることが好ましい。
前記小型ポンプ部が、更に、液体を前記吸入流路から流入せしめ、前記吐出流路から吐出せしめる液体送り出し機構を有することが好ましい。
また、前記小型ポンプ部が、更に、前記吸入流路と前記吐出流路との間に設けられた加圧室、往復運動を行なうことにより前記加圧室の容積を変化させる可動部材、前記吸入流路から前記加圧室に流入した液体が前記吸入流路へ逆流するのを防止する吸入弁、及び前記加圧室から前記吐出流路へ流出した液体が前記加圧室に逆流するのを防止する吐出弁を有することが好ましい。
ここで、前記可動部材の往復運動を、振動板を有した圧電アクチュエータにより行うことが好ましい。これにより、外形サイズの小さな小型ポンプを簡単に構成できる。
また、上記の小型ポンプにおいて、前記気泡トラップ部がフィルタを有することが好ましい。これにより、小型ポンプ部内への気泡の進入を阻害する気泡トラップ部を簡単かつ安価に構成できる。
また、上記の小型ポンプにおいて、前記気泡トラップ部が、少なくとも1つ以上のフィルタと気泡溜りとを有することをが好ましい。気泡溜まりを有することにより、フィルタでトラップされた気泡がフィルタに付着することによる気泡トラップ部の特性劣化や、これに起因する小型ポンプの特性劣化を抑えることができる。
この場合において、前記フィルタが前記気泡溜りの吸入口と吐出口のそれぞれに設けられていることが好ましい。これにより、気泡が一旦気泡溜まりにトラップされると、小型ポンプの運転を停止しても逆流することがないので、常に安定して動作可能な小型ポンプを提供できる。
このとき、前記気泡溜りの吸入口と吐出口にそれぞれに設けられた前記フィルタの特性が互いに異なることが好ましい。これにより、両フィルタ間の気泡溜まりに気泡を確実にトラップすることができる。
また、上記の小型ポンプにおいて、前記小型ポンプ部と前記気泡トラップ部とが一体に構成されていても良い。これにより、部品点数の増加を防止して、取付作業や取り扱いが容易な小型のポンプを提供できる。
あるいは、上記の小型ポンプにおいて、前記小型ポンプ部と前記気泡トラップ部とが配管を介して連通していても良い。これにより、小型ポンプ部と気泡トラップ部との配置の自由度が向上する。
また、上記の小型ポンプにおいて、前記気泡トラップ部が前記吸入流路側に設けられていることが好ましい。これにより、小型ポンプ部内への気泡の進入を確実に阻止することができる。
また、前記気泡トラップ部を少なくとも1つ以上のフィルタと気泡溜りとで構成する場合において、前記フィルタの少なくとも一つが前記気泡溜まりの内面を構成し、前記内面を構成するフィルタとこれに対向する前記気泡溜まりの内面との間隔をX、使用する液体の表面張力をσ、密度をρ、重力加速度をgとしたとき、X≦(2σ/ρg)1/2を満足することが好ましい。これにより、気泡トラップ部の取り付け方向による特性の変化が少ない小型ポンプを提供できる。
次に、本発明の冷却システムは、上記の本発明の小型ポンプと、内部熱交換ユニットと、外部熱交換ユニットと、これらを連結する配管とを有する。ポンプとして本発明の小型ポンプを用いているので、安定かつ高い冷却能力を備えた小型の冷却システムを構成できる。
この場合において、前記気泡トラップ部を、前記内部熱交換ユニット及び前記外部交換ユニットのうちの一方又は両方の少なくとも一部として配置することができる。気泡トラップ部を、内部熱交換ユニット及び/又は外部交換ユニット内に収納することにより、部品点数を減少できる。
あるいは、前記気泡トラップ部が、前記内部熱交換ユニット及び前記外部熱交換ユニットのうちの少なくとも一方であってもよい。これにより、部品点数を減少でき、また、冷却システムを小型化できる。また、気泡トラップ部の拡大により、気泡のトラップ性能が向上する。
また、前記気泡トラップ部よりも下流側の流路壁が、前記内部熱交換ユニットの吸熱面又は前記外部熱交換ユニットの放熱面を構成することが好ましい。これにより、高い熱交換特性を安定して得ることができる。
また、本発明の携帯機器は、上記の本発明の冷却システムを備えることを特徴とする。これにより、小型の冷却システムでありながら発熱部の冷却及び放熱能力が向上するので、高性能で小型の携帯機器を提供できる。
上記の本発明の携帯機器は更に発熱部を備え、前記発熱部に前記内部熱交換ユニットが接していることが好ましい。これにより、発熱部の吸熱効果が向上し且つ安定化する。
また、携帯機器が2以上の発熱部を備える場合には、前記内部熱交換ユニットの数が2以上であり、少なくとも2以上の前記発熱部に前記内部熱交換ユニットがそれぞれ接していることが好ましい。複数の発熱部に応じて内部熱交換ユニットを備えることにより、発熱部の配置の自由度が向上する。
また、携帯機器が更に発熱部を備え、前記気泡トラップ部よりも下流側の流路壁が前記発熱部と接していることが好ましい。これにより、高い吸熱効果を安定して得ることができる。
また、前記気泡トラップ部よりも下流側の流路壁が、筐体の表面板と接触、又は筐体の表面の一部を構成していることが好ましい。これにより、高い放熱効果を安定して得ることができる。
以下、実施の形態を用いて、本発明をさらに具体的に説明する。
(第1の実施の形態)
以下、本発明の第1の実施の形態について、図面を参照しながら説明する。
図1は、本発明の第1の実施の形態による小型ポンプ100の模式的な断面図である。小型ポンプ100は、基本的には、小型ポンプ部101と気泡トラップ部40とから構成される。小型ポンプ部101は、液体が流入する吸入流路70aと、液体が流出する吐出流路70bと、吸入流路70aと吐出流路70bとの間に設けられた加圧室50と、往復運動を行なうことにより加圧室50の容積を変化させる圧電振動板(可動部材)30と、加圧室50への流入路に設けられ、吸入流路70aから加圧室50に流入した液体が吸入流路70aへ逆流するのを防止する吸入弁33aと、加圧室50からの流出路に設けられ、加圧室50から吐出流路70bへ流出した液体が加圧室50に逆流するのを防止する吐出弁33bとを有する。また、気泡トラップ部40は、吸入流路70aに設けられたフィルタ41からなる。これら小型ポンプ部101と気泡トラップ部40とは筐体34により一体に構成されている。図1において矢印10は液体の流動方向を示す。
さらに詳しく説明すると、ダイアフラム(可動部材)である圧電振動板30は、圧電基板31であるセラミック基板と、その片面に貼り合わされた振動板32であるステンレス鋼基板とで構成されている。吸入弁33a及び吐出弁33bはいずれも樹脂製のチェックバルブである。また、フィルタ41としてはシート状の親水性フィルタを用いている。
次に、この圧電振動板30の動作原理を図2A及び図2Bを用いて説明する。
図2A及び図2Bは、圧電振動板30の拡大図である。この圧電振動板30を構成する圧電基板(圧電素子)31は、板厚方向にパルス電圧が印加されると、基板の長手方向に伸縮するという特性を有する(図中の矢印)。このため、振動板32と貼り合わせることで、図2A又は図2Bに示すよう屈曲変位を得ることが可能となる。例えば、正のパルス電圧を印加した場合に圧電基板31は伸び、負のパルス電圧を印加した場合に圧電基板31は縮み、それぞれ図2A、図2Bに示すように上下方向に屈曲変位をする。この圧電振動板30の屈曲変位により、加圧室50内の容積が変化し、加圧室50内の液体に対して加圧及び減圧が行なわれる。この加圧減圧の動作と、弁33a,33bの働きとにより、ポンプとして液体を一方向に輸送することが可能となる。以下に、ポンプの動作を詳細に説明する。
圧電振動板30の屈曲変位により、加圧室50内が減圧されることにより、吸入流路70a側に設けられた吸入弁33aが開放し、吐出流路70b側に設けられた吐出弁33bが閉鎖されて、液体が吸入流路70aから加圧室50内に流れ込む。次に、圧電振動板30の逆方向の屈曲変位により、加圧室50内が加圧されることにより、吸入流路70a側に設けられた吸入弁33aが閉鎖され、吐出流路70b側に設けられた吐出弁33bが開放されて、液体が加圧室50から吐出流路70bに流れ出る。以上の動作を繰り返し連続的に行うことにより、ポンプとしての動作を実現している。
また、気泡トラップ部40としてフィルタ41を吸入流路70aに設けることにより、気泡を含んだ液体のうち、液体のみがフィルタ41の微細孔を通過し、気泡はフィルタ41でトラップされる。従って、気泡が吸入流路70aから加圧室50に侵入するのを防ぐことができる。フィルタ41としては、例えばミリポア社製メンブレンフィルタ(例えば、商品名「マイテックスLC」(PTFE(ポリテトラフルオロエチレン)製、孔径10μm)や商品名「デュラポアSVLP」(PVDF(ポリビニリデンフロライド)製、孔径5μm)等の親水性フィルタを用いることができる。なお、フィルタとしては上記に限定されず、例えば孔径は上記の例より大きくても良い(例えば、30μm、50μmなど)。
次に、本ポンプを用いた冷却システムについて図3を用いて説明する。
冷却システムを構成する部品は、主に小型ポンプ100と内部熱交換ユニット110と外部熱交換ユニット120ならびに、これらの部品をつなぐ配管60である。
冷却システムの動作を簡単に説明する。配管60内の液体の循環は小型ポンプ100により行われる。内部熱交換ユニット110では、例えばパーソナルコンピュータのCPU(中央処理装置)などの発熱部品から熱を吸収して液温を上昇させ、外部熱交換ユニット120では、液体に吸収された熱を大気中に放出して、液温を下降させる。この動作を繰り返すことにより、CPUなどの発熱部品の温度上昇を抑える冷却システムとして作用することができる。
以上に示す本実施の形態によれば、加圧室50内の液体は、圧電振動板30の振動により、振動エネルギー(圧力)を与えられ、そのエネルギーにより吸入弁33aおよび吐出弁33bを押し開けることによりポンプ動作を行っているため脈動が発生し、その結果として小型ポンプ部101は吐出流量において共振特性を持つ。この共振特性を利用することにより、流量を増大させることが可能となり、小型で高流量なポンプを実現することが可能となる。また、気泡トラップ部40を吸入流路に設けてあるため、小型ポンプ部101内に気泡が進入することがなくなる。その結果、小型ポンプ部101内に進入した気泡によりポンプの周波数特性が大きく変化し、結果として流量が大きく変化する現象や、気泡の進入量が多い場合に発生するポンプ動作の停止現象などをなくすことができる。
また、冷却システムとして用いる場合には、気泡トラップ部40があることにより、配管の選択を自由に行うことができる。これは、配管材から進入する気泡を気泡トラップ部40により捕獲し、小型ポンプ部101内への気泡の進入を阻止できるからである。
さらに、システムの組み立てを簡略化する上で重要となる、配管のジョイントシステムなどを容易に導入することが可能となり、生産性を上げることができる。
また、冷却システムに用いる場合などに必要となる液体の脱気処理の工程をなくすことができ、さらに生産性を向上することができる。
なお、本実施の形態では冷却システムの構成要素として、ポンプ100、内部熱交換ユニット110、外部熱交換ユニット120、及びこれらを連結する配管60のみを用いているが、例えば折り曲げ可能にするためのヒンジ部や、流量計などを更に設けてもよく、同様の効果を得ることができる。
また、本実施の形態では、気泡トラップ部40として親水性フィルタを用いているが、これに限らず、例えば金属メッシュ等(例えば、メッシュ数が165×800、濾過精度が約30〜32μmの綾畳織ステンレス鋼メッシュ)を用いてもよく、構造として小型ポンプ部101内に気泡が入らないものであれば、孔径および材質を問わず同様の効果を得ることができる。
さらに、弁33a,33bとして樹脂製のチェックバルブを用いているが、これに限らず、弁機構を有するものであれば、例えばステンレス鋼で弁を構成しても同様の効果を得ることができる。
また、ダイアフラムの駆動源として圧電基板を用いた圧電振動板を用いているが、これに限らず、加圧室50の容積を変化させることができれば、例えば、ダイアフラムの代わりにピストンなどを用いても同様の効果を得ることができる。
また、小型ポンプ部101の液体送り出し機構としては、容積形ポンプである往復ポンプを使用した例を示したが、これに限らず、回転ポンプ、遠心ポンプ、あるいは軸流ポンプなどのターボ形ポンプを用いることもでき、気泡トラップ部40を設けることにより同様の効果を得ることができる。
(第2の実施の形態)
以下、本発明の第2の実施に形態について、図面を参照しながら説明する。
図4は、本発明の第2の実施の形態による小型ポンプ100の模式的な断面図である。ここで、図1と同様の機能を有する部材には、同一の符号を付している。本実施の形態が実施の形態1と異なる点は、気泡トラップ部40をフィルタ41とその上流側の気泡溜り42とで構成している点である。
以上に示す本実施の形態によれば、実施の形態1と同様の効果を得ることができる。つまり、気泡トラップ部40を小型ポンプ部101の吸入流路70a側に設けることにより、気泡が加圧室50内に進入することがなくなり、小型ポンプ部101の特性の変化や、動作の停止現象などを無くすことができる。
さらに、気泡トラップ部40の一部として気泡溜り42を設けることにより、フィルタ41でトラップされた気泡が浮上して気泡溜まり42に集められ、フィルタ41面に気泡が止まるのを防止できる。従って、気泡が大量に発生することにより生じる、フィルタ41面への気泡の付着による有効ろ過面積の減少に起因するフィルタ41の特性劣化や、これに起因するポンプ特性の劣化を低減することが可能となる。
なお、本実施の形態では、気泡溜り42をフィルタ41より上側の位置に配置しているが、これは、図の紙面下方向を重力方向と想定しているためであり、ポンプの設置する方向によって気泡溜りの配置方向を変化させることにより同様の特性を得ることができる。
また、図4では、小型ポンプ100の設置方向が一方向のみの場合を想定しているが、設置する方向が2方向以上ある場合には、設置方向に合わせて気泡溜りの形状を工夫したり複数配置したりすることにより同様の効果を得ることができる。
さらに、本実施の形態では、実施の形態1と同様にフィルタ41として親水性フィルタを用いているが、これに限らず、例えば金属メッシュ等を用いてもよく、あるいはフィルタ41を設けなくてもよく、構造として小型ポンプ部101内に気泡が入らないものであれば同様の効果を得ることができる。
さらに、弁33a,33bとして樹脂製のチェックバルブを用いているが、これに限らず、弁機構を有するものであれば、例えばステンレス鋼で弁を構成しても同様の効果を得ることができる。
また、ダイアフラムの駆動源として圧電基板を用いた圧電振動板を用いているが、これに限らず、加圧室50の容積を変化させることができれば、例えば、ダイアフラムの代わりにピストンなどを用いても同様の効果を得ることができる。
また、小型ポンプ部101の液体送り出し機構としては、容積形ポンプである往復ポンプを使用した例を示したが、これに限らず、回転ポンプ、遠心ポンプ、あるいは軸流ポンプなどのターボ形ポンプを用いることもでき、気泡トラップ部40を設けることにより同様の効果を得ることができる。
(第3の実施の形態)
以下、本発明の第3の実施の形態について、図面を参照しながら説明する。
図5は、本発明の第3の実施の形態による小型ポンプ100の模式的な断面図である。ここで、図1と同様の機能を有する部材には、同一の符号を付している。本実施の形態が実施の形態1と異なる点は、気泡トラップ部40を第1フィルタ41aと第2フィルタ41bと気泡溜り42とで構成している点である。加圧室50に流入する液体は、第1フィルタ41a、気泡溜り42、第2フィルタ41bを順に通過する。
次に、第1フィルタ41aおよび第2フィルタ41bの特性の詳細について、図6を用いて説明する。
図6において、縦軸はフィルタの表裏の液体の圧力差を、横軸はフィルタの孔径(開口径)を示す。図6の太い実線20は、所定の孔径を有するフィルタの両面に液体を充満させ、かつ、片方の側にのみ気泡を混入させた状態において、気泡を混入させた側の圧力を他方の側の圧力より徐々に上昇させていったときに、気泡がフィルタの孔を通過し始める時のフィルタの表裏間の圧力差を示している。図示したように、フィルタの孔径が大きくなると、小さな圧力でも気泡はフィルタの孔を通過する。従って、図6の太い実線20よりも原点に近い側の領域A内の孔径及び圧力差の条件下では気泡はフィルタを通過することができず、太い実線20を挟んでこれと反対側の領域B内の孔径及び圧力差の条件下では気泡はフィルタを通過することができる。
また、図6において、圧力差「P」は加圧室50が減圧状態の時の各フィルタ41a,41bの表裏の圧力差を示している。実際には、加圧室50が減圧状態の時、それぞれのフィルタの表裏の圧力差は異なるが、図を簡略化するために図6では、両フィルタ41a,41bの圧力差を同一の圧力差Pで示している。
第1フィルタ41aは気泡溜まり42よりも上流側に設けられているフィルタであり、その孔径は図6の「第1フィルタ」に示す位置となるように設定されている。この結果、第1フィルタ41aは、小型ポンプの駆動によって第1フィルタ41aの両面に圧力差Pが作用すると気泡を通過させる。一方、小型ポンプが停止した状態、即ち圧力差がほぼゼロの状態では、気泡を通過させない。即ち、気泡溜り42内の気泡を逆流させない。
一方、第2フィルタ41bは気泡溜まり42よりも下流側に設けられているフィルタであり、その孔径は図6の「第2フィルタ」に示す位置となるように設定されている。この結果、第2フィルタは、小型ポンプの駆動によって第2フィルタ41bの両面に圧力差Pが作用しても気泡を通過させない。
このように、第1フィルタ41aと第2フィルタ41bとは異なる特性を有する。更に、両フィルタ41a,41bは、いずれもフィルタ単体としての圧力損失が小さいことが好ましい。
本実施の形態では、このような特性を具備させるために第1フィルタ41aとしてステンレス鋼メッシュを、第2フィルタ41bとして親水性のフィルタを用いている。
以上に示す本実施の形態によれば、実施の形態1と同様の効果を得ることができる。
更に、気泡トラップ部40が第1フィルタ41a、第2フィルタ41b、及び気泡溜り42により構成されることにより、第1フィルタ41aを通過して一旦気泡溜り42に流入した気泡は、第2フィルタ41bを通過して加圧室50内に流入しないことはもちろん、小型ポンプの停止状態でも第1フィルタ41a及び第2フィルタ41bを通過することがない。従って、一度気泡溜まり42にトラップされた気泡は、小型ポンプ100を運転しない状態で振動が加わった場合などでも漏出することがなく、その後の運転の再開時にも安定した動作を保証することが可能となる。
さらに、本実施の形態に用いた小型ポンプ100を循環型システムの一部として用いた場合、システム内で発生した気泡が全て気泡トラップ部40の気泡溜り42の中に集められるため、内部の液量の把握や、液の再充填などのメンテナンスを容易に行うことが可能となる。
なお、本実施の形態ではフィルタ41a,41bとしてステンレス鋼メッシュおよび親水性のフィルタを用いているが、これに限らず図6に示したような特性を得られるフィルタであれば同様の効果を得ることが可能である。
また、弁33a,33bとして樹脂製のチェックバルブを用いているが、これに限らず、弁機構を有するものであれば、例えばステンレス鋼で弁を構成しても同様の効果を得ることができる。
さらに、ダイアフラムの駆動源として圧電基板を用いた圧電振動板を用いているが、これに限らず、加圧室50の容積を変化させることができれば、例えば、ダイアフラムの代わりにピストンなどを用いても同様の効果を得ることができる。
また、小型ポンプ部101の液体送り出し機構としては、容積形ポンプである往復ポンプを使用した例を示したが、これに限らず、回転ポンプ、遠心ポンプ、あるいは軸流ポンプなどのターボ形ポンプを用いることもでき、気泡トラップ部40を設けることにより同様の効果を得ることができる。
(第4の実施の形態)
以下、本発明の第4の実施に形態について、図面を参照しながら説明する。
図7は、本発明の第4の実施の形態による小型ポンプ100の模式的な断面図である。ここで、図1と同様の機能を有する部材には、同一の符号を付している。本実施の形態が実施の形態1と異なる点は、気泡トラップ部40を実施の形態2と同様にフィルタ41とその上流側の気泡溜り42とで構成している点、及びこのような気泡トラップ部40を小型ポンプ部101と分離して、両者を配管60を介して連通(接続)している点である。また、本実施の形態では吸入弁33a及び吐出弁33bとしてチェックバルブではなくステンレス鋼で構成した弁機構を用いている。
以上に示す本実施の形態によれば、気泡トラップ部40を実施の形態2と同様の構成としたことにより、実施の形態2と同様の効果を得ることができる。
更に、気泡トラップ部40と小型ポンプ部101とを共通の筐体34で一体化するのではなく、両者を分離して配管60を介して連通させることにより、気泡トラップ部40の自由な配置が可能となり、小型ポンプを用いたシステムを構成する上での設計自由度および機能性を向上させることができる。配管60の長さは自由に設定することができ、屈曲させたり、その途中に流量計や自由に折り曲げできるようにヒンジ部を設けたりしても良い。
なお、本実施の形態ではダイアフラムの駆動源として圧電基板を用いた圧電振動板を用いているが、これに限らず、加圧室50の容積を変化させることができれば、例えば、ダイアフラムの代わりにピストンなどを用いても同様の効果を得ることができる。
また、小型ポンプ部101の液体送り出し機構としては、容積形ポンプである往復ポンプを使用した例を示したが、これに限らず、回転ポンプ、遠心ポンプ、あるいは軸流ポンプなどのターボ形ポンプを用いることもでき、気泡トラップ部40を設けることにより同様の効果を得ることができる。
また、気泡トラップ40が実施の形態2と同様の構成を有する例を示したが、実施の形態3と同様の構成を有する気泡トラップ部を適用することもできる。また、気泡が気泡トラップ部40でトラップされ、配管60を通って小型ポンプ100内に侵入するのが阻止できれば、フィルタ41は必ずしも設ける必要はない。あるいは、気泡トラップ部40が、実施の形態1に示したような、気泡溜まりを備えない構成であってもよい。
(第5の実施の形態)
以下、本発明の第5の実施に形態について、図面を参照しながら説明する。
図8は、本発明の第5の実施の形態による小型ポンプ100の模式的な断面図である。ここで、図1と同様の機能を有する部材には、同一の符号を付している。また、本小型ポンプ100の構成図を図9に示す。本実施の形態が実施の形態1と異なる点は、以下の通りである。気泡トラップ部40を、実施の形態3と同様に第1フィルタ41aと第2フィルタ41bと気泡溜り42とで構成している。また、気泡トラップ部40が、実施の形態4と同様に小型ポンプ部101と配管60を介して連通している。更に、吸入弁33a及び吐出弁33bとしてチェックバルブではなく実施の形態4と同様にステンレス鋼で構成した弁機構を用いている。
本実施の形態の気泡トラップ部40の気泡溜り42は略直方体状の空間を形成しており、第2フィルタ41bは略直方体状空間の一面を構成する。そして、第2フィルタ41bとこれに対向する内壁面43との間隔Xは、使用する液体の表面張力をσ、密度をρ、重力加速度をgとしたとき、X≦(2σ/ρg)1/2を満足する。
本実施の形態の気泡トラップ部40の具体的な実施例を示す。本小型ポンプ100が吐出する液体として水を用いる場合、水の表面張力σが73mN/m、密度ρが998kg/m3、重力加速度gが9.8m/s2であるため、(2σ/ρg)1/2を計算すると3.9mmとなり、気泡トラップ部40の第2フィルタ41bとその対向面43との間の間隔Xを3.9mm以下にすればよい。従って、本実施の形態の上記実施例では気泡溜り42の上記間隔(厚み)Xを3mmとした。
次に、本ポンプを用いた冷却システムについて図10を用いて説明する。ここで実施の形態1の冷却システムを示した図3と同様の機能を有する部材には、同一の符号を付している。
本冷却システムが、実施の形態1で説明した冷却システム(図3参照)と異なるのは、小型ポンプ部101と気泡トラップ部40とが配管60を介して連通している点である。
以上に示す本実施の形態によれば、気泡トラップ部40を実施の形態3と同様に第1フィルタ41aと第2フィルタ41bと気泡溜り42とで構成したことにより、実施の形態3と同様の効果を得ることができる。
更に、気泡トラップ部40の気泡溜り42の上記間隔Xを(2σ/ρg)1/2以下にすることにより、気泡溜まり42に進入した気泡が、第2フィルタ41b面とこれと対向する気泡トラップ部40の内壁面43とに同時に接した状態で移動するため、小型ポンプ100(特に気泡トラップ部40)の姿勢をどのように変化させても同等の特性を得ることができる。もし、間隔Xが(2σ/ρg)1/2より大きいと、気泡トラップ部40の設置方向によっては、気泡が第2フィルタ41b面及び内壁面43のうちのいずれか一方にのみ接することになる。例えば、第2フィルタ41bが気泡溜まり42の上面を構成するような向きに気泡トラップ部40が設置されると、気泡溜まり42内の気泡が第2フィルタ41bの面に集まって、流動する液体の圧力損失が増加する。
上記の説明では気泡溜まり42が略直方体状の空間を形成している例を示したが、本発明はこれに限定されない。気泡トラップ部40の流出側に設けられる第2フィルタ41b面とこれに対向する内壁面43との間隔Xが(2σ/ρg)1/2以下である限り、気泡溜まり42の空間形状は任意に選択できる。例えば、第2フィルタ41b面の法線方向から見た気泡溜まり42の投影形状が、円形、楕円形、長円形、各種多角形であっても良い。また、第2フィルタ41b面とこれに対向する内壁面43とは平行であることが好ましいが、両面の間隔Xが(2σ/ρg)1/2以下である限り、両面が平行でなくても良い。また、第2フィルタ41b面及びこれに対向する内壁面43のうちの一方又は双方が平面ではなく曲面を含んでいても良い。また、第2フィルタ41b面とこれに対向する内壁面43のうちの大部分において間隔Xが上記の関係を満足していればよく、例えば、内壁面43の一部に第2フィルタ41b面からの距離が(2σ/ρg)1/2を超える窪みが形成されていてもよい。
また、第2フィルタ41bに対向する面に第1フィルタ41aが配置されいても良い。
更に、本実施の形態では気泡トラップ部40が、第1フィルタ41aと第2フィルタ41bと気泡溜り42とで構成される場合を示したが、実施の形態2(図4)や実施の形態4(図7)に示したように、気泡トラップ部40がフィルタ41とその上流側の気泡溜り42とで構成される場合であっても、上記の設計思想を適用することができ、同様の効果を得ることができる。この場合、フィルタ41に対向して対向面を配置して、フィルタ41と該対向面との間隔Xが(2σ/ρg)1/2以下となるように、気泡トラップ部40を設計すればよい。
更に、本実施の形態によれば、気泡トラップ部40と小型ポンプ部101を配管60を介して連通させることにより、気泡トラップ部40の自由な配置が可能となり、小型ポンプを用いたシステムを構成する上での設計自由度および機能性を向上させることができる。
また、冷却システムとして小型ポンプ部101と気泡トラップ部40とを配管60を用いて連通しているため、システムとしての自由度が向上する。
図10に示した本実施の形態の冷却システムを、携帯機器の一例として折り畳み式のノート型パーソナルコンピュータに応用した場合の構成例を図11Aに示す。図11Aにおいて、200はパーソナルコンピュータの筐体であり、表示パネル(例えば液晶パネル、図示せず)が組み込まれた第1筐体200aと、キーボード及び回路基板等(いずれも図示せず)が組み込まれた第2筐体200bとからなる。第1筐体200aと第2筐体200bとは、ヒンジ210を支点として開閉することができる。130は中央処理装置(CPU)などの発熱部であり、これに接して内部熱交換ユニット110が設けられる。小型ポンプ部101,内部熱交換ユニット110,発熱部130,気泡トラップ部40は第2筐体200b内に設置され、外部熱交換ユニット120は第1筐体200a内に設置される。
図11Bに、図11AのXIB−XIB線での気泡トラップ部40の矢視断面図を示す。図11Bにおいて、図8の気泡トラップ部40と同様の機能を有する部材には同一の符号を付している。図11Bでは図示を省略しているが、図11Aに示した小型ポンプ部101,内部熱交換ユニット110,発熱部130は気泡トラップ部40の上側に設置されている。
本実施の形態では、気泡トラップ部40を第2筐体200bの下面に露出させることにより外部熱交換ユニット120としても利用している。このとき、第2フィルタ41bを通過した液体と接する流路壁44が外界に接し、気泡溜まり42が発熱部130側になるように、気泡トラップ部40を構成している。第2フィルタ41bを通過した液体内には気泡がほとんど存在しないから、流路壁44を介して安定した放熱が可能である。また、気泡溜まり42内にトラップされた気泡が断熱材として作用して、気泡トラップ部40内の液体の熱がその上部に設置された発熱部130を含む第2筐体200b内の部品の温度を上昇させるのを防止する。
図11A、図11Bでは、気泡トラップ部40よりも下流側の流路壁44が第2筐体200bの底面の一部を構成するように、気泡トラップ部40を第2筐体200bの下面に配置しているが、気泡トラップ部40の配置位置はこれに限定されない。例えば、第2筐体200b内であって、回路基板、小型ポンプ部101、内部熱交換ユニット110、発熱部130等の上側であって、キーボードの下側に配置して、キーボードのキーの間の空間を介して放熱を行なってもよい。あるいは、第1筐体200aの外表面(表示パネルとは反対側の面)の一部を構成するように配置してもよい。また、気泡トラップ部40を複数に分割し、第2筐体200bの下面、第2筐体200bの内部、第1筐体200aの外表面のうちの少なくとも2箇所に設けてもよい。いずれの場合であっても、流路壁44が放熱面となるように配置することが好ましい。
また、本実施の形態では、気泡トラップ部40より下流側の流路壁44が筐体の表面に露出するように構成したが、流路壁44が筐体の表面板の内面に接し、該表面板を介して放熱を行なう構成であってもよい。
また、図10の冷却システム、及び図11A、図11Bに示した携帯機器では、気泡トラップ部40として、図8に示したフィルタを2枚備えた本実施の形態5の気泡トラップ部40を用いているが、図7に示した実施の形態4に示したフィルタを1枚のみ備えた気泡トラップ部40であってもよい。更に、気泡を気泡溜まり内にトラップすることができれば、フィルタを備えていない気泡トラップ部であってもよい。
なお、本実施の形態ではダイアフラムの駆動源として圧電基板を用いた圧電振動板を用いているが、これに限らず、加圧室50の容積を変化させることができれば、例えば、ダイアフラムの代わりにピストンなどを用いても同様の効果を得ることができる。
また、小型ポンプ部101の液体送り出し機構としては、容積形ポンプである往復ポンプを使用した例を示したが、これに限らず、回転ポンプ、遠心ポンプ、あるいは軸流ポンプなどのターボ形ポンプを用いることもでき、気泡トラップ部40を設けることにより同様の効果を得ることができる。
(第6の実施の形態)
以下、本発明の第6の実施に形態について、図面を参照しながら説明する。
図12は、本発明の第6の実施の形態による冷却システムの概略構成図である。ここで、実施の形態5の冷却システムを示す図10と同様の機能を有する部材には、同一の符号を付している。
本実施の形態が実施の形態5と異なる点は、以下の通りである。気泡トラップ部40を外部熱交換ユニット120の一部として設けている。また、小型ポンプ部101として、ダイアフラム型の容積型ポンプに代えて、ターボ形ポンプの一種である回転ポンプ(遠心ポンプともいう)を用いている。
気泡トラップ部40の外部熱交換ユニット120への配置の一例を図13に示す。図13において、気泡トラップ部40の放熱面(図13の上面)は、実施の形態5の気泡トラップ部40の第2フィルタ41bより下流側の流路壁44である。
図14に本実施の形態の冷却システムを、携帯機器の一例として折り畳み式のノート型パーソナルコンピュータに応用した場合の構成例を示す。図14において、図11Aと同様の機能を有する部材には同一の符号を付している。図14の携帯機器が図11Aの携帯機器と異なる点は、気泡トラップ部40を第1筐体200a内に設けられた外部熱交換ユニット120内に設置した点である。
図15に、本実施の形態の小型ポンプ部101を構成する回転ポンプの概略構成を示す。図15において、610は第1の筐体、620は第2の筐体、630は第3の筐体、640は羽根車、650は軸受、660は回転子、670は固定子である。羽根車640は、第1の筐体610と第2の筐体620とで形成された空間680内に、軸受650により回転可能に保持される。吸入流路70aは羽根車640の回転中心軸に沿って、吐出流路70bは羽根車640の半径方向に、いずれも空間680に接続して設けられている。羽根車640の外周には永久磁石からなる回転子660が設けられる。回転子660に対向するように、コイルからなる固定子670が第2の筐体620と第3の筐体630とで形成された空間内に保持されている。図15の小型ポンプ部101は、遠心力を利用して流体の流れを作る一般的な回転型遠心ポンプである。固定子670のコイルに電流を流すことにより、回転子660に電磁力を発生させ、回転子660に回転駆動力を発生させる。これにより、回転子660が取り付けられた羽根車640が回転する。吸入流路70aから空間680内に流入した流体は、羽根車640の回転により回転し、これにより発生する遠心力によって激しい勢いで吐出流路70bから吐出する。このようにして本小型ポンプは矢印10で示す方向に流体を流動させる。
以上に示す本実施の形態によれば、実施の形態5と同様の効果を得ることができる。
また、気泡トラップ部40を外部熱交換ユニット120の一部として設けることにより、システム全体の占有面積を見かけ上小さくすることが可能である。
また、気泡トラップ部40を外部熱交換ユニット120内に設ける場合には、気泡トラップ部40より下流側の流路壁(図8の第2フィルタ41bに対向する流路壁44)が、外部熱交換ユニット120の放熱面(図13の上面)になるように気泡トラップ部40を設置することが好ましい。気泡トラップ部40を通過した後の液体内には気泡がほとんど存在しないから、液体と流路壁44との接触面積を最大限に拡大することができる。従って、流路壁44を介した熱交換特性が向上するので、気泡トラップ部40を外部熱交換ユニット120の一部として効果的に使用することができる。
なお、本実施の形態では、外部熱交換ユニット120の一部を構成するように気泡トラップ部40を設けているが、外部熱交換ユニット120の全体を気泡トラップ部で構成しても良く、上記と同様の効果を得ることができる。その構成例を図16に示す。
図16は図14と同様に、折り畳み式のノート型パーソナルコンピュータへの応用例である。図16において、図14と同様の機能を有する部材には同一の符号を付している。図16の携帯機器が図14の携帯機器と相違する点は以下の通りである。気泡トラップ部40を外部熱交換ユニット120として用い、気泡トラップ部40以外に外部熱交換ユニットとして機能する部材を設けていない。また、複数の発熱部(本例では、第1発熱部(例えばCPU)130aと第2発熱部(例えばビデオチップ)130bの2つ)に対応して、複数の内部熱交換ユニット(本例では、第1内部熱交換ユニット110aと第2内部熱交換ユニット110bの2つ)を設けている。
気泡トラップ部40より下流側の流路壁44が放熱面として機能するように、流路壁44を第1筐体200aの外表面(表示パネルとは反対側の面)に露出させている。これにより、気泡トラップ部40の気泡溜まり42の内容積やフィルタ面積が拡大できるので、さらに多量の気泡をトラップしても性能の劣化を防止できる。また、放熱面に接する液体中に気泡はほとんど含有されないから、気泡トラップ部40を外部熱交換ユニットとは別にその上流側に設けた場合と同様の良好な熱交換特性が得られる。しかも、外部熱交換ユニットを独立した部材として設けていないので、小型の携帯機器を構成できる。
気泡トラップ部40の配置位置は、図16に示す第1筐体200a内に限定されず、第2筐体200bの下面やその内部であってもよい。また、気泡トラップ部40を複数に分割して、複数箇所に配置にしてもよい。また、放熱面となる流路壁44は、図16のように筐体の外表面の一部を構成していてもよいが、これに限らず、筐体の表面板の内面に接していてもよい。
また、図16の携帯機器では、内部熱交換ユニットを発熱部の数に応じて必要な数だけ設けている。これにより、複数の発熱部での発熱を効率よく吸熱し、外部熱交換ユニット120に搬送して放熱することができる。また、複数の発熱部を備えていても、その設置個所に応じて内部熱交換ユニットを設置することが可能になるので、複数の発熱部の配置を設計する際の自由度が向上する。例えば、複数の発熱部品を1つの内部熱交換ユニット上にまとめて配置したり、耐熱性の低い部品を発熱部品から離して配置したりするなどの、従来の部品配置に関する制約から開放されるので、機器設計が容易になる。
また、本実施の形態では、小型ポンプ部101として、回転のポンプを用いているが、これに限らず、小型ポンプ部101に気泡トラップ部が連通しているシステム構成であれば異なる駆動方法のポンプであっても同様の効果を得ることができる。
また、気泡トラップ部40として、実施の形態5と同様の構成を用いた例を示したが、これ以外の実施の形態に示した構成を適用しても良い。
(第7の実施の形態)
以下、本発明の第7の実施に形態について、図面を参照しながら説明する。
図17は、本発明の第7の実施の形態による冷却システムの概略構成図である。ここで、実施の形態5の冷却システムを示す図10と同様の機能を有する部材には、同一の符号を付している。
本実施の形態が実施の形態5と異なる点は、気泡トラップ部40を内部熱交換ユニット110の一部として設けている点である。気泡トラップ部40の内部熱交換ユニット110への配置は特に限定されず、例えば外部熱交換ユニット120への配置例を示した図13と同様に配置することができる。
以上に示す本実施の形態によれば、実施の形態5と同様の効果を得ることができる。
また、気泡トラップ部40を内部熱交換ユニット110の一部として設けることにより、システム全体の占有面積を見かけ上小さくすることが可能である。
また、気泡トラップ部40を内部熱交換ユニット110内に設ける場合には、気泡トラップ部40より下流側の流路壁(図8の第2フィルタ41bに対向する流路壁44)が、内部熱交換ユニット110の吸熱面(発熱部品が配置される側の面)になるように気泡トラップ部40を設置することが好ましい。これにより、熱交換特性を向上させることができる。
なお、本実施の形態では、内部熱交換ユニット110の一部を構成するように気泡トラップ部40を設けているが、内部熱交換ユニット110の全体を気泡トラップ部で構成しても良く、上記と同様の効果を得ることができる。この場合は、内部熱交換ユニット110の吸熱面の全てが気泡トラップ部40より下流側の流路壁44であることが好ましい。これにより、気泡トラップ部40の気泡溜まり42の内容積やフィルタ面積が拡大できるので、さらに多量の気泡をトラップしても性能の劣化を防止できる。また、吸熱面に接する液体中に気泡はほとんど含有されないから、気泡トラップ部40を内部熱交換ユニットとは別にその上流側に設けた場合と同様の良好な熱交換特性が得られる。しかも、内部熱交換ユニットを独立した部材として設ける必要がないので、小型の携帯機器を構成できる。
また、本実施の形態では、内部熱交換ユニット110内に気泡トラップ部40を設けているが、内部熱交換ユニット110のみでなく、外部熱交換ユニット120内にも同時に気泡トラップ部40を配置することにより、システム全体の容積を変化させることなく気泡トラップ部40の容積を大きくすることが可能となる。その結果、気泡溜まり42の内容積やフィルタ面積が拡大し、さらに多量の気泡を性能の劣化なくトラップすることができる。
また、小型ポンプ部101の液体送り出し機構としては、容積形ポンプである往復ポンプを使用した例を示したが、これに限らず、回転ポンプ、遠心ポンプ、あるいは軸流ポンプなどのターボ形ポンプを用いることもでき、同様の効果を得ることができる。
また、気泡トラップ部40として、実施の形態5と同様の構成を用いた例を示したが、これ以外の実施の形態に示した構成を適用しても良い。
上記の説明では携帯機器として、ノート型パーソナルコンピュータを例示したが、これに限定されず、PDA(personal digital assistance)、携帯電話などの持ち運びが容易な小型の電子機器であってもよい。
本発明の第1の実施の形態にかかる小型ポンプの模式的断面図 図2A及び図2Bはいずれも圧電振動板の動作を説明する図 本発明の第1の実施の形態にかかる小型ポンプを用いた冷却システムの概略構成図 本発明の第2の実施の形態にかかる小型ポンプの模式的断面図 本発明の第3の実施の形態にかかる小型ポンプの模式的断面図 本発明の第3の実施の形態にかかる小型ポンプの気泡トラップ部を構成するフィルタの特性を説明する図 本発明の第4の実施の形態にかかる小型ポンプの模式的断面図 本発明の第5の実施の形態にかかる小型ポンプの模式的断面図 図8の小型ポンプの概略構成図 本発明の第5の実施の形態にかかる小型ポンプを用いた冷却システムの概略構成図 図11Aは本発明の実施の形態5にかかる携帯機器の概略構成を示した透視図 図11Bは図11AのXIB−XIB線での気泡トラップ部の矢視断面図 本発明の第6の実施の形態にかかる冷却システムの概略構成図 図12の冷却システムの外部熱交換ユニットにおける気泡トラップ部の配置を模式的に示した一部切り欠き斜視図 本発明の実施の形態6にかかる携帯機器の概略構成を示した透視図 本発明の実施の形態6にかかる携帯機器に使用される回転ポンプの概略構成を示した断面図 本発明の実施の形態6にかかる別の携帯機器の概略構成を示した透視図 本発明の第7の実施の形態にかかる冷却システムの概略構成図 従来の小型ポンプの模式的断面図 図19Aは従来の小型ポンプの吸入動作を示す模式的断面図、図19Bは従来の小型ポンプの吐出動作を示す模式的断面図
10 液体の流動方向
30 圧電振動板
31 圧電基板
32 振動板
33a 吸入弁
33b 吐出弁
34 筐体
40 気泡トラップ部
41 フィルタ
41a 第1フィルタ
41b 第2フィルタ
42 気泡溜り
50 加圧室
60 配管
70a 吸入流路
70b 吐出流路
100 小型ポンプ
101 小型ポンプ部
110 内部熱交換ユニット
120 外部熱交換ユニット
130 発熱部
200 筐体
200a 第1筐体
200b 第2筐体
210 ヒンジ

Claims (7)

  1. 液体が流入する吸入流路、及び液体が流出する吐出流路を有する小型ポンプ部と、前記小型ポンプ部内への気泡の進入を阻害する気泡トラップ部とを備える小型ポンプと、
    内部熱交換ユニットと、
    外部熱交換ユニットと、
    これらを連結する配管とを有し、
    前記気泡トラップ部が、前記内部熱交換ユニット及び前記外部熱交換ユニットのうちの一方又は両方の少なくとも一部として配置されていることを特徴とする冷却システム。
  2. 前記気泡トラップ部よりも下流側の流路壁が、前記内部熱交換ユニットの吸熱面又は前記外部熱交換ユニットの放熱面を構成することを特徴とする請求項1に記載の冷却システム。
  3. 請求項1に記載の冷却システムを備えることを特徴とする携帯機器。
  4. 更に、発熱部を備え、前記発熱部に前記内部熱交換ユニットが接していることを特徴とする請求項に記載の携帯機器。
  5. 更に、発熱部を備え、前記気泡トラップ部よりも下流側の流路壁が前記発熱部と接していることを特徴とする請求項に記載の携帯機器。
  6. 前記気泡トラップ部よりも下流側の流路壁が、筐体の表面板と接触、又は筐体の表面の一部を構成していることを特徴とする請求項に記載の携帯機器。
  7. 液体が流入する吸入流路、及び液体が流出する吐出流路を有する小型ポンプ部と、前記小型ポンプ部内への気泡の進入を阻害する気泡トラップ部とを備える小型ポンプと、
    内部熱交換ユニットと、
    外部熱交換ユニットと、
    これらを連結する配管と
    を有する冷却システムと、
    発熱部と、
    前記発熱部以外の部品と、を備え、
    前記気泡トラップ部が気泡溜りを有し、
    前記気泡トラップ部よりも下流側の流路壁が前記外部熱交換ユニットの放熱面を構成し、
    前記気泡トラップ部の前記気泡溜り側に前記部品が配置されている携帯機器。
JP2009014445A 2001-07-18 2009-01-26 冷却システム、及び携帯機器 Expired - Fee Related JP4629145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014445A JP4629145B2 (ja) 2001-07-18 2009-01-26 冷却システム、及び携帯機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001217644 2001-07-18
JP2009014445A JP4629145B2 (ja) 2001-07-18 2009-01-26 冷却システム、及び携帯機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002186705A Division JP4365564B2 (ja) 2001-07-18 2002-06-26 小型ポンプ

Publications (2)

Publication Number Publication Date
JP2009117861A JP2009117861A (ja) 2009-05-28
JP4629145B2 true JP4629145B2 (ja) 2011-02-09

Family

ID=19051928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014445A Expired - Fee Related JP4629145B2 (ja) 2001-07-18 2009-01-26 冷却システム、及び携帯機器

Country Status (6)

Country Link
US (1) US6755626B2 (ja)
EP (1) EP1277957B1 (ja)
JP (1) JP4629145B2 (ja)
CN (1) CN1242167C (ja)
DE (1) DE60222343T2 (ja)
TW (1) TW558611B (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7086452B1 (en) * 2000-06-30 2006-08-08 Intel Corporation Method and an apparatus for cooling a computer
JP3885679B2 (ja) * 2002-06-28 2007-02-21 株式会社日立製作所 電子機器
JP2004139186A (ja) * 2002-10-15 2004-05-13 Toshiba Corp 電子機器
JP2004348650A (ja) * 2003-05-26 2004-12-09 Toshiba Corp 電子機器
US20070065308A1 (en) * 2003-08-04 2007-03-22 Mitsuru Yamamoto Diaphragm pump and cooling system with the diaphragm pump
DE602004003316T2 (de) * 2003-09-12 2007-03-15 Samsung Electronics Co., Ltd., Suwon Membranpumpe für Kühlluft
JP4157451B2 (ja) * 2003-09-30 2008-10-01 株式会社東芝 気液分離機構、リザーブタンク、及び電子機器
JP2005107122A (ja) * 2003-09-30 2005-04-21 Toshiba Corp 電子機器
US6958910B2 (en) * 2003-11-18 2005-10-25 Kabushiki Kaisha Toshiba Cooling apparatus for electronic apparatus
JP4387777B2 (ja) * 2003-11-28 2009-12-24 株式会社東芝 電子機器
JP4279662B2 (ja) 2003-12-26 2009-06-17 アルプス電気株式会社 小型ポンプ
JP2005190316A (ja) * 2003-12-26 2005-07-14 Toshiba Corp 電子機器
JP2005315157A (ja) * 2004-04-28 2005-11-10 Toshiba Corp ポンプ、冷却装置および電子機器
JP2005315159A (ja) * 2004-04-28 2005-11-10 Toshiba Corp ポンプ及び電子機器
JP2005317796A (ja) * 2004-04-28 2005-11-10 Toshiba Corp ポンプ、冷却装置および電子機器
JP2005317797A (ja) * 2004-04-28 2005-11-10 Toshiba Corp ポンプ、電子機器および冷却装置
JP2005315156A (ja) 2004-04-28 2005-11-10 Toshiba Corp ポンプおよびポンプを備える電子機器
JP4234635B2 (ja) * 2004-04-28 2009-03-04 株式会社東芝 電子機器
US7484940B2 (en) * 2004-04-28 2009-02-03 Kinetic Ceramics, Inc. Piezoelectric fluid pump
JP2005317798A (ja) * 2004-04-28 2005-11-10 Toshiba Corp 電子機器
JP2005315158A (ja) * 2004-04-28 2005-11-10 Toshiba Corp ポンプ、冷却装置、および電子機器
JP4343032B2 (ja) * 2004-05-31 2009-10-14 株式会社東芝 冷却構造および投射型画像表示装置
JP2005344562A (ja) * 2004-06-01 2005-12-15 Toshiba Corp ポンプ、冷却装置および冷却装置を有する電子機器
JP2006049382A (ja) * 2004-07-30 2006-02-16 Toshiba Corp 冷却装置及び電子機器
WO2006080566A1 (en) * 2005-01-26 2006-08-03 Matsushita Electric Works, Ltd. Piezoelectric-driven diaphragm pump
CN100439711C (zh) * 2005-04-14 2008-12-03 精工爱普生株式会社
JP4805658B2 (ja) 2005-11-09 2011-11-02 日東工器株式会社 ユニモルフ振動板を用いたポンプ
WO2007086604A1 (ja) * 2006-01-30 2007-08-02 Nec Corporation 電子機器の冷却装置
JP4793441B2 (ja) * 2006-03-22 2011-10-12 株式会社村田製作所 圧電マイクロポンプ
CN101122302B (zh) * 2006-08-11 2010-11-10 富准精密工业(深圳)有限公司
CN101490419B (zh) * 2006-12-09 2011-02-02 株式会社村田制作所 压电泵
WO2009051166A1 (ja) * 2007-10-16 2009-04-23 Murata Manufacturing Co., Ltd. 振動装置および圧電ポンプ
JP5412815B2 (ja) * 2008-12-04 2014-02-12 富士通株式会社 冷却ジャケット、冷却ユニット、冷却システム及び電子機器
JP5828372B2 (ja) * 2010-09-21 2015-12-02 セイコーエプソン株式会社 冷却装置及びプロジェクター
TWI412664B (zh) * 2010-10-12 2013-10-21 Micorjet Technology Co Ltd 流體輸送裝置
TWI563173B (en) * 2012-05-04 2016-12-21 Nippon Pillar Packing Displacement pump for liquid
CN102878813B (zh) * 2012-10-26 2014-09-24 烽火通信科技股份有限公司 一种用于高温环境的冷却装置
CN105026050A (zh) * 2013-03-14 2015-11-04 通用电气公司 低共振声音合成喷射器结构
TWI608332B (zh) * 2013-12-17 2017-12-11 宏達國際電子股份有限公司 電子模組與散熱模組
US9867312B2 (en) 2013-12-17 2018-01-09 Htc Corporation Electronic module and heat dissipation module
CN104717872B (zh) * 2013-12-17 2017-09-08 宏达国际电子股份有限公司 电子模块与散热模块
WO2016006496A1 (ja) * 2014-07-11 2016-01-14 株式会社村田製作所 吸引装置
US9776739B2 (en) 2015-08-27 2017-10-03 Vert Rotors Uk Limited Miniature low-vibration active cooling system with conical rotary compressor
US10174973B2 (en) 2015-08-27 2019-01-08 Vert Rotors Uk Limited Miniature low-vibration active cooling system with conical rotary compressor
CN105785699B (zh) * 2016-03-31 2018-07-13 海信集团有限公司 一种液冷散热系统及激光投影设备
TWI658211B (zh) * 2016-10-27 2019-05-01 Nitto Kohki Co., Ltd. Liquid pump
US11152283B2 (en) 2018-11-15 2021-10-19 Hewlett Packard Enterprise Development Lp Rack and row-scale cooling
US20200163257A1 (en) * 2018-11-16 2020-05-21 Hewlett Packard Enterprise Development Lp Micro-axial pump for servers
US11015608B2 (en) 2018-12-10 2021-05-25 Hewlett Packard Enterprise Development Lp Axial flow pump with reduced height dimension
JP7370739B2 (ja) 2019-06-21 2023-10-30 東芝テック株式会社 圧電ポンプ、及び、液体吐出装置
JPWO2021090729A1 (ja) * 2019-11-08 2021-05-14
CN113944615A (zh) * 2021-10-26 2022-01-18 上海应用技术大学 一种一体化微压电液体泵送装置及其制造和驱动方法
JP7120481B1 (ja) 2022-01-19 2022-08-17 富士電機株式会社 冷却器及び半導体装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244682A (ja) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd ポンプとこれを用いた電子機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833013A (en) 1972-04-06 1974-09-03 Baxter Laboratories Inc Self-valving fluid reservoir and bubble trap
US3951147A (en) 1975-04-07 1976-04-20 Metal Bellows Company Implantable infusate pump
US4604090A (en) 1983-11-22 1986-08-05 Consolidated Controls Corporation Compact implantable medication infusion device
US4728969A (en) 1986-07-11 1988-03-01 Tektronix, Inc. Air assisted ink jet head with single compartment ink chamber
EP0456508A3 (en) * 1990-05-11 1993-01-20 Fujitsu Limited Immersion cooling coolant and electronic device using this coolant
JPH0444353A (ja) * 1990-06-11 1992-02-14 Hitachi Ltd 電子機器の冷却装置
DE69106240T2 (de) 1990-07-02 1995-05-11 Seiko Epson Corp Mikropumpe und Verfahren zur Herstellung einer Mikropumpe.
JPH04243175A (ja) * 1991-01-17 1992-08-31 Nippon Denki Laser Kiki Eng Kk 冷却装置
JP2776994B2 (ja) * 1991-03-07 1998-07-16 富士通株式会社 冷却システム
JP2801998B2 (ja) * 1992-10-12 1998-09-21 富士通株式会社 電子機器の冷却装置
JP3385482B2 (ja) 1993-11-15 2003-03-10 株式会社日立製作所 電子機器
JPH08219615A (ja) * 1995-02-16 1996-08-30 Hitachi Ltd ノンストップ冷却装置
JP3570895B2 (ja) * 1998-07-02 2004-09-29 日本碍子株式会社 原料・燃料用吐出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244682A (ja) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd ポンプとこれを用いた電子機器

Also Published As

Publication number Publication date
TW558611B (en) 2003-10-21
US20030017063A1 (en) 2003-01-23
DE60222343T2 (de) 2008-05-29
CN1397734A (zh) 2003-02-19
EP1277957A3 (en) 2004-03-17
EP1277957A2 (en) 2003-01-22
CN1242167C (zh) 2006-02-15
EP1277957B1 (en) 2007-09-12
JP2009117861A (ja) 2009-05-28
DE60222343D1 (de) 2007-10-25
US6755626B2 (en) 2004-06-29

Similar Documents

Publication Publication Date Title
JP4629145B2 (ja) 冷却システム、及び携帯機器
US8272851B2 (en) Fluidic energy transfer devices
US7553135B2 (en) Diaphragm air pump
JP5012889B2 (ja) 圧電マイクロブロア
JP4873014B2 (ja) 圧電マイクロブロア
JP4957480B2 (ja) 圧電マイクロポンプ
KR100594802B1 (ko) 다이어프램 에어펌프
JP2009529119A5 (ja)
WO2004017698A1 (ja) 電子機器の冷却装置
JP4365564B2 (ja) 小型ポンプ
JP2011241808A (ja) 流体装置
JP5477271B2 (ja) ポンプ及び流体システム
JP2005248713A (ja) 流体ポンプ
JP2004340097A (ja) 小型ポンプ
CN111863748B (zh) 一体化微型冷却器及冷却系统
KR100719626B1 (ko) 힌지형 박판 체크밸브
JP3870847B2 (ja) ポンプ
JP4415727B2 (ja) 圧電ダイヤフラムポンプ
KR100719625B1 (ko) 부양 박판 체크밸브
JP2005016467A (ja) 液体循環装置および該液体循環装置を備えた電子機器
JP2004092587A (ja) ポンプ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees