JP4585774B2 - 電力変換装置および電源装置 - Google Patents

電力変換装置および電源装置 Download PDF

Info

Publication number
JP4585774B2
JP4585774B2 JP2004050821A JP2004050821A JP4585774B2 JP 4585774 B2 JP4585774 B2 JP 4585774B2 JP 2004050821 A JP2004050821 A JP 2004050821A JP 2004050821 A JP2004050821 A JP 2004050821A JP 4585774 B2 JP4585774 B2 JP 4585774B2
Authority
JP
Japan
Prior art keywords
phase
power
current
voltage
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004050821A
Other languages
English (en)
Other versions
JP2004297999A (ja
JP2004297999A5 (ja
Inventor
誠路 黒神
信善 竹原
学 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004050821A priority Critical patent/JP4585774B2/ja
Priority to EP04005151A priority patent/EP1455437A3/en
Priority to US10/792,713 priority patent/US6963147B2/en
Priority to AU2004200946A priority patent/AU2004200946B2/en
Priority to CNB2004100077870A priority patent/CN100420140C/zh
Priority to CN2008101311411A priority patent/CN101355317B/zh
Priority to KR1020040015347A priority patent/KR100713709B1/ko
Publication of JP2004297999A publication Critical patent/JP2004297999A/ja
Publication of JP2004297999A5 publication Critical patent/JP2004297999A5/ja
Application granted granted Critical
Publication of JP4585774B2 publication Critical patent/JP4585774B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Description

本発明は、直流電源に接続されるn相交流(nはn≧2となる整数)出力を有する電力変換器と、前記直流電源と前記電力変換器の間に設けられた平滑手段とを有する電力変換装置およびこれを用いた電源装置に関する。
近年、太陽光発電システムなどの系統連系する分散型電源が普及してきている。
このような電源装置では、直流電源から出力された直流電力を電力変換器であるインバータに入力し、交流電力に変換して負荷である系統に出力している。また、インバータの入力部には平滑手段を接続し、直流電源の電圧、電流の安定化を図っている。この平滑手段としては、インバータの入力部に平滑コンデンサを並列接続するのが一般的である。
ところで、単相インバータの瞬時電力は出力交流の2倍の周波数で変動するので、直流電源からの直流電力と出力電力との間には、出力周波数の2倍の電力変動が生じ、比較的低周波な変動を吸収する平滑コンデンサには大容量なものが必要となる。そのため、平滑コンデンサとしては、一般に静電容量あたりのサイズや質量が小さくやコストも低いという特徴があるアルミ電解コンデンサが選択されている(例えば、特許文献1参照)。
また、三相出力するインバータにおいては、平滑コンデンサの静電容量が小さくなることが知られている(例えば、特許文献2参照)。
特開平1−107661号公報 特開昭58−33976号公報
しかしながら、平滑手段として用いられる平滑コンデンサの静電容量がさらに小さければ、更なる小型化、軽量化、低コスト化ができるので、平滑手段の小容量化が望まれている。
また、一般にアルミ電解コンデンサは、周囲温度の上昇や自己発熱により寿命が著しく短くなることが知られている。電源装置の長寿命化を考える場合、アルミ電解コンデンサの寿命が問題になる場合がある。フィルムコンデンサや積層セラミックコンデンサなどのより長寿命が期待できると言われている固体コンデンサの使用も考えられるが、サイズや質量の増大やコストの上昇が問題となる。
一方、三相出力するインバータにおいては、実際には、単に三相出力するだけでは静電容量を十分に小さくできていないのが現状である。
さらに、平滑コンデンサだけでなく、直流電源の電圧、電流の安定化を図る平滑リアクトルやアクティブ電力フィルタなどの他の平滑手段においても同様に小容量化が望まれている。
本発明の目的は、直流電源と、該直流電源に接続されるn相交流(nはn≧2となる整数)出力を有する電力変換器との間に設けられた平滑手段を小容量化することにある。
本発明は、上記目的のために、直流電源に接続されるn相交流(nはn≧2となる整数)出力を有する電力変換器と、前記直流電源と前記電力変換器の間に設けられた平滑手段とを有する電力変換装置であって、
前記電力変換器が、各相の電力波形の位相差を電力波形の周期をn等分した値に総て一致させて、かつ各相の電力値を総て同一となるように制御する制御手段を備えていることを特徴とする電力変換装置を提供するものである。
また、上記本発明は、前記制御手段が、各相の出力電圧を検出し、出力電圧に反比例した相電流となるよう制御すること、
前記平滑手段が、前記直流電源と前記電力変換器の間に直流電源と並列に接続された第1蓄電部と、一方の端子が第1蓄電部と並列に接続された双方向電力変換器と、該双方向電力変換器の他方の端子に接続された第2蓄電部と、前記第1蓄電部のリップルが小さくなるよう双方向電力変換器の電力潮流を制御する平滑制御手段とを備えること、
前記平滑制御手段は、前記第1蓄電部のリップルを検知し、検出リップルが小さくなるよう前記双方向電力変換器の電力潮流を制御すること、
前記平滑制御手段は、前記電力変換器の出力電圧および/または出力電流の低次高調波を検出し、前記低次高調波に応じて前記第1蓄電部のリップルが小さくなるよう前記双方向電力変換器を制御すること、
前記電力変換器が、各相の電圧間の位相および電流間の位相が90度異なる二相の交流を出力すること、
前記制御手段が、前記電力変換器の各相の出力電圧間の位相差と出力電流の位相差を総て同一に制御すること、
前記電力変換器の出力各相が、前記電力変換器と同一相数のn相交流系統の各相に接続され、系統連系出力すること、
前記直流電源が、太陽電池または燃料電池であること、
前記直流電源が、太陽電池または燃料電池と、太陽電池または燃料電池からの直流出力を電圧変換して出力するDC/DCコンバータとからなること、
をその好ましい態様として含むものである。
さらに、本発明は、直流電源と、該直流電源に接続された上記いずれかの電力変換装置とを備えていることを特徴とする電源装置を提供するものでもある。
本発明では、n相交流を出力するが、n相各相の電力波形の位相差を電力波形の周期をn等分した値にすべて一致させて、かつ各相の電力値を全て同一となるよう制御することで、各相の負荷インピーダンスや系統電圧が異なっていても、各相への瞬時電力の合計が略一定となり、ひいては電力変換器の瞬時の入力電力がスイッチング成分を除けばほぼ一定となり、入力電力と出力電力の瞬時電力差はおよそゼロとなり、処理すべきエネルギーを極小化することにより、平滑手段を小容量化できるものである。
本発明の他の態様は、直流電源に接続され、A相、B相、C相の三相交流を出力する電力変換器と、前記直流電源と前記電力変換器の間に設けられた平滑手段と有する電力変換装置であって、
三相のA相、B相、C相の電圧を検出する電圧検出手段と、
三相のうちA相を基準とし、B相の相電圧に応じてB相の線電流のB成分を増加/減少させ調整し、前記B相成分の調整分の逆符号の量をA相の線電流およびC相の線電流に分配して減少/増加させて調整し、
三相のうちA相を基準とし、C相の相電圧に応じてC相の線電流のC相成分を増加/減少させ調整し、前記C相成分の調整分の逆符号の量をA相の線電流およびB相の線電流に分配して減少/増加させて調整するとともに、
三相の瞬時電力の合計値をpsum(t)としたときに、
psum(t)=A相の相電圧・A相の線電流+B相の相電圧・B相の線電流
+C相の相電圧・C相の線電流
に対して、
d(psum)/dt≒0
を満たす制御手段を備えたことを特徴とする電力変換装置である。
また、上記本発明の他の態様は、三相の瞬時の線電流の合計値をisum(t)としたときに、
isum(t)=第1相の線電流+第2相の線電流+第3相の線電流=0
を満たす制御手段を備えたことが好ましい。
また、θ=2π・f・t(fは三相系統の周波数、tは時刻)、VaをA相の振幅、VbをB相の振幅、VcをC相の振幅としたときに、A相の電圧va、B相の電圧vb、C相の電圧vcが
va=Va・sin(θ)
vb=Vb・sin(θ+2π/3)
vc=Vc・sin(θ+4π/3)
を満たす場合に、A相を基準として、
k1b=Vb/Va
k1c=Vc/Va
とし、A相の電流ia、B相の電流ib、C相の電流icを、
ia=Io・{sin(θ)+I12・sin(θ+2π/3)+I13・sin(θ+4π/3)}
ib=Io・{(1−2・k2b)・sin(θ+2π/3)+I23・sin(θ+4π/3)}
ic=Io・{I32・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)}
を満たすように制御することが好ましい。
ただし、
I12は、A相の電流iaのうち、B相の電圧と同相成分の電流の大きさ、
I13は、A相の電流iaのうち、C相の電圧と同相成分の電流の大きさ、
(1−2・k2b)は、B相の電流ibのうち、B相の電圧と同相成分の電流の大きさ、
I23は、B相の電流ibのうち、C相の電圧と同相成分の電流の大きさ、
I32は、C相の電流icのうち、B相の電圧と同相成分の電流の大きさ、
(1−2・k2c)は、C相の電流icのうち、C相の電圧と同相成分の電流の大きさ、
I12+I32=2・k2b、
I13+I23=2・k2c、
Ioは任意の数、
k2b=(Vb−Va)/(2・Vb+Va)=(k1b−1)/(2・k1b+1)、
k2c=(Vc−Va/(2・Vc+Va)=(k1c−1)/(2・k1c+1)、
である。
また、θ=2π・f・t(fは三相系統の周波数、tは時刻)、VaをA相の振幅、VbをB相の振幅、VcをC相の振幅としたときに、A相の電圧va、B相の電圧vb、C相の電圧vcが
va=Va・sin(θ)
vb=Vb・sin(θ+2π/3)
vc=Vc・sin(θ+4π/3)
を満たす場合に、A相を基準として、
k1b=Vb/Va
k1c=Vc/Va
とし、A相の電流ia、B相の電流ib、C相の電流icを
ia=Io・{sin(θ)+I12・sin(θ+2π/3)+I13・sin(θ+4π/3)}
ib=Io・{(1−2・k2b)・sin(θ+2π/3)+I23・sin(θ+4π/3)}
ic=Io・{I32・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)}
となるように制御することも好ましい。
ただし、
I12は、A相の電流iaのうち、B相の電圧と同相成分の電流の大きさ、
I13は、A相の電流iaのうち、Cの電圧と同相成分の電流の大きさ、
(1−2・k2b)は、B相の電流ibのうち、B相の電圧と同相成分の電流の大きさ、
I23は、B相の電流ibのうち、C相の電圧と同相成分の電流の大きさ、
I32は、C相の電流icのうち、B相の電圧と同相成分の電流の大きさ
(1−2・k2c)は、C相の電流icのうち、C相の電圧と同相成分の電流の大きさ、
I12+I32=2・k2b、
I13+I23=2・k2c、
Ioは任意の数、
k2b=(Vb−Va)/(3・Vb)=(k1b−1)/(3・k1b)、
k2c=(Vc−Va)/(3・Vc)=(k1c−1)/(3・k1c)、
である。
また、
I12=I32=k2b
I13=I23=k2c
として、A相の電流ia、B相の電流ib、C相の電流icを
ia=Io・{sin(θ)+k2b・sin(θ+2π/3)+k2c・sin(θ+4π/3)}
ib=Io・{(1−2・k2b)・sin(θ+2π/3)+k2c・sin(θ+4π/3)}
ic=Io・{k2b・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)}
を満たすように制御することが好ましく、
さらに、
I12=2・k2b・{Vc/(Va+Vc)}、I32=2・k2b・{Va/(Va+Vc)}
I13=2・k2c・{Vb/(Va+Vb)}、I23=2・k2c・{Va/(Va+Vb)}
となるようA相の電流ia、B相の電流ib、C相の電流icを制御することが好ましい。
また、基準とするA相として、三相のうち相電圧の大きさが2番目のものを選択することが好ましい。
さらに、本発明は、直流電源と、該直流電源に接続された上記他の態様の電力変換装置とを備えていることを特徴とする電源装置を提供するものでもある。
本発明によれば、各相の負荷インピーダンスや系統電圧が異なっていても、各相への瞬時電力の合計が略一定となり、ひいては電力変換器の瞬時の入力電力がスイッチング成分を除けばほぼ一定となり、入力電力と出力電力の瞬時電力差はおよそゼロとなることから、平滑手段が処理すべきエネルギーを極小化し、平滑手段を小容量化できるものである。
まず、図1〜図4に基づいて、本発明の基本的構成例を説明する。なお、図1〜図4において同じ符号は同じ部材を示す。
図1において、電源装置100は、直流電源1と、これに接続される電力変換装置200により構成されている。電力変換装置200は、直流電源1から出力される直流電力を入力し多相の交流電力に変換して多相の負荷4に出力する電力変換器3と、前記直流電源1と前記電力変換器3との間に設けた平滑手段2により構成されている。
直流電源1は、種類に特に制限はなく、直流電力を出力する直流発電機や電池などを適用できる。但し、本発明は出力インピーダンスが大きい直流電源に対して効果的であり、この観点からは、例えば、太陽電池、燃料電池、熱電発電などが好ましい。また、直流電源1は、上記の直流電力をDC/DCコンバータを介して電圧変換して平滑手段2に直流電力を出力する構成のものとすることもできる。DC/DCコンバータとしては、チョッパー方式、フライバック方式、プッシュプル方式などの回路方式や、絶縁方式、非絶縁方式の絶縁タイプなどを適宜使用可能であり、制限はない。
電力変換器3は、直流電力をn相(nはn≧2の整数)の交流電力に変換する変換主回路5と、n相各相の電力波形の位相差を電力波形の周期をn等分した値に総て一致させ、かつ各相の電力値が総て同一となるよう変換主回路5を制御する制御手段9を備える。
変換主回路5は、直流電源1からの直流電力をn相交流電力に変換できるものであればよい。例えば、三相ブリッジインバータ回路や、複数の単相ブリッジインバータ回路をn相の各相に出力する(例えば二台の単相ブリッジインバータ回路を二相の各相に出力する)構成などがあり、公知公用の回路方式を用いて種々構成可能である。
制御手段9は、必要に応じて適宜各相の電圧、電流、電力の一部またはこれら総ての検出手段を備えるとともに、各相の電力波形の位相差が電力波形の周期をn等分した値に総て一致させて、かつ各相の電力値を総て同一となるよう調整する調整手段を備える。
調整手段は、RAM、ROM、I/Oなどを備えたCPUやDSP、アナログ処理回路、デジタル処理回路などにより適宜構成できる。調整手段による各相の電力値の調整は、例えば検出した各相の電力が一致するように各相への出力を調整したり、検出した各相の電圧と電流の積である皮相電力が一致するように各相への出力の大きさを調整したり、各相の電圧に応じて各相の電流値が反比例の関係となるように調整すること実現できる。各相の電圧に応じて各相の電流値が反比例の関係となるよう調整するものでは、単純な演算のみを行えばよいので制御が簡単となるメリットがある。また、調整手段による各相の電力波形の位相差の調整は、例えば内部に基準の発振手段を備え、所定クロック差の分周信号を用いることでn相分の基準周波信号を生成し、前記基準周波信号をもとに交流出力するなど、種々の構成で実現できる。
図2のように、それぞれ変換主回路5a,5bと制御手段9a,9bを備えた、n相出力する複数の電力変換器3a,3bの入力および出力を並列接続した構成とすることもできる。この場合、複数の電力変換器3a,3bのスイッチングタイミングをずらす(例えば、三角波などのキャリア信号と変調信号の比較によりPWM信号を生成するものにおいて、キャリア信号の位相をずらす)ことにより、スイッチング動作そのものに起因するリップルが低減できるので、本発明により小容量化されてスイッチングリップルの影響が相対的に高まるものにおいては、その小容量化の効果をさらに高めることができる。
また、図3のように、それぞれ変換主回路5a,5bと制御手段9a,9bを備えた、n相出力する複数の電力変換器3a,3bの入力を並列接続し、それぞれの出力は別々のn相の負荷4a,4bに出力するように構成することもできる。この場合、変換器3aから負荷4aへの出力電力と変換器3bから負荷4bへの出力電力の大きさ、位相、周波数は必ずしも一致する必要はない。制御手段9a、9bは、その一部または全部を共用してもよく、小型化や低コスト化できるメリットがある。
さらに、図4のように、電力変換器3cとして、単相を出力する複数の変換主回路6a,6bと、各変換主回路6a,6bを制御する制御手段9とを備え、変換主回路6a,6bの単相交流電力をそれぞれ単相負荷7a,7bに出力する構成とすることもできる。図4の制御手段9も図1で説明したものと同様のもので、単相出力する変換主回路6a,6bの出力電力の位相と電力の大きさ前記と同様に制御するものである。
図1〜図4のいずれにおいても、電力変換器3,3a,3b,3cにおける制御手段9,9a,9bが制御するn相交流電力の位相は、n相交流電力の周期をn等分したものであるが、例えば三相交流電力であれば各位相差は120度となるように制御する。これは電圧および電流の周期において各相の電圧位相差および電流位相差を120度となるように制御することになる。また、二相交流電力であれば交流電力周期に対して各位相差を180度となるように制御する。これは電圧および電流の周期においては各相の電圧位相差および電流位相差を90度となるように制御することになる。この他、4相以上においても同様である。なお、nが素数でない場合には、因数分解で得られる複数の素数での多相系統を組み合わせたものと理解することもできる。
図1〜図4のいずれにおいても、平滑手段2としては、電力変換器3,3a,3b,3cの構成に応じて、電圧形であれば直流電源1の出力に並列接続する容量性手段を、電流形であれば直流電源1と電力変換器3との間に直列接続する誘導性手段を用いる。
上記容量性手段としては、例えばコンデンサが挙げられる。使用電圧、リップル電圧、リップル電流、等価直列抵抗ESR、許容損失、使用環境などの使用条件に適合するものであれば、コンデンサの種類には特に限定はなく、例えばフィルムコンデンサ、積層セラミックコンデンサ、タンタル電界コンデンサ、アルミ電界コンデンサなどや、これらを組み合わせて用いることもできる。平滑手段2としてコンデンサを使用する場合、同種類のコンデンサを小容量化すると、等価直列抵抗ESRが高くなるので、誘電正接が小さく、同じ静電容量での等価直列抵抗ESRが小さい種類が好ましい。特に誘電正接の小さいフィルムコンデンサ、積層セラミックコンデンサなどは好適である。
前記誘導性手段としては、コイルが挙げられ、使用電流、リップル電圧、リップル電流、等価直列抵抗ESR、許容損失、使用環境などの使用条件に適合するものを使用する。磁性材の種類や形状、巻線の構成などには特に制限はないが、例えば小型化するには飽和磁束密度の高い磁性材を選択することが好ましい。
また、容量性手段と誘導性手段とを組み合わせてL型、π型、T型などに構成することもできる。
また、容量性手段として、直流電源1の出力に並列接続する第1蓄電手段と、一方の端子を第1蓄電手段に並列接続する双方向電力変換器と、この双方向電力変換器の他方の端子に並列接続される第2蓄電手段と、電力潮流を制御する平滑制御手段を備えた構成を用いることも可能である。第2蓄電手段の電圧利用率を高くすることで、第1蓄電手段を大幅に小容量化でき、全体としても小容量化できる。なお、平滑制御手段は制御手段と共用して構成してもよく、小型化・低コスト化のメリットがある。また、双方向電力変換器と変換主回路5のスイッチタイミングの同期が容易にとれるので、ビート低減や第1蓄電手段のスイッチング動作に伴うリップル低減ができるメリットがある。
上記のような一種のアクティブフィルタを設ける場合、さらにリップルが低減できる。また、従来のインバータに対してアクティブフィルタを用いる構成と比較すると、本発明の構成では処理すべきエネルギーが小さく、双方向電力変換器の瞬時処理容量および蓄電手段の容量を大幅に小容量化できるので、小型化、低コスト化できる。また、電源装置全体の電力に対する双方向電力変換器で処理される電力が従来構成よりも非常に小さくなるので、変換効率が向上するメリットがある。また、第1蓄電部のリップル、特に第1蓄電部のリップル電圧を検知し、検出リップル電圧が小さくなるように前記双方向電力変換器の電力潮流を制御すれば、簡単かつ確実に電力の脈動を第2蓄電手段で吸収できるので、第1蓄電部を小容量化できるメリットがある。さらに、電力変換器の出力電圧および/または出力電流の低次高調波を検出し、前記低次高調波により生じる高調波電力成分に応じて第1蓄電部のリップルが小さくなるよう双方向電力変換器を制御すれば、特定のリップルを効果的に第2蓄電手段に吸収でき、それにより第1蓄電部を小容量化できる。低次高調波の次数が低いほどリップル抑制の効果が大きく、低次高調波としては10次以下が好ましく、5次以下の低次高調波に対して特に効果的である。
多相負荷4および単相負荷7a,7bとしては、抵抗負荷、モータ負荷、系統あるいはこれらの組み合わせたものなど、種々適用することができる。多相負荷4の場合、各相のインピーダンスあるいは電圧が同一である必要はなく、異なるものを用いることができる。また、各相の力率は異なっても本発明の効果は得られるが、各相の力率が揃っているほうがより好ましく、各相の力率が同一の場合が最も好ましい。負荷が系統の場合には電圧と電流の位相差が各相で常に同一となるよう制御するのが好ましい。
以下、本発明の具体的構成例を説明する。
[第1の具体的構成例]
図5は本発明の第1の具体的構成例を示す図である。
電源装置101は、太陽電池11と、この太陽電池11に接続された電力変換装置201とにより構成されている。電力変換装置201は、太陽電池11の出力に並列接続された平滑コンデンサ12と、太陽電池11で発電された直流電力を三相の交流電力に変換するスイッチング回路13と、電流を滑らかにする連系リアクトル16および中性線リアクトル16bとを備え、開閉手段17を介して三相交流電力を三相4線式の三相系統14に出力するものとなっている。これは太陽電池と系統連系インバータからなる、いわゆる系統連系太陽光発電システムである。また、各相電流Ia,Ib,Icを検出する電流検出手段15と、系統の各線間電圧Vab,Vbc,Vcaを検出する電圧検出手段18を備え、各検出信号は制御手段19へ出力されるものとなっている。
制御手段19は、系統の各線間電圧Vab,Vbc,Vcaの大きさや周波数を監視して所定範囲外となるとスイッチング回路13を停止すると共に、開閉手段17を閉じる。通常時は、各相電流Ia,Ib,Icが所望の大きさとなるように電流制御を行い、スイッチング回路13へのPWM駆動信号のデューティを調整する。このような電流制御を行うものは制御性が高く、系統連系インバータに好適である。
開閉手段17は、一般に系統連系システムでは機械的な接点を有するものが用いられ、例えばマグネットコンタクタやリレーなどが使用される。
電圧検出手段18は、系統連系インバータとして一般的に要求される電圧の大きさと周波数(あるいは位相)が検出できるものであればよく、他には特に制限はない。電圧の大きさと周波数(あるいは位相)を別々に検出ものであってもよい。この場合、検出手段を兼用できることはいうまでもない。
電流検出手段15は、系統連系インバータで通常用いられるホールセンサ方式やシャント抵抗方式などが適用できるが、これに限定するものではない。このような系統連系インバータでは、通常、MPPT制御により、太陽電池11からの出力が最大となるよう出力指令値を生成する。
上記の構成において、制御手段19は、系統の線間電圧Vab,Vbc,Vcaからデルタ−スター変換により相電圧を求める。通常時は、各相電圧と同位相の電流を出力する各相の電流基準信号を生成する。また、出力指令値に対して各相の電圧の大きさに反比例した係数を掛けることで、各相の電流指令値の大きさを算出する。そして、電流基準信号と各相の電流指令値の乗算により各相の電流目標波形を生成する。
上記のように構成することで、各相に同じ電力が力率1にて出力される。これにより、三相各相の電力波形の位相差を電力波形の周期を三等分した120度に総て一致させて、かつ各相の電力値を総て同一となるよう制御することができ、系統電圧が不平衡の場合でも各相への瞬時電力の合計を略一定とすることができる。入力電力と出力電力の瞬時電力差はおよそゼロとなり、処理すべきエネルギーを極小化することにより、平滑コンデンサ12の静電容量を小容量化できる。
また、各相の電圧と電流との位相差を同一となるよう電流基準信号を生成し、かつ皮相電力が同一となるように制御すれば同様の効果が得られる。よって、進相無効電力制御を行う場合には上記のように制御するとよい。
なお、相電圧の検出は上記に限るものではなく、例えば、各相の線にコンデンサをスター結線し、コンデンサの中間接続点からの各相へのコンデンサ両端の電圧を検出する構成でもよい。
[第2の具体的構成例]
図6は本発明の第2の具体的構成例を示す図で、第1の具体的構成例を示す図5と多くは同様の構成で、同一符号のついているものは同じ部材を示す。本第2の具体的構成例は、DC/DCコンバータ21が太陽電池1と平滑コンデンサ12の間にある点が第1の具体的構成例とは異なる。202は電力変換装置である。
DC/DCコンバータ21は、図6に示した通り、太陽電池11と平滑コンデンサ22を並列接続して太陽電池11の直流電力を受けると共に、昇圧用のコイル23、スイッチング手段24、逆流防止用のダイオード25により、直流電圧を昇圧する、いわゆる昇圧チョッパ回路を構成し、太陽電池11からの直流電圧を所望の電圧に昇圧して平滑コンデンサ12へ出力する。平滑コンデンサ22はDC/DCコンバータ21のスイッチング動作に伴う高周波成分のみを負担すればよいので、小容量のものを選択できる。
このようにDC/DCコンバータ21を挿入することで、太陽電池11の電圧が低い場合にも、DC/DCコンバータ21で系統連系インバータに必要な電圧が得られるので、適用範囲が広くなるメリットがある。
なお、DC/DCコンバータ21のスイッチング制御は、制御手段19と別に設けても構成でき、この場合には、DC/DCコンバータ21と制御手段19を離れた場所に設けることができるメリットがある。また、DC/DCコンバータ21のスイッチング制御は、制御手段19と共用すると小型化、低コスト化が容易になる他、DC/DCコンバータ21とスイッチング回路13のスイッチタイミングの同期が容易にとれるので、ビート低減や平滑コンデンサ12のスイッチング動作に伴うリップル低減ができるメリットがある。
[第3の具体的構成例]
図7は本発明の第3の具体的構成例を示す図で、図5と同じ符号は同一の部材を示す。203は電力変換装置である。
本例の電源装置103が第1の具体的構成例と大きく異なる点は、単相インバータを2つ備え、それぞれ単相の抵抗負荷34d,34eに出力する点である。各単相インバータの入力は共通の平滑コンデンサ12を利用し、単相ブリッジ33d,33eによりそれぞれ単相交流に変換し、連系リアクトル16で滑らかな電流を抵抗負荷34d,34eのそれぞれに出力する。各単相インバータの出力電流Id,Ieを電流検出手段15で検出し、各抵抗負荷34d,34eに印加される出力電圧Vd,Veを電圧検出手段18で検出し、制御手段39に出力する。
制御手段39は、内部で正弦波形状の第1基準信号と第2基準信号を90度の位相差で生成する。各単相インバータは、基準信号に出力指令値を乗算することにより変調信号を演算し、これをキャリア信号である三角波信号と比較することでPWM信号を生成して単相ブリッジ33を駆動する。第1基準信号は単相ブリッジ33d、第2基準信号は単相ブリッジ33eの駆動に用いるよう構成する。ここで、各単相インバータの出力電流Id,Ieと出力電圧Vd,Veから各相の出力電力を演算する。そして、各相の出力電力の電力値が一致するように、出力電力が大きいほうの出力指令値を小さくなるよう、出力電力が小さいほうは出力指令値が大きくなるように、各相の出力指令値を調整する。
このように構成することで、2つの抵抗負荷34d,34eには位相が90度異なる正弦波の電圧および電流が供給される。この時、各抵抗負荷34d,34eの電力は電圧および電流の2倍の周波数の交流成分となるが、各抵抗負荷34d,34eの電力の位相差はこの電力の周期を2等分した180度となる。また、各抵抗負荷34d,34eでの電力は同一となるように制御されるので、2つの各抵抗負荷34d,34eの瞬時電力の合計は(sinθ)2+(cosθ)2=1の関係から分かるように、一定の値となり、各単相インバータの入力電力の合計もスイッチング成分を除けば一定となる。これより、入力電力と出力電力の間には瞬時電力の差がほとんどなくなるので、平滑コンデンサ12の静電容量を十分に小さくできる。
なお、本例では出力電力の電力値を一致するように構成したが、予め各単相インバータの変換効率を出力電圧、出力電流などの動作条件に応じてデータとして備えて、出力電力の代わりに、出力電力を動作条件にあたる変換効率データで除算して各単相インバータの入力電力を演算して、これが一致するよう制御してもよく、異なる抵抗負荷を用いた場合でも変換効率の違いによる電力の誤差が概略補正でき、各単相インバータの入力電力の合計もスイッチング成分を除けば一定とすることができる。回路方式や構成部品が異なる場合にも、変換効率データを用いた補正は電力の誤差が小さくできるので、好ましい効果が得られる。
また、出力電力を検出する代わりに、各単相ブリッジの入力電力を検出して、これが一致するように構成してもよく、例えば各単相ブリッジの入力部のそれぞれ電流を検出し、各入力電流の平均値が一致するよう構成することができる。
さらに、上記に限定するものでなく、電圧位相が90度異なる二相の系統に連系出力する場合にも本発明を適用できる。この場合、三相系統にスコット結線トランスや変形ウッドブリッジ結線トランスなどを介して前記の二相出力も可能である。
[第4の具体的構成例]
ここでは、請求項14の発明に関わる第4の具体的構成例を示す。第1の具体的構成例を示す図5と同様の構成を採るが、制御手段19における電流制御方法、より具体的には電流指令値の生成に関する構成が異なる。
まず、三相のうち一相のみ相電圧が異なる場合を考える。
三相(A相、B相、C相)の相電圧のうちC相の電圧が他の2相と異なる場合、各相電圧の瞬時値va、vb、vcは以下の式で表される。ただし、θ=2π・f・t(fは三相系統の周波数、tは時刻)である。
va=Vo・sin(θ)
vb=Vo・sin(θ+2π/3)
vc=Vo・k1・sin(θ+4π/3)
Voは基準とする相電圧va、vbの振幅(ここでは定数)、k1は相電圧vcの振幅を上記Voを用いて表すための係数であり、以下のように表される。
k1=(C相電圧振幅値)/(A相電圧振幅値Vo)
ここで、k2=(k1−1)/(2×k1+1)なる係数k2を用いて各相線電流の瞬時値ia、ib、icを以下のようにC相成分電流を調整して制御する。
ia=Io・{sin(θ)+k2・sin(θ+4π/3)}
ib=Io・{sin(θ+2π/3)+k2・sin(θ+4π/3)}
ic=Io・{(1−2・k2)・sin(θ+4π/3)}
ただし、Ioは任意の数値である。(ここでは、ia、ib、icの大きさの比率と位相差が重要である。後ほど説明する電力リップル率においてはIoの値に関わらず一定の値なる。)
すなわち、C相線電流からC相成分を2・k2の割合ほど減少するよう調整し、C相成分の前記調整分2・k2を代わりに他の2つの線電流に均等に分配して、A相線電流およびB相線電流はC相成分をk2ほど増加させる。
三相の瞬時電力pa、pb、pcは
pa=va・ia
pb=vb・ib
pc=vc・ic
であるから、三相の瞬時電力の合計値psumは以下の式で表される。
psum=pa+pb+pc=va・ia+vb・ib+vc・ic
上式に各相電圧および各相線電流を代入すると、下式が導かれる。
psum=3/2・Vo・Io+Vo・Io・sin2(θ+4π/3)・[−k2・(2・k1+1)+k1−1]
ここで、上式の第1項は定数である。また、第2項については、k2=(k1−1)/(2×k1+1)であるから、[−k2・(2・k1+1)+k1−1]=0となる。よって、上式の第2項はゼロとなり、三相の瞬時電力の合計値psumは
psum=3/2・Vo・Io(一定値)
となり、出力電力の脈動は生じない。これにより、入力電力と出力電力の瞬時電力差はおよそゼロとなり、処理すべきエネルギーを極小化することにより、平滑コンデンサ12の静電容量を小容量化できる。
一例として、三相の相電圧が各々115V、115V、117Vにおける出力電力の脈動について計算する。
今、出力電力リップル率を下式により定義とする。
出力電力リップル率=(psumのピークtoピーク値)/(psumの平均値)
従来の3相の線電流は同じ大きさで同じ力率の電流を流す場合、出力電力リップル率を計算すると1.327%である。これに対して、本構成例に基づき、k1=117/115=1.01739、k2=0.00537、(1−2・k2)=0.98854に調整して制御する場合、出力電力リップル率は0.000%と計算される。このように、1相の相電圧が異なる場合において、基準の相と有効電力が同じとなる調整対象の相の電流を調整するとともに調整電流の逆符号の電流を基準の相と他の相の電流に無効電力が打ち消しあうように分配することで、瞬時出力電力の合計値psumの時間変動はよく抑制され、入力電力の脈動も抑制されることが分かる。上記の電流分配の際には、電流分配による電流分配先の有効電力の変動も考慮して電流調整を行う。これにより、処理すべきエネルギーを極小化することにより、平滑コンデンサ12の静電容量を小容量化できる。
次に、三相(A相、B相、C相)の相電圧がいずれも異なる場合を考えると、各相電圧の瞬時値va、vb、vcは以下の式で表される。ただし、θ=2π・f・t(fは三相系統の周波数、tは時刻)である。
va=Vo・sin(θ)
vb=Vo・k1b・sin(θ+2π/3)
vc=Vo・k1c・sin(θ+4π/3)
Voは基準とする相電圧vaの振幅(ここでは定数)、k1bおよびk1cは相電圧vbおよびvcの振幅を上記Voを用いて表すための係数であり、以下のように表される。
k1b=(B相電圧振幅値)/(A相電圧振幅値Vo)
k1c=(C相電圧振幅値)/(A相電圧振幅値Vo)
ここで、k2b=(k1b−1)/(2×k1b+1)、k2c=(k1c−1)/(2×k1c+1)なる係数k2b、k2cを用いて各相線電流の瞬時値ia、ib、icを以下のようにB相成分電流およびC相成分電流を調整して制御する。
ia=Io・{sin(θ)+k2b・sin(θ+2π/3)+k2c・sin(θ+4π/3)}
ib=Io・{(1−2・k2b)・sin(θ+2π/3)+k2c・sin(θ+4π/3)}
ic=Io・{k2b・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)}
すなわち、B相線電流からB相成分を2・k2bの割合ほど減少するよう調整し、B相成分の前記調整分2・k2bを代わりに他の2つの線電流に均等に分配して、A相線電流およびC相線電流はB相成分をk2bほど増加させる。また、C相線電流からC相成分を2・k2cの割合ほど減少するよう調整し、C相成分の前記調整分2・k2cを代わりに他の2つの線電流に均等に分配して、A相線電流およびB相線電流はC相成分をk2cほど増加させる。
一例として、三相の相電圧が各々117V、115V、119Vにおける出力電力の脈動について計算する。
従来の3相の線電流は同じ大きさで同じ力率の電流を流す場合、出力電力リップル率を計算すると1.974%である。これに対して、本構成例に基づき、k1b=115/117=0.98291、k2b=−0.00576、(1−2・k2b)=1.01153、k1c=119/117=1.01709、k2c=0.00563、(1−2・k2c)=0.98873に調整して制御する場合、出力電力リップル率は0.013%と計算される。このように、三相の相電圧がいずれも異なる場合においても、基準の相と有効電力が同じとなる調整対象の相の電流を調整するとともに調整電流の逆符号の電流を基準の相と他の相の電流に無効電力が打ち消しあうように分配する電流調整を2つの相に対して行うことで、瞬時出力電力の合計値psumの時間変動はよく抑制され、入力電力の脈動も抑制されることが分かる。上記の電流分配の際には、電流分配による電流分配先の有効電力の変動も考慮して電流調整を行う。これにより、処理すべきエネルギーを極小化することにより、平滑コンデンサ12の静電容量を小容量化できる。
基準とする相電圧はいずれの相電圧であっても、出力電力の脈動をより低減できる。また、三相の相電圧のうち中間の電圧値のである相電圧を基準としてVoをとるようすると、出力電力の脈動を最も低減でき、好ましい。
なお、本構成においては中性線に流れる電流がゼロとなるので、図8に示すように三相3線式の三相系統14bに出力する電源装置104を構成することも出来る。また、図9に示すようなDC/DCコンバータ21を備えた電源装置105を三相3線式の三相系統14bに出力する構成もできる。なお、204は電力変換装置、205は電力変換装置である。
[第5の具体的構成例]
ここでは、請求項17の発明に関わる第5の具体的構成例を示す。第5の具体的構成例と同様で、第1の具体的構成例を示す図5と同様の構成を採るが、制御手段19における電流制御方法、より具体的には電流指令値の生成に関する構成が異なる。
三相(A相、B相、C相)の相電圧がいずれも異なる場合を考えると、各相電圧の瞬時値va、vb、vcは以下の式で表される。ただし、θ=2π・f・t(fは三相系統の周波数、tは時刻)である。
va=Vo・sin(θ)
vb=Vo・k1b・sin(θ+2π/3)
vc=Vo・k1c・sin(θ+4π/3)
Voは基準とする相電圧vaの振幅(ここでは定数)、k1bおよびk1cは相電圧vbおよびvcの振幅を上記Voを用いて表すための係数であり、以下のように表される。
k1b=(B相電圧振幅値)/(A相電圧振幅値Vo)
k1c=(C相電圧振幅値)/(A相電圧振幅値Vo)
ここで、k2b=(k1b−1)/(2×k1b+1)、k2c=(k1c−1)/(2×k1c+1)なる係数k2b、k2cと、前記係数k1b、k1cを用いて、本構成例では各相線電流の瞬時値ia、ib、icを以下のようにB相成分電流およびC相成分電流を調整して制御する。
ia=Io・[sin(θ)+k2b・{k1c/(1+k1c)}
・sin(θ+2π/3)+k2c・{k1b/(1+k1b)}・sin(θ+4π/3)]
ib=Io・[(1−2・k2b)・sin(θ+2π/3)+k2c・{1/(1+k1b)}・sin(θ+4π/3)]
ic=Io・[k2b・{1/(1+k1c)}・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)]
すなわち、B相線電流からB相成分を2・k2bの割合ほど減少するよう調整し、B相成分の前記調整分2・k2bを代わりに他の2つの線電流に相電圧の大きさに反比例で分配して、A相線電流にはB相成分をk2b・{k1c/(1+k1c)}、C相線電流にはB相成分をk2b・{1/(1+k1c)}ほど増加させる。また、C相線電流からC相成分を2・k2cの割合ほど減少するよう調整し、C相成分の前記調整分2・k2cを代わりに他の2つの線電流に相電圧の大きさに反比例で分配して、A相線電流にはC相成分をk2c・{k1b/(1+k1b)}、B相線電流はC相成分をk2c・{1/(1+k1b)}ほど増加させる。
一例として、三相の相電圧が各々117V、115V、119Vにおける出力電力の脈動について計算する。
従来の3相の線電流は同じ大きさで同じ力率の電流を流す場合、出力電力リップル率を計算すると1.974%である。これに対して、本構成例に基づき、k1b=115/117=0.98291、k2b=−0.00576、(1−2・k2b)=1.01153、k1c=119/117=1.01709、k2c=0.00563、(1−2・k2c)=0.98873、k2b・(k1c/(1+k1c))=−0.00571、k2b・(1/(1+k1c))=−0.00581、k2c・(k1b/(1+k1b))=0.00559、k2c・(1/(1+k1b))=0.00568に調整して制御する場合、出力電力リップル率は0.003%と計算される。このように、三相の相電圧がいずれも異なる場合においても、基準の相と有効電力が同じとなる調整対象の相の電流を調整するとともに調整電流の逆符号の電流を基準の相と他の相の電流に無効電力が打ち消しあうように分配する電流調整を2つの相に対して行うことで、瞬時出力電力の合計値psumの時間変動はよく抑制され、入力電力の脈動も抑制されることが分かる。上記の電流分配の際には、電流分配による電流分配先の有効電力の変動も考慮して電流調整を行う。これにより、処理すべきエネルギーを極小化することにより、平滑コンデンサ12の静電容量を小容量化できる。また、本構成例は第4の具体的構成例よりも計算量が少し多いが、第4の具体的構成例よりも出力電力リップル率が小さく、出力電力の脈動がよりよく抑制されて、好ましい。
基準とする相電圧はいずれの相電圧であっても、出力電力の脈動をより低減できる。また、三相の相電圧のうち中間の電圧値である相電圧を基準に採るようにすると、出力電力の脈動を最も低減でき、好ましい。
なお、本構成においては中性線に流れる電流がゼロとなるので、図8に示すように三相3線式の三相系統14bに出力する電源装置104を構成することも出来る。また、図9に示すようなDC/DCコンバータ21を備えた電源装置105を三相3線式の三相系統14bに出力する構成もできる。
[第6の具体的構成例]
ここでは、請求項15の発明に関わる第6の具体的構成例を示す。第4、第5の具体的構成例と同様で、第1の具体的構成例を示す図5と同様の構成を採るが、制御手段19における電流制御方法、より具体的には電流指令値の生成に関する構成が異なる。
三相(A相、B相、C相)の相電圧がいずれも異なる場合を考えると、各相電圧の瞬時値va、vb、vcは以下の式で表される。ただし、θ=2π・f・t(fは三相系統の周波数、tは時刻)である。
va=Vo・sin(θ)
vb=Vo・k1b・sin(θ+2π/3)
vc=Vo・k1c・sin(θ+4π/3)
Voは基準とする相電圧vaの振幅(ここでは定数)、k1bおよびk1cは相電圧vbおよびvcの振幅を上記Voを用いて表すための係数であり、以下のように表される。
k1b=(B相電圧振幅値)/(A相電圧振幅値Vo)
k1c=(C相電圧振幅値)/(A相電圧振幅値Vo)
ここで、本構成例では、k2b=(k1b−1)/(3×k1b)=(1−1/k1b)/3、k2c=(k1c−1)/(3×k1c)=(1−1/k1c)/3なる係数k2b、k2cと、前記係数k1b、k1cを用いる点が第4、第5の具体的構成例と異なる。各相線電流の瞬時値ia、ib、icを以下のようにB相成分電流およびC相成分電流を調整して制御する。
ia=Io・[sin(θ)+k2b・{k1c/(1+k1c)}
・sin(θ+2π/3)+k2c・{k1b/(1+k1b)}・sin(θ+4π/3)]
ib=Io・[(1−2・k2b)・sin(θ+2π/3)+k2c・{1/(1+k1b)}・sin(θ+4π/3)]
ic=Io・[k2b・{1/(1+k1c)}・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)]
すなわち、B相線電流からB相成分を2・k2bの割合ほど減少するよう調整し、B相成分の前記調整分2・k2bを代わりに他の2つの線電流に相電圧の大きさに反比例で分配して、A相線電流にはB相成分をk2b・{k1c/(1+k1c)}、C相線電流にはB相成分をk2b・{1/(1+k1c)}ほど増加させる。また、C相線電流からC相成分を2・k2cの割合ほど減少するよう調整し、C相成分の前記調整分2・k2cを代わりに他の2つの線電流に相電圧の大きさに反比例で分配して、A相線電流にはC相成分をk2c・{k1b/(1+k1b)}、B相線電流はC相成分をk2c・{1/(1+k1b)}ほど増加させる。つまり、第5の具体的構成例とは、調整電流2・k2bの大きさが異なるが、調整電流の逆符号分の分配方法は同様である。
一例として、三相の相電圧が各々117V、115V、119Vにおける出力電力の脈動について計算する。
従来の3相の線電流は同じ大きさで同じ力率の電流を流す場合、出力電力リップル率を計算すると1.974%である。これに対して、本構成例に基づき、k1b=115/117=0.98291、k2b=−0.00580、(1−2・k2b)=1.01159、k1c=119/117=1.01709、k2c=0.00560、(1−2・k2c)=0.98880、k2b・(k1c/(1+k1c))=−0.00575、k2b・(1/(1+k1c))=−0.00585、k2c・(k1b/(1+k1b))=0.00555、k2c・(1/(1+k1b))=0.00565に調整して制御する場合、出力電力リップル率は0.010%と計算される。このように、三相の相電圧がいずれも異なる場合においても、基準の相と有効電力が同じとなる調整対象の相の電流を調整するとともに調整電流の逆符号の電流を基準の相と他の相の電流に無効電力が打ち消しあうように分配する電流調整を2つの相に対して行うことで、瞬時出力電力の合計値psumの時間変動はよく抑制され、入力電力の脈動も抑制されることが分かる。上記の電流分配の際には、電流分配による電流分配先の有効電力の変動も考慮して電流調整を行う。これにより、処理すべきエネルギーを極小化することにより、平滑コンデンサ12の静電容量を小容量化できる。また、十分電力の脈動も抑制しつつ、本構成例は第5の具体的構成例よりも計算量が低減できるので制御手段を小型・低コストに構築でき、好ましい。
また、第5の具体的構成例のように電流分配を2つの相の線電流に均等に分配することもでき、このような構成ではより計算量が低減でき、制御手段を小型・低コストに構築でき、好ましい。この場合の電力リップル率を計算すると0.019%となり十分電力の脈動も抑制できることが分かる。
基準とする相電圧はいずれの相電圧であっても、出力電力の脈動をより低減できる。また、三相の相電圧のうち中間の電圧値である相電圧を基準に採るようにすると、出力電力の脈動を最も低減でき、好ましい。
なお、本構成においては中性線に流れる電流がゼロとなるので、図8に示すように三相3線式の三相系統14bに出力する電源装置104を構成することも出来る。また、図9に示すようなDC/DCコンバータ21を備えた電源装置105を三相3線式の三相系統14bに出力する構成もできる。
また、第4、第5、第6の具体的構成例の電流調整方法に対して、更に各相電流を均等に進相または遅相に位相調整しても、三相の瞬時電力の合計psumの交流成分の実効値は変化しない。よって、電流位相を一括調整することと組み合わせることで、出力電力の脈動抑制は保つことが出来る。有効電力の合計および無効電力の合計を制御できる。
また、上記に限定するものでなく、種々変形できる。例えば、Y−Δ変換により相電圧を線間電圧に変換した式に変形できる。
三相の瞬時電力の合計psumの時間微分がゼロ若しくは凡そゼロとなる条件を満たす電流式を導出し、これに基づいて電流制御してもよく、出力電力の脈動をゼロ若しくはゼロ近傍に抑制できる。更に、前記条件に三相の線電流の瞬時値の合計がゼロ若しくは凡そゼロとなる条件を満たす電流式を導出して、これに基づいて電流制御してもよく、出力電力の脈動をゼロ若しくはゼロ近傍に抑制できるとともに中性線の電流をゼロ若しくはゼロ近傍に制御できる。
三相の線電流の瞬時値の合計がゼロとなる条件として、三相電流が
i1=I11・sin(θ)+I12・sin(θ+2π/3)+I13・sin(θ+4π/3)
i2=I21・sin(θ)+I22・sin(θ+2π/3)+I23・sin(θ+4π/3)
i3=I31・sin(θ)+I32・sin(θ+2π/3)+I33・sin(θ+4π/3)
で表される場合に、
I11+I21+I31=I12+I22+I32=I13+I23+I33=A
を満たすことを条件にするとよい。ただし、θ=2π・f・t(fは三相系統の周波数、tは時刻)、Aは任意の定数、I11は、A相の電流iaのうち、A相の電圧と同相成分の電流の大きさ、I12は、A相の電流iaのうち、B相の電圧と同相成分の電流の大きさ、I13は、A相の電流iaのうち、Cの電圧と同相成分の電流の大きさ、I21は、B相の電流Ibのうち、A相の電圧と同相成分の電流の大きさ、I22は、B相の電流ibのうち、B相の電圧と同相成分の電流の大きさ、I23は、B相の電流ibのうち、C相の電圧と同相成分の電流の大きさ、I31は、C相の電流icのうち、A相の電圧と同相成分の電流の大きさ、I32は、C相の電流icのうち、B相の電圧と同相成分の電流の大きさ、I33は、C相の電流icのうち、C相の電圧と同相成分の電流の大きさである。
三相の線電流の瞬時値の合計がゼロとなる条件を優先し、その上で三相の瞬時電力の合計psumの時間微分がゼロ若しくは凡そゼロとなる条件となる電流式に制御する場合には、中性線に流れる電流がゼロとなるので、三相3線式にすることもできる。この際の好適な電流の条件はおよそ以下の近傍にある。三相の線電流が三相交流と同位相の状態をベースに、三相のうちの1つを基準の相とし、基準の相に対して、残り2つのうちの一方の相において、一方の相と基準の相の相電圧と一方の相と基準の相の線電流が反比例となるよう一方の相の線電流を考える。他方の相の線電流についても同様に考える。この場合、3つの相の各電力は、交流系統の2倍の周波数をもち、その交流成分は同じ大きさかつ位相の間隔が等しくなり、3つの相の電力の合計値は時間に対して一定である。更に、一方の相の相電圧と同位相の電流成分の調整として、基準の相の電流値の大きさから一方の相の電流値の大きさを減じた値の大きさの1/3の大きさを第1調整値とした時に、各の相の線電流には、一方の相の相電圧と同位相かつ大きさが第1調整値となる電流を加えるよう調整する。また、更に、他方の相の相電圧と同位相の電流成分の調整も同様に行う。この時の瞬時電力の式を導出すれば、相電圧の比がおよそ1前後(1±0.1程度)であるので、瞬時電力の変動は凡そゼロ(d(psum)/dt≒0)と近似できることが分かる。
例えば、三相の電圧のうち2つの電圧の大きさがV、残りの電圧の大きさがV・(1+ΔV)(ただし|ΔV|≦0.1とする)の場合、psumの変動成分は、
psumの変動成分=V・A・(ΔV)2・sin2θ/{3・(1+ΔV)}
となる。これより、この場合の電力リップル率は、
電力リップル率=2・(ΔV)2/{3・(1+ΔV)}
となるが、|ΔV|≦0.1であるので、電力リップル率は0.202%以下となり、瞬時電力の変動がよく抑制できることが式の上からも分かる。
なお、前記電力リップル率の値に限るものでなく、三相の瞬時電力の合計psumの時間微分値はゼロであることが平滑手段の小型化には最良であるが、本発明の制御を適用する前と比べて電力リップル率が低減できればよい。実用上は電力リップル率が本発明の制御を適用する前の1/2以下であることが好ましく、平滑手段をよく小型化できる。より好ましくは電力リップル率が適用前の1/10以下であり、平滑手段を極めて小型化できる。あるいは、実用上は電力変換装置または電源装置の定格電力における電力リップル率で1%以下であることが好ましい。これにより平滑手段をよく小型化できる。より好ましくは電力リップル率が0.2%以下であり、平滑手段を極めて小型化できる。
本発明の第1の基本的構成例を示す図である。 本発明の第2の基本的構成例を示す図である。 本発明の第3の基本的構成例を示す図である。 本発明の第4の基本的構成例を示す図である。 本発明の第1の具体的構成例を示す図である。 本発明の第2の具体的構成例を示す図である。 本発明の第3の具体的構成例を示す図である。 本発明に係る電源装置の他の具体的構成例を示す図である。 本発明に係る電源装置の他の具体的構成例を示す図である。
符号の説明
1 直流電源
2 平滑手段
3 電力変換器
3a 電力変換器
3b 電力変換器
3c 電力変換器
4 多相負荷
4a 多相負荷
4b 多相負荷
5 変換主回路(n相)
5a 変換主回路(n相)
5b 変換主回路(n相)
6a 変換主回路(単相)
6b 変換主回路(単相)
7a 単相負荷
7b 単相負荷
9 制御手段
9a 制御手段
9b 制御手段
11 太陽電池
12 平滑コンデンサ
13 スイッチング回路
13b スイッチング回路
14 三相系統
14b 三相系統
15 電流検出手段
16 連系リアクトル
16b 中性線リアクトル
17 開閉手段
18 電圧検出手段
19 制御手段
21 DC/DCコンバータ
22 平滑コンデンサ
23 コイル
24 スイッチング手段
25 ダイオード
33d 単相ブリッジ
33e 単相ブリッジ
34d 抵抗負荷
34e 抵抗負荷
39 制御手段
100 電源装置
101 電源装置
102 電源装置
103 電源装置
104 電源装置
105 電源装置
200 電力変換装置
201 電力変換装置
202 電力変換装置
203 電力変換装置
204 電力変換装置
205 電力変換装置

Claims (25)

  1. 直流電源に接続されるn相交流(nはn≧2となる整数)出力を有する電力変換器と、前記直流電源と前記電力変換器の間に設けられた平滑手段とを有する電力変換装置であって、
    前記電力変換器が、各相の電力波形の位相差を電力波形の周期をn等分した値に総て一致させて、かつ各相の電力値を総て同一となるように制御する制御手段を備えていることを特徴とする電力変換装置。
  2. 前記制御手段が、各相の出力電圧を検出し、出力電圧に反比例した相電流となるよう制御することを特徴とすることを特徴とする請求項1に記載の電力変換装置。
  3. 前記平滑手段が、前記直流電源と前記電力変換器の間に直流電源と並列に接続された第1蓄電部と、一方の端子が第1蓄電部と並列に接続された双方向電力変換器と、該双方向電力変換器の他方の端子に接続された第2蓄電部と、
    前記第1蓄電部のリップルが小さくなるよう双方向電力変換器の電力潮流を制御する平滑制御手段とを備えることを特徴とする請求項1に記載の電力変換装置。
  4. 前記平滑制御手段は、前記第1蓄電部のリップルを検知し、検出リップルが小さくなるよう前記双方向電力変換器の電力潮流を制御することを特徴とする請求項3に記載の電力変換装置。
  5. 前記平滑制御手段は、前記電力変換器の出力電圧および/または出力電流の低次高調波を検出し、前記低次高調波に応じて前記第1蓄電部のリップルが小さくなるよう前記双方向電力変換器を制御することを特徴とする請求項3に記載の電力変換装置。
  6. 前記電力変換器が、各相の電圧間の位相および電流間の位相が90度異なる二相の交流を出力することを特徴とする請求項1に記載の電力変換装置。
  7. 前記制御手段が、前記電力変換器の各相の出力電圧間の位相差と出力電流の位相差を総て同一に制御することを特徴とする請求項1に記載の電力変換装置。
  8. 前記電力変換器の出力各相が、前記電力変換器と同一相数のn相交流系統の各相に接続され、系統連系出力することを特徴とする請求項1に記載の電力変換装置。
  9. 前記直流電源が、太陽電池または燃料電池であることを特徴とする請求項1に記載の電力変換装置。
  10. 前記直流電源が、太陽電池または燃料電池と、太陽電池または燃料電池からの直流出力を電圧変換して出力するDC/DCコンバータとからなることを特徴とする請求項1に記載の電力変換装置。
  11. 直流電源と、該直流電源に接続された請求項1に記載の電力変換装置とを備えていることを特徴とする電源装置。
  12. 直流電源に接続され、A相、B相、C相の三相交流を出力する電力変換器と、前記直流電源と前記電力変換器の間に設けられた平滑手段と有する電力変換装置であって、
    三相のA相、B相、C相の電圧を検出する電圧検出手段と、
    三相のうちA相を基準とし、B相の相電圧に応じてB相の線電流のB相成分を増加/減少させ調整し、前記B相成分の調整分の逆符号の量をA相の線電流およびC相の線電流に分配して減少/増加させて調整し、
    三相のうちA相を基準とし、C相の相電圧に応じてC相の線電流のC相成分を増加/減少させ調整し、前記C相成分の調整分の逆符号の量をA相の線電流およびB相の線電流に分配して減少/増加させて調整すると共に、
    三相の瞬時の電力の合計値をpsum(t)としたときに、
    psum(t)=A相の相電圧・A相の線電流+B相の相電圧・B相の線電流
    +C相の相電圧・C相の線電流
    に対して、
    d(psum)/dt≒0
    を満たす制御手段を備えたことを特徴とする電力変換装置。
  13. 請求項12に記載の電力変換装置において、
    三相の瞬時の線電流の合計値をisum(t)としたときに、
    isum(t)=A相の線電流+B相の線電流+C相の線電流=0
    を満たす制御手段を備えたことを特徴とする電力変換装置。
  14. 請求項13に記載の電力変換装置において、θ=2π・f・t(fは三相系統の周波数、tは時刻)、VaをA相の振幅、VbをB相の振幅、VcをC相の振幅としたときに、A相の電圧va、B相の電圧vb、C相の電圧vcが
    va=Va・sin(θ)
    vb=Vb・sin(θ+2π/3)
    vc=Vc・sin(θ+4π/3)
    を満たす場合に、A相を基準として、
    k1b=Vb/Va
    k1c=Vc/Va
    とし、A相の電流ia、B相の電流ib、C相の電流icを、
    ia=Io・{sin(θ)+I12・sin(θ+2π/3)+I13・sin(θ+4π/3)}
    ib=Io・{(1−2・k2b)・sin(θ+2π/3)+I23・sin(θ+4π/3)}
    ic=Io・{I32・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)}
    を満たすように制御することを特徴とする電力変換装置。
    ただし、
    I12は、A相の電流iaのうち、B相の電圧と同相成分の電流の大きさ、
    I13は、A相の電流iaのうち、C相の電圧と同相成分の電流の大きさ、
    (1−2・k2b)は、B相の電流ibのうち、B相の電圧と同相成分の電流の大きさ、
    I23は、B相の電流ibのうち、C相の電圧と同相成分の電流の大きさ、
    I32は、C相の電流icのうち、B相の電圧と同相成分の電流の大きさ、
    (1−2・k2c)は、C相の電流icのうち、C相の電圧と同相成分の電流の大きさ、
    I12+I32=2・k2b、
    I13+I23=2・k2c、
    Ioは任意の数、
    k2b=(Vb−Va)/(2・Vb+Va)=(k1b−1)/(2・k1b+1)、
    k2c=(Vc−Va)/(2・Vc+Va)=(k1c−1)/(2・k1c+1)、
    である。
  15. 請求項13記載の電力変換装置において、θ=2π・f・t(fは三相系統の周波数、tは時刻)、VaをA相の振幅、VbをB相の振幅、VcをC相の振幅としたときに、A相の電圧va、B相の電圧vb、C相の電圧vcが
    va=Va・sin(θ)
    vb=Vb・sin(θ+2π/3)
    vc=Vc・sin(θ+4π/3)
    を満たす場合に、A相を基準として、
    k1b=Vb/Va
    k1c=Vc/Va
    とし、A相の電流ia、B相の電流ib、C相の電流icを
    ia=Io・{sin(θ)+I12・sin(θ+2π/3)+I13・sin(θ+4π/3)}
    ib=Io・{(1−2・k2b)・sin(θ+2π/3)+I23・sin(θ+4π/3)}
    ic=Io・{I32・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)}
    となるように制御することを特徴とする電力変換装置。
    ただし、
    I12は、A相の電流iaのうち、B相の電圧と同相成分の電流の大きさ、
    I13は、A相の電流iaのうち、Cの電圧と同相成分の電流の大きさ、
    (1−2・k2b)は、B相の電流ibのうち、B相の電圧と同相成分の電流の大きさ、
    I23は、B相の電流ibのうち、C相の電圧と同相成分の電流の大きさ、
    I32は、C相の電流icのうち、B相の電圧と同相成分の電流の大きさ
    (1−2・k2c)は、C相の電流icのうち、C相の電圧と同相成分の電流の大きさ、
    I12+I32=2・k2b、
    I13+I23=2・k2c、
    Ioは任意の数、
    k2b=(Vb−Va)/(3・Vb)=(k1b−1)/(3・k1b)、
    k2c=(Vc−Va)/(3・Vc)=(k1c−1)/(3・k1c)、
    である。
  16. 請求項14乃至15のいずれか1項に記載の電力変換装置において、
    I12=I32=k2b
    I13=I23=k2c
    として、A相の電流ia、B相の電流ib、C相の電流icを
    ia=Io・{sin(θ)+k2b・sin(θ+2π/3)+k2c・sin(θ+4π/3)}
    ib=Io・{(1−2・k2b)・sin(θ+2π/3)+k2c・sin(θ+4π/3)}
    ic=Io・{k2b・sin(θ+2π/3)+(1−2・k2c)・sin(θ+4π/3)}
    を満たすように制御することを特徴とする電力変換装置。
  17. 請求項14乃至15のいずれか1項に記載の電力変換装置において、
    I12=2・k2b・{Vc/(Va+Vc)}、I32=2・K2b・{Va/(Va+Vc)}
    I13=2・k2c・{Vb/(Va+Vb)}、I23=2・K2c・{Va/(Va+Vb)}
    となるようA相の電流ia、B相の電流ib、C相の電流icを制御することを特徴とする電力変換装置。
  18. 請求項12に記載の電力変換装置において、更に各相電流を同じ位相で進相または遅相に電流制御することを特徴とする電力変換装置。
  19. 請求項12に記載の電力変換装置において、基準とするA相として、三相のうち相電圧の大きさが2番目のものを選択することを特徴とする電力変換装置。
  20. 前記平滑手段が、前記直流電源と前記電力変換器の間に直流電源と並列に接続された第1蓄電部と、一方の端子が第1蓄電部と並列に接続された双方向電力変換器と、該双方向電力変換器の他方の端子に接続された第2蓄電部と、前記第1蓄電部のリップルが小さくなるよう双方向電力変換器の電力潮流を制御する平滑制御手段とを備えることを特徴とする請求項12に記載の電力変換装置。
  21. 前記平滑制御手段は、前記第1蓄電部のリップルを検知し、検出リップルが小さくなるよう前記双方向電力変換器の電力潮流を制御することを特徴とする請求項20に記載の電力変換装置。
  22. 前記平滑制御手段は、前記電力変換器の出力電圧および/または出力電流の低次高調波を検出し、前記低次高調波に応じて前記第1蓄電部のリップルが小さくなるよう前記双方向電力変換器を制御することを特徴とする請求項20に記載の電力変換装置。
  23. 前記直流電源が、太陽電池または燃料電池であることを特徴とする請求項12に記載の電力変換装置。
  24. 前記直流電源が、太陽電池または燃料電池と、太陽電池または燃料電池からの直流出力を電圧変換して出力するDC/DCコンバータとからなることを特徴とする請求項12に記載の電力変換装置。
  25. 直流電源と、該直流電源に接続された請求項12に記載の電力変換装置とを備えていることを特徴とする電源装置。
JP2004050821A 2003-03-07 2004-02-26 電力変換装置および電源装置 Expired - Fee Related JP4585774B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004050821A JP4585774B2 (ja) 2003-03-07 2004-02-26 電力変換装置および電源装置
EP04005151A EP1455437A3 (en) 2003-03-07 2004-03-04 Power converter and power unit
AU2004200946A AU2004200946B2 (en) 2003-03-07 2004-03-05 Power Converter and Power Unit
CNB2004100077870A CN100420140C (zh) 2003-03-07 2004-03-05 功率变换装置和电源装置
US10/792,713 US6963147B2 (en) 2003-03-07 2004-03-05 Power converter and power unit
CN2008101311411A CN101355317B (zh) 2003-03-07 2004-03-05 功率变换装置和电源装置
KR1020040015347A KR100713709B1 (ko) 2003-03-07 2004-03-06 전력변환장치 및 전원장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003061256 2003-03-07
JP2004050821A JP4585774B2 (ja) 2003-03-07 2004-02-26 電力変換装置および電源装置

Publications (3)

Publication Number Publication Date
JP2004297999A JP2004297999A (ja) 2004-10-21
JP2004297999A5 JP2004297999A5 (ja) 2007-04-12
JP4585774B2 true JP4585774B2 (ja) 2010-11-24

Family

ID=32828985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050821A Expired - Fee Related JP4585774B2 (ja) 2003-03-07 2004-02-26 電力変換装置および電源装置

Country Status (6)

Country Link
US (1) US6963147B2 (ja)
EP (1) EP1455437A3 (ja)
JP (1) JP4585774B2 (ja)
KR (1) KR100713709B1 (ja)
CN (2) CN101355317B (ja)
AU (1) AU2004200946B2 (ja)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312138A (ja) * 2004-04-19 2005-11-04 Canon Inc 電力制御装置、発電システム及び電力系統システム
JP2007150231A (ja) * 2005-10-27 2007-06-14 Denso Corp 熱電変換装置
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
DE102006003904A1 (de) * 2006-01-27 2007-08-09 Sma Technologie Ag Verfahren zur Umwandlung einer Gleichspannung in eine dreiphasige Wechselspannung
DK1816721T3 (da) * 2006-02-03 2009-03-30 Siemens Ag Fremgangsmåde til at udglatte vekselström fra et antal af energigenererende enheder og vindkraftværk omfattende et antal af vindmöller med variabel rotationshastighed
US7839025B2 (en) * 2006-11-27 2010-11-23 Xslent Energy Technologies, Llc Power extractor detecting a power change
US8013474B2 (en) * 2006-11-27 2011-09-06 Xslent Energy Technologies, Llc System and apparatuses with multiple power extractors coupled to different power sources
US7960870B2 (en) * 2006-11-27 2011-06-14 Xslent Energy Technologies, Llc Power extractor for impedance matching
US9431828B2 (en) * 2006-11-27 2016-08-30 Xslent Energy Technologies Multi-source, multi-load systems with a power extractor
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US20080144294A1 (en) * 2006-12-06 2008-06-19 Meir Adest Removal component cartridge for increasing reliability in power harvesting systems
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US7900361B2 (en) 2006-12-06 2011-03-08 Solaredge, Ltd. Current bypass for distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US20080283118A1 (en) * 2007-05-17 2008-11-20 Larankelo, Inc. Photovoltaic ac inverter mount and interconnect
JP2009055748A (ja) * 2007-08-29 2009-03-12 Sanyo Electric Co Ltd 電流検出ユニット及びモータ制御装置
US7847526B2 (en) * 2007-09-28 2010-12-07 General Electric Company System and method for controlling torque ripples in synchronous machines
EP2212983B1 (en) * 2007-10-15 2021-04-07 Ampt, Llc Systems for highly efficient solar power
DE102007054647A1 (de) * 2007-11-15 2009-06-18 Siemens Ag Solarwechselrichter mit mehreren parallel geschalteten Einzelwechselrichtern und mit einer übergeordneten elektronischen Steuereinheit
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2225778B1 (en) 2007-12-05 2019-06-26 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
EP2722979B1 (en) 2008-03-24 2022-11-30 Solaredge Technologies Ltd. Switch mode converter including auxiliary commutation circuit for achieving zero current switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
US8630098B2 (en) * 2008-06-12 2014-01-14 Solaredge Technologies Ltd. Switching circuit layout with heatsink
EP2141781B1 (de) * 2008-06-18 2010-07-14 SMA Solar Technology AG Schaltungsanordnung mit einem bistabilen Relais zwischen einem Netz und einem Wechselrichter
US8058752B2 (en) 2009-02-13 2011-11-15 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
US20100206378A1 (en) * 2009-02-13 2010-08-19 Miasole Thin-film photovoltaic power system with integrated low-profile high-efficiency inverter
US8730702B2 (en) * 2009-03-03 2014-05-20 Renewable Power Conversion, Inc. Very high efficiency three phase power converter
US8303349B2 (en) 2009-05-22 2012-11-06 Solaredge Technologies Ltd. Dual compressive connector
US8476524B2 (en) 2009-05-22 2013-07-02 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US8690110B2 (en) 2009-05-25 2014-04-08 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
KR101009829B1 (ko) 2009-06-24 2011-01-19 엘에스산전 주식회사 리액터 필터 및 컨버팅 모듈
US8614903B2 (en) 2009-08-24 2013-12-24 Mitsubishi Electric Corporation Power conditioner for photovoltaic power generation
US7990743B2 (en) * 2009-10-20 2011-08-02 General Electric Company System and method for decreasing solar collector system losses
US7855906B2 (en) * 2009-10-26 2010-12-21 General Electric Company DC bus voltage control for two stage solar converter
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8050062B2 (en) * 2010-02-24 2011-11-01 General Electric Company Method and system to allow for high DC source voltage with lower DC link voltage in a two stage power converter
US8599586B2 (en) * 2010-08-28 2013-12-03 General Electric Company Power inverter system and method of starting same at high DC voltage
CN102457193B (zh) * 2010-10-27 2015-08-19 台达电子工业股份有限公司 具有单级转换器的电源供应器
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
US8614525B2 (en) * 2010-12-21 2013-12-24 General Electric Company Methods and systems for operating a power generation system
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US9112430B2 (en) * 2011-11-03 2015-08-18 Firelake Acquisition Corp. Direct current to alternating current conversion utilizing intermediate phase modulation
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
DE102012002185B4 (de) * 2012-02-07 2019-11-07 Sew-Eurodrive Gmbh & Co Kg Energiegewinnungssystem mit Energiespeicher, Verfahren zum Betreiben eines Energiegewinnungssystems
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
EP3168971B2 (en) 2012-05-25 2022-11-23 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
EP2856598B1 (en) * 2012-06-01 2023-07-19 The University of Hong Kong Input ac voltage control bi-directional power converters
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN102946507B (zh) * 2012-10-31 2015-04-29 广东欧珀移动通信有限公司 一种降低摄像头拍照背景噪声的方法及系统
JP5686146B2 (ja) * 2013-02-01 2015-03-18 トヨタ自動車株式会社 温度異常検知機能付き電圧計測装置及び電力変換装置
US9647526B1 (en) * 2013-02-15 2017-05-09 Ideal Power, Inc. Power-packet-switching power converter performing self-testing by admitting some current to the link inductor before full operation
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP4318001A3 (en) 2013-03-15 2024-05-01 Solaredge Technologies Ltd. Bypass mechanism
KR20140140656A (ko) * 2013-04-08 2014-12-10 삼성전기주식회사 태양광 전력 공급 장치 및 이의 전력 공급 제어 방법
JP6204113B2 (ja) * 2013-08-12 2017-09-27 株式会社ダイヘン インバータ回路を制御する制御回路、当該制御回路を備えたインバータ装置、当該インバータ装置を備えた電力システム、および、制御方法
DE102013227174B4 (de) * 2013-12-27 2019-06-19 Fronius International Gmbh Vorrichtung und Verfahren zur Ermittlung eines Isolationswiderstandes einer Photovoltaikanlage
CN104467005B (zh) * 2014-01-02 2016-08-17 艾伏新能源科技(上海)股份有限公司 T型三电平三相四桥臂光伏并网发电系统的控制方法
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
RU2622043C2 (ru) * 2015-11-06 2017-06-09 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Система управления управляемого выпрямителя напряжения
CN107153212B (zh) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
JP6279648B2 (ja) * 2016-04-13 2018-02-14 三菱電機株式会社 電力変換装置
WO2018080614A1 (en) * 2016-10-28 2018-05-03 Mark Telefus Load identifying ac power supply with control and methods
US20190036481A1 (en) * 2017-07-25 2019-01-31 Sunpower Corporation Photovoltaic module with distributed power conversion circuits
EP3442104A1 (en) * 2017-08-11 2019-02-13 General Electric Technology GmbH Voltage source converters and control thereof
US11027719B2 (en) * 2018-12-03 2021-06-08 General Electric Company Distributed power generation for a vehicle system
FR3137178A1 (fr) * 2022-06-28 2023-12-29 Sagemcom Energy & Telecom Sas Détection de perte de neutre ou de phase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369388A (ja) * 2001-06-08 2002-12-20 Matsushita Electric Ind Co Ltd 系統連系インバータ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631374A (ja) * 1986-06-18 1988-01-06 Fuji Electric Co Ltd 二相pwmインバ−タ
DE4216946C2 (de) * 1992-05-22 1995-09-07 Aeg Elotherm Gmbh Verfahren zum Betrieb eines Dreiphasenumrichters zur symmetrischen Speisung einer dreiphasigen Last
JP2882952B2 (ja) * 1992-10-19 1999-04-19 キヤノン株式会社 発電装置
JPH0779569A (ja) * 1993-07-14 1995-03-20 Toyo Electric Mfg Co Ltd インバータ装置
JPH07107744A (ja) * 1993-09-30 1995-04-21 Meidensha Corp 電力変換装置
JP3400504B2 (ja) * 1993-10-29 2003-04-28 富士電機株式会社 半導体電力変換装置の入力振動抑制方法
JPH0956170A (ja) * 1995-08-17 1997-02-25 Toshiba Corp 系統連系用インバータの制御装置
JP3382434B2 (ja) * 1995-09-22 2003-03-04 キヤノン株式会社 電池電源の電圧制御装置および電圧制御方法
JP3411462B2 (ja) * 1997-02-05 2003-06-03 三菱電機株式会社 電力変換器の制御装置
JP2001275259A (ja) * 2000-03-29 2001-10-05 Canon Inc 系統連系インバータおよび分散形発電システム
US7733069B2 (en) * 2000-09-29 2010-06-08 Canon Kabushiki Kaisha Power converting apparatus and power generating apparatus
JP2002204531A (ja) * 2000-10-31 2002-07-19 Canon Inc 交流連系装置およびその制御方法
WO2002041462A2 (en) * 2000-10-27 2002-05-23 Youtility Inc. Inverter dc link volts 'tooth' modulation scheme
DE10058080A1 (de) * 2000-11-23 2002-06-06 Daimlerchrysler Rail Systems Mittelfrequenztransformator
JP2002233045A (ja) * 2001-02-02 2002-08-16 Canon Inc 太陽光発電システムの地絡検出のための装置及び方法
AT411946B (de) * 2001-03-09 2004-07-26 Fronius Schweissmasch Prod Verfahren zum regeln eines wechselrichtersystems
JP2003180036A (ja) * 2001-10-01 2003-06-27 Canon Inc 電力変換装置、電力変換システム、及び単独運転検出方法
US6768047B2 (en) * 2002-06-13 2004-07-27 Koninklijke Philips Electronics N.V. Autonomous solid state lighting system
JP2004129483A (ja) * 2002-08-08 2004-04-22 Canon Inc 電力変換装置および発電装置
JP2004208494A (ja) * 2002-12-11 2004-07-22 Canon Inc 信号発生器の制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369388A (ja) * 2001-06-08 2002-12-20 Matsushita Electric Ind Co Ltd 系統連系インバータ

Also Published As

Publication number Publication date
US20040174720A1 (en) 2004-09-09
KR20040079860A (ko) 2004-09-16
CN101355317A (zh) 2009-01-28
CN101355317B (zh) 2011-07-20
KR100713709B1 (ko) 2007-05-04
CN100420140C (zh) 2008-09-17
AU2004200946B2 (en) 2008-10-30
EP1455437A2 (en) 2004-09-08
AU2004200946A1 (en) 2004-09-23
JP2004297999A (ja) 2004-10-21
US6963147B2 (en) 2005-11-08
EP1455437A3 (en) 2006-03-01
CN1531179A (zh) 2004-09-22

Similar Documents

Publication Publication Date Title
JP4585774B2 (ja) 電力変換装置および電源装置
JP4669723B2 (ja) 電動機制御装置
Kim et al. New control scheme for AC-DC-AC converter without DC link electrolytic capacitor
JP6357976B2 (ja) 直流電源装置
JP5658224B2 (ja) 回生型高圧インバータの制御装置
CA2566356A1 (en) Multifunction hybrid intelligent universal transformer
WO2007129456A1 (ja) 電力変換装置
JP2010098941A (ja) 電力変換器及びその制御方法並びにダイレクトマトリックスコンバータ
JPWO2010058536A1 (ja) 電力変換装置
JP4837518B2 (ja) 電力変換装置
JP5645209B2 (ja) 電力変換装置
Abdel-Rahim et al. Switched inductor quadratic boosting ratio inverter with proportional resonant controller for grid-tie PV applications
JP2010220332A (ja) 電力変換装置
Wijekoon et al. Implementation of a hybrid AC/AC direct power converter with unity voltage transfer ratio
KR101225344B1 (ko) 전력 변환기, 그 제어 방법 및 다이렉트 매트릭스 컨버터
Jena et al. Comparative study between different control strategies for shunt active power filter
Tez̆ak et al. Adaptive PWM control scheme of interleaved boost converter for AC traction application
JP5528730B2 (ja) 電力変換装置
JP7166507B1 (ja) 電力変換装置
Liccardo et al. High power three phase four wires synchronous active front-end
JP5752580B2 (ja) 電力変換装置
JP7318443B2 (ja) 直列多重インバータおよび直列多重インバータの制御方法
JP4533688B2 (ja) 電力変換装置
Sharma et al. Operation and control of wind driven isolated asynchronous generator with a battery and a zigzag transformer
JP2023158763A (ja) 電力変換装置及びその制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees