JP4506214B2 - Organic electroluminescent device and manufacturing method thereof - Google Patents

Organic electroluminescent device and manufacturing method thereof Download PDF

Info

Publication number
JP4506214B2
JP4506214B2 JP2004070228A JP2004070228A JP4506214B2 JP 4506214 B2 JP4506214 B2 JP 4506214B2 JP 2004070228 A JP2004070228 A JP 2004070228A JP 2004070228 A JP2004070228 A JP 2004070228A JP 4506214 B2 JP4506214 B2 JP 4506214B2
Authority
JP
Japan
Prior art keywords
light emitting
vapor deposition
opening
mask
deposition mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004070228A
Other languages
Japanese (ja)
Other versions
JP2004296436A5 (en
JP2004296436A (en
Inventor
猛 新井
茂雄 藤森
武史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004070228A priority Critical patent/JP4506214B2/en
Publication of JP2004296436A publication Critical patent/JP2004296436A/en
Publication of JP2004296436A5 publication Critical patent/JP2004296436A5/ja
Application granted granted Critical
Publication of JP4506214B2 publication Critical patent/JP4506214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、マスク蒸着法を用いて有機化合物からなる発光層のパターンが形成された有機電界発光装置およびその製造方法に関する。   The present invention relates to an organic electroluminescent device in which a pattern of a light emitting layer made of an organic compound is formed using a mask vapor deposition method, and a method for manufacturing the same.

有機電界発光装置は、陽極から注入される正孔と陰極から注入される電子とが両極に挟まれた有機発光層内で再結合することにより発光するものである。その代表的な構造は図2に示すように、基板1上に形成された第一電極2、少なくとも有機化合物からなる発光層5を含む薄膜層および第二電極6を積層したものであり、駆動により生じた発光は、装置の透明サイドから外部に取り出される。このような有機電界発光装置では、薄型、低電圧駆動下での高輝度発光や、発光層の有機化合物を選択することによる多色発光が可能であり、発光デバイスやディスプレイなどに応用される。   The organic electroluminescent device emits light by recombining holes injected from an anode and electrons injected from a cathode in an organic light emitting layer sandwiched between both electrodes. As shown in FIG. 2, the typical structure is formed by laminating a first electrode 2 formed on a substrate 1, a thin film layer including a light emitting layer 5 made of at least an organic compound, and a second electrode 6. The light emitted by is taken out from the transparent side of the device. Such an organic electroluminescent device is capable of thin light emission with high luminance under low voltage driving and multicolor light emission by selecting an organic compound in the light emitting layer, and is applied to a light emitting device or a display.

有機電界発光装置の製造には発光層などをパターニングすることが必要であり、その作製方法が種々検討されてきた。微細なパターニングが要求される場合、代表的な手法としてフォトリソグラフィ法が用いられる。有機電界発光装置の第一電極の形成にはフォトリソグラフィ法が適用できるが、発光層や第二電極の形成においては、ウエットプロセスであることに伴う問題があるため、適用困難なケースが多い。したがって、発光層や第二電極の形成には、真空蒸着、スパッタリング、化学的気相成長法(CVD)などのドライプロセスが適用される。このようなプロセスで薄膜をパターニング形成する手段として、蒸着マスクを用いるマスク蒸着法が適用されることが多い。   For manufacturing an organic electroluminescent device, it is necessary to pattern a light emitting layer and the like, and various methods for manufacturing the same have been studied. When fine patterning is required, a photolithography method is used as a typical method. Photolithography can be applied to the formation of the first electrode of the organic electroluminescence device, but in the formation of the light emitting layer and the second electrode, there are many cases where it is difficult to apply due to problems associated with the wet process. Therefore, dry processes such as vacuum deposition, sputtering, and chemical vapor deposition (CVD) are applied to the formation of the light emitting layer and the second electrode. As a means for patterning a thin film by such a process, a mask vapor deposition method using a vapor deposition mask is often applied.

ディスプレイとして活用される有機電界発光装置の発光層のパターン精細度は、相当に高い。単純マトリクス方式では発光層はストライプ状にパターニングされた第一電極上に形成されるが、第一電極の線幅は、通常100μm以下であり、そのピッチは100μm程度である。また、第二電極も第一電極と交差する形でストライプ状に数100μmピッチで形成され、その細長い電極の長さ方向に低電気抵抗であり、かつ、幅方法に隣り合う電極同士は完全に絶縁されていることが必須である。アクティブマトリクス方式においても、発光層は同等かそれ以上の精細度にてパターニングされる。   The pattern definition of the light emitting layer of the organic electroluminescent device utilized as a display is considerably high. In the simple matrix method, the light emitting layer is formed on the first electrode patterned in a stripe shape, and the line width of the first electrode is usually 100 μm or less and the pitch is about 100 μm. In addition, the second electrode is also formed in stripes at a pitch of several hundreds of μm so as to intersect the first electrode, has a low electrical resistance in the length direction of the elongated electrode, and electrodes adjacent to each other in the width method are completely It is essential to be insulated. Also in the active matrix method, the light emitting layer is patterned with the same or higher definition.

したがって、発光層のパターニングに用いられる蒸着マスクも必然的に精細度の高いものが必要となる。蒸着マスクの製造方法としては、エッチング法や機械的研磨、サンドブラスト法、焼結法、レーザー加工法、感光性樹脂の利用などが挙げられるが、微細なパターン加工精度に優れるエッチング法や電鋳法を用いることが多い。   Therefore, a deposition mask used for patterning the light emitting layer inevitably requires a high definition. Examples of the manufacturing method of the vapor deposition mask include etching method, mechanical polishing, sand blasting method, sintering method, laser processing method, use of photosensitive resin, etc., but etching method and electroforming method with excellent fine pattern processing accuracy. Is often used.

また、蒸着マスクが厚いと蒸着角度による影が発生し、パターンのボケが発生することから、精細度の要求が高くなるほど蒸着マスクの厚みは薄くする必要がある。発光層用の蒸着マスクの厚みは通常100μm以下の薄膜であり、一般的には窓枠状のフレームに固定して保持し、蒸着工程に使用する。   Further, if the deposition mask is thick, shadows due to the deposition angle occur and pattern blurring occurs. Therefore, the higher the requirement for definition, the thinner the deposition mask needs to be. The thickness of the vapor deposition mask for the light emitting layer is usually a thin film of 100 μm or less, and is generally fixed and held on a window frame-like frame and used for the vapor deposition step.

発光層に用いられる蒸着マスクには、母材上にマスク領域7とパターン形成を行うための開口部10が配列された開口領域9が存在する(図3)。この時、マスクの作製条件によってはマスク領域と開口領域との間に面内応力差が生じ、その境界部分(図3(a)の点線部)で局所的に撓みが発生するという問題があった。このような蒸着マスクを使用すると、撓みの発生したマスク領域と開口領域との境界部分では基板と蒸着マスクの密着性が損なわれ、発光層パターンのボケなどが発生し、特に画素集合のピッチが500μm以下の場合に隣接発光画素との混色が発生しやすくなって高精細な発光が得られない。この問題は、マスク領域と開口領域との境界部分で撓むという性質から、この境界が直線上に長いほど発生しやすく、また、その影響も大きくなる。すなわち、有効開口領域の縦横の辺の長い画面サイズの大きい物ほど顕著となる。   The vapor deposition mask used for the light emitting layer has an opening region 9 in which a mask region 7 and openings 10 for pattern formation are arranged on a base material (FIG. 3). At this time, there is a problem that an in-plane stress difference is generated between the mask region and the opening region depending on the mask manufacturing conditions, and local bending occurs at the boundary portion (dotted line portion in FIG. 3A). It was. When such a vapor deposition mask is used, the adhesion between the substrate and the vapor deposition mask is impaired at the boundary between the mask area where the deflection occurs and the opening area, blurring of the light emitting layer pattern occurs, and the pitch of the pixel set is particularly large. When the thickness is 500 μm or less, color mixing with adjacent light emitting pixels is likely to occur, and high-definition light emission cannot be obtained. This problem is more likely to occur as the boundary is longer on the straight line, and the influence thereof is greater because of the property of bending at the boundary between the mask region and the opening region. That is, the larger the screen size is, the longer the vertical and horizontal sides of the effective opening area are.

この問題に対し、蒸着マスクの反りや撓みを抑制する目的で蒸着マスクに張力を付与する技術や、図4に示すようにパターン加工精度を維持する目的で部分的に補強線11を導入したものを用いることが知られている(例えば、特許文献1参照)が、局所的な撓みの抑制には至らない。また、第二電極をパターニングするための蒸着マスクとして、張力を小さくする手段が開示されている(例えば、特許文献2参照)が、より高精細な発光層のパターニングに対しては十分とは言えない。なお、前記補強線の導入位置は、発光に影響しないよう絶縁層と重なる位置とし、このため、補強線を導入した蒸着マスクを用いた場合の発光層パターンは、例えば縦方向ストライプ状、横方向各色交互パターンであれば、縦方向には最も小さくて発光画素と同一、もしくは発光画素の整数倍のピッチを有し、横方向には発光画素の整数倍のピッチとなる。   With respect to this problem, a technique in which tension is applied to the vapor deposition mask for the purpose of suppressing warpage and deflection of the vapor deposition mask, and a reinforcement wire 11 is partially introduced for the purpose of maintaining pattern processing accuracy as shown in FIG. Is known (for example, refer to Patent Document 1), but does not lead to suppression of local deflection. Further, as a vapor deposition mask for patterning the second electrode, a means for reducing the tension is disclosed (for example, see Patent Document 2), but it is sufficient for patterning a higher-definition light-emitting layer. Absent. The introduction position of the reinforcing line is a position overlapping the insulating layer so as not to affect the light emission. For this reason, the light emitting layer pattern in the case of using the vapor deposition mask introduced with the reinforcing line is, for example, a vertical stripe shape or a horizontal direction. In the case of each color alternating pattern, it is the smallest in the vertical direction and has the same pitch as the light emitting pixel or an integer multiple of the light emitting pixel, and the pitch in the horizontal direction is an integral multiple of the light emitting pixel.

さらに、多面取り用の蒸着マスクとしてはn個の開口部を持つフレームに蒸着マスクを貼り付けることにより、生産性が上がることも知られている(例えば、特許文献3参照)が、蒸着マスクの持つ局所的な撓みの抑制には効果はない。
特開2000−160323号公報 特開2000−12238号公報 特願2003−152114号(特開2003−323984号公報)
Further, as a multi-faceted vapor deposition mask, it is known that productivity is improved by attaching a vapor deposition mask to a frame having n openings (see, for example, Patent Document 3). There is no effect in suppressing local bending.
JP 2000-160323 A JP 2000-12238 A Japanese Patent Application No. 2003-152114 (Japanese Patent Laid-Open No. 2003-323984)

本発明の目的は、発光領域全面に渡り高精細な発光層のパターニングが可能な有機電界発光装置の製造方法を提供することである。   An object of the present invention is to provide a method for manufacturing an organic electroluminescence device capable of patterning a light-emitting layer with high definition over the entire light-emitting region.

上記課題を解決するために、本発明は以下の構成を有する。すなわち、
色以上の発光画素を有し、該発光画素の少なくとも1色はその画素に含まれる発光層をマスク蒸着法によって発光性の有機化合物を蒸着して形成されたものである有機電界発光装置の製造方法であって、前記の発光層の蒸着に用いられる蒸着マスクは有効開口部と、有効開口領域の周囲にダミー開口部とを具備し、有効開口部が縦方向にm個、横方向にn個配列しているのに対して、開口部全体として縦方向にm+1個以上、もしくは横方向にn+1個以上配列され、ダミー開口部の少なくとも一部が別のマスク部材または/およびマスク部材を保持するフレームで覆い隠されていることを特徴とする有機電界発光装置の製造方
を本旨とするものである。
In order to solve the above problems, the present invention has the following configuration. That is,
An organic electroluminescent device having light emitting pixels of two or more colors, wherein at least one color of the light emitting pixels is formed by evaporating a light emitting organic compound on a light emitting layer included in the pixels by a mask vapor deposition method. In the manufacturing method, the vapor deposition mask used for vapor deposition of the light emitting layer includes an effective opening, and a dummy opening around the effective opening region . The effective opening has m pieces in the vertical direction and in the horizontal direction. Whereas the n openings are arranged, m + 1 or more in the vertical direction as a whole or n + 1 or more in the horizontal direction are arranged, and at least a part of the dummy opening has another mask member and / or mask member. producing how the organic light emitting device characterized by being covered with a frame for holding
, Is intended.

本発明によれば、全領域にわたって高精細な発光層のパターンが形成でき、表示品位の良好な有機電界発光装置を得ることができる。   According to the present invention, a high-definition light-emitting layer pattern can be formed over the entire region, and an organic electroluminescent device with good display quality can be obtained.

本発明の有機電界発光装置は、2色以上の発光画素が所定のピッチで配列した有機電界発光装置であれば、単純マトリクス型であってもアクティブマトリクス型であってもよく、表示形式を限定するものではない。特に赤、緑、青色領域にそれぞれ発光ピーク波長を有する発光画素が存在するものをカラーディスプレイと呼び、通常、赤色領域の光のピーク波長は560〜700nm、緑色領域は500〜560nm、青色領域は420〜500nmの範囲である。   The organic electroluminescent device of the present invention may be either a simple matrix type or an active matrix type as long as the organic electroluminescent device has light emitting pixels of two or more colors arranged at a predetermined pitch, and the display format is limited. Not what you want. In particular, a display having light emitting pixels having emission peak wavelengths in red, green, and blue regions is called a color display. Usually, light in the red region has a peak wavelength of 560 to 700 nm, a green region of 500 to 560 nm, and a blue region of The range is 420 to 500 nm.

発光画素と呼ばれる範囲は、対向配置された第一電極と第二電極とが交差し重なる部分、さらに、第一電極上に絶縁層が形成される場合にはそれにより規制される範囲である。単純マトリクス型ディスプレイでは、第一電極と第二電極はストライプ状に形成されて、交差するものであり、発光画素は矩形状であることが多い。アクティブマトリクス型ディスプレイにおいては、スイッチング手段が形成される部分が発光画素の一部を占有するように配置されることがあり、発光画素の形状は矩形状ではなく、一部分が欠落したような形になることが多い。しかしながら、発光画素の形状はこれらに限定されるものではなく、例えば円形でもよく、絶縁層の形状によっても容易に変化させることができる。   The range referred to as a light emitting pixel is a range in which the first electrode and the second electrode arranged to face each other intersect and overlap each other, and further, if an insulating layer is formed on the first electrode, the range regulated by the first electrode. In a simple matrix display, the first electrode and the second electrode are formed in a stripe shape and intersect each other, and the light-emitting pixels are often rectangular. In an active matrix display, the portion where the switching means is formed may be arranged so as to occupy a part of the light emitting pixel, and the shape of the light emitting pixel is not a rectangular shape but a shape in which a part is missing. Often becomes. However, the shape of the light emitting pixel is not limited to these, and may be circular, for example, and can be easily changed depending on the shape of the insulating layer.

本発明の有機電界発光装置はマスク蒸着法によって発光層が形成される。マスク蒸着法とは、図5に示すように蒸着マスクを用いて発光性の有機化合物をパターニングする方法で、所望のパターンを開口部とした蒸着マスクを基板の蒸着源側に配置して蒸着を行う。高精度の蒸着パターンを得るためには、平坦性の高い蒸着マスクを基板に密着させることが重要であり、蒸着マスクに張力をかける技術や、基板背面に配置した磁石によって蒸着マスクを基板に密着させる技術などが用いられる。   In the organic electroluminescent device of the present invention, the light emitting layer is formed by a mask vapor deposition method. The mask vapor deposition method is a method of patterning a light-emitting organic compound using a vapor deposition mask as shown in FIG. 5, and vapor deposition is performed by arranging a vapor deposition mask having a desired pattern as an opening on the vapor deposition source side of the substrate. Do. In order to obtain a highly accurate vapor deposition pattern, it is important that the vapor deposition mask with high flatness is in close contact with the substrate, and the vapor deposition mask is adhered to the substrate by a technique for applying tension to the vapor deposition mask and a magnet placed on the back of the substrate. The technique to make is used.

次に本発明の製造方法に用いる発光層用の蒸着マスクについて説明する。発光層パターンの要求精度の高さから、本発明に用いられる蒸着マスクも、必然的に精細度の高いものが必要となる。蒸着マスクの製造方法としては、エッチング法や機械的研磨、サンドブラスト法、焼結法、レーザー加工法、感光性樹脂の利用などが挙げられるが、微細なパターン加工精度に優れるエッチング法や電鋳法を用いることが多い。   Next, the vapor deposition mask for the light emitting layer used in the production method of the present invention will be described. Due to the high required accuracy of the light emitting layer pattern, the deposition mask used in the present invention inevitably requires a high definition. Examples of the manufacturing method of the vapor deposition mask include etching method, mechanical polishing, sand blasting method, sintering method, laser processing method, use of photosensitive resin, etc., but etching method and electroforming method with excellent fine pattern processing accuracy. Is often used.

本発明の製造方法に用いる蒸着マスクには、発光画素を構成するための開口部(有効開口部)と該有効開口部が配列された開口領域(有効開口領域)の周囲に発光画素の形成用には用いられない開口部(ダミー開口部)とを具備していることが特徴である(図8)。本発明の製造方法による有機電界発光装置であれば、発光領域の周囲には、前記発光層に用いられた有機化合物と同じ有機化合物による発光しないパターンが形成されている。   The vapor deposition mask used in the manufacturing method of the present invention is for forming a light emitting pixel around an opening (effective opening) for forming a light emitting pixel and an opening area (effective opening area) in which the effective opening is arranged. It is characterized by having an opening portion (dummy opening portion) that is not used for (FIG. 8). In the organic electroluminescent device according to the manufacturing method of the present invention, a pattern that does not emit light by the same organic compound as the organic compound used in the light emitting layer is formed around the light emitting region.

さらに、本発明の効果を得る方法として、マスク領域と開口領域との境界において10mm以上の直線部分を持たない設計にすることが好ましい。これによりマスク領域と開口領域との境界に顕在化する局所的な撓みを分散させることが可能となる。 Further, as a method of obtaining the effects of the present invention, it is not preferable to design that does not have a 10mm or more linear portions at the boundary between the mask area and the opening area. As a result, it is possible to disperse the local deflection that appears at the boundary between the mask region and the opening region.

ダミー開口部の個数、形状および大きさは特に限定するものではなく、個数については1個以上あればよいが、発光領域の上下左右に各1個以上あれば好ましく、各3個ずつ以上あればさらに好ましい。形状に関しても、矩形であっても円形であってもよい。また、大きさに関しても、有効開口部のパターンと比較して大きくても小さくてもよい。このダミー開口部の形成は、蒸着マスクの作製の容易さの点からも、有効開口部のパターンと同調の配列であることが好ましく、仮に、有効開口部の所定のピッチが縦方向にm個、横方向にn個配列されたものであるとすると、開口部全体としては縦方向にm+1個以上、及び/または横方向にn+1個以上配列されたものとすることが好ましい。   The number, shape, and size of the dummy openings are not particularly limited, and it is sufficient that the number is one or more. However, it is preferable that one or more is provided on each of the upper, lower, left, and right sides of the light emitting region. Further preferred. Regarding the shape, it may be rectangular or circular. Further, the size may be larger or smaller than the pattern of the effective openings. The formation of the dummy openings is preferably arranged in synchronism with the pattern of the effective openings from the viewpoint of the ease of producing the vapor deposition mask, and it is assumed that the predetermined pitch of the effective openings is m in the vertical direction. Assuming that n are arranged in the horizontal direction, it is preferable that the whole opening is arranged in the vertical direction of m + 1 or more and / or n + 1 or more in the horizontal direction.

本発明においては、蒸着マスクを2枚貼り合わせても重ね合わせても良く、重ねる場合には互いが接触していなくても良い。また、形状を工夫したフレームと組み合わせても良い。以下、具体的な例を図により説明する。図6のように、発光画素のパターンに対応した開口部を蒸着マスク活用領域全面に有した蒸着マスク(上部マスク)と、発光領域より大きめに開口した蒸着マスク(下部マスク)とを貼り合わせることにより、有効開口領域及びダミー開口部を具備した蒸着マスクを得ることが出来る。このような構成においては、必ずしも2枚の蒸着マスクを貼り合わせる必要はなく、重ねただけでも、また、非接触であっても良い。また、これらの方法を用いれば、上部マスクが全面均一に開口部を持つことから、面内応力差や歪みなどが生じにくく、フレームへの貼り付け精度、さらには蒸着によるパターニング精度が向上する。   In the present invention, two vapor deposition masks may be bonded or superposed, and in the case of superposition, they do not have to be in contact with each other. Moreover, you may combine with the flame | frame which devised the shape. Hereinafter, specific examples will be described with reference to the drawings. As shown in FIG. 6, the vapor deposition mask (upper mask) having an opening corresponding to the pattern of the light emitting pixel on the entire surface of the vapor deposition mask utilization area and the vapor deposition mask (lower mask) opened larger than the light emission area are bonded together. Thus, a vapor deposition mask having an effective opening region and a dummy opening can be obtained. In such a configuration, it is not always necessary to bond two vapor deposition masks, and they may be simply stacked or non-contacted. In addition, if these methods are used, the upper mask has openings uniformly over the entire surface, so that in-plane stress differences and distortions are less likely to occur, and the accuracy of attachment to the frame and the patterning accuracy by vapor deposition are improved.

また、これらの方法を用いれば、図7、図のように多面取りに対応する蒸着マスクの作製も容易である。さらに図10のように蒸着マスクをフレームと組み合わせる場合、蒸着マスクはフレームの桟の部分と必ずしも固定されなくても良い。 Further, by using these methods, 7, prepared it is easy of deposition mask corresponding to multi-surface as shown in FIG. Further, when the vapor deposition mask is combined with the frame as shown in FIG. 10 , the vapor deposition mask does not necessarily have to be fixed to the crosspiece portion of the frame.

図6、図7の例では、両方の蒸着マスクを重ねてからフレームに固定しても良いが、より高精度のパターニングをおこなうためには、基板に対向する微細なパターンが形成された蒸着マスク(上部マスク)をフレーム上面に固定し、蒸着エリアを規定する下部マスクをフレームの内側に固定するなどして、上部マスクに不必要な力が作用しないように配慮することが好ましい。   In the examples of FIGS. 6 and 7, both vapor deposition masks may be overlapped and then fixed to the frame. However, in order to perform patterning with higher accuracy, the vapor deposition mask on which a fine pattern facing the substrate is formed. It is preferable to take care so that unnecessary force does not act on the upper mask by fixing (upper mask) on the upper surface of the frame and fixing a lower mask defining the vapor deposition area on the inner side of the frame.

良好なパターン精度を得るには、蒸着マスク活用領域の90%以上の領域を、好ましくはほぼ全域を有効開口部とダミー開口部からなる開口領域で占めていることが好ましい。また、単位面積当たりに占める開口部の面積を開口率と定義した場合に、有効開口領域における有効開口部の開口率と、ダミー開口部の配列したダミー開口領域におけるダミー開口部の開口率との差は大きくない方が好ましい。具体的には両者の比は50〜200%の範囲内であることが好ましく、80〜125%であればさらに好ましい。蒸着マスク活用領域にできるだけ広く開口領域を設けること、また、有効開口部とダミー開口部との開口率の差をできるだけ小さくすることにより、蒸着マスクへ張力を加えた際の伸び縮みを計算しやすくなり、形状の保持性、フレームへの貼り付け精度、さらには蒸着によるパターニング精度が向上する。   In order to obtain good pattern accuracy, it is preferable that 90% or more of the vapor deposition mask utilization region, preferably the entire region is occupied by the opening region composed of the effective opening and the dummy opening. Further, when the area of the opening occupying per unit area is defined as the opening ratio, the opening ratio of the effective opening in the effective opening area and the opening ratio of the dummy opening in the dummy opening area in which the dummy openings are arranged It is preferable that the difference is not large. Specifically, the ratio of the two is preferably in the range of 50 to 200%, more preferably 80 to 125%. Easily calculate the expansion / contraction when tension is applied to the evaporation mask by providing an opening area as wide as possible in the area where the evaporation mask is used, and by reducing the difference in opening ratio between the effective opening and the dummy opening as much as possible. Thus, shape retention, accuracy of attaching to the frame, and patterning accuracy by vapor deposition are improved.

図6、図7に例示したマスクの場合、ダミー開口部の一部が別の蒸着マスク(下部マスク)で覆い隠されることになる。その際に下部マスクの開口部の境界に位置するダミー開口部が、一部分が覆い隠され、一部分が隠されないというように、中途半端に覆われる可能性があるが、これで構わない。ダミー開口部は発光に寄与しないので、中途半端にパターニングされても問題がないためである。むしろこのような現象を許容することで、上部マスクと下部マスクとの位置合わせに余裕が生まれるので、2枚で構成される蒸着マスクの作製がより容易になり好ましい。これはダミー開口部を設けることによる効果の一つであり、このような中途半端にパターニングされた発光層の存在から、本発明の実施を推定することができる。   In the case of the mask illustrated in FIGS. 6 and 7, a part of the dummy opening is covered with another vapor deposition mask (lower mask). At this time, there is a possibility that the dummy opening located at the boundary of the opening of the lower mask is covered halfway such that a part is covered and a part is not covered, but this is not a problem. This is because the dummy opening does not contribute to light emission, and there is no problem even if it is patterned halfway. Rather, by allowing such a phenomenon, there is a margin in the alignment between the upper mask and the lower mask, which is preferable because it is easier to fabricate a two-layer deposition mask. This is one of the effects of providing the dummy opening, and the implementation of the present invention can be estimated from the presence of the light emitting layer patterned halfway.

以下、有機電界発光装置の製造方法の具体的な例を示すが、本発明はこれに限定されるものではない。   Hereinafter, although the specific example of the manufacturing method of an organic electroluminescent apparatus is shown, this invention is not limited to this.

酸化錫インジウム(ITO)などの透明電極膜が形成されている透明基板にフォトリソグラフィ法を適用して、一定の間隔をあけて配置された複数のストライプ状第一電極をパターン形成する。   A photolithographic method is applied to a transparent substrate on which a transparent electrode film such as indium tin oxide (ITO) is formed, and a plurality of stripe-shaped first electrodes arranged at regular intervals are patterned.

本発明の有機電界発光装置は第一電極の一部を覆うように形成された絶縁層を有してもよい。絶縁層の材料としては、種々の無機系および有機系材料が用いられ、無機系材料としては、酸化ケイ素をはじめとして酸化マンガン、酸化バナジウム、酸化チタン、酸化クロムなどの酸化物材料、ケイ素、ガリウム砒素などの半導体材料、ガラス材料、セラミック材料などを、有機系材料としては、ポリビニル系、ポリイミド系、ポリスチレン系、ノボラック系、シリコーン系などのポリマー材料などがある。絶縁層の形成には既知の種々の形成方法を適用することができる。   The organic electroluminescent device of the present invention may have an insulating layer formed so as to cover a part of the first electrode. As the material for the insulating layer, various inorganic and organic materials are used. Examples of the inorganic material include silicon oxide, oxide materials such as manganese oxide, vanadium oxide, titanium oxide, and chromium oxide, silicon, gallium. Semiconductor materials such as arsenic, glass materials, ceramic materials, and the like, and organic materials include polymer materials such as polyvinyl, polyimide, polystyrene, novolac, and silicone. Various known forming methods can be applied to the formation of the insulating layer.

本発明の有機電界発光装置の発光画素に含まれる薄膜層の構成は特に限定されず、例えば、1)正孔輸送層/発光層、2)正孔輸送層/発光層/電子輸送層、3)発光層/電子輸送層、そして、4)以上の組み合わせ物質を一層に混合した形態のいずれであってもよい。   The configuration of the thin film layer included in the light emitting pixel of the organic electroluminescent device of the present invention is not particularly limited. For example, 1) hole transport layer / light emitting layer, 2) hole transport layer / light emitting layer / electron transport layer, 3 It may be any one of a) a light emitting layer / electron transport layer and 4) a combination of the above-mentioned combined substances in one layer.

これらのうち少なくとも発光層はパターニングが必要である。フルカラーディスプレイの場合には、赤(R)、緑(G)、青(B)3色の領域に発光ピーク波長を有する3つの発光色に対応した発光材料を用いて3種類の発光層を順次形成する。   Of these, at least the light emitting layer needs to be patterned. In the case of a full-color display, three types of light emitting layers are sequentially formed using light emitting materials corresponding to three emission colors having emission peak wavelengths in the red (R), green (G), and blue (B) regions. Form.

続いて第二電極を形成する。単純マトリクス方式では、薄膜層上に第一電極と交差する配置で、一定の間隔をあけて配置された複数のストライプ状の第二電極がパターニングされる。一方、アクティブマトリクス方式では、発光領域全体に渡って第二電極がベタで形成されることが多い。第二電極には、電子を効率よく注入できる陰極としての機能が求められるので、電極の安定性を考慮して金属材料が多く用いられる。   Subsequently, a second electrode is formed. In the simple matrix method, a plurality of striped second electrodes arranged at a predetermined interval are patterned on the thin film layer so as to intersect with the first electrode. On the other hand, in the active matrix method, the second electrode is often formed in a solid shape over the entire light emitting region. Since the second electrode is required to have a function as a cathode capable of efficiently injecting electrons, a metal material is often used in consideration of the stability of the electrode.

第二電極のパターニング後、封止を行い、駆動回路を接続して有機電界発光装置が得られる。なお、第一電極を不透明な電極とし、第二電極を透明にして画素上面から光を取り出すこともできる。また、第一電極を陰極に、第二電極を陽極にしてもよい。   After patterning the second electrode, sealing is performed, and a driving circuit is connected to obtain an organic electroluminescent device. Note that the first electrode may be an opaque electrode and the second electrode may be transparent to extract light from the upper surface of the pixel. Further, the first electrode may be a cathode and the second electrode may be an anode.

さらに、1枚の基板上にn面(nは2以上の整数)の有機電界発光装置を作製し、該基板をn個に切断する程を経れば、生産性が向上するので量産時の製造コストの面で好ましい。 Further, n plane on a single substrate (n is an integer of 2 or more) to manufacture an organic electroluminescence device of, Having passed through the as engineering of cutting the substrate into n, the mass production because the productivity is improved It is preferable in terms of manufacturing cost.

以下、実施例および比較例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited by these examples.

実施例1
厚さ1.1mmの無アルカリガラス表面にスパッタリング法によって厚さ130nmのITO透明電極膜が形成されたガラス基板を120×100mmの大きさに切断した。ITO基板上にフォトレジストを塗布して、通常のフォトリソグラフィ法による露光・現像によってパターニングした。ITOの不要部分をエッチングして除去した後、フォトレジストを除去することで、ITO膜を長さ90mm、幅80μmのストライプ形状にパターニングした。このストライプ状第一電極は100μmピッチで816本配置されている。
Example 1
A glass substrate having an ITO transparent electrode film having a thickness of 130 nm formed on a non-alkali glass surface having a thickness of 1.1 mm by a sputtering method was cut into a size of 120 × 100 mm. A photoresist was applied on the ITO substrate, and was patterned by exposure and development by a normal photolithography method. After removing unnecessary portions of the ITO by etching, the ITO film was patterned into a stripe shape having a length of 90 mm and a width of 80 μm by removing the photoresist. 816 stripe-shaped first electrodes are arranged at a pitch of 100 μm.

次に、ポジ型フォトレジスト(東京応化工業(株)製、OFPR−800)をスピンコート法により第一電極を形成した基板上に厚さ3μmになるように塗布した。この塗布膜にフォトマスクを介してパターン露光し、現像してフォトレジストのパターニングを行い、現像後に180℃でキュアした。これにより、絶縁層の不要部分が取り除かれ、ストライプ形状の第一電極上に縦235μm、横70μmの絶縁層開口部を、縦方向に300μmピッチで200個、横方向に100μmピッチで816個形成した。絶縁層のエッジ部分の断面は順テーパー形状であった。絶縁層を形成した基板は、80℃、10Paの減圧雰囲気下に20分間置いて脱水処理を行った。   Next, a positive photoresist (manufactured by Tokyo Ohka Kogyo Co., Ltd., OFPR-800) was applied on the substrate on which the first electrode was formed by spin coating so as to have a thickness of 3 μm. The coating film was subjected to pattern exposure through a photomask, developed to pattern a photoresist, and cured at 180 ° C. after development. As a result, unnecessary portions of the insulating layer are removed, and 200 openings of 235 μm in length and 70 μm in width are formed on the stripe-shaped first electrode at a pitch of 300 μm in the vertical direction and 816 at a pitch of 100 μm in the horizontal direction. did. The cross section of the edge portion of the insulating layer had a forward tapered shape. The substrate on which the insulating layer was formed was dehydrated by being placed in a reduced pressure atmosphere at 80 ° C. and 10 Pa for 20 minutes.

発光層を含む薄膜層は、抵抗線加熱方式による真空蒸着法によって形成した。なお、蒸着時の真空度は2×10-4Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、銅フタロシアニンを15nm、ビス(N−エチルカルバゾール)を60nm、発光領域全面に蒸着して正孔輸送層を形成した。 The thin film layer including the light emitting layer was formed by a vacuum evaporation method using a resistance wire heating method. The degree of vacuum at the time of vapor deposition was 2 × 10 −4 Pa or less, and the substrate was rotated with respect to the vapor deposition source during the vapor deposition. First, a hole transport layer was formed by vapor-depositing copper phthalocyanine at 15 nm and bis (N-ethylcarbazole) at 60 nm over the entire light emitting region.

発光層用蒸着マスクとして、開口部の配列した開口領域を持つ蒸着マスクを用いた。蒸着マスクの外形は120×84mm、厚さは25μmであり、縦61.77mm、横100μmの開口部が横方向に300μmピッチで278本配列した開口領域を持つ。各開口部には幅30μmの補強線が300μmピッチで205本設置されている。つまり補強線で区切られた開口部の数は縦方向に206個、そのうち有効開口部が200個であり、補強線で区切られた開口部ひとつの大きさは縦270μm、横100μmである。蒸着マスクは外形が等しい幅4mmのステンレス鋼製のフレームに固定されている。   A vapor deposition mask having an opening region in which openings are arranged was used as the light emitting layer vapor deposition mask. The outer shape of the vapor deposition mask is 120 × 84 mm, the thickness is 25 μm, and there are opening regions in which 278 openings of 61.77 mm length and 100 μm width are arranged at 300 μm pitch in the horizontal direction. In each opening, 205 reinforcing wires having a width of 30 μm are installed at a pitch of 300 μm. That is, the number of openings divided by the reinforcing lines is 206 in the vertical direction, of which 200 effective openings are included, and the size of one opening divided by the reinforcing lines is 270 μm in length and 100 μm in width. The vapor deposition mask is fixed to a stainless steel frame having the same outer shape and a width of 4 mm.

発光層用蒸着マスクを基板前方に配置して両者を密着させ、基板後方にはフェライト系板磁石(日立金属社製、YBM−1B)を配置した。この際、絶縁層開口部が蒸着マスクの有効開口部と重なるように配置し、なおかつダミー開口部が発光領域の上下左右各3個ずつとなるように位置合わせした。蒸着マスクは膜厚の厚い絶縁層と接触して、先に形成した正孔輸送層とは接触しないので、マスク傷が防止される。   A light-emitting layer deposition mask was placed in front of the substrate to bring them into close contact, and a ferrite-based plate magnet (YBM-1B, manufactured by Hitachi Metals, Ltd.) was placed behind the substrate. At this time, the insulating layer openings were arranged so as to overlap with the effective openings of the vapor deposition mask, and the dummy openings were aligned so that there were three on each of the upper, lower, left, and right sides of the light emitting region. The vapor deposition mask is in contact with the thick insulating layer and is not in contact with the previously formed hole transport layer, so that mask damage is prevented.

この状態で0.3重量%の1,3,5,7,8−ペンタメチル−4,4−ジフロロ−4−ボラ−3a,4a−ジアザ−s−インダセン(PM546)をドーピングした8−ヒドロキシキノリン−アルミニウム錯体(Alq3)を21nm蒸着し、緑色発光層をパターニングした。 8-hydroxyquinoline doped with 0.3% by weight of 1,3,5,7,8-pentamethyl-4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (PM546) in this state - aluminum complex (Alq 3) was 21nm deposited and patterned green emission layer.

次に、蒸着マスクを右方向に1ピッチ分ずらして、1重量%の4−(ジシアノメチレン)−2−メチル−6−(ジュロリジルスチリル)ピラン(DCJT)をドーピングしたAlq3を15nm蒸着して、赤色発光層をパターニングした。 Next, the deposition mask is shifted to the right by one pitch, and Alq 3 doped with 1% by weight of 4- (dicyanomethylene) -2-methyl-6- (julolidylstyryl) pyran (DCJT) is deposited by 15 nm. Then, the red light emitting layer was patterned.

さらに蒸着マスクを左方向に2ピッチ分ずらして、4,4’−ビス(2,2’−ジフェニルビニル)ジフェニル(DPVBi)を20nm蒸着して、青色発光層をパターニングした。緑色、赤色、青色それぞれの発光層は、ストライプ状第一電極の3本ごとに配置され、第一電極の露出部分を完全に覆っている。さらに、画素の構成には使用されない発光層用有機化合物の領域が、上下各3個左右各9個ずつ同時に配置された。   Further, the deposition mask was shifted by 2 pitches to the left, and 4,4'-bis (2,2'-diphenylvinyl) diphenyl (DPVBi) was deposited by 20 nm to pattern the blue light emitting layer. Each of the green, red, and blue light emitting layers is disposed for every three stripe-shaped first electrodes, and completely covers the exposed portion of the first electrode. Further, the organic compound regions for the light emitting layer, which are not used in the pixel configuration, were arranged at the same time, three on the top and nine on the left.

次に、DPVBiを35nm、Alq3を10nm、発光領域全面に蒸着した。この後、薄膜層をリチウム蒸気に曝してドーピング(膜厚換算量0.5nm)した。 Next, DPVBi of 35 nm and Alq 3 of 10 nm were deposited on the entire light emitting region. Thereafter, the thin film layer was exposed to lithium vapor for doping (a film thickness equivalent of 0.5 nm).

第二電極パターニング用として、マスク部分の一方の面と補強線との間に隙間が存在する構造の蒸着マスクを用いた。蒸着マスクの外形は120×84mm、厚さは100μmであり、長さ100mm、幅250μmのストライプ状開口部がピッチ300μmで200本配置されている。マスク部分の上には、幅40μm、厚さ35μm、対向する二辺の間隔が200μmの正六角形構造からなるメッシュ状の補強線が形成されている。隙間の高さはマスク部分の厚さと等しく100μmである。蒸着マスクは外形が等しい幅4mmのステンレス鋼製のフレームに固定されている。   For the second electrode patterning, a vapor deposition mask having a structure in which a gap exists between one surface of the mask portion and the reinforcing wire was used. The outer shape of the vapor deposition mask is 120 × 84 mm, the thickness is 100 μm, and 200 striped openings having a length of 100 mm and a width of 250 μm are arranged at a pitch of 300 μm. On the mask portion, a mesh-like reinforcing wire having a regular hexagonal structure with a width of 40 μm, a thickness of 35 μm, and a distance between two opposing sides of 200 μm is formed. The height of the gap is equal to the thickness of the mask part and is 100 μm. The vapor deposition mask is fixed to a stainless steel frame having the same outer shape and a width of 4 mm.

第二電極は抵抗線加熱方式による真空蒸着法によって形成した。なお、蒸着時の真空度は3×10-4Pa以下であり、蒸着中は2つの蒸着源に対して基板を回転させた。発光層のパターニングと同様に、第二電極用蒸着マスクを基板前方に配置して両者を密着させ、基板後方には磁石を配置した。この際、絶縁層開口部が蒸着マスクの有効開口部と重なるように両者を配置する。この状態でアルミニウムを200nmの厚さに蒸着して、第二電極をパターニングした。第二電極は、第一電極と直交する配置で、ストライプ状にパターニングされている。 The second electrode was formed by a vacuum vapor deposition method using a resistance wire heating method. The degree of vacuum at the time of vapor deposition was 3 × 10 −4 Pa or less, and the substrate was rotated with respect to two vapor deposition sources during the vapor deposition. Similar to the patterning of the light emitting layer, the second electrode deposition mask was placed in front of the substrate to bring them into close contact, and a magnet was placed behind the substrate. At this time, both of the insulating layer openings are arranged so as to overlap the effective openings of the vapor deposition mask. In this state, aluminum was evaporated to a thickness of 200 nm, and the second electrode was patterned. The second electrode is patterned in stripes in an arrangement perpendicular to the first electrode.

本基板を蒸着機から取り出し、ロータリーポンプによる減圧雰囲気下で20分間保持した後、露点−90℃以下のアルゴン雰囲気下に移した。この低湿雰囲気下にて、基板と封止用ガラス板とを硬化性エポキシ樹脂を用いて貼り合わせることで封止した。   The substrate was taken out from the vapor deposition machine and held for 20 minutes under a reduced pressure atmosphere using a rotary pump, and then transferred to an argon atmosphere with a dew point of −90 ° C. or lower. In this low-humidity atmosphere, the substrate and the glass plate for sealing were sealed together by using a curable epoxy resin.

このようにして幅80μm、ピッチ100μm、本数816本のITOストライプ状第一電極上に、パターニングされた緑色発光層、赤色発光層および青色発光層が形成され、第一電極と直交するように幅250μm、ピッチ300μmのストライプ状第二電極が200本配置された単純マトリクス型カラー有機電界発光装置を作製した。赤、緑、青各1つ、つまり合計3つの発光画素が1つの画素集合を形成するので、本発光装置は300μmピッチで272×200個の画素集合を有する。   In this way, the patterned green light emitting layer, red light emitting layer, and blue light emitting layer are formed on the ITO striped first electrode having a width of 80 μm, a pitch of 100 μm, and a number of 816, and the width is set so as to be orthogonal to the first electrode. A simple matrix type color organic electroluminescent device in which 200 stripe-shaped second electrodes having a pitch of 250 μm and a pitch of 300 μm were arranged was produced. Since each of red, green, and blue, that is, a total of three light emitting pixels forms one pixel set, this light emitting device has 272 × 200 pixel sets at a pitch of 300 μm.

本有機電界発光装置を線順次駆動したところ、良好な表示特性を得ることができた。さらに顕微鏡により発光画素を観察したところ隣接画素への混色なども無く、発光領域全面に渡って良好な発光層パターンが形成できていることを確認した。   When this organic electroluminescent device was driven line-sequentially, good display characteristics could be obtained. Further, when the light emitting pixels were observed with a microscope, it was confirmed that a good light emitting layer pattern could be formed over the entire light emitting region without any color mixing with adjacent pixels.

実施例3
厚さ1.1mmの無アルカリガラス表面にスパッタリング法によって厚さ130nmのITO透明電極膜が形成されたガラス基板を120×100mmの大きさに切断した。ITO基板上にフォトレジストを塗布して、通常のフォトリソグラフィ法による露光・現像によってパターニングした。ITOの不要部分をエッチングして除去した後、フォトレジストを除去することで、ITO膜を長さ90mm、幅160μmのストライプ形状にパターニングした。このストライプ状第一電極は200μmピッチで408本配置されている。
Example 3
A glass substrate on which an ITO transparent electrode film having a thickness of 130 nm was formed on a non-alkali glass surface having a thickness of 1.1 mm by a sputtering method was cut into a size of 120 × 100 mm. A photoresist was applied on the ITO substrate, and was patterned by exposure and development by a normal photolithography method. After removing unnecessary portions of ITO by etching, the photoresist was removed to pattern the ITO film into a stripe shape having a length of 90 mm and a width of 160 μm. 408 stripe-shaped first electrodes are arranged at a pitch of 200 μm.

次に、ポジ型フォトレジスト(東京応化工業(株)製、OFPR−800)をスピンコート法により第一電極を形成した基板上に厚さ3μmになるように塗布した。この塗布膜にフォトマスクを介してパターン露光し、現像してフォトレジストのパターニングを行い、現像後に180℃でキュアした。これにより、絶縁層の不要部分が取り除かれ、ストライプ形状の第一電極上に縦470μm、横140μmの絶縁層開口部を、縦方向に600μmピッチで100個、横方向に200μmピッチで408個形成した。絶縁層のエッジ部分の断面は順テーパー形状であった。絶縁層を形成した基板は、80℃、10Paの減圧雰囲気下に20分間置いて脱水処理を行った。   Next, a positive photoresist (manufactured by Tokyo Ohka Kogyo Co., Ltd., OFPR-800) was applied on the substrate on which the first electrode was formed by spin coating so as to have a thickness of 3 μm. The coating film was subjected to pattern exposure through a photomask, developed to pattern a photoresist, and cured at 180 ° C. after development. As a result, unnecessary portions of the insulating layer are removed, and 100 insulating layer openings having a length of 470 μm and a width of 140 μm are formed on the stripe-shaped first electrode at a pitch of 600 μm in the vertical direction and 408 at a pitch of 200 μm in the horizontal direction. did. The cross section of the edge portion of the insulating layer had a forward tapered shape. The substrate on which the insulating layer was formed was dehydrated by being placed in a reduced pressure atmosphere at 80 ° C. and 10 Pa for 20 minutes.

発光層を含む薄膜層は、抵抗線加熱方式による真空蒸着法によって形成した。なお、蒸着時の真空度は2×10-4Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、銅フタロシアニンを15nm、ビス(N−エチルカルバゾール)を60nm、発光領域全面に蒸着して正孔輸送層を形成した。 The thin film layer including the light emitting layer was formed by a vacuum evaporation method using a resistance wire heating method. The degree of vacuum at the time of vapor deposition was 2 × 10 −4 Pa or less, and the substrate was rotated with respect to the vapor deposition source during the vapor deposition. First, a hole transport layer was formed by vapor-depositing copper phthalocyanine at 15 nm and bis (N-ethylcarbazole) at 60 nm over the entire light emitting region.

発光層パターニング用として、開口部の配列した開口領域を持つ蒸着マスクを用いた。蒸着マスクの外形は120×84mm、厚さは25μmであり、縦63.54mm、横200μmの開口部が横方向に600μmピッチで142本配列した開口領域を持つ。各開口部には幅60μmの補強線が600μmピッチで105本設置されている。つまり補強線で区切られた開口部の数は縦方向に106個、そのうち有効開口部が100個であり、補強線で区切られた開口部ひとつの大きさは縦540μm、横200μmである。蒸着マスクは外形が等しい幅4mmのステンレス鋼製のフレームに固定されている。   An evaporation mask having an opening region in which openings are arranged is used for patterning the light emitting layer. The vapor deposition mask has an outer shape of 120 × 84 mm and a thickness of 25 μm, and has an opening region in which 142 openings of 63.54 mm length and 200 μm width are arranged at a pitch of 600 μm in the horizontal direction. In each opening, 105 reinforcing wires having a width of 60 μm are installed at a pitch of 600 μm. That is, the number of openings divided by the reinforcing lines is 106 in the vertical direction, of which 100 effective openings are included, and the size of one opening divided by the reinforcing lines is 540 μm in length and 200 μm in width. The vapor deposition mask is fixed to a stainless steel frame having the same outer shape and a width of 4 mm.

発光層用蒸着マスクを基板前方に配置して両者を密着させ、基板後方にはフェライト系板磁石(日立金属社製、YBM−1B)を配置した。この際、絶縁層開口部が蒸着マスクの有効開口部と重なるように配置し、なおかつダミー開口部が発光領域の上下左右各3個ずつとなるように位置合わせした。蒸着マスクは膜厚の厚い絶縁層と接触して、先に形成した正孔輸送層とは接触しないので、マスク傷が防止される。   A light-emitting layer deposition mask was placed in front of the substrate to bring them into close contact, and a ferrite-based plate magnet (YBM-1B, manufactured by Hitachi Metals, Ltd.) was placed behind the substrate. At this time, the insulating layer openings were arranged so as to overlap with the effective openings of the vapor deposition mask, and the dummy openings were aligned so that there were three on each of the upper, lower, left, and right sides of the light emitting region. The vapor deposition mask is in contact with the thick insulating layer and is not in contact with the previously formed hole transport layer, so that mask damage is prevented.

この状態で0.3重量%の1,3,5,7,8−ペンタメチル−4,4−ジフロロ−4−ボラ−3a,4a−ジアザ−s−インダセン(PM546)をドーピングした8−ヒドロキシキノリン−アルミニウム錯体(Alq3)を21nm蒸着し、緑色発光層をパターニングした。 8-hydroxyquinoline doped with 0.3% by weight of 1,3,5,7,8-pentamethyl-4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (PM546) in this state - aluminum complex (Alq 3) was 21nm deposited and patterned green emission layer.

次に、蒸着マスクを右に方向に1ピッチ分ずらして、1重量%の4−(ジシアノメチレン)−2−メチル−6−(ジュロリジルスチリル)ピラン(DCJT)をドーピングしたAlq3を15nm蒸着して、赤色発光層をパターニングした。 Next, the deposition mask is shifted to the right by one pitch, and Alq 3 doped with 1% by weight of 4- (dicyanomethylene) -2-methyl-6- (julolidylstyryl) pyran (DCJT) is 15 nm. The red light emitting layer was patterned by vapor deposition.

さらに蒸着マスクを左方向に2ピッチ分ずらして、4,4’−ビス(2,2’−ジフェニルビニル)ジフェニル(DPVBi)を20nm蒸着して、青色発光層をパターニングした。緑色、赤色、青色それぞれの発光層は、ストライプ状第一電極の3本ごとに配置され、第一電極の露出部分を完全に覆っている。さらに、画素の構成には使用されない発光層用有機化合物の領域が、上下各3個左右各9個ずつ同時に配置された。   Further, the deposition mask was shifted by 2 pitches to the left, and 4,4'-bis (2,2'-diphenylvinyl) diphenyl (DPVBi) was deposited by 20 nm to pattern the blue light emitting layer. Each of the green, red, and blue light emitting layers is disposed for every three stripe-shaped first electrodes, and completely covers the exposed portion of the first electrode. Further, the organic compound regions for the light emitting layer, which are not used in the pixel configuration, were arranged at the same time, three on the top and nine on the left.

次に、DPVBiを35nm、Alq3を10nm、発光領域全面に蒸着した。この後、薄膜層をリチウム蒸気に曝してドーピング(膜厚換算量0.5nm)した。 It was then deposited 35nm of DPVBi, a Alq 3 10 nm, the light emitting region over the entire surface. Thereafter, the thin film layer was exposed to lithium vapor for doping (a film thickness equivalent of 0.5 nm).

第二電極パターニング用として、マスク部分の一方の面と補強線との間に隙間が存在する構造の蒸着マスクを用いた。蒸着マスクの外形は120×84mm、厚さは100μmであり、長さ100mm、幅500μmのストライプ状開口部がピッチ600μmで100本配置されている。マスク部分の上には、幅40μm、厚さ35μm、対向する二辺の間隔が200μmの正六角形構造からなるメッシュ状の補強線が形成されている。隙間の高さはマスク部分の厚さと等しく100μmである。蒸着マスクは外形が等しい幅4mmのステンレス鋼製のフレームに固定されている。   For the second electrode patterning, a vapor deposition mask having a structure in which a gap exists between one surface of the mask portion and the reinforcing wire was used. The outer shape of the vapor deposition mask is 120 × 84 mm, the thickness is 100 μm, and 100 striped openings having a length of 100 mm and a width of 500 μm are arranged at a pitch of 600 μm. On the mask portion, a mesh-like reinforcing wire having a regular hexagonal structure with a width of 40 μm, a thickness of 35 μm, and a distance between two opposing sides of 200 μm is formed. The height of the gap is equal to the thickness of the mask part and is 100 μm. The vapor deposition mask is fixed to a stainless steel frame having the same outer shape and a width of 4 mm.

第二電極は抵抗線加熱方式による真空蒸着法によって形成した。なお、蒸着時の真空度は3×10-4Pa以下であり、蒸着中は2つの蒸着源に対して基板を回転させた。発光層のパターニングと同様に、第二電極用蒸着マスクを基板前方に配置して両者を密着させ、基板後方には磁石を配置した。この際、絶縁層開口部が蒸着マスクの開口部と重なるように両者を配置する。この状態でアルミニウムを200nmの厚さに蒸着して、第二電極をパターニングした。第二電極は、第一電極と直交する配置で、ストライプ状にパターニングされている。 The second electrode was formed by a vacuum vapor deposition method using a resistance wire heating method. The degree of vacuum at the time of vapor deposition was 3 × 10 −4 Pa or less, and the substrate was rotated with respect to two vapor deposition sources during the vapor deposition. Similar to the patterning of the light emitting layer, the second electrode deposition mask was placed in front of the substrate to bring them into close contact, and a magnet was placed behind the substrate. At this time, both are disposed so that the opening of the insulating layer overlaps the opening of the vapor deposition mask. In this state, aluminum was evaporated to a thickness of 200 nm, and the second electrode was patterned. The second electrode is patterned in stripes in an arrangement perpendicular to the first electrode.

本基板を蒸着機から取り出し、ロータリーポンプによる減圧雰囲気下で20分間保持した後、露点−90℃以下のアルゴン雰囲気下に移した。この低湿雰囲気下にて、基板と封止用ガラス板とを硬化性エポキシ樹脂を用いて貼り合わせることで封止した。   The substrate was taken out from the vapor deposition machine and held for 20 minutes under a reduced pressure atmosphere using a rotary pump, and then transferred to an argon atmosphere with a dew point of -90 ° C or lower. In this low-humidity atmosphere, the substrate and the glass plate for sealing were sealed together by using a curable epoxy resin.

このようにして幅160μm、ピッチ200μm、本数408本のストライプ状第一電極上に、パターニングされた緑色発光層、赤色発光層および青色発光層が形成され、第一電極と直交するように幅500μm、ピッチ600μmのストライプ状第二電極が100本配置された単純マトリクス型カラー有機電界発光装置を作製した。赤、緑、青各1つ、つまり合計3つの発光画素が1つの画素集合を形成するので、本発光装置は600μmピッチで136×100個の画素集合を有する。   In this way, the patterned green light emitting layer, red light emitting layer, and blue light emitting layer are formed on the striped first electrodes having a width of 160 μm, a pitch of 200 μm, and a number of 408, and a width of 500 μm so as to be orthogonal to the first electrodes. A simple matrix type color organic electroluminescent device in which 100 stripe-like second electrodes with a pitch of 600 μm were arranged was produced. Since each of red, green, and blue, that is, a total of three light emitting pixels, forms one pixel set, this light emitting device has 136 × 100 pixel sets at a pitch of 600 μm.

本有機電界発光装置を線順次駆動したところ、良好な表示特性を得ることができた。さらに顕微鏡により発光画素を観察したところ、発光領域の外周部において、発光画素のエッジ部分がぼやけている事を確認した。これは、基板と蒸着マスクとの密着が損なわれたためであったが、混色には至ってなかった。   When this organic electroluminescent device was driven line-sequentially, good display characteristics could be obtained. Furthermore, when the luminescent pixel was observed with a microscope, it was confirmed that the edge portion of the luminescent pixel was blurred in the outer peripheral portion of the luminescent region. This was because the adhesion between the substrate and the vapor deposition mask was impaired, but no color mixing was achieved.

実施例4
外形500×400mm、厚さ0.7mmの無アルカリガラス表面にスパッタリング法によって厚さ130nmのITO透明電極膜を形成した。ITO基板上にフォトレジストを塗布して、通常のフォトリソグラフィ法による露光・現像によってパターニングした。ITOの不要部分をエッチングして除去した後、フォトレジストを除去することで、ITO膜を長さ90mm、幅80μmのストライプ形状にパターニングした。このストライプ状第一電極が100μmピッチで816本配置された対角4インチの発光領域が16面形成され、ガラスを200×214mmの大きさに4分割することにより4面取りのITO基板を作製した。
Example 4
An ITO transparent electrode film having a thickness of 130 nm was formed by sputtering on an alkali-free glass surface having an outer shape of 500 × 400 mm and a thickness of 0.7 mm. A photoresist was applied on the ITO substrate, and was patterned by exposure and development by a normal photolithography method. After removing unnecessary portions of the ITO by etching, the ITO film was patterned into a stripe shape having a length of 90 mm and a width of 80 μm by removing the photoresist. Fourteen-sided ITO substrates were produced by dividing 16 pieces of 4-inch diagonal light emitting regions in which 816 stripe-shaped first electrodes were arranged at a pitch of 100 μm into 4 × 200 mm × 214 mm. .

次に、ポジ型フォトレジスト(東京応化工業(株)製、OFPR−800)をスピンコート法により第一電極を形成した基板上に厚さ2μmになるように塗布した。その後、120℃で仮硬化させ、フォトマスクを介してパターン露光した。さらに、現像してフォトレジストのパターニングを行い、現像後に230℃でキュアした。これにより、絶縁層の不要部分が取り除かれ、ストライプ形状の第一電極上に縦235μm、横70μmの絶縁層開口部を、縦方向に300μmピッチで200個、横方向に100μmピッチで816個形成した。絶縁層のエッジ部分の断面は順テーパー形状であった。絶縁層を形成した基板は、80℃、10Paの減圧雰囲気下に20分間置いて脱水処理を行った。   Next, a positive photoresist (manufactured by Tokyo Ohka Kogyo Co., Ltd., OFPR-800) was applied on the substrate on which the first electrode was formed by spin coating so as to have a thickness of 2 μm. Thereafter, it was temporarily cured at 120 ° C. and subjected to pattern exposure through a photomask. Furthermore, the photoresist was patterned by development, and cured at 230 ° C. after development. As a result, unnecessary portions of the insulating layer are removed, and 200 openings of 235 μm in length and 70 μm in width are formed on the stripe-shaped first electrode at a pitch of 300 μm in the vertical direction and 816 at a pitch of 100 μm in the horizontal direction. did. The cross section of the edge portion of the insulating layer had a forward tapered shape. The substrate on which the insulating layer was formed was dehydrated by being placed in a reduced pressure atmosphere at 80 ° C. and 10 Pa for 20 minutes.

発光層を含む薄膜層は、抵抗線加熱方式による真空蒸着法によって形成した。なお、蒸着時の真空度は2×10-4Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、銅フタロシアニンを15nm、ビス(N−エチルカルバゾール)を60nm、各発光領域全面に蒸着して正孔輸送層を形成した。 The thin film layer including the light emitting layer was formed by a vacuum evaporation method using a resistance wire heating method. The degree of vacuum at the time of vapor deposition was 2 × 10 −4 Pa or less, and the substrate was rotated with respect to the vapor deposition source during the vapor deposition. First, 15 nm of copper phthalocyanine and 60 nm of bis (N-ethylcarbazole) were deposited on the entire surface of each light emitting region to form a hole transport layer.

発光層用蒸着マスクとして、開口部を配列した開口領域を4つ持つ蒸着マスクを用いた。蒸着マスクの外形は200×214mm、厚さは25μmであり、縦61.77mm、横100μmの開口部が横方向に300μmピッチで278本配列した開口領域を4つ持ち、先に作製した4面取りITO基板のITOパターンと対応した位置に配置した。各開口部には幅30μmの補強線300μmピッチで205本設置されている。つまり補強線で区切られた1つの開口領域の開口部の数は縦方向に206個、そのうち有効開口部が200個であり、補強線で区切られた開口部1つの大きさは縦270μm、横100μmである。蒸着マスクは163×201mmの開口を有するスーパーインバー鋼製のフレームに固定されており、蒸着マスク活用領域は163×201mmとなる。   As the light emitting layer deposition mask, a deposition mask having four opening regions in which openings are arranged was used. The outer shape of the evaporation mask is 200 × 214 mm, the thickness is 25 μm, the opening is 61.77 mm long, 100 μm wide, and has four opening areas in which 278 are arranged at a pitch of 300 μm in the horizontal direction. It arrange | positioned in the position corresponding to the ITO pattern of an ITO board | substrate. In each opening, 205 reinforcing wires having a width of 30 μm and a pitch of 300 μm are installed. In other words, the number of openings in one opening region divided by the reinforcing lines is 206 in the vertical direction, of which 200 effective openings are included, and the size of one opening divided by the reinforcing lines is 270 μm in length and horizontal. 100 μm. The vapor deposition mask is fixed to a frame made of Super Invar steel having an opening of 163 × 201 mm, and the vapor deposition mask utilization area is 163 × 201 mm.

発光層用蒸着マスクを基板前方に配置して両者を密着させ、基板後方にはフェライト系板磁石(日立金属社製、YBM−1B)を配置した。この際、絶縁層開口部が蒸着マスクの有効開口部と重なるように配置し、なおかつダミー開口部が各発光領域の上下左右各3個ずつとなるように位置合わせした。蒸着マスクは膜厚の厚い絶縁層と接触して、先に形成した正孔輸送層とは接触しないので、マスク傷が防止される。   A light-emitting layer deposition mask was placed in front of the substrate to bring them into close contact, and a ferrite-based plate magnet (YBM-1B, manufactured by Hitachi Metals, Ltd.) was placed behind the substrate. At this time, the insulating layer openings were arranged so as to overlap the effective openings of the vapor deposition mask, and the dummy openings were aligned so that there were three on each of the upper, lower, left and right sides of each light emitting region. The vapor deposition mask is in contact with the thick insulating layer and is not in contact with the previously formed hole transport layer, so that mask damage is prevented.

この状態で0.3重量%の1,3,5,7,8−ペンタメチル−4,4−ジフロロ−4−ボラ−3a,4a−ジアザ−s−インダセン(PM546)をドーピングした8−ヒドロキシキノリン−アルミニウム錯体(Alq3)を21nm蒸着し、緑色発光層をパターニングした。 8-hydroxyquinoline doped with 0.3% by weight of 1,3,5,7,8-pentamethyl-4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (PM546) in this state - aluminum complex (Alq 3) was 21nm deposited and patterned green emission layer.

次に、蒸着マスクを右方向に1ピッチ分ずらして、1重量%の4−(ジシアノメチレン)−2−メチル−6−(ジュロリジルスチリル)ピラン(DCJT)をドーピングしたAlq3を15nm蒸着して、赤色発光層をパターニングした。 Next, the deposition mask is shifted to the right by one pitch, and Alq 3 doped with 1% by weight of 4- (dicyanomethylene) -2-methyl-6- (julolidylstyryl) pyran (DCJT) is deposited by 15 nm. Then, the red light emitting layer was patterned.

さらに蒸着マスクを左方向に2ピッチ分ずらして、4,4’−ビス(2,2’−ジフェニルビニル)ジフェニル(DPVBi)を20nm蒸着して、青色発光層をパターニングした。緑色、赤色、青色それぞれの発光層は、ストライプ状第一電極の3本ごとに配置され、第一電極の露出部分を完全に覆っている。さらに、画素の構成には使用されない発光層用有機化合物の領域が、上下各3個左右各9個ずつ同時に配置された。   Further, the deposition mask was shifted by 2 pitches to the left, and 4,4'-bis (2,2'-diphenylvinyl) diphenyl (DPVBi) was deposited by 20 nm to pattern the blue light emitting layer. Each of the green, red, and blue light emitting layers is disposed for every three stripe-shaped first electrodes, and completely covers the exposed portion of the first electrode. Further, the organic compound regions for the light emitting layer, which are not used in the pixel configuration, were arranged at the same time, three on the top and nine on the left.

次に、DPVBiを35nm、Alq3を10nm、各発光領域全面に蒸着した。この後、薄膜層をリチウム蒸気に曝してドーピング(膜厚換算量0.5nm)した。 Next, DPVBi of 35 nm and Alq 3 of 10 nm were deposited on the entire surface of each light emitting region. Thereafter, the thin film layer was exposed to lithium vapor for doping (a film thickness equivalent of 0.5 nm).

第二電極パターニング用として、マスク部分の一方の面と補強線との間に隙間が存在する構造の蒸着マスクを用いた。蒸着マスクの外形は200×214mm、厚さは100μmであり、長さ100mm、幅250μmのストライプ状開口部がピッチ300μmで200本配置された領域がITO基板と対応した位置に4つ配置されている。マスク部分の上には、幅40μm、厚さ35μm、対向する二辺の間隔が200μmの正六角形構造からなるメッシュ状の補強線が形成されている。隙間の高さはマスク部分の厚さと等しく100μmである。蒸着マスクは163×201mmの開口を有するスーパーインバー鋼製のフレームに固定されており、蒸着マスク活用領域は163×201mmである。   For the second electrode patterning, a vapor deposition mask having a structure in which a gap exists between one surface of the mask portion and the reinforcing wire was used. The outer shape of the vapor deposition mask is 200 × 214 mm, the thickness is 100 μm, and four stripe openings having a length of 100 mm and a width of 250 μm are arranged at a pitch of 300 μm, and four regions are arranged at positions corresponding to the ITO substrate. Yes. On the mask portion, a mesh-like reinforcing wire having a regular hexagonal structure with a width of 40 μm, a thickness of 35 μm, and a distance between two opposing sides of 200 μm is formed. The height of the gap is equal to the thickness of the mask part and is 100 μm. The vapor deposition mask is fixed to a frame made of Super Invar steel having an opening of 163 × 201 mm, and the vapor deposition mask utilization area is 163 × 201 mm.

第二電極は抵抗線加熱方式による真空蒸着法によって形成した。なお、蒸着時の真空度は3×10-4Pa以下であり、蒸着中は2つの蒸着源に対して基板を回転させた。発光層のパターニングと同様に、第二電極用蒸着マスクを基板前方に配置して両者を密着させ、基板後方には磁石を配置した。この際、絶縁層開口部が蒸着マスクの有効開口部と重なるように両者を配置する。この状態でアルミニウムを300nmの厚さに蒸着して、第二電極をパターニングした。第二電極は、第一電極と直交する配置で、ストライプ状にパターニングされている。 The second electrode was formed by a vacuum vapor deposition method using a resistance wire heating method. The degree of vacuum at the time of vapor deposition was 3 × 10 −4 Pa or less, and the substrate was rotated with respect to two vapor deposition sources during the vapor deposition. Similar to the patterning of the light emitting layer, the second electrode deposition mask was placed in front of the substrate to bring them into close contact, and a magnet was placed behind the substrate. At this time, both of the insulating layer openings are arranged so as to overlap the effective openings of the vapor deposition mask. In this state, aluminum was deposited to a thickness of 300 nm, and the second electrode was patterned. The second electrode is patterned in stripes in an arrangement perpendicular to the first electrode.

本基板を蒸着機から取り出し、ロータリーポンプによる減圧雰囲気下で20分間保持した後、露点−90℃以下のアルゴン雰囲気下に移した。この低湿雰囲気下にて、基板と封止用ガラス板とを硬化性エポキシ樹脂を用いて貼り合わせることで封止した。   The substrate was taken out from the vapor deposition machine and held for 20 minutes under a reduced pressure atmosphere using a rotary pump, and then transferred to an argon atmosphere with a dew point of −90 ° C. or lower. In this low-humidity atmosphere, the substrate and the glass plate for sealing were sealed together by using a curable epoxy resin.

このようにして幅80μm、ピッチ100μm、本数816本のITOストライプ状第一電極上に、パターニングされた緑色発光層、赤色発光層および青色発光層が形成され、第一電極と直交するように幅250μm、ピッチ300μmのストライプ状第二電極が200本配置された有機電界発光装置を4面搭載した。これをガラス基板、封止用ガラス板共に4分割にして対角4インチの単純マトリクス型カラー有機電界発光装置を得た。赤、緑、青各1つ、つまり3つの発光画素が1つの画素集合を形成するので、本発光装置は300μmピッチで272×200個の画素集合を有する。   In this way, the patterned green light emitting layer, red light emitting layer, and blue light emitting layer are formed on the ITO striped first electrode having a width of 80 μm, a pitch of 100 μm, and a number of 816, and the width is set so as to be orthogonal to the first electrode. Four organic electroluminescent devices on which 200 stripe-shaped second electrodes with a pitch of 250 μm and a pitch of 300 μm were arranged were mounted. This was divided into four for both the glass substrate and the sealing glass plate to obtain a simple matrix type color organic electroluminescent device having a diagonal of 4 inches. Since each of red, green, and blue, that is, three light emitting pixels forms one pixel set, this light emitting device has 272 × 200 pixel sets at a pitch of 300 μm.

本有機電界発光装置を線順次駆動したところ、良好な表示特性を得ることができた。さらに顕微鏡により発光画素を観察したところ隣接画素への混色なども無く、発光領域全面に渡って良好な発光層パターンが形成できていることを確認した。発光層のパターニング精度は±10μm以内であった。   When this organic electroluminescent device was driven line-sequentially, good display characteristics could be obtained. Further, when the light emitting pixels were observed with a microscope, it was confirmed that a good light emitting layer pattern could be formed over the entire light emitting region without any color mixing with adjacent pixels. The patterning accuracy of the light emitting layer was within ± 10 μm.

実施例5
縦270μm、横100μmの開口部が縦横300μmピッチで蒸着マスク活用領域全面(90%以上)に配列した外形が200×214mmの蒸着マスクを実施例4と同じフレームの上面に固定した。さらに、発光領域よりやや大きめに4カ所の開口を設けた外形162×200mmの蒸着マスクを、上記蒸着マスクの蒸着源側の直下に配置してフレームの内側で固定した。両蒸着マスク同士は互いに接着されていない。このようにして図7に示すような発光層用の蒸着マスクを用意した。それ以外は実施例1と同様にして有機電界発光装置を作製した。
Example 5
A vapor deposition mask having an outer shape of 200 × 214 mm in which openings of 270 μm in length and 100 μm in width are arranged on the entire surface (90% or more) of the vapor deposition mask at a pitch of 300 μm in length and width was fixed on the upper surface of the same frame as in Example 4. Furthermore, a vapor deposition mask having an outer shape of 162 × 200 mm provided with four openings slightly larger than the light emitting region was disposed directly below the vapor deposition source side of the vapor deposition mask and fixed inside the frame. Both vapor deposition masks are not bonded to each other. Thus, a vapor deposition mask for the light emitting layer as shown in FIG. 7 was prepared. Other than that was carried out similarly to Example 1, and produced the organic electroluminescent apparatus.

本有機電界発光装置を線順次駆動したところ、良好な表示特性を得ることができた。さらに顕微鏡により発光画素を観察したところ隣接画素への混色なども無く、発光領域全面に渡って良好な発光層パターンが形成できていることを確認した。また、発光領域の上下左右には画素の構成には使用されない発光層用有機化合物の領域が5個ずつ配置されており、そのうちの一部は中途半端な形状であった。発光層のパターニング精度は±7μm以内であった。蒸着マスク活用領域全面に開口部を配列したことによりマスクの撓みが少なくなったので、パターニング精度がさらに向上した。   When this organic electroluminescent device was driven line-sequentially, good display characteristics could be obtained. Further, when the light emitting pixels were observed with a microscope, it was confirmed that a good light emitting layer pattern could be formed over the entire light emitting region without any color mixing with adjacent pixels. In addition, five regions of the organic compound for the light emitting layer that are not used in the pixel configuration are arranged on the top, bottom, left, and right of the light emitting region, and some of them are halfway. The patterning accuracy of the light emitting layer was within ± 7 μm. By arranging the openings on the entire surface of the vapor deposition mask, the mask deflection is reduced, and the patterning accuracy is further improved.

実施例6
発光層用蒸着マスクとして縦270μm、横100μmの開口部が縦横300μmピッチで蒸着マスク活用領域全面(90%以上)に配列した外形が200×214mmの蒸着マスクを用い、十字の桟を追加したスーパーインバー鋼製のフレームに貼り付けた。このとき、桟の部分も蒸着マスクと接着した。このようにして図に示すような発光層用の蒸着マスクを用意した。それ以外は実施例4と同様にして有機電界発光装置を作製した。フレームに十字の桟を追加したことで、この蒸着マスクによる発光層パターンは発光領域よりやや大きめに4面形成される。
Example 6
A superposition that uses a 200 x 214 mm outer mask with an outer shape of 200 x 214 mm, with openings of 270 µm in length and 100 µm in width arranged on the entire surface (90% or more) of the area where the deposition mask is used, as a deposition mask for the light-emitting layer. Affixed to an Invar steel frame. At this time, the crosspiece was also bonded to the vapor deposition mask. In this way, a vapor deposition mask for the light emitting layer as shown in FIG. 9 was prepared. Other than that was carried out similarly to Example 4, and produced the organic electroluminescent apparatus. By adding cross bars to the frame, four light emitting layer patterns by the vapor deposition mask are formed slightly larger than the light emitting area.

本有機電界発光装置を線順次駆動したところ、良好な表示特性を得ることができた。さらに顕微鏡により発光画素を観察したところ隣接画素への混色なども無く、発光領域全面に渡って良好な発光層パターンが形成できていることを確認した。また、発光領域の上下左右には画素の構成には使用されない発光層用有機化合物の領域が5個ずつ配置されており、そのうちの一部は中途半端な形状であった。発光層のパターニング精度は±5μm以内であった。桟を追加したことによりフレームの変形が少なくなったので、パターニング精度はさらに向上した。   When this organic electroluminescent device was driven line-sequentially, good display characteristics could be obtained. Further, when the light emitting pixels were observed with a microscope, it was confirmed that a good light emitting layer pattern could be formed over the entire light emitting region without any color mixing with adjacent pixels. In addition, five regions of the organic compound for the light emitting layer that are not used in the pixel configuration are arranged on the top, bottom, left, and right of the light emitting region, and some of them are halfway. The patterning accuracy of the light emitting layer was within ± 5 μm. The patterning accuracy was further improved because the frame was less deformed by adding the crosspiece.

比較例1
発光層用蒸着マスクの開口部を縦200個、横272個としたこと以外は実施例1と同様にして有機電界発光装置を作製した。すなわち、発光層用蒸着マスクにダミー開口部が無く、第一電極と第二電極の重なる発光領域と発光層用蒸着マスクの有効開口領域が一致する単純マトリクス型カラー有機電界発光装置を作製した。
Comparative Example 1
An organic electroluminescent device was produced in the same manner as in Example 1 except that the openings of the light emitting layer deposition mask were 200 in length and 272 in width. That is, a simple matrix type color organic electroluminescence device was prepared in which the light emitting layer deposition mask had no dummy opening, and the light emitting region where the first electrode and the second electrode overlapped with the effective opening region of the light emitting layer deposition mask.

本有機電界発光装置を線順次駆動したところ、発光領域の外周部で隣接画素への混色が認められた。これは、蒸着マスクのマスク領域と開口領域の境界部分に発生した撓みで基板と蒸着マスクとの密着が損なわれたためであった。   When this organic electroluminescent device was driven line-sequentially, color mixture to adjacent pixels was recognized at the outer periphery of the light emitting region. This is because the adhesion between the substrate and the vapor deposition mask was impaired by the bending that occurred at the boundary between the mask region and the opening region of the vapor deposition mask.

画素集合の1例を示す平面図Plan view showing an example of a pixel set 有機電界発光装置の構造の一例を説明する一部構成を除いた概略斜視図Schematic perspective view excluding a part of the structure for explaining an example of the structure of the organic electroluminescence device 蒸着マスクの一例を示す概略図 (a)平面図(b)断面図Schematic showing an example of a vapor deposition mask (a) Plan view (b) Cross section 蒸着マスクの一例を示す概略斜視図 (a)補強線を導入していない蒸着マスクの一例(b)補強線を導入した蒸着マスクの一例(c)補強線を導入した蒸着マスクの別の一例Schematic perspective view showing an example of a vapor deposition mask (a) An example of a vapor deposition mask that does not introduce a reinforcement wire (b) An example of a vapor deposition mask that introduces a reinforcement wire (c) Another example of a vapor deposition mask that introduces a reinforcement wire マスク蒸着法を説明する模式図Schematic diagram explaining the mask vapor deposition method 貼り合わせ型蒸着マスク(1面取り蒸着マスク)とその蒸着パターンの模式図 (a)蒸着マスク(b)蒸着パターンBonding type deposition mask (single-sided deposition mask) and schematic diagram of its deposition pattern (a) Deposition mask (b) Deposition pattern 貼り合わせ型蒸着マスク(4面取り蒸着マスク)とその蒸着パターンの模式図 (a)蒸着マスク(b)蒸着パターンBonding type vapor deposition mask (4 chamfered vapor deposition mask) and schematic diagram of its vapor deposition pattern (a) Vapor deposition mask (b) Vapor deposition pattern ダミー開口部を有する蒸着マスクの一例を示す平面図Plan view showing an example of a vapor deposition mask having a dummy opening フレームに桟を追加した蒸着マスク(桟と蒸着マスクの接着あり)とその蒸着パVapor deposition mask with frame added to frame (with adhesion of beam and vapor deposition mask) and its vapor deposition mask ターンの模式図 (a)蒸着マスク(b)蒸着パターンSchematic diagram of turn (a) Deposition mask (b) Deposition pattern フレームに桟を追加した蒸着マスク(桟と蒸着マスクの接着無し)とその蒸着Vapor deposition mask with frame added to frame (no adhesion of beam and vapor deposition mask) and its vapor deposition パターンの模式図 (a)蒸着マスク(b)蒸着パターン(A) Deposition mask (b) Deposition pattern

符号の説明Explanation of symbols

1 基板
2 第一電極
3 絶縁層
4 共通有機層
5 発光層
6 第二電極
7 マスク領域
8 マスクフレーム
9 開口領域
10 開口部
11 補強線
12 蒸着源
13 有効開口領域
14 ダミー開口
6 補強線のないストライプ状パターン形成用蒸着マスク
17 補強線を1本導入した蒸着マスク
18 補強線を3本導入した蒸着マスク
19 赤色発光画素
20 緑色発光画素
21 青色発光画素
22 画素集合
23 フレームへ追加した桟
24 蒸着マスク
1 substrate 2 first electrode 3 insulating layer 4 common organic layer 5 light-emitting layer 6 the second electrode 7 mask region 8 the mask frame 9 opening region 10 opening 11 reinforcing wire 12 vapor deposition source 13 effective opening area 14 dummy opening
1 6 Evaporation mask 17 for forming a stripe pattern without reinforcement lines Evaporation mask 18 with one reinforcement line introduced Evaporation mask 19 with three reinforcement lines introduced 19 Red light emitting pixel 20 Green light emitting pixel 21 Blue light emitting pixel 22 Pixel set 23 Frame Added to the crosspiece 24 Deposition mask

Claims (2)

2色以上の発光画素を有し、該発光画素の少なくとも1色はその画素に含まれる発光層をマスク蒸着法によって発光性の有機化合物を蒸着して形成されたものである有機電界発光装置の製造方法であって、前記の発光層の蒸着に用いられる蒸着マスクは、発光画素に用いられる発光層を形成するための開口部(以下、有効開口部)と該有効開口部の配列した開口領域(以下、有効開口領域)の周囲に発光画素の形成用には使用されない開口部(以下、ダミー開口部)とを具備し、有効開口部が縦方向にm個、横方向にn個配列しているのに対して、開口部全体として縦方向にm+1個以上、もしくは横方向にn+1個以上配列され、ダミー開口部の少なくとも一部が別のマスク部材または/およびマスク部材を保持するフレームで覆い隠されていることを特徴とする有機電界発光装置の製造方法。 An organic electroluminescent device having light emitting pixels of two or more colors, wherein at least one color of the light emitting pixels is formed by depositing a light emitting organic compound on a light emitting layer included in the pixels by a mask vapor deposition method. In the manufacturing method, the vapor deposition mask used for vapor deposition of the light emitting layer includes an opening for forming a light emitting layer used for a light emitting pixel (hereinafter referred to as an effective opening) and an opening region in which the effective openings are arranged. (Hereinafter referred to as an effective opening region) is provided with openings (hereinafter referred to as dummy openings) that are not used for forming light emitting pixels, and m effective openings are arranged in the vertical direction and n in the horizontal direction. On the other hand, as a whole, the opening is a frame that holds m + 1 or more in the vertical direction or n + 1 or more in the horizontal direction, and at least a part of the dummy opening holds another mask member and / or mask member. Concealed A method of fabricating an organic light emitting device characterized by there. 蒸着マスクのうち、フレームとの固定に使用されている部分以外の部分(以下、蒸着マスク活用領域)の90%以上の領域を有効開口部とダミー開口部からなる開口領域で占めており、有効開口部とダミー開口部の単位面積あたりに占める開口部の面積(以下、開口率)の比が50〜200%であることを特徴とする請求項記載の有機電界発光装置の製造方法。 Of the vapor deposition mask, 90% or more of the portion other than the portion used for fixing to the frame (hereinafter referred to as vapor deposition mask utilization region) is occupied by the opening region consisting of the effective opening and the dummy opening. the area of the opening occupied per unit area of the opening and the dummy openings (hereinafter, opening ratio) method of fabricating an organic light emitting device according to claim 1, wherein the ratio of 50 to 200%.
JP2004070228A 2003-03-13 2004-03-12 Organic electroluminescent device and manufacturing method thereof Expired - Fee Related JP4506214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070228A JP4506214B2 (en) 2003-03-13 2004-03-12 Organic electroluminescent device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003067798 2003-03-13
JP2004070228A JP4506214B2 (en) 2003-03-13 2004-03-12 Organic electroluminescent device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004296436A JP2004296436A (en) 2004-10-21
JP2004296436A5 JP2004296436A5 (en) 2007-04-05
JP4506214B2 true JP4506214B2 (en) 2010-07-21

Family

ID=33421617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070228A Expired - Fee Related JP4506214B2 (en) 2003-03-13 2004-03-12 Organic electroluminescent device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4506214B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630535B2 (en) * 2003-11-14 2011-02-09 株式会社 日立ディスプレイズ Manufacturing method of display device
WO2006027830A1 (en) * 2004-09-08 2006-03-16 Toray Industries, Inc. Organic electroluminescent device and manufacturing method thereof
KR100626041B1 (en) * 2004-11-25 2006-09-20 삼성에스디아이 주식회사 Mask for depositing thin film of flat panel display and method for fabricating the same
JP2006156267A (en) * 2004-12-01 2006-06-15 Sony Corp Manufacturing method of display device and display device
JP4616667B2 (en) * 2005-03-01 2011-01-19 京セラ株式会社 Mask structure, vapor deposition method using the same, and method for manufacturing organic light emitting device
JP2007095324A (en) * 2005-09-27 2007-04-12 Hitachi Displays Ltd Method of manufacturing organic el display panel, and organic el display panel manufactured by this method
JP4782548B2 (en) * 2005-11-18 2011-09-28 九州日立マクセル株式会社 Deposition method
KR100814818B1 (en) 2006-07-31 2008-03-20 삼성에스디아이 주식회사 Mask for manufacturing organic light emitting display
KR100836471B1 (en) 2006-10-27 2008-06-09 삼성에스디아이 주식회사 Mask and deposition apparatus using the same
JP5976527B2 (en) * 2012-12-27 2016-08-23 株式会社ブイ・テクノロジー Vapor deposition mask and manufacturing method thereof
CN104593721B (en) * 2013-10-30 2017-08-08 昆山国显光电有限公司 A kind of mask plate of throw the net method and its acquisition of evaporation precision metallic mask plate
JP2015103427A (en) * 2013-11-26 2015-06-04 株式会社ジャパンディスプレイ Manufacturing method for display device
JP6394879B2 (en) * 2014-09-30 2018-09-26 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask preparation, framed vapor deposition mask, and organic semiconductor device manufacturing method
KR102632617B1 (en) * 2016-08-08 2024-02-02 삼성디스플레이 주식회사 Mask assembly, apparatus and method for manufacturing a display apparatus using the same and display apparatus
CN118159109A (en) 2016-09-13 2024-06-07 Lg伊诺特有限公司 Metal plate for deposition mask, deposition mask and method for manufacturing the same
JP6868211B2 (en) * 2017-01-05 2021-05-12 大日本印刷株式会社 Thin-film deposition mask device, its manufacturing method, and mask used in the thin-film deposition mask device
WO2018179263A1 (en) * 2017-03-30 2018-10-04 シャープ株式会社 Method for manufacturing display device, deposition mask, and active matrix substrate
CN111051559B (en) * 2017-08-23 2022-01-18 夏普株式会社 Vapor deposition mask, method for manufacturing display panel, and display panel
JP6471200B1 (en) * 2017-09-01 2019-02-13 株式会社アルバック Mask plate and film forming method
WO2019146017A1 (en) * 2018-01-24 2019-08-01 シャープ株式会社 Vapor deposition mask and vapor deposition mask manufacturing method
WO2020044547A1 (en) * 2018-08-31 2020-03-05 シャープ株式会社 Vapor deposition mask
CN113707769B (en) * 2021-08-24 2023-10-17 福州大学 High-precision patterned LED leakage current blocking layer based on transfer printing insulating Langmuir monolayer and preparation method thereof
CN114107897A (en) * 2021-11-29 2022-03-01 合肥维信诺科技有限公司 Mask plate and mask assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927454A (en) * 1995-07-13 1997-01-28 Fuji Electric Co Ltd Mask for selective evaporation
JP2000012238A (en) * 1998-06-29 2000-01-14 Futaba Corp Organic el element, mask for manufacturing the element and manufacture of the element
JP2002060927A (en) * 2000-08-10 2002-02-28 Toray Ind Inc Mask for thin film pattern deposition
JP2003027212A (en) * 2001-07-23 2003-01-29 Sony Corp Apparatus and method for pattern film deposition
JP2003068454A (en) * 2001-08-24 2003-03-07 Dainippon Printing Co Ltd Masking device for multiple units in vacuum vapor deposition used for manufacturing organic el element
JP2004185832A (en) * 2002-11-29 2004-07-02 Samsung Nec Mobile Display Co Ltd Vapor deposition mask, method for manufacturing organic el element using the mask, and the element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927454A (en) * 1995-07-13 1997-01-28 Fuji Electric Co Ltd Mask for selective evaporation
JP2000012238A (en) * 1998-06-29 2000-01-14 Futaba Corp Organic el element, mask for manufacturing the element and manufacture of the element
JP2002060927A (en) * 2000-08-10 2002-02-28 Toray Ind Inc Mask for thin film pattern deposition
JP2003027212A (en) * 2001-07-23 2003-01-29 Sony Corp Apparatus and method for pattern film deposition
JP2003068454A (en) * 2001-08-24 2003-03-07 Dainippon Printing Co Ltd Masking device for multiple units in vacuum vapor deposition used for manufacturing organic el element
JP2004185832A (en) * 2002-11-29 2004-07-02 Samsung Nec Mobile Display Co Ltd Vapor deposition mask, method for manufacturing organic el element using the mask, and the element

Also Published As

Publication number Publication date
JP2004296436A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4506214B2 (en) Organic electroluminescent device and manufacturing method thereof
US7821199B2 (en) Organic electroluminescent device and manufacturing method thereof
KR101070539B1 (en) Deposition mask and manufacturing method of organic electroluminescent device using the same
KR101065314B1 (en) Organic light emitting display apparatus
US8701592B2 (en) Mask frame assembly, method of manufacturing the same, and method of manufacturing organic light-emitting display device using the mask frame assembly
KR100804921B1 (en) Organic electroluminescent display panel and method of manufacturing the same
JP4006173B2 (en) Metal mask structure and manufacturing method thereof
JP3641963B2 (en) Organic EL device and manufacturing method thereof
US20050166842A1 (en) Vapor deposition mask and organic EL display device manufacturing method
JP6584642B2 (en) Large area OLED microdisplay and method for manufacturing the same
US11066742B2 (en) Vapor deposition mask
KR20040082959A (en) Film formation mask, organic el panel, and method of manufacturing the organic el panel
KR20120116782A (en) Fabricating method of organic light emitting diode display
KR20060006175A (en) Mask for an evaporation, method of manufacturing an organic electroluminesence device thereused
JP2010040529A (en) Depositing method of luminescent layers of organic el element, manufacturing method of organic el element including the depositing method, and organic el element manufactured by the manufacturing method
JP2005302457A (en) Deposited mask and its forming method, and manufacturing method for organic electroluminescent equipment
JP6510426B2 (en) Dual view display substrate and display device
US7253533B2 (en) Divided shadow mask for fabricating organic light emitting diode displays
WO2019064419A1 (en) Vapor deposition mask and vapor deposition mask manufacturing method
JP2003231964A (en) Evaporation mask, its manufacturing process, organic electroluminescent device and its manufacturing process
JP2002110345A (en) Manufacturing method of mask and organic el display element using the same
KR20070109613A (en) Shadow mask frame assembly and method for manufacturing organic light emitting device using the same
JP3531597B2 (en) Organic electroluminescent device
JP2001291580A (en) Electroluminescent device
TWI358240B (en) Organic field light emitter and manufacture method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4506214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees