JP4529442B2 - トロイダル型無段変速機 - Google Patents

トロイダル型無段変速機 Download PDF

Info

Publication number
JP4529442B2
JP4529442B2 JP2004000769A JP2004000769A JP4529442B2 JP 4529442 B2 JP4529442 B2 JP 4529442B2 JP 2004000769 A JP2004000769 A JP 2004000769A JP 2004000769 A JP2004000769 A JP 2004000769A JP 4529442 B2 JP4529442 B2 JP 4529442B2
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
toroidal
hydraulic
pressing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004000769A
Other languages
English (en)
Other versions
JP2004278780A (ja
JP2004278780A5 (ja
Inventor
慎司 宮田
英司 井上
尚 今西
俊郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004000769A priority Critical patent/JP4529442B2/ja
Publication of JP2004278780A publication Critical patent/JP2004278780A/ja
Publication of JP2004278780A5 publication Critical patent/JP2004278780A5/ja
Application granted granted Critical
Publication of JP4529442B2 publication Critical patent/JP4529442B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Control Of Transmission Device (AREA)

Description

この発明は、自動車用自動変速装置の変速ユニットとして、或はポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用するトロイダル型無段変速機の改良に関する。
自動車用自動変速装置として、図6〜8に示す様なトロイダル型無段変速機を使用する事が研究され、一部で実施されて、従来から広く知られている。このトロイダル型無段変速機は、ダブルキャビティ型と呼ばれるもので、入力軸1の両端部周囲に、請求項1に記載した第一のディスクである入力側ディスク2、2を、ボールスプライン3、3を介して支持している。従ってこれら両入力側ディスク2、2は、互いに同心に、且つ、同期した回転を自在に支持されている。又、上記入力軸1の中間部周囲に出力歯車4を、この入力軸1に対する相対回転を自在として支持している。そして、この出力歯車4の中心部に設けた円筒部の両端部に、請求項1に記載した第二のディスクである出力側ディスク5、5を、それぞれスプライン係合させている。従ってこれら両出力側ディスク5、5は、上記出力歯車4と共に、同期して回転する。
又、上記各入力側ディスク2、2と上記各出力側ディスク5、5との間には、それぞれ複数個ずつ(通常2〜3個ずつ)のパワーローラ6、6を挟持している。これら各パワーローラ6、6はそれぞれ、請求項5に記載した支持部材であるトラニオン7、7の内側面に、支持軸8、8及び複数の転がり軸受を介して、回転自在に支持されている。上記各トラニオン7、7は、それぞれの長さ方向(図6、8の上下方向、図7の表裏方向)両端部に、これら各トラニオン7、7毎に互いに同心に設けられた枢軸9、9を中心として揺動変位自在である。これら各トラニオン7、7を傾斜させる動作は、油圧式のアクチュエータ10、10により、これら各トラニオン7、7を上記枢軸9、9の軸方向に変位させる事で行なうが、総てのトラニオン7、7の傾斜角度は、油圧式及び機械式に互いに同期させる。
即ち、前記入力軸1と出力歯車4との間の変速比を変えるべく、上記各トラニオン7、7の傾斜角度を変える場合には、上記各アクチュエータ10、10により上記各トラニオン7、7を、それぞれ逆方向に、例えば、図8の右側のパワーローラ6を同図の下側に、同図の左側のパワーローラ6を同図の上側に、それぞれ変位させる。この結果、これら各パワーローラ6、6の周面と上記各入力側ディスク2、2及び各出力側ディスク5、5の内側面との当接部に作用する、接線方向の力の向きが変化(当接部にサイドスリップが発生)する。そして、この力の向きの変化に伴って上記各トラニオン7、7が、支持板11、11に枢支された上記各枢軸9、9を中心として、互いに逆方向に揺動(傾斜)する。この結果、上記各パワーローラ6、6の周面と上記入力側、出力側各ディスク2、5の内側面との当接位置が変化し、上記入力軸1と出力歯車4との間の回転変速比が変化する。
上記各アクチュエータ10、10への圧油の給排状態は、これら各アクチュエータ10、10の数に関係なく1個の変速比制御弁12により行ない、何れか1個のトラニオン7の動きをこの変速比制御弁12にフィードバックする様にしている。この変速比制御弁12は、ステッピングモータ13により軸方向(図8の左右方向、図6の表裏方向)に変位させられるスリーブ14と、このスリーブ14の内径側に軸方向の変位自在に嵌装されたスプール15とを有する。又、上記各トラニオン7、7と上記各アクチュエータ10、10のピストン16、16とを連結するロッド17、17のうち、何れか1個のトラニオン7に付属のロッド17の端部にプリセスカム18を固定しており、このプリセスカム18とリンク腕19とを介して、上記ロッド17の動き、即ち、軸方向の変位量と回転方向の変位量との合成値を上記スプール15に伝達する、フィードバック機構を構成している。又、上記各トラニオン7、7同士の間には同期ケーブル20を掛け渡して、油圧系の故障時にも、これら各トラニオン7、7の傾斜角度を、機械的に同期させられる様にしている。
変速状態を切り換える際には、上記ステッピングモータ13により上記スリーブ14を、得ようとする変速比に見合う所定位置にまで変位させて、上記変速比制御弁12の所定方向の流路を開く。この結果、上記各アクチュエータ10、10に圧油が、所定方向に送り込まれて、これら各アクチュエータ10、10が上記各トラニオン7、7を所定方向に変位させる。即ち、上記圧油の送り込みに伴ってこれら各トラニオン7、7が、前記各枢軸9、9の軸方向に変位しつつ、これら各枢軸9、9を中心に揺動する。そして、上記何れか1個のトラニオン7の動き(軸方向及び揺動変位)が、上記ロッド17の端部に固定したプリセスカム18とリンク腕19とを介して上記スプール15に伝達され、このスプール15を軸方向に変位させる。この結果、上記トラニオン7が所定量変位した状態で、上記変速比制御弁12の流路が閉じられ、上記各アクチュエータ10、10への圧油の給排が停止される。
この際の上記トラニオン7及び上記プリセスカム18のカム面21の変位に基づく上記変速比制御弁12の動きは、次の通りである。先ず、上記変速比制御弁12の流路が開かれる事に伴って上記トラニオン7が軸方向に変位すると、前述した様に、パワーローラ6の周面と入力側ディスク2及び出力側ディスク5の内側面との当接部に発生するサイドスリップにより、上記トラニオン7が上記各枢軸9、9を中心とする揺動変位を開始する。又、上記トラニオン7の軸方向変位に伴って上記カム面21の変位が、上記リンク腕19を介して上記スプール15に伝わり、このスプール15が軸方向に変位して、上記変速比制御弁12の切り換え状態を変更する。具体的には、上記アクチュエータ10により上記トラニオン7を中立位置に戻す方向に、上記変速比制御弁12が切り換わる。
従って上記トラニオン7は、軸方向に変位した直後から、中立位置に向け、逆方向に変位し始める。但し、上記トラニオン7は、中立位置からの変位が存在する限り、上記各枢軸9、9を中心とする揺動を継続する。この結果、上記プリセスカム18のカム面21の円周方向に関する変位が、上記リンク腕19を介して上記スプール15に伝わり、このスプール15が軸方向に変位する。そして、上記トラニオン7の傾斜角度が、得ようとする変速比に見合う所定角度に達した状態で、このトラニオン7が中立位置に復帰すると同時に、上記変速比制御弁12が閉じられて、上記アクチュエータ10への圧油の給排が停止される。この結果上記トラニオン7の傾斜角度が、前記ステッピングモータ13により前記スリーブ14を軸方向に変位させた量に見合う角度になる。
上述の様なトロイダル型無段変速機の運転時には、エンジン等の動力源に繋がる駆動軸22により一方(図6、7の左方)の入力側ディスク2を、図示の様なローディングカム式の、或は油圧式の押圧装置23を介して回転駆動する。この結果、前記入力軸1の両端部に支持された1対の入力側ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、上記各パワーローラ6、6を介して上記各出力側ディスク5、5に伝わり、前記出力歯車4から取り出される。
この様に上記各入力側ディスク2、2から上記各出力側ディスク5、5に動力を伝達する際に、上記各トラニオン7、7には、それぞれの内側面に支持した上記各パワーローラ6、6の周面と上記各ディスク2、5の内側面との摩擦(トラクション部での動力伝達)に伴って、それぞれの両端部に設けた枢軸9、9の軸方向の力が加わる。この力は、各トラクション部で伝達される力(接線力=Ft)の2倍で、所謂2Ftと呼ばれ、その大きさは、上記各入力側ディスク2、2から上記各出力側ディスク5、5(或は出力側ディスク5、5から入力側ディスク2、2)に伝達する力(動力=トルク)に比例する。そして、この様な力2Ftは、前記各アクチュエータ10、10により支承する。従って、トロイダル型無段変速機の運転時に、これら各アクチュエータ10、10を構成するピストン16、16の両側に存在する1対の油圧室同士の圧力差は、上記力2Ftの大きさに比例する。
上記入力軸1と出力歯車4との回転速度を変える場合で、先ず入力軸1と出力歯車4との間で減速を行なう場合には、上記各アクチュエータ10、10により上記各トラニオン7、7を上記各枢軸9、9の軸方向に移動させ、これら各トラニオン7、7を図7に示す位置に揺動させる。そして、上記各パワーローラ6、6の周面をこの図7に示す様に、上記各入力側ディスク2、2の内側面の中心寄り部分と上記各出力側ディスク5、5の内側面の外周寄り部分とにそれぞれ当接させる。反対に、増速を行なう場合には、上記各トラニオン7、7を図7と反対方向に揺動させ、上記各パワーローラ6、6の周面を、この図7に示した状態とは逆に、上記各入力側ディスク2、2の内側面の外周寄り部分と上記各出力側ディスク5、5の内側面の中心寄り部分とに、それぞれ当接する様に、上記各トラニオン7、7を傾斜させる。これら各トラニオン7、7の傾斜角度を中間にすれば、入力軸1と出力歯車4との間で、中間の変速比(速度比)を得られる。
更に、上述の様に構成され作用するトロイダル型無段変速ユニットを実際の自動車用の無段変速機に組み込む場合、遊星歯車機構と組み合わせて無段変速装置を構成する事が、特許文献1〜4等に記載されている様に、従来から提案されている。図9は、これら各特許文献のうちの特許文献4に記載された無段変速装置を示している。この無段変速装置は、ダブルキャビティ型のトロイダル型無段変速機24と遊星歯車式変速機25とを組み合わせて成る。そして、低速走行時には動力を上記トロイダル型無段変速機24のみで伝達し、高速走行時には動力を、主として上記遊星歯車式変速機25により伝達すると共に、この遊星歯車式変速機25による速度比を、上記トロイダル型無段変速機24の速度比を変える事により調節自在としている。
この為に、上記トロイダル型無段変速機24の中心部を貫通し、両端部に1対の入力側ディスク2、2を支持した入力軸1の先端部(図9の右端部)と、上記遊星歯車式変速機25を構成するリング歯車26を支持した支持板27の中心部に固定した伝達軸28とを、高速用クラッチ29を介して結合している。このうちのトロイダル型無段変速機24の構成は、次述する押圧装置23aの点を除き、前述の図6〜8に示した、従来から広く知られている構造と、実質的に同じである。
又、駆動源であるエンジン30のクランクシャフト31の出力側端部(図9の右端部)と上記入力軸1の入力側端部(=基端部=図9の左端部)との間に、発進クラッチ32と油圧式の押圧装置23aとを、動力の伝達方向に関して互いに直列に設けている。前記特許文献4に記載された無段変速装置の場合には、上記押圧装置23aに任意の油圧を導入自在としている(特許文献4に記載の明細書の[0012]段落参照)。
又、上記入力軸1の回転に基づく動力を取り出す為の出力軸33を、上記入力軸1と同心に配置している。そして、この出力軸33の周囲に前記遊星歯車式変速機25を設けている。この遊星歯車式変速機25を構成する太陽歯車34は、上記出力軸33の入力側端部(図9の左端部)に固定している。従ってこの出力軸33は、上記太陽歯車34の回転に伴って回転する。この太陽歯車34の周囲には前記リング歯車26を、上記太陽歯車34と同心に、且つ、回転自在に支持している。そして、このリング歯車26の内周面と上記太陽歯車34の外周面との間に、複数の遊星歯車35、35を設けている。これら各遊星歯車35、35は、それぞれ1対ずつの遊星歯車素子36a、36bにより構成している。これら各遊星歯車素子36a、36bは、互いに噛合すると共に、外径側に配置した遊星歯車素子36aが上記リング歯車26に噛合し、内径側に配置した遊星歯車素子36bが上記太陽歯車34に噛合している。この様な各遊星歯車35、35は、キャリア37の片側面(図9の左側面)に回転自在に支持している。又、このキャリア37は、上記出力軸33の中間部に、回転自在に支持している。
又、上記キャリア37と、前記トロイダル型無段変速機24を構成する1対の出力側ディスク5、5とを、動力伝達機構38により、回転力の伝達を可能な状態に接続している。この動力伝達機構38は、上記入力軸1及び上記出力軸33と平行な伝達軸39と、この伝達軸39の一端部(図9の左端部)に固定したスプロケット40aと、上記各出力側ディスク5、5に固定したスプロケット40bと、これら両スプロケット40a、40b同士の間に掛け渡したチェン41と、上記伝達軸39の他端(図9の右端)と上記キャリア37とにそれぞれ固定されて互いに噛合した第一、第二の歯車42、43とにより構成している。従って上記キャリア37は、上記各出力側ディスク5、5の回転に伴って、これら出力側ディスク5、5と反対方向に、上記第一、第二の歯車42、43の歯数及び上記1対のスプロケット40a、40bの歯数に応じた速度で回転する。
一方、上記入力軸1と上記リング歯車26とは、この入力軸1と同心に配置された前記伝達軸28を介して、回転力の伝達を可能な状態に接続自在としている。この伝達軸28と上記入力軸1との間には、前記高速用クラッチ29を、これら両軸28、1に対し直列に設けている。従って、この高速用クラッチ29の接続時にこの伝達軸28は、上記入力軸1の回転に伴って、この入力軸1と同方向に同速で回転する。
又、図9に示した無段変速装置は、モード切換手段を構成するクラッチ機構を備える。このクラッチ機構は、上記高速用クラッチ29と、上記キャリア37の外周縁部と上記リング歯車26の軸方向一端部(図9の右端部)との間に設けた低速用クラッチ44と、このリング歯車26と無段変速装置のハウジング(図示省略)等、固定の部分との間に設けた後退用クラッチ45とから成る。各クラッチ29、44、45は、何れか1個のクラッチが接続された場合には、残り2個のクラッチの接続が断たれる。
上述の様に構成する無段変速装置は、先ず、低速走行時には、上記低速用クラッチ44を接続すると共に、上記高速用クラッチ29及び後退用クラッチ45の接続を断つ。この状態で前記発進クラッチ32を接続し、前記入力軸1を回転させると、トロイダル型無段変速機24のみが、この入力軸1から上記出力軸33に動力を伝達する。この様な低速走行時には、それぞれ1対ずつの入力側ディスク2、2と、出力側ディスク5、5との間の速度比を、前述の図6〜8に示したトロイダル型無段変速機単独の場合と同様にして調節する。この場合に上記トロイダル型無段変速機24を通過するトルクは、上記入力側ディスク2、2から上記出力側ディスク5、5に向けて伝達される。
これに対して、高速走行時には、上記高速用クラッチ29を接続すると共に、上記低速用クラッチ44及び後退用クラッチ45の接続を断つ。この状態で上記発進クラッチ32を接続し、上記入力軸1を回転させると、この入力軸1から上記出力軸33には、前記伝達軸28と前記遊星歯車式変速機25とが、動力を伝達する。即ち、上記高速走行時に上記入力軸1が回転すると、この回転は上記高速用クラッチ29及び伝達軸28を介してリング歯車26に伝わる。そして、このリング歯車26の回転が複数の遊星歯車35、35を介して太陽歯車34に伝わり、この太陽歯車34を固定した上記出力軸33を回転させる。この状態で、上記トロイダル型無段変速機24の速度比を変える事により上記各遊星歯車35、35の公転速度を変化させれば、上記無段変速装置全体としての速度比を調節できる。
即ち、上記高速走行時に上記各遊星歯車35、35が、上記リング歯車26と同方向に公転する。そして、これら各遊星歯車35、35の公転速度が遅い程、上記太陽歯車34を固定した出力軸33の回転速度が速くなる。例えば、上記公転速度とリング歯車26の回転速度(何れも角速度)が同じになれば、上記リング歯車26と出力軸33の回転速度が同じになる。これに対して、上記公転速度がリング歯車26の回転速度よりも遅ければ、上記リング歯車26の回転速度よりも出力軸33の回転速度が速くなる。反対に、上記公転速度がリング歯車26の回転速度よりも速ければ、上記リング歯車26の回転速度よりも出力軸33の回転速度が遅くなる。
従って、上記高速走行時には、前記トロイダル型無段変速機24の速度比を減速側に変化させる程、無段変速装置全体の速度比は増速側に変化する。この様な高速走行時の状態では、上記トロイダル型無段変速機24に、入力側ディスク2、2からではなく、出力側ディスク5、5から力(トルク)が加わる(低速時に加わるトルクをプラスのトルクとした場合にマイナスのトルクが加わる)。即ち、前記高速用クラッチ29を接続した状態では、前記エンジン30から入力軸1に伝達されたトルクは、前記伝達軸28を介して前記遊星歯車式変速機25のリング歯車26に伝達される。従って、入力軸1の側から各入力側ディスク2、2に伝達されるトルクは殆どなくなる。
一方、上記伝達軸28を介して前記遊星歯車式変速機25のリング歯車26に伝達されたトルクの一部は、前記各遊星歯車35、35から、キャリア37及び動力伝達機構38を介して各出力側ディスク5、5に伝わる。従ってこの場合に上記トロイダル型無段変速機24を通過するトルクは、上記出力側ディスク5、5から上記入力側ディスク2、2に向けて伝達される。この様に各出力側ディスク5、5からトロイダル型無段変速機24に加わるトルクは、無段変速装置全体の速度比を増速側に変化させるべく、トロイダル型無段変速機24の速度比を減速側に変化させる程小さくなる。この結果、高速走行時に上記トロイダル型無段変速機24に入力されるトルクが小さくなる。そして、この様にトロイダル型無段変速機24に加わるトルクが低い場合には、前記押圧装置23aの押圧力を低くして、このトロイダル型無段変速機24の構成部品の耐久性向上を図る(特許文献4記載の明細書の[0025]段落参照)。
更に、自動車を後退させるべく、前記出力軸33を逆回転させる際には、前記低速用、高速用両クラッチ44、29の接続を断つと共に、前記後退用クラッチ45を接続する。この結果、上記リング歯車26が固定され、上記各遊星歯車35、35が、このリング歯車26並びに前記太陽歯車34と噛合しつつ、この太陽歯車34の周囲を公転する。そして、この太陽歯車34並びにこの太陽歯車34を固定した出力軸33が、前述した低速走行時並びに上述した高速走行時とは逆方向に回転する。
トロイダル型無段変速機で、入力側、出力側各ディスクの内側面と各パワーローラの周面との転がり接触部(トラクション部)の面圧を確保する為の押圧装置の構造としては、図6、7、9に示したものの他にも、特許文献5、特許文献6に記載されたものが知られている。このうちの特許文献5には、油圧式の押圧装置に導入する油圧を、エンジンの吸入負圧とトラニオンの傾斜角度とにより調節する構造、並びに、ローディングカムと油圧シリンダとを組み合わせ、ローディングカムにより入力トルクに応じた押圧力を発生させると共に、油圧シリンダにより変速比に応じた押圧力を発生させる構造が記載されている。又、特許文献6には、トラクションオイルの動粘度を粘度センサにより測定し、この動粘度に応じて押圧装置が発生する押圧力を変化させる構造が記載されている。
又、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせた無段変速装置には、前述の図9に示したパワー・スプリット型のものの他、特許文献7等に記載された、所謂ギヤード・ニュートラル型と呼ばれるものも、従来から知られている。図10は、上記特許文献7に記載された無段変速装置を示している。この無段変速装置は、トロイダル型無段変速機24と遊星歯車式変速機25aとを組み合わせて成る。このうちのトロイダル型無段変速機24は、入力軸1と、1対の入力側ディスク2、2と、出力側ディスク5aと、複数のパワーローラ6、6とを備える。図示の例では、この出力側ディスク5aは、1対の出力側ディスクの外側面同士を突き合わせて一体とした如き構造を有する。
又、上記遊星歯車式変速機25aは、上記入力軸1及び一方(図10の右方)の入力側ディスク2に結合固定されたキャリア37aを備える。このキャリア37aの径方向中間部に、その両端部にそれぞれ遊星歯車素子121a、121bを固設した第一の伝達軸122を、回転自在に支持している。又、上記キャリア37aを挟んで上記入力軸1と反対側に、その両端部に太陽歯車123a、123bを固設した第二の伝達軸124を、上記入力軸1と同心に、回転自在に支持している。そして、上記各遊星歯車素子121a、121bと、上記出力側ディスク5aにその基端部(図10の左端部)を結合した中空回転軸125の先端部(図10の右端部)に固設した太陽歯車126又は上記第二の伝達軸124の一端部(図10の左端部)に固設した太陽歯車123aとを、それぞれ噛合させている。又、一方(図10の左方)の遊星歯車素子121aを、別の遊星歯車素子127を介して、上記キャリア37aの周囲に回転自在に設けたリング歯車128に噛合させている。
一方、上記第二の伝達軸124の他端部(図10の右端部)に固設した太陽歯車123bの周囲に設けた第二のキャリア129に遊星歯車素子130a、130bを、回転自在に支持している。尚、この第二のキャリア129は、上記入力軸1及び第二の伝達軸124と同心に配置された、出力軸33aの基端部(図10の左端部)に固設されている。又、上記各遊星歯車素子130a、130bは、互いに噛合すると共に、一方の遊星歯車素子130aが上記太陽歯車123bに、他方の遊星歯車素子130bが、上記第二のキャリア129の周囲に回転自在に設けた第二のリング歯車131に、それぞれ噛合している。又、上記リング歯車128と上記第二のキャリア129とを低速用クラッチ132により係脱自在とすると共に、上記第二のリング歯車131とハウジング等の固定の部分とを、高速用クラッチ133により係脱自在としている。
上述の様な、図10に示した無段変速装置の場合、上記低速用クラッチ132を接続すると共に上記高速用クラッチ133の接続を断った、所謂低速モード状態では、上記入力軸1の動力が上記リング歯車128を介して上記出力軸33aに伝えられる。そして、前記トロイダル型無段変速機24の変速比を変える事により、無段変速装置全体としての変速比、即ち、上記入力軸1と上記出力軸33aとの間の変速比が変化する。この様な低速モード状態では、無段変速装置全体としての変速比は、無限大に変化する。即ち、上記トロイダル型無段変速機24の変速比を調節する事により、上記入力軸1を回転させた状態のまま上記出力軸33aの回転状態を、停止状態を挟んで、正転、逆転の変換自在となる。
これに対して、上記低速用クラッチ132の接続を断ち、上記高速用クラッチ133を接続した、所謂高速モード状態では、上記入力軸1の動力が上記第一、第二の伝達軸122、124を介して上記出力軸33aに伝えられる。そして、上記トロイダル型無段変速機24の変速比を変える事により、無段変速装置全体としての変速比が変化する。この場合には、上記トロイダル型無段変速機24の変速比を大きくする程、無段変速装置全体としての変速比が大きくなる。尚、図10に示した無段変速装置の場合には、低速モード状態で上記トロイダル型無段変速機24を通過するトルクは、出力側ディスク5aから入力側ディスク2、2に伝わる。これに対して高速モード状態では、上記トロイダル型無段変速機24を通過するトルクは、上記入力側ディスク2、2から上記出力側ディスク5aに伝わる。
ところで、上述した様な従来構造のうち、図6、7、10に示した構造の場合には、ローディングカム式の押圧装置23が発生する押圧力が過大になる場合が多く、トロイダル型無段変速機24の構成部品の耐久性を確保する面から不利である。即ち、上記押圧装置23に要求される押圧力は、変速比に応じて変わる事が、前述した特許文献5の他、例えば非特許文献1等に記載されて、従来から知られている。一方、ローディングカム式の押圧装置23が発生する押圧力は、この押圧装置23の入力部に加わるトルクが同じである限り一定である。従って、ローディングカム式の押圧装置23は、要求される最も大きな押圧力を発生させる様に設計する。具体的には、変速比が最も大きな押圧力を要求される値(設計により異なるが、例えば1.2〜1.4程度)の場合に要求される押圧力を発生する構造とする。この為、変速比が上記最も大きな押圧力を要求される値から大きく外れた(増速比或は減速比が大きくなった)場合には、上記押圧装置23が発生する押圧力が過大になる。この押圧力が過大になる事は、トロイダル型無段変速機の小型化を図る面からも、伝達効率を確保する面からも、更には構成部材の耐久性を確保する面からも好ましくない。
又、図9に示した構造の場合には、高速用クラッチ29を接続した高速モード時にトロイダル型無段変速機24を通過するトルクが低くなる際に押圧装置23aが発生する油圧を低くする事だけしか考慮していない為、伝達効率確保及び耐久性確保の面から、必ずしも十分な効果を得られない。
又、特許文献5に記載されたものは、入力トルクと変速比とを考慮した押圧力を発生させる構造ではあるが、必要とする押圧力と現実に発生する押圧力との差を十分に小さくする様な、細かな調節を行なう事は難しい。
更に、特許文献6に記載されたものは、トラクションオイルの動粘度に応じた押圧力を得る事はできるが、より細かな調節を行なう事はできない。しかも、トラクション部の動粘度を測定する事自体難しいだけでなく、仮にできたとしても装置が複雑化する事が避けられないものと考えられる。
必要とする押圧力と現実に発生する押圧力との差を十分に小さくする、言い換えれば、押圧装置が発生する押圧力を、トラクション部の面圧を確保する為に最低限必要とされる押圧力にほぼ一致させる(実際には僅かに大きくする)為には、油圧式の押圧装置に導入する油圧を、電気的に制御する事が考えられる。この様に油圧を電気的に制御すれば、変速比の変化に拘らず、上記押圧装置が発生する押圧力を、最低限必要とされる押圧力よりも僅かだけ大きくして、上記トラクション部の面圧を過大にする事なく、しかもこのトラクション部で過大な滑りが生じる事を防止できる。
但し、油圧式の押圧装置に導入する油圧を、純電気的に制御した場合、制御用のコンピュータの故障や断線等の制御回路の故障時に、この油圧が喪失若しくは極端に低下する可能性が高くなる。この結果、トロイダル型無段変速機を構成する入力側、出力側各ディスクの内側面と各パワーローラの周面との転がり接触部(上記トラクション部)で、これら各面同士が滑って動力の伝達を行なえなくなる、所謂グロススリップが発生する。この様なグロススリップが発生すると、トロイダル型無段変速機を搭載した車両の走行が不能になるだけでなく、上記各面の摩耗が著しく進行し、トロイダル型無段変速機に修理不能な程の損傷が発生する可能性がある。一方、現状に於いては、電気的な制御回路が故障する可能性は、油圧式或は機械式の制御機構が故障する可能性よりも高い。この為、純電気式の制御回路のみで、上記油圧式の押圧装置に導入する油圧を制御する事は、信頼性確保の面から問題がある。
前述の様な従来構造の場合に生じる問題を解決する為に本発明者は先に、図11〜13に示す様なトロイダル型無段変速機24aを発明した(特願2003−284196号)。この先発明のトロイダル型無段変速機24aは、運転状況に拘らず、入力側ディスク2及び出力側ディスク5の内側面と各パワーローラ6、6の周面との転がり接触部、即ちトラクション部の面圧を適正にする様に構成している。先ず、この様な先発明に係るトロイダル型無段変速機24aの特徴部分に就いて説明する。尚、図11に於いては、油圧回路の油圧伝達経路を実線で、電気回路の信号伝達経路を一点鎖線で、それぞれ描いている。
上記トロイダル型無段変速機24aを構成する入力軸1の一端部(図11の左端部)に、断面コ字形で全体が円環状のシリンダ筒46を外嵌し、スペーサ47とローディングナット48とにより抑え付けて、上記入力軸1からの抜け止めを図っている。そして、上記シリンダ筒46内に、上記入力側ディスク2の外半部(図11の左半部)を油密に嵌装して、油圧式の押圧装置23aを構成している。又、上記シリンダ筒46の底板部と上記入力側ディスク2の外側面との間に皿板ばね等の予圧ばね49を設けて、上記トラクション部に必要最小限の面圧を付与している。又、上記押圧装置23a内には、上記入力軸1の一端部内側及び上記シリンダ筒46に形成した給排通路50を通じて、圧油を給排自在としている。即ち、上記トロイダル型無段変速機24aを収納したケーシング(図示省略)の一部に設けた油溜部51からフィルタ52を通じて吸引し、圧油ポンプ53から吐出した圧油を、第一の圧力導入路54を通じて、上記給排通路50内に送り込み自在としている。
図示の例の場合、上記第一の圧力導入路54の途中に圧力逃がし路55の一端部を接続し、この圧力逃がし路55の他端を、上記油溜部51に通じさせている。そして、この圧力逃がし路55の途中に押圧力制御弁56を、直列に設けている。この押圧力制御弁56は、リリーフ弁としての機能を備えたもので、図12にその具体的構造を示す様に、ケーシング57内に軸方向の変位を可能にして嵌装したスプール58を、ばね59により付勢して成る。又、上記押圧力制御弁56は、第一〜第三のパイロット部60〜62を備える。このうちの第一、第二のパイロット部60、61は、前記入力側ディスク2と前記出力側ディスク5との間で伝達される力(動力)の大きさに応じて上記押圧力制御弁56の開弁圧を調節する為のものである。これに対して、第三のパイロット部62は、上記トロイダル型無段変速機24aの変速比、このトロイダル型無段変速機24aの内部に存在する潤滑油(トラクションオイル)の温度、駆動源であるエンジンの回転速度等、上記力以外の運転条件に応じて上記押圧力制御弁56の開弁圧を調節する為のものである。図示の例は、上記第一〜第三のパイロット部60〜62に導入する油圧を適切に調節する事で、前記押圧装置23aが発生する押圧力を、上記トロイダル型無段変速機24aの運転状況に応じ、適正に規制する様に構成している。
先ず、上記力の大きさに応じて上記第一、第二のパイロット部60、61に導入する油圧を規制する部分に就いて説明する。図示の例の場合、これら第一、第二のパイロット部60、61のうちの何れかのパイロット部に導入する油圧が高くなる程、上記押圧力制御弁56の開弁圧が高くなり、前記押圧装置23aを構成するシリンダ筒46内に導入する油圧を高くする様に構成している。この為に図示の例の場合には、トラニオン7を枢軸9、9の軸方向に変位させる為のアクチュエータ10にピストン16を挟んで設けた1対の油圧室63a、63b同士の間の差圧を、上記何れかのパイロット部60、61に導入する様にしている。尚、これら第一、第二のパイロット部60、61の受圧面積は同じにして、力の伝達方向に関係なく、上記トロイダル型無段変速機24aを通過する力が同じである限り、上記押圧力制御弁56のスプール58を図11、12の右方に押圧する力の大きさが同じになる様にしている。
上記1対の油圧室63a、63bには、前述した従来構造と同様に、変速比制御弁12を通じて、圧油を給排する。又、この変速比制御弁12を構成するスリーブ14(図8参照)は、マイクロコンピュータを内蔵した変速比制御装置64からの指令信号に基づいて、ステッピングモータ13(図8参照)により、軸方向に変位させられる。この様な変速比制御弁12を通じて油圧を導入される上記1対の油圧室63a、63b同士の間の差圧±△Pの大きさ|△P|が、前記トロイダル型無段変速機24aを通過する力に比例する事は、前述した通りである。尚、図示の例の場合、上記差圧が+とは、エンジンから駆動輪に力を伝達するのに伴って、図11の左上部のトラニオン7が上方に引っ張られる場合であり、−とは、減速時のエンジンブレーキの作動に伴って、上記トラニオン7が下方に押される場合を言う。
何れにしても図示の例の場合には、差圧取り出し弁65により上記差圧±△Pを取り出して、前記第一、第二のパイロット部60、61のうちの何れかのパイロット部に導入する様に構成している。上記差圧取り出し弁65は、その具体的構造を図13に示す様に、小径部と大径部とを交互に配置したシリンダ孔66内に軸方向の変位自在に嵌装したスプール67を挟んで、それぞれ1対ずつのばね68、68とパイロット部69a、69bとを設けている。上記スプール67に設けた複数の鍔部は、上記シリンダ孔66の小径部に、油密に嵌合自在である。そして、上記シリンダ孔66の中央部に存在する大径部内に、第二の圧力導入路70の下流端を開口させている。又、この第二の圧力導入路70の上流端は、前記圧油ポンプ53の吐出口に接続しており、この第二の圧力導入路70の中間部には、減圧弁71を、直列に設けている。
上記差圧取り出し弁65を構成するスプール67は、上記1対のパイロット部69a、69bに導入された、前記アクチュエータ10にピストン16を挟んで設けた1対の油圧室63a、63b内の圧力に応じて、軸方向に変位する。そして、上記第二の圧力導入路70の下流端と、前記押圧力制御弁56に付属の第一、第二のパイロット部60、61との導通状態を制御する。即ち、上記差圧取り出し弁65を構成するスプール67は、上記1対のパイロット部69a、69bに導入された油圧の差に応じて軸方向に変位する。そして、何れのパイロット部69a(69b)に導入された油圧が他のパイロット部69b(69a)に導入された油圧よりも高いかにより、上記差圧取り出し弁65にそれぞれの一端部(図11の左上端部)を接続した第三の圧力導入路72a(72b)と、上記スプール67の両端面に対向する部分に設けた反力室73a(73b)とに、油圧を導入する。
例えば、トロイダル型無段変速機が駆動源から駆動輪に動力を伝達する際には、上記アクチュエータ10の油圧室63a内の油圧が他の油圧室63bよりも高くなる。この状態では、上記パイロット部69aに導入される油圧が他のパイロット部69bに導入される油圧よりも高くなり、上記スプール67が図11、13の右方に移動し、前記差圧取り出し弁65が図11の状態に切り換わる。この結果、前記第二の圧力導入路70を通じて送られてくる圧油が、一方(図11の右上方)の第三の圧力導入路72aを通じて、前記押圧力制御弁56の第一のパイロット部60に導入される。これに対して、エンジンブレーキ作動時には、反対に、上記他のパイロット部69bに導入される油圧が上記一方のパイロット部69aに導入される油圧よりも高くなり、上記スプール67が図11、13の左方に移動し、上記差圧取り出し弁65が図11とは逆の状態に切り換わる。この結果、前記第二の圧力導入路70を通じて送られてくる圧油が、他方(図11の左下方)の第三の圧力導入路72bを通じて、前記押圧力制御弁56の第二のパイロット部61に導入される。
何れの場合でも、上記第三の圧力導入路72a、72bに導入された圧油は、上記差圧取り出し弁65の反力室73a(73b)にも導入されて、上記スプール67の軸方向端面を押圧する。従って、このスプール67を軸方向に変位させて、上記第二の圧力導入路70と上記第三の圧力導入路72a(72b)とを連通させようとする力は、上記差圧取り出し弁65に設けた1対のパイロット部69a、69b内に導入された油圧の差|△P|に比例する。この結果、上記押圧力制御弁56の第一、第二のパイロット部60、61に導入される油圧は、上記アクチュエータ10の油圧室63a、63b内の油圧の差|△P|、即ち、トロイダル型無段変速機24aを通過する力に比例する。
上記押圧力制御弁56の開弁圧は、上記第一、第二のパイロット部60、61に導入される油圧が高くなる程高くなり、前記第一の圧力導入路54を通じて前記押圧装置23a内に導入される油圧は、上記押圧力制御弁56の開弁圧が高くなる程高くなる。従って、上記押圧装置23a内に導入される油圧、延てはこの押圧装置23aが発生する押圧力は、トロイダル型無段変速機24aを通過する力が大きくなる程大きくなる。この様にして上記押圧装置23aに発生させる押圧力は、上記トロイダル型無段変速機24aの変速比が最も大きな押圧力を要求される値である場合に必要となる値であり、その為に必要となる油圧は、請求項4に記載した目標値である。
更に、図示の例の場合には、請求項4に記載した油圧補正手段として、上記押圧力制御弁56に組み込んだ前記第三のパイロット部62に加えて、第四の圧力導入路74と電磁弁75とを設けている。このうちの第四の圧力導入路74は、前記第二の圧力導入路70と、上記第三のパイロット部62とを通じさせている。又、上記電磁弁75は、上記第四の圧力導入路74の途中に、直列に設けている。そしてこの電磁弁75は、前記変速比制御装置64からの指令により通電を制御されるソレノイド76により、上記第二の圧力導入路70と上記第三のパイロット部62とを通じさせる状態と、この第三のパイロット部62を前記油溜部51に通じさせる状態とを、高速で切り換える。従って、この第三のパイロット部62に導入される油圧は、上記変速比制御装置64からの指令により、任意に、且つ細かく調整される。即ち、この変速比制御装置64は、前記トロイダル型無段変速機24aの変速比、内部に存在する潤滑油の温度、駆動源であるエンジンの回転速度等を勘案して、上記押圧装置23aに発生させるべき押圧力の最適値に応じた油圧の必要値を電気的に求める。そして、この必要値と、上記目標値との差である補正値に対応する油圧を、上記第三のパイロット部62に導入する。
この様にしてこの第三のパイロット部62に導入された油圧は、前記押圧力制御弁56のスプール58を図11、12の左方に押す。この結果、この押圧力制御弁56の流路が開かれ、前記圧力逃がし路55と前記油溜部51とを導通する傾向になる。即ち、上記押圧力制御弁56の流路は、上記圧力逃がし路55から圧力室77内に導入された油圧が上昇すると開き(上記圧力制御弁56が開弁し)、この圧力逃がし路55及び前記第一の圧力導入路54内の油圧を低下させる(それ以上上昇する事を阻止する)。結局、上記押圧力制御弁56の開弁圧P56は、この押圧力制御弁56に内蔵したばね59の弾力F59と前記第一、第二のパイロット部60、61の何れかに導入された油圧に基づく力F1 との和から、上記第三のパイロット部62に導入された油圧に基づく力F2 を減じた値に比例する(P56∝F59+F1 −F2 )。このうちのばね59の弾力F59は一定であり、上記第一、第二のパイロット部60、61の何れかに導入された油圧に基づく力F1 は、前述した通り、前記トロイダル型無段変速機24aを通過する力が大きい程大きくなる。又、上記第三のパイロット部62に導入された油圧に基づく力F2 は、前記変速制御装置64により、変速比、油温等、上記トロイダル型無段変速機24aの運転状態に応じて細かく調節される。具体的には、上記変速比の、最も大きな押圧力を要求される値からのずれが大きくなる程、上記油温が低い程、上記第三のパイロット部62に導入する油圧を高くし、上記力F2 を大きくする。
上述の様に構成する先発明のトロイダル型無段変速機の場合には、上記トロイダル型無段変速機24aを通過する力の他、上記変速比及び油温に応じて、前記押圧装置23aが発生する押圧力を調節するので、上記トロイダル型無段変速機24aの運転状態の如何に拘らず、この押圧力を最適値に規制できる。即ち、油圧補正手段を構成する押圧力制御弁56の開弁圧を上述の様に調節する事に伴って、上記押圧装置23aに導入される油圧は、主油圧制御手段を構成する前記差圧取り出し弁65が設定した目標値、即ち、上記弾力F59と上記油圧に基づく力F1 との和(F59+F1 )から、補正値、即ち、上記第三のパイロット部62に導入された油圧に基づく力F2 を減じた値に比例する必要値P56(∝F59+F1 −F2 )となる。この必要値のうちの補正値F2 は電気的に求められる為、上記押圧装置23aに導入する油圧を、上記トロイダル型無段変速機24aの運転状態に応じて細かく調節する事が可能になる。この結果、トラクション部の面圧を適正にして、上記トロイダル型無段変速機24aの伝達効率及び耐久性の確保を図れる。
又、上記必要値P56のうちの補正値F2 を求める為の電気回路の故障により、前記変速比制御装置64内に設けた油圧補正手段の演算部が上記補正値の算出を行なえなくなると、上記押圧装置23aには、上記主油圧制御手段を構成する前記差圧取り出し弁65が設定した目標値(∝F59+F1 )の油圧が導入される。この目標値は、上記トロイダル型無段変速機24aの変速比が、最も大きな押圧力を必要とする変速比(仕様により異なるが、例えば1.2〜1.4程度)以外の場合には上記必要値を上回る。言い換えれば、この変速比が最も大きな押圧力を必要とする変速比以外の場合には、上記押圧装置23aが発生する押圧力が過大になる。但し、この場合に発生する押圧力は、前述の図6〜8に示した従来構造の第1例で、ローディングカム式の押圧装置23が発生する押圧力に見合ったものとなる。従って、上記トロイダル型無段変速機24aの伝達効率及び耐久性が若干低下するが、必要最小限の機能は確保される。この為、上記トロイダル型無段変速機24aを搭載した車両を修理工場まで自走させる事ができる他、前記入力側、出力側各ディスク2、5の内側面及び各パワーローラ6、6の周面を著しく損傷させる事を防止できる。従って、複雑な為に、純油圧式に押圧力を設定する上記主油圧制御手段に比べて故障発生の可能性が高い、上記油圧補正手段が故障した場合に於ける、トロイダル型無段変速機24aの信頼性確保を図れる。
上述の様な先発明に係るトロイダル型無段変速機の場合、トロイダル型無段変速機24aの伝達効率及び耐久性の確保を図ると共に、電気回路の故障時にも最低限の機能を確保できるが、より優れた耐久性を確保する為には、次の様な点を改良する事が望まれる。即ち、トロイダル型無段変速機の運転時には、このトロイダル型無段変速機をトルクが通過する方向が短時間の間に逆転する場合がある。例えば、図6〜8に示す様に、トロイダル型無段変速機を(遊星歯車式変速機と組み合わせる事なく)単独で使用する場合、加速状態或は定速走行状態から(エンジンブレーキを使用した)減速状態に移る瞬間に、トルクの伝達方向の逆転が生じる。又、遊星歯車式変速機と組み合わせて無段変速装置を構成した場合には、上述の場合に加えて、低速用クラッチと高速用クラッチとの断接に伴うモード変換時にも、トルクの伝達方向の逆転が生じる。
何れにしてもトルクの伝達方向が逆転する瞬間には、上記トロイダル型無段変速機を通過するトルク(通過トルク)が0になる瞬間がある。そして、油圧式の押圧装置を使用し、且つ、この押圧装置に導入する油圧を上記通過トルクが大きくなる程高くする制御を行なうと、この通過トルクが0になる瞬間には、上記油圧が0になる。この瞬間にこの油圧が0になり、上記押圧装置が発生する押圧力(推力)が予圧ばねの弾力に基づくだけのものになる事自体は、特に問題とはならない。但し、油圧回路の応答遅れは、電気回路の場合よりも大きい為、上記通過トルクが0になって上記油圧が0になった後、極短時間の間にこの通過トルクが増大すると、各トラクション部の面圧が不足し、これら各トラクション部で著しい滑り(グロススリップ)が発生し易くなる。
この様な著しい滑りが発生すると、トロイダル型無段変速機の伝達効率が短時間とは言え極端に低下するだけでなく、エンジンの回転速度が急上昇する等、運転者に違和感を与える原因ともなる。更に、著しい場合には、上記トラクション部を構成する、入力側、出力側各ディスク2、5の内側面及び各パワーローラ6、6の周面同士が金属接触し、これら各面の耐久性を著しく低下させる可能性もある。
特開平1−169169号公報 特開平1−312266号公報 特開平10−196759号公報 特開平11−63146号公報 特公平6−72652号公報 特開2000−65193号公報 特開2000−220719号公報 日本精工株式会社、「NSK TECHNICAL JOURNAL No.670」、平成12年11月
本発明は、上述の様な事情に鑑みて、トルクの伝達方向が逆転する瞬間に油圧式の押圧装置内の油圧が過度に低下する事を防止して、短時間の間に通過トルクが低下後上昇した場合にも、トラクション部で著しい滑りが生じる事を防止できるトロイダル型無段変速機を実現すべく発明したものである。
本発明のトロイダル型無段変速機は何れも、従来から知られているトロイダル型無段変速機と同様に、互いに同心に、且つ相対回転自在に配置された第一、第二のディスクと、互いに対向するこれら第一、第二のディスクの内側面同士の間に挟持されてこれら第一、第二のディスク同士の間で動力を伝達する複数のパワーローラと、上記第一のディスクを上記第二のディスクに向け押圧する油圧式の押圧装置とを備える。
特に、本発明のトロイダル型無段変速機に於いては、上記押圧装置に圧油を給排する給排通路の途中に、この押圧装置内への圧油の送り込み時に比べてこの押圧装置からの圧油の排出時に流路面積を狭くする流量調整弁を設けている。
そして、上記圧油の供給源側を上流側とし、上記押圧装置側を下流側とした場合に、上記流量調整弁を、弁座部と、この弁座部よりも下流側に設けられた弁体と、この弁座部に向けこの弁体を押圧するばねと、この弁体の一部に設けられた絞り流路及び連通孔とを備えたものとする。そして、このうちの絞り流路は、上記弁座部と弁体との当接時にも上記上流側と下流側とを連通させるものとする。又、上記連通孔は、上記弁座部と弁体とが離隔した状態でのみ、上記上流側と下流側とを連通させるものとする。
上述の様に構成する本発明のトロイダル型無段変速機の場合には、流量調整弁が、押圧装置内の油圧の排出を緩徐に、この押圧装置内への圧油の送り込みを急速に、それぞれ行なわせる。
従って、この押圧装置が発生する押圧力の低下に要する時間が長くなる反面、この押圧力を上昇させるのに要する時間は短くて済む。この結果、通過トルクが瞬間的に低下した後、短時間の間に上昇した場合にも、トラクション部で著しい滑りが生じる事を防止できる。
この為、トルクの急変動を繰り返す状況で使用されても優れた耐久性を有する、トロイダル型無段変速機を実現できる。
更に、上記流量調整弁を小型に構成できて、しかも上記押圧装置内への圧油の送り込み時と排出時との間での流路面積の切り換えを確実に行なわせる事ができる。
上述の様な本発明を実施する場合に好ましくは、請求項2に記載した様に、第一のディスクを入力側ディスクとし、この入力側ディスクを入力軸の周囲に、この入力軸と同期した回転を自在に支持する。又、給排通路を、この入力軸及びこの入力軸と同心に配置されてこの入力軸を回転駆動する為の駆動軸の中心部に設ける。そして、上記流量調整弁を、この駆動軸内に設置する。
この様に構成すれば、上記流量調整弁をスペース効率を有効に活用して設置できる。
又、好ましくは、請求項3に記載した様に、押圧装置に導入する油圧を、第一、第二のディスク同士の間で伝達するトルクが大きくなる程高くする。
この様に構成すれば、上記第一、第二のディスクの内側面と各パワーローラの周面との転がり接触部(トラクション部)の面圧を、これら両ディスク同士の間で伝達するトルクに応じた適正値にできる。具体的には、上記面圧を過大にして上記トラクション部での伝達効率を悪化させたり、或はこの面圧を過小にしてこのトラクション部で(不可避なスピン以外の)過大な滑りが発生する事を防止できる。
この様な請求項3に記載した発明を実施する場合に、好ましくは、請求項4に記載した様に、主油圧制御手段と、油圧補正手段とを備える。このうちの主油圧補正手段は、上記第一、第二のディスク同士の間で伝達される力を非電気的に検出する。そして、これら第一、第二のディスク同士の間の変速比が、最も大きな押圧力を必要とする変速比である場合に必要となる押圧力を押圧装置に発生させる為に要する油圧を、目標値として設定する。又、上記伝達される力が大きい程、この目標値を高くする。又、上記油圧補正手段は、上記第一、第二のディスク同士の間の変速比に対応して変化する、上記押圧装置に発生させるべき押圧力の最適値に応じた油圧の必要値を電気的に求め、この必要値と上記目標値との差である補正値をこの目標値から減じた油圧を、上記押圧装置に導入させる。
この様な構成を採用すれば、上記トラクション部の面圧を、上記両ディスク同士の間で伝達するトルクに応じた適正値にでき、しかも、電気回路の故障時にも、上記トラクション部で過大な滑りが発生する事を防止できる。
又、上記請求項4に記載した発明を実施する場合に好ましくは、請求項5に記載した様に、前記各パワーローラを回転自在に支持した状態で、変速時に枢軸を中心に揺動変位する支持部材と、シリンダ部にピストンを嵌装して成り、圧油の給排に基づいてこの支持部材を上記枢軸の軸方向に変位させる油圧式のアクチュエータとを備える。そして、上記シリンダ部内でピストンの軸方向両側に存在する1対の油圧室内の油圧の差に基づいて、第一、第二のディスク同士の間で伝達される力を検出する。
この様に構成すれば、簡単な構成で、上記第一、第二のディスク同士の間で伝達される力を非電気的に検出できる。
又、請求項4又は請求項5に記載した発明を実施する場合に好ましくは、請求項6に記載した様に、油圧補正手段を構成する演算器は、変速比に加えて、内部に存在する潤滑油の温度及び駆動源の回転速度に応じて補正信号を求める。そして、この補正信号に基づいて電磁弁を開閉する事により油圧の補正値を得る。
この様に構成すれば、上記トラクション部の面圧を、トロイダル型無段変速機の運転状態に応じてより適切に制御し、このトロイダル型無段変速機の伝達効率及び耐久性をより一層向上させられる。
図1〜3は、請求項1〜6に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、入力軸1aの基端部にボールスプライン3を介して外嵌支持した入力側ディスク2aの外側面(図1の左側面)を押圧する為に設けた押圧装置23b内の、第一、第二各油圧室78、79への圧油の送り込みを短時間に、これら各油圧室78、79からの圧油の排出を緩徐に、それぞれ行なわせる構造及び作用にある。その他の部分の構造及び作用は、前述の図6〜8に示した従来構造、或は前述の図11〜13に示した先発明の構造と同様であるから、同等部分に関する図示並びに説明は省略若しくは簡略にし、以下、本実施例の特徴部分並びに上記従来構造及び先発明の構造と異なる部分を中心に説明する。
本実施例の場合、上記押圧装置23bをダブルピストン型として、この押圧装置23bの外径寸法を抑えつつ、この押圧装置23bが発生する押圧力(推力)を大きくできる様にしている。尚、図3は、簡略化の為、シングルピストン型の押圧装置23aを表している。上記ダブルピストン型の押圧装置を設ける為に本実施例の場合には、上記入力軸1aの基端部(図1の左端部)に大径部80を設け、この大径部80と上記ボールスプライン3を設けた部分とを、段差部81により連続させている。又、上記大径部80の基端縁に、外向フランジ状の鍔部82を設けている。更に、上記入力側ディスク2aの外側面に、円形のシリンダ凹部83を形成している。
そして、上記入力側ディスク2aと上記鍔部82との間に、それぞれが円輪状に造られた、第一ピストン板84と、第二ピストン板85と、シリンダ筒86とを、上記入力側ディスク2aの側から順に配置している。このうちの第一ピストン板84は、その内周縁部に形成した内径側円筒部87を、上記入力軸1aの中間部基端寄り部分で、上記ボールスプライン3の設置部分と上記段差部81との間に設けた円筒面部88に、締り嵌め等により、油密に外嵌固定している。この状態で上記内径側円筒部87の基端縁(図1の左端縁)は、上記段差部81に突き当たっている。又、上記第一ピストン板84の外周縁は上記シリンダ凹部83の内周面に、第一外径側ピストンリング89を介して、油密に、且つ、軸方向(図1の左右方向)の摺動自在に内嵌している。更に、上記内径側円筒部87の先半部(図1の右半部)は、上記入力側ディスク2aの内周面外側面寄りに形成した円筒面部90に、軸方向の摺動自在に内嵌し、第一内径側ピストンリング91により、摺動部の油密保持を図っている。そして、上記シリンダ凹部83と上記第一ピストン板84との間部分を、前記第一油圧室78としている。
又、上記シリンダ筒86は、底板部92の外周縁部に外径側円筒部93を設けて成る。この様なシリンダ筒86は、この外径側円筒部93を上記入力側ディスク2aの側に位置させた状態で、前記入力軸1aの基端部に形成した大径部80に、締り嵌め等により油密に外嵌し、上記底板部92の外側面(図1の左側面)内径寄り部分を、前記鍔部82の内側面(図1の右側面)に当接させている。上記外径側円筒部93の内径は、上記入力側ディスク2aの外径よりも大きくして、これら外径側円筒部93と入力側ディスク2aとが径方向に関して互いに重畳した場合でも、これら外径側円筒部93の内周面と入力側ディスク2aの外周面とが干渉しない様にしている。
更に、前記第二ピストン板85は、上記外径側円筒部93の内周面と上記大径部80の外周面との間に、油密を保持した状態で、軸方向の摺動自在に嵌装している。この為に、上記第二ピストン板85の外周縁を上記外径側円筒部93に、第二外径側ピストンリング94を介して、油密に内嵌している。又、上記第二ピストン板85の内周縁を上記大径部80に、第二内径側ピストンリング95を介して、油密に外嵌している。そして、上記第二ピストン板85の片側面(図1の左側面)と上記底板部92との間部分を、前記第二油圧室79としている。又、上記第二ピストン板85の他側面(図1の右側面)外径寄り部分を、上記入力側ディスク2aの外側面外径寄り部分に突き当てている。尚、この突き当て部には切り欠き96、96を形成して、前記第一油圧室78の膨張、収縮に伴って、上記第二ピストン板85と前記第一ピストン板84との間の空間97内に、空気等の流体を給排自在としている。又、上記第二ピストン板85の片側面と上記底板部92との間に予圧ばね49aを設けて、上記第一、第二両油圧室78、79内の油圧が0の場合にも、前記押圧装置23bが、最低限の押圧力を発生する様にしている。
一方、前記入力軸1aは、この入力軸1aと同心に設けた駆動軸22aにより、回転駆動自在としている。この駆動軸22aは、圧油ポンプ53(図11)を収納したポンプケース98に設けた通孔99の内側に、単列深溝型の玉軸受100とニードル軸受101とにより、回転自在に支持している。そして、上記駆動軸22aの中間部先端寄り部分に形成した駆動側鍔部120の側面に形成した凹凸部と前記鍔部82の外周縁部に形成した凹凸部とを係合させて、上記駆動軸22aにより上記入力軸1aを回転駆動自在としている。尚、上記駆動側鍔部120の外周縁部には、上記駆動軸22aの回転速度を検出する為の凹凸部を形成している。トロイダル型無段変速機の組立状態では、上記駆動側鍔部120の外周縁に、回転検出用のセンサの検出部を対向させる。
又、上記入力軸1aの基端面中央部に形成した凹孔102内に、上記駆動軸22aの先端部(図1の右端部)に形成した小径部103及び中径部104を挿入している。上記凹孔102は、奥半部の小径部105と開口側半部の大径部106とから成る。このうちの小径部105の円周方向複数個所に、それぞれが軸方向に長い凹溝107、107を、円周方向に関して等間隔に形成している。そして、これら各凹溝107、107の底面部分にそれぞれ通油孔108、108を形成して、上記凹孔102内と上記第二油圧室79とを連通させている。又、この凹孔102内と上記第一油圧室78とを、上記入力軸1aの中間部基端寄り部分の内側に設け、上記凹孔102の奥端面とこの入力軸1aの外周面とにその両端を開口させた通油孔109、109と、前記内径側円筒部87に形成した通油孔110、110とにより連通させている。
上記駆動軸22aの先端部に形成した上記小径部103は、上記凹孔102の小径部105内に挿入しており、これら両小径部103、105の周面同士の間に、滑り軸受111を介在させている。この滑り軸受111は、上記入力軸1aと上記駆動軸22aとを同心に支持すると共に、これら両軸1a、22a同士の回転方向に関する若干の変位を許容する。又、上記駆動軸22aの先端部に形成した上記中径部104は、上記凹孔102の大径部106内に挿入しており、シールリング112により、これら中径部104の外周面と大径部106の内周面との間の油密保持を図っている。
更に、上記凹孔102内に圧油を、上記駆動軸22aの先半部(図1の右半部)内側に設けた給排通路50aを通じて給排自在としている。この給排通路50aの上流端は、前記ポンプケース98に設けた通油孔113を介して、前記圧油ポンプ53の吐出口に通じている。そして、上記凹孔102内に導入する油圧を、前述の図11に示した、押圧力制御弁56を含む油圧回路により、トロイダル型無段変速機24aを通過するトルク及びこのトロイダル型無段変速機24aの変速比等に応じて調節自在としている。
又、上記給排通路50aのうち、上記凹孔102内への油圧導入時に下流端となる部分に、本実施例の特徴である流量調整弁114を設けている。この流量調整弁114は、前記押圧装置23bの第一、第二両油圧室78、79に通じる上記凹孔102内への圧油の送り込み時に比べてこの凹孔102からの圧油の排出時に流路面積を狭くする。この為に本実施例の場合には上記流量調整弁114を、弁座部115と、弁体116と、ばね119と、絞り流路117及び連通孔118とから構成している。圧油の供給源側である上記通油孔113側を上流側とし、上記押圧装置23bに通じる上記凹孔102側を下流側とした場合に、上記弁座部115は、下流側に対向している。そして、上記弁体116は、この弁座部115よりも下流側に設けられており、上記ばね119は、上記弁体116を上記弁座部115に向け押圧している。
更に、上記絞り流路117及び連通孔118は、それぞれ上記弁体116の一部に設けられたもので、このうちの絞り流路117は、上記弁体116の先端中央部で上記弁座部115の内周縁よりも中心寄り部分に設けている。従って上記絞り流路117は、図2(A)に示す様に、この弁座部115と上記弁体116とが離隔している場合だけでなく、同図(B)に示す様に、これら弁座部115と上記弁体116との当接時にも、上記通油孔113と上記凹孔102内とを連通させる。これに対して上記連通孔118は、上記弁体116の先端部で上記弁座部115の内周縁よりも外径寄り部分に設けている。従って上記連通孔118は、図2(A)に示す様に、上記弁座部115と上記弁体116とが離隔した状態でのみ、上記通油孔113と上記凹孔102内とを連通させる。
上述の様に構成する本実施例のトロイダル型無段変速機の場合には、前記流量調整弁114が、前記押圧装置23bの第一、第二両油圧室78、79内の油圧の排出を緩徐に、これら両油圧室78、79内への圧油の送り込みを急速に、それぞれ行なわせる。即ち、これら両油圧室78、79内への圧油の送り込み時には、図2(A)に示す様に、上記弁体116が前記ばね119の弾力に抗して変位し、上記弁座部115と上記弁体116とが離隔する。この結果、上記通油孔113と上記両油圧室78、79に通じる上記凹孔102内とが、上記絞り流路117だけでなく、上記連通孔118によっても互いに連通する。この結果、上記両油圧室78、79内への圧油導入を、短時間で行なえる。
これに対して上記両油圧室78、79内からの圧油の排出時には、図2(B)に示す様に、上記弁体116が、上記ばね119の弾力と上記凹孔102内の油圧とにより、上記弁座部115に押し付けられる。従って、上記通油孔113と上記両油圧室78、79に通じる上記凹孔102内とが、上記絞り流路117だけで連通する。この為、上記両油圧室78、79からの圧油の排出が緩徐に行なわれ、上記押圧装置23bが発生する押圧力の低下に時間を要する。この結果、前記トロイダル型無段変速機24aの通過トルクが瞬間的に低下した後、短時間の間に上昇した場合にも、前記各トラクション部の面圧が過度に低下する事を防止して、これら各トラクション部で著しい滑りが生じる事を防止できる。
例えば、図4は、加速状態或は定速走行からエンジンブレーキを使用した減速状態に移って、或は前述した様な無段変速装置で低速用クラッチと高速用クラッチを断接させる事により、上記トロイダル型無段変速機24aをトルクが通過する方向が短時間で、正方向(入力側ディスクから出力側ディスクに伝達する方向)から負方向(出力側ディスクから入力側ディスクに伝達する方向)に逆転した場合に就いて示している。図4の(A)は、上記トロイダル型無段変速機24aの通過トルクと時間との関係を、(B)はこの通過トルクを伝達する為に必要とする押圧力の大きさと時間との関係を、それぞれ示している。この必要とする押圧力の大きさは、通過トルクの絶対値に比例する。
この様な、必要とする押圧力の大きさの変動に対して、油圧式の押圧装置を使用して何らの対策も施さなかった場合には、この押圧装置が発生する押圧力は、油圧回路の応答遅れに伴って、図4(C)に示す様に、δTなる時間遅れを伴って変化する。従って、既に必要とする押圧力が上昇しているにも拘らず、実際に上記押圧装置が発生する押圧力が不足する状態となる。この結果、短時間とは言え、各トラクション部の面圧が不足し、これら各トラクション部で著しい滑りが発生する。これに対して本実施例の場合には、上記図4(B)に示した必要とする押圧力が低下した場合でも、前記押圧装置23bが発生する押圧力が実際に低下するまでの間に相当の時間的遅れを生じる。そして、図4(B)に示す、必要とする押圧力が上昇した場合には、低下させる場合に比較して短時間の間に、上記押圧装置23bが発生する押圧力を上昇させる。この為、この押圧装置23bが実際に発生する押圧力は、図4(D)に示す様に変化し、必要とする押圧力を確保する。この結果、短時間でも、各トラクション部の面圧が不足する事を防止して、これら各トラクション部で著しい滑りが発生しない様にできる。
尚、図5は、上述した図4の場合とは逆に、エンジンブレーキを使用した減速状態から加速状態或は定速走行に移って、或は前述した様な無段変速装置で低速用クラッチと高速用クラッチを断接させる事により、上記トロイダル型無段変速機24aをトルクが通過する方向が短時間で、負方向から正方向逆転した場合に就いて示している。図5の(A)〜(D)の意味するところは、図4の(A)〜(D)と同様である。本実施例によれば、この様な場合も、必要とする押圧力を確保して、各トラクション部で著しい滑りが発生しない様にできる。
本発明は、前述した先発明と組み合わせて実施する事が、小型でしかも優れた伝達効率及び耐久性を有するトロイダル型無段変速機を実現する面からは好ましい。又、通過トルクが急変動する頻度が高い面から、前述の様な、遊星歯車式変速機と組み合わせて無段変速装置を構成する場合に、特に顕著な効果を得られる。但し、本発明の特徴は、押圧装置に導入する油圧を、入力側、出力側両のディスク同士の間で伝達するトルクが大きくなる程高くする構造で、通過トルクの急変動時に各トラクション部で著しい滑りが発生するのを防止する点にある。従って、上述の様な制御を受ける油圧式の押圧装置を備えたトロイダル型無段変速機であれば、上記先発明や無段変速装置に組み込まれる場合に限らず、本発明を実施できる。勿論、トロイダル型無段変速機の型式にしても、図示の様なハーフトロイダル型に限らず、フルトロイダル型でも実施できる。
本発明の実施例1を示す要部断面図。 (A)は押圧装置への圧油送り込み時の状態を、(B)は同じく圧油排出時の状態を、それぞれ一部を省略して示す、図1のイ部拡大図。 変速比制御の為の油圧回路と共に示す部分断面図。 トロイダル型無段変速機を通過するトルクの方向及び大きさが急変動した場合に於ける、トルクと押圧装置が発生する押圧力との関係の第1例を示す線図。 同第2例を示す線図。 従来から知られているトロイダル型無段変速機の1例を示す断面図。 図6のA−A断面図 同B−B断面図。 従来から知られている、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせて成る無段変速装置の第1例を示す略断面図。 同第2例を示す略断面図。 先発明の実施の形態の1例を示す部分断面図。 押圧力制御弁の断面図。 差圧取り出し弁の断面図。
1、1a 入力軸
2、2a 入力側ディスク
3 ボールスプライン
4 出力歯車
5、5a 出力側ディスク
6 パワーローラ
7 トラニオン
8 支持軸
9 枢軸
10 アクチュエータ
11 支持板
12 変速比制御弁
13 ステッピングモータ
14 スリーブ
15 スプール
16 ピストン
17 ロッド
18 プリセスカム
19 リンク腕
20 同期ケーブル
21 カム面
22、22a 駆動軸
23、23a、23b 押圧装置
24、24a トロイダル型無段変速機
25、25a 遊星歯車式変速機
26 リング歯車
27 支持板
28 伝達軸
29 高速用クラッチ
30 エンジン
31 クランクシャフト
32 発進クラッチ
33、33a 出力軸
34 太陽歯車
35 遊星歯車
36a、36b 遊星歯車素子
37、37a キャリア
38 動力伝達機構
39 伝達軸
40a、40b スプロケット
41 チェン
42 第一の歯車
43 第二の歯車
44 低速用クラッチ
45 後退用クラッチ
46 シリンダ筒
47 スペーサ
48 ローディングナット
49、49a 予圧ばね
50、50a 給排通路
51 油溜部
52 フィルタ
53 圧油ポンプ
54 第一の圧力導入路
55 圧力逃がし路
56 押圧力制御弁
57 ケーシング
58 スプール
59 ばね
60、60a 第一のパイロット部
61、61a 第二のパイロット部
62、62a 第三のパイロット部
63a、63b 油圧室
64 変速比制御装置
65 差圧取り出し弁
66 シリンダ孔
67 スプール
68 ばね
69a、69b パイロット部
70 第二の圧力導入路
71 減圧弁
72a、72b 第三の圧力導入路
73a、73b 反力室
74 第四の圧力導入路
75 電磁弁
76 ソレノイド
77 圧力室
78 第一油圧室
79 第二油圧室
80 大径部
81 段差部
82 鍔部
83 シリンダ凹部
84 第一ピストン板
85 第二ピストン板
86 シリンダ筒
87 内径側円筒部
88 円筒面部
89 第一外径側ピストンリング
90 円筒面部
91 第一内径側ピストンリング
92 底板部
93 外径側円筒部
94 第二外径側ピストンリング
95 第二内径側ピストンリング
96 切り欠き
97 空間
98 ポンプケース
99 通孔
100 玉軸受
101 ニードル軸受
102 凹孔
103 小径部
104 中径部
105 小径部
106 大径部
107 凹溝
108 通油孔
109 通油孔
110 通油孔
111 滑り軸受
112 シールリング
113 通油孔
114 流量調節弁
115 弁座部
116 弁体
117 絞り流路
118 連通孔
119 ばね
120 駆動側鍔部
121a、121b 遊星歯車素子
122 第一の伝達軸
123a、123b 太陽歯車
124 第二の伝達軸
125 中空回転軸
126 太陽歯車
127 遊星歯車素子
128 リング歯車
129 第二のキャリア
130a、130b 遊星歯車素子
131 第二のリング歯車
132 低速用クラッチ
133 高速用クラッチ

Claims (6)

  1. 互いに同心に、且つ相対回転自在に配置された第一、第二のディスクと、互いに対向するこれら第一、第二のディスクの内側面同士の間に挟持されてこれら第一、第二のディスク同士の間で動力を伝達する複数のパワーローラと、上記第一のディスクを上記第二のディスクに向け押圧する油圧式の押圧装置とを備えたトロイダル型無段変速機に於いて、この押圧装置に圧油を給排する給排通路の途中に、この押圧装置内への圧油の送り込み時に比べてこの押圧装置からの圧油の排出時に流路面積を狭くする流量調整弁を設けており、この圧油の供給源側を上流側とし、上記押圧装置側を下流側とした場合に、上記流量調整弁が、弁座部と、この弁座部よりも下流側に設けられた弁体と、この弁座部に向けこの弁体を押圧するばねと、この弁体の一部に設けられた絞り流路及び連通孔とを備えたものであり、このうちの絞り流路は、上記弁座部と弁体との当接時にも上記上流側と下流側とを連通させるものであり、上記連通孔は、上記弁座部と弁体とが離隔した状態でのみ、上記上流側と下流側とを連通させるものである事を特徴とするトロイダル型無段変速機。
  2. 第一のディスクが入力側ディスクであり、この入力側ディスクが入力軸の周囲に、この入力軸と同期した回転を自在に支持されており、給排通路が、この入力軸及びこの入力軸と同心に配置されてこの入力軸を回転駆動する為の駆動軸の中心部に設けられており、流量調整弁がこの駆動軸内に設置されている、請求項1に記載したトロイダル型無段変速機。
  3. 押圧装置に導入する油圧を、第一、第二のディスク同士の間で伝達するトルクが大きくなる程高くする、請求項1〜2の何れかに記載したトロイダル型無段変速機。
  4. 第一、第二のディスク同士の間で伝達される力を非電気的に検出し、これら第一、第二のディスク同士の間の変速比が、最も大きな押圧力を必要とする変速比である場合に必要となる押圧力を押圧装置に発生させる為に要する油圧を目標値として設定すると共に、上記力が大きい程この目標値を高くする主油圧制御手段と、上記第一、第二のディスク同士の間の変速比に対応して変化する、上記押圧装置に発生させるべき押圧力の最適値に応じた油圧の必要値を電気的に求め、この必要値と上記目標値との差である補正値をこの目標値から減じた油圧を上記押圧装置に導入させる油圧補正手段とを備えた、請求項3に記載したトロイダル型無段変速機。
  5. 各パワーローラを回転自在に支持した状態で、変速時に枢軸を中心に揺動変位する支持部材と、シリンダ部にピストンを嵌装して成り、圧油の給排に基づいてこの支持部材を上記枢軸の軸方向に変位させる油圧式のアクチュエータとを備え、上記シリンダ部内でピストンの軸方向両側に存在する1対の油圧室内の油圧の差に基づいて、第一、第二のディスク同士の間で伝達される力を検出する、請求項4に記載したトロイダル型無段変速機。
  6. 油圧補正手段を構成する演算器は、変速比に加えて、内部に存在する潤滑油の温度及び駆動源の回転速度に応じて補正信号を求め、この補正信号に基づいて電磁弁を開閉する事により油圧の補正値を得る、請求項4〜5の何れかに記載したトロイダル型無段変速機。
JP2004000769A 2003-02-28 2004-01-06 トロイダル型無段変速機 Expired - Fee Related JP4529442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000769A JP4529442B2 (ja) 2003-02-28 2004-01-06 トロイダル型無段変速機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003053378 2003-02-28
JP2004000769A JP4529442B2 (ja) 2003-02-28 2004-01-06 トロイダル型無段変速機

Publications (3)

Publication Number Publication Date
JP2004278780A JP2004278780A (ja) 2004-10-07
JP2004278780A5 JP2004278780A5 (ja) 2006-11-09
JP4529442B2 true JP4529442B2 (ja) 2010-08-25

Family

ID=33301886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000769A Expired - Fee Related JP4529442B2 (ja) 2003-02-28 2004-01-06 トロイダル型無段変速機

Country Status (1)

Country Link
JP (1) JP4529442B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534726B2 (ja) * 2004-11-08 2010-09-01 日本精工株式会社 トロイダル型無段変速機及び無段変速装置
JP4696537B2 (ja) * 2004-11-18 2011-06-08 日本精工株式会社 トロイダル型無段変速機
JP4710360B2 (ja) * 2005-03-11 2011-06-29 日本精工株式会社 トロイダル型無段変速機及び無段変速装置
JP4935804B2 (ja) * 2008-12-18 2012-05-23 トヨタ自動車株式会社 インプットシャフトの支持構造
DE102009026706A1 (de) * 2009-06-04 2010-12-09 Zf Friedrichshafen Ag Lageranordnung für eine Welle
JP5310596B2 (ja) * 2010-02-23 2013-10-09 日本精工株式会社 トロイダル型無段変速機
CN105283696B (zh) * 2013-06-21 2017-02-22 本田技研工业株式会社 环面式无级变速器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672652B2 (ja) * 1986-05-01 1994-09-14 日産自動車株式会社 トロイダル型無段変速機
JPH07293686A (ja) * 1994-04-19 1995-11-07 Mazda Motor Corp 自動変速機の油圧制御装置
JP2000257685A (ja) * 1999-03-08 2000-09-19 Nsk Ltd トロイダル形無段変速装置
JP2001108047A (ja) * 1999-10-12 2001-04-20 Isuzu Motors Ltd トロイダル型無段変速機
JP2001280477A (ja) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd 変速比無限大無段変速機の制御装置
WO2002079675A1 (en) * 2001-03-29 2002-10-10 Torotrak (Development) Ltd. Hydraulic control circuit for a variator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672652B2 (ja) * 1986-05-01 1994-09-14 日産自動車株式会社 トロイダル型無段変速機
JPH07293686A (ja) * 1994-04-19 1995-11-07 Mazda Motor Corp 自動変速機の油圧制御装置
JP2000257685A (ja) * 1999-03-08 2000-09-19 Nsk Ltd トロイダル形無段変速装置
JP2001108047A (ja) * 1999-10-12 2001-04-20 Isuzu Motors Ltd トロイダル型無段変速機
JP2001280477A (ja) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd 変速比無限大無段変速機の制御装置
WO2002079675A1 (en) * 2001-03-29 2002-10-10 Torotrak (Development) Ltd. Hydraulic control circuit for a variator

Also Published As

Publication number Publication date
JP2004278780A (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
JP6926379B2 (ja) 連続可変変速機
US7303503B2 (en) Toroidal-type continuously variable transmission
JP4168785B2 (ja) 無段変速装置用トロイダル型無段変速ユニットの変速比の制御方法及び装置
JP4378898B2 (ja) トロイダル型無段変速機及び無段変速装置
JP2007154979A (ja) トロイダル型無段変速機及び無段変速装置
JP4529442B2 (ja) トロイダル型無段変速機
JP2004169719A (ja) トロイダル型無段変速機及び無段変速装置
JP4492016B2 (ja) 無段変速装置
JP2015017664A (ja) 電気自動車用駆動装置
JP4479181B2 (ja) トロイダル型無段変速機
JP4010145B2 (ja) トロイダル型無段変速機及び無段変速装置
JP4196486B2 (ja) トロイダル形無段変速装置
JP4066920B2 (ja) トロイダル型無段変速機用試験装置
JP4599905B2 (ja) 無段変速装置
JP4029727B2 (ja) 無段変速装置
JP4010222B2 (ja) 無段変速装置
JP3960182B2 (ja) 無段変速装置
JP4442223B2 (ja) トロイダル型無段変速機用差圧取り出し弁
JP4556427B2 (ja) 無段変速装置
JP4273750B2 (ja) トロイダル型無段変速機
JP4078981B2 (ja) 無段変速装置
JP2008014357A (ja) 無段変速装置
US11796041B2 (en) Planetary gear assembly, power-split stepless transmission, and transmission structure
JP6519991B2 (ja) 無段変速装置
JP4329262B2 (ja) トロイダル型無段変速機

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees