JP4782548B2 - Deposition method - Google Patents

Deposition method Download PDF

Info

Publication number
JP4782548B2
JP4782548B2 JP2005334172A JP2005334172A JP4782548B2 JP 4782548 B2 JP4782548 B2 JP 4782548B2 JP 2005334172 A JP2005334172 A JP 2005334172A JP 2005334172 A JP2005334172 A JP 2005334172A JP 4782548 B2 JP4782548 B2 JP 4782548B2
Authority
JP
Japan
Prior art keywords
vapor deposition
mask
substrate
frame
pattern formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005334172A
Other languages
Japanese (ja)
Other versions
JP2007138256A (en
Inventor
良弘 小林
裕仁 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Hitachi Maxell Ltd
Original Assignee
Kyushu Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Hitachi Maxell Ltd filed Critical Kyushu Hitachi Maxell Ltd
Priority to JP2005334172A priority Critical patent/JP4782548B2/en
Publication of JP2007138256A publication Critical patent/JP2007138256A/en
Application granted granted Critical
Publication of JP4782548B2 publication Critical patent/JP4782548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は蒸着方法に関し、特に蒸着マスク法により、有機EL素子の発光層を形成する蒸着方法に関するものである。   The present invention relates to a vapor deposition method, and more particularly to a vapor deposition method for forming a light emitting layer of an organic EL element by a vapor deposition mask method.

CRTや液晶に替わる表示装置として、光透過性の基板上に、有機化合物材料からなる赤(R)、緑(G)、青(B)の3色の発光層がマトリックス状やストライプ状などの各種パターンで配列された有機EL(エレクトロルミネッセンス)表示パネルがある。有機EL素子の発光層の形成方法としては、蒸着マスク法に代表されるドライプロセスによることが、精度、生産性などの観点からして有利であることは広く知られている。このような蒸着方法として、例えば特許文献1が開示されている。   As a display device that replaces CRT and liquid crystal, light emitting layers of red (R), green (G), and blue (B) made of an organic compound material are formed on a light-transmitting substrate in a matrix shape or a stripe shape. There are organic EL (electroluminescence) display panels arranged in various patterns. As a method for forming a light emitting layer of an organic EL element, it is widely known that a dry process represented by an evaporation mask method is advantageous from the viewpoint of accuracy, productivity, and the like. As such a vapor deposition method, for example, Patent Document 1 is disclosed.

特許文献1について図16に基づいて説明すると、磁性金属材料から成る蒸着通孔101が設けられた蒸着マスク102の周縁部をマスク受け103に載置し、マスク上下機構によりマスク受け103を上昇させて、蒸着マスク102を基板受け104の受け部の間隙に配置して、基板105に押し付ける。そして、基板105の上面側には磁石106を載置する。これにより、マスク受け103と接触している蒸着マスク102の周縁部はマスク受け103によって基板105と十分に密着させるとともに、蒸着マスク102の中央部は磁石106の磁力によって基板105側に引き寄せて、蒸着マスク102と基板105とを密着させている。   Patent Document 1 will be described with reference to FIG. 16. A peripheral portion of a vapor deposition mask 102 provided with a vapor deposition hole 101 made of a magnetic metal material is placed on a mask receiver 103, and the mask receiver 103 is raised by a mask up-and-down mechanism. Then, the deposition mask 102 is placed in the gap between the receiving portions of the substrate receiver 104 and pressed against the substrate 105. A magnet 106 is placed on the upper surface side of the substrate 105. Thus, the peripheral portion of the vapor deposition mask 102 that is in contact with the mask receiver 103 is sufficiently adhered to the substrate 105 by the mask receiver 103, and the central portion of the vapor deposition mask 102 is drawn toward the substrate 105 by the magnetic force of the magnet 106, The vapor deposition mask 102 and the substrate 105 are in close contact with each other.

また、この磁石106を載置することは基板105に荷重をかける点でおもりを載置していることでもある。磁石106をおもり107として考えた時、基板105に荷重がかかってたわみ、たわんだ基板105は蒸着マスク102に押し当たるように密着するので、蒸着マスク102と基板105との密着度が向上することが確認されている。   Further, placing the magnet 106 also means placing a weight in terms of applying a load to the substrate 105. When the magnet 106 is considered as the weight 107, the substrate 105 is bent under a load, and the bent substrate 105 is brought into close contact with the evaporation mask 102, so that the adhesion between the evaporation mask 102 and the substrate 105 is improved. Has been confirmed.

特開2001−3155号公報JP 2001-3155 A

しかし、上記の場合、基板105にかかる荷重は面荷重である。この面荷重だと、特に基板105および/またはおもり107の平面性が悪い時や蒸着マスク102の形状が大きく、それに伴って載置するおもり107の形状が大きい時に、基板105とおもり107とは接触している部分とそうでない部分がどこかに出てしまって蒸着時において蒸着材の回り込みを引き起こしてしまう場合があり、これが不良につながっていた。   However, in the above case, the load applied to the substrate 105 is a surface load. With this surface load, particularly when the flatness of the substrate 105 and / or the weight 107 is poor, or when the shape of the vapor deposition mask 102 is large and the shape of the weight 107 to be placed is large, the substrate 105 and the weight 107 are In some cases, the part that is in contact and the part that is not come out somewhere, causing the deposition material to wrap around at the time of deposition, which led to defects.

本発明の目的は、蒸着マスクを基板上に搭載した時の蒸着マスクと基板との密着度を良くして、蒸着材の回り込みがない精度の良い蒸着が可能となる蒸着方法を提供するにある。   An object of the present invention is to provide a vapor deposition method that improves the degree of adhesion between a vapor deposition mask and a substrate when the vapor deposition mask is mounted on a substrate, and enables highly accurate vapor deposition without causing the vapor deposition material to wrap around. .

本発明の蒸着方法は、蒸着装置内の上方に配置した基板30に蒸着材を蒸着するために、蒸着通孔5が形成されたパターン形成領域4を囲むように枠体3が形成された蒸着マスク1を前記基板30の片側に搭載し、少なくとも前記蒸着マスク1の端部が支持してあって、前記基板30の蒸着マスク1が搭載される側とは反対側に押さえ治具50を介しておもり20を置いており、前記押さえ治具50とおもり20との間には平面板60を介在させ、前記押さえ治具50は、前記枠体3上に配することを特徴とする。


The vapor deposition method of the present invention is a vapor deposition in which a frame 3 is formed so as to surround a pattern formation region 4 in which a vapor deposition through hole 5 is formed in order to deposit a vapor deposition material on a substrate 30 disposed above in a vapor deposition apparatus. The mask 1 is mounted on one side of the substrate 30, at least the end of the vapor deposition mask 1 is supported, and a holding jig 50 is interposed on the opposite side of the substrate 30 from the side on which the vapor deposition mask 1 is mounted. A weight 20 is placed, and a flat plate 60 is interposed between the pressing jig 50 and the weight 20, and the pressing jig 50 is disposed on the frame body 3.


また、前記パターン形成領域4が整列形成された蒸着マスク1であって、前記押さえ治具50を前記各パターン形成領域4を囲むように格子状に形成することを特徴とする。   Further, the evaporation mask 1 in which the pattern formation regions 4 are arranged and formed, and the pressing jig 50 is formed in a lattice shape so as to surround each pattern formation region 4.

さらに、前記枠体3はインバー材から成ることを特徴とする。   Further, the frame 3 is made of Invar material.

本発明に係る蒸着方法は、蒸着装置内の上方に配置した基板30に蒸着材を蒸着するために、蒸着通孔5が形成されたパターン形成領域4を備える蒸着マスク1を前記基板30の片側に搭載し、少なくとも前記蒸着マスク1の端部が支持してあって、前記基板30の蒸着マスク1が搭載される側とは反対側に押さえ治具50を介しておもり20を置くようにしたので、面荷重ではなく点荷重や線荷重、つまり、局部的な荷重を基板30にかけることができるので、蒸着マスク1と基板30とで密着させたい箇所に局部的荷重をかければその箇所を確実に密着させることができ、精度の良い蒸着が可能となる。局部的荷重をかけたい箇所は押さえ治具50によって自由に設定できる。   In the vapor deposition method according to the present invention, the vapor deposition mask 1 including the pattern formation region 4 in which the vapor deposition through holes 5 are formed is disposed on one side of the substrate 30 in order to deposit the vapor deposition material on the substrate 30 disposed above the vapor deposition apparatus. At least the end of the vapor deposition mask 1 is supported, and the weight 20 is placed on the opposite side of the substrate 30 from the side on which the vapor deposition mask 1 is mounted via a holding jig 50. Therefore, a point load or a line load, that is, a local load can be applied to the substrate 30 instead of a surface load. Therefore, if a local load is applied to a position where the deposition mask 1 and the substrate 30 are to be brought into close contact with each other, Adherence can be ensured, and highly accurate vapor deposition is possible. A place where a local load is to be applied can be freely set by the holding jig 50.

また、前記蒸着通孔5上方を避けて前記押さえ治具50を配するので、荷重による蒸着通孔5の形状変化などといった悪影響がない状態で蒸着マスク1と基板30とが密着し、精度の良い蒸着が可能となる。さらに、パターン形成領域の外周縁4aにより大きな荷重がかかることになるので、蒸着通孔5の形状変化などといった悪影響がない上にパターン形成領域の外周縁4aをよりしっかりと密着させることができ、より精度の良い蒸着が可能となる。   Further, since the holding jig 50 is disposed avoiding the upper part of the vapor deposition through hole 5, the vapor deposition mask 1 and the substrate 30 are brought into close contact with each other without adverse effects such as a change in the shape of the vapor deposition through hole 5 due to a load. Good vapor deposition is possible. Furthermore, since a large load is applied to the outer peripheral edge 4a of the pattern formation region, there is no adverse effect such as a shape change of the vapor deposition through hole 5, and the outer peripheral edge 4a of the pattern formation region can be more firmly adhered, More accurate vapor deposition is possible.

さらには、前記パターン形成領域4が整列形成された蒸着マスク1であって、前記押さえ治具50を前記各パターン形成領域4を囲むように格子状に形成することで、パターン形成領域の外周縁4aをしっかりと密着させることができるとともに、蒸着マスク1全体においてもバランス良く荷重がかかり密着ムラを少なくすることができる。   Furthermore, it is the vapor deposition mask 1 in which the pattern formation region 4 is aligned, and the outer periphery of the pattern formation region is formed by forming the pressing jig 50 in a lattice shape so as to surround each pattern formation region 4. 4a can be firmly adhered, and the load on the vapor deposition mask 1 as a whole can be balanced and unevenness of adhesion can be reduced.

また、前記蒸着マスク1のパターン形成領域4を囲むように枠体3が形成されることで、荷重がかかるのは枠体3上となる。枠体3は硬く変形しにくいものであるし、例え変形しても問題になることはほとんどない。よって、前記蒸着通孔5をはじめ蒸着マスク1に悪影響なく蒸着マスク1と基板30とが密着され、したがって、蒸着材の回り込みがない精度の良い蒸着が可能となる。さらに、前記枠体3がインバー材から成るものであれば、熱の影響による変形および荷重の影響による変形から蒸着通孔5を保護することができる。   Further, since the frame body 3 is formed so as to surround the pattern formation region 4 of the vapor deposition mask 1, the load is applied on the frame body 3. The frame 3 is hard and difficult to deform, and even if it is deformed, there is almost no problem. Therefore, the vapor deposition mask 1 and the substrate 30 are brought into close contact with each other without adversely affecting the vapor deposition through hole 5 and the vapor deposition mask 1, and therefore it is possible to perform vapor deposition with high accuracy without causing the vapor deposition material to wrap around. Furthermore, if the frame 3 is made of an invar material, the vapor deposition through-hole 5 can be protected from deformation caused by heat and deformation caused by load.

(第1実施形態)
本発明に係る蒸着方法の第1実施形態について以下図面を参照して説明する。図1に示す蒸着マスク1は、ニッケルやニッケル−コバルト等のニッケル合金、その他の電着金属を素材として、電鋳方法により形成されたマスク本体2から成る。このマスク本体2は、例えば36×48mmのパターン形成領域4を複数、本実施形態では3つ備える。パターン形成領域4には、多数独立の蒸着通孔5からなる発光層形成用の蒸着パターン6が形成されている。
(First embodiment)
A first embodiment of a vapor deposition method according to the present invention will be described below with reference to the drawings. A vapor deposition mask 1 shown in FIG. 1 includes a mask body 2 formed by an electroforming method using a nickel alloy such as nickel or nickel-cobalt, or other electrodeposited metal. The mask body 2 includes a plurality of, for example, three, 36 × 48 mm pattern formation regions 4 in the present embodiment. In the pattern formation region 4, a vapor deposition pattern 6 for forming a light emitting layer is formed, which includes a large number of independent vapor deposition holes 5.

マスク本体2の厚みは、好ましくは10〜20μmの範囲とし、本実施例では15μmに設定した。各蒸着通孔5は、例えば平面視で前後の長さ寸法が100〜300μm、左右幅寸法が40〜90μmの四角形状を有しており、これら蒸着通孔5は、前後方向に直線的に並ぶ複数個の通孔群を列とし、複数個の列が左右方向に並列状に配設されたマトリクス状の蒸着パターン6を構成した。   The thickness of the mask body 2 is preferably in the range of 10 to 20 μm, and is set to 15 μm in this embodiment. Each vapor deposition through hole 5 has, for example, a rectangular shape with a front-rear length dimension of 100 to 300 μm and a left-right width dimension of 40 to 90 μm in plan view, and these vapor deposition through holes 5 are linear in the front-rear direction. A matrix-like vapor deposition pattern 6 in which a plurality of arranged through-hole groups are arranged in a row and the plurality of rows are arranged in parallel in the left-right direction is configured.

図2は本実施形態に係る有機EL素子用の蒸着マスクの製造方法を示す。まず、図2(a)に示すごとく、導電性を有する例えばステンレスや真ちゅう鋼製の母型10の表面にフォトレジスト層11を形成する。母型10は600×700mmの四角形状であり、フォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成した。   FIG. 2 shows a method for manufacturing a vapor deposition mask for an organic EL element according to this embodiment. First, as shown in FIG. 2A, a photoresist layer 11 is formed on the surface of a matrix 10 made of, for example, stainless steel or brass having conductivity. The matrix 10 has a square shape of 600 × 700 mm, and the photoresist layer 11 is formed by thermocompression bonding of one or several negative photosensitive dry film resists according to a predetermined height.

次いで、図2(b)に示すごとくフォトレジスト層11の上に、前記蒸着通孔5に対応する透光孔12aを有するパターンフィルム12(ガラスマスク)を密着させたのち、紫外光ランプ13で紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を溶解除去することにより、図2(c)に示すごとく、前記蒸着通孔5に対応するストレート状のレジスト体14aを有する一次パターンレジスト14を母型10上に形成した。   Next, as shown in FIG. 2 (b), a pattern film 12 (glass mask) having a light transmitting hole 12 a corresponding to the vapor deposition through hole 5 is brought into close contact with the photoresist layer 11, and then the ultraviolet light lamp 13 is used. Exposure is performed by irradiating ultraviolet light, development and drying are performed, and unexposed portions are dissolved and removed, thereby forming a straight shape corresponding to the vapor deposition through-hole 5 as shown in FIG. A primary pattern resist 14 having a resist body 14 a was formed on the mother die 10.

続いて、上記母型10を所定の条件に建浴した電鋳槽に入れ、図2(d)に示すごとく先のレジスト体14aの高さの範囲内で、母型10のレジスト体14aで覆われていない表面にニッケル合金等の電着金属を好ましくは10〜20μm厚の範囲とし、本実施例では15μm厚で一次電鋳して、一次電着層15、すなわち前記マスク本体2となる層を形成した。ここでは、母型10の略全面にわたって、一次電着層15を形成した。次に、レジスト体14aを溶解除去することにより、図2(e)に示すごとく多数独立の蒸着通孔5からなる有機EL素子の発光層形成用の蒸着パターン6を備えるマスク本体2を得た。なおこの後、蒸着マスク1を引っ張り状態で、その外周縁に別途ステンレス、アルミ等の固定枠を周知の方法で固定しても良い。   Subsequently, the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and the resist member 14a of the mother die 10 is within the range of the height of the previous resist member 14a as shown in FIG. An electrodeposited metal such as a nickel alloy is preferably in a range of 10 to 20 μm on the uncovered surface, and in this embodiment, primary electroforming is performed with a thickness of 15 μm to form the primary electrodeposition layer 15, that is, the mask body 2. A layer was formed. Here, the primary electrodeposition layer 15 was formed over substantially the entire surface of the mother die 10. Next, by dissolving and removing the resist body 14a, a mask main body 2 provided with a vapor deposition pattern 6 for forming a light emitting layer of an organic EL element composed of a large number of independent vapor deposition through holes 5 was obtained as shown in FIG. 2 (e). . After that, the vapor deposition mask 1 may be pulled, and a fixed frame such as stainless steel or aluminum may be separately fixed to the outer peripheral edge by a known method.

前記マスク本体2、すなわち一次電着層15は、それが内方に収縮する方向の応力が作用するようなテンションを加えた状態で形成したものでも良い。かかる引っ張り応力は、一次電着層15を作成する際の電鋳層の温度(40〜50℃)と常温(20℃)との温度差に起因して、常温時に一次電着層15が収縮するようにすることによって実現できる。   The mask body 2, that is, the primary electrodeposition layer 15 may be formed in a state where a tension is applied so that stress in a direction in which the mask body 2 contracts inwardly acts. Such tensile stress is caused by the temperature difference between the electroformed layer temperature (40 to 50 ° C.) and the normal temperature (20 ° C.) when the primary electrodeposition layer 15 is formed, and the primary electrodeposition layer 15 contracts at normal temperature. This can be realized by doing so.

背景技術にて述べたように、基板の上面側におもりを直接置くようなことは特許文献1(図16)から考えられる。そしてこれは、基板に対して面荷重がかかっていることになる。この面荷重であると、特に基板30および/またはおもり20の平面性が悪い時や蒸着マスク1の形状が大きく、それに伴って載置するおもり20の形状が大きい時に、基板30とおもり20は接触している部分とそうでない部分がどこかに出てしまって蒸着時において蒸着材の回り込みを引き起こしてしまう場合がある。そこで、押さえ治具50を介しておもり20を置き、面荷重ではなく点や線荷重、つまり、局部的荷重をかけるようにする。この局部的荷重を蒸着マスク1と基板30間で特に密着させたい箇所、密着させる必要がある箇所にかけることによって、その箇所に相当する蒸着マスク1と基板30とはしっかりと密着させることができるので、よって、精度の良い蒸着が可能となる。この局部的荷重は、押さえ治具50と基板30が接触している箇所にかかるのだが、前記押さえ治具50は種々の形状に簡単に設計できるものである。すなわち、局部的荷重をかけたい箇所は押さえ治具50の形状を変えることで自由に設定することができるのである。   As described in the background art, it is conceivable from Patent Document 1 (FIG. 16) that the weight is directly placed on the upper surface side of the substrate. This means that a surface load is applied to the substrate. With this surface load, particularly when the flatness of the substrate 30 and / or the weight 20 is poor or when the shape of the vapor deposition mask 1 is large and the shape of the weight 20 to be placed is large, the substrate 30 and the weight 20 are There may be a case where the part that is in contact with the part that does not come out somewhere and causes the deposition material to wrap around during deposition. Therefore, the weight 20 is placed through the holding jig 50, and a point or line load, that is, a local load is applied instead of a surface load. By applying this local load to a location where the vapor deposition mask 1 and the substrate 30 are particularly in close contact with each other and a location where the local load needs to be adhered, the vapor deposition mask 1 corresponding to that location and the substrate 30 can be firmly adhered to each other. Therefore, highly accurate vapor deposition is possible. Although this local load is applied to the place where the pressing jig 50 and the substrate 30 are in contact, the pressing jig 50 can be easily designed in various shapes. That is, the location where the local load is to be applied can be freely set by changing the shape of the holding jig 50.

この押さえ治具50は、図3(b)に示すように、前記蒸着通孔5上方を避けた位置に配するのが望ましい。図3は模式的に示したものであるが、図3(b)について説明すると、蒸着装置内の上方に配置した光透過性の、例えば、ガラス等から成る基板30上に蒸着材を蒸着するため、マスク本体2に蒸着通孔5が形成された蒸着マスク1を前記基板30の蒸着源40がある側、つまり、発光層を形成したい側に蒸着マスク1を搭載する。前記蒸着マスク1および基板30の端部、少なくとも前記蒸着マスク1の端部はマスクホルダーで挟持するなどといった周知の方法で支持されている。そして、蒸着マスク1を搭載した側と反対側に押さえ治具50を介しておもり20を置いている。このような場合、前記蒸着通孔5上方に前記押さえ治具50を配すると、前記蒸着通孔5の形状が変化したり、ピッチ精度が悪くなったりといったことが生じる可能性があるため、前記蒸着通孔5上方を避けた位置に前記押さえ治具50を配するのが望ましいのである。図3(a)は、図3(b)のA部分において上面から見た部分拡大図であり、蒸着通孔5(蒸着マスク1)と押さえ治具50との位置関係を示すものである。図3は一例であるが、このように前記蒸着通孔5を避けてあればいかなる形態でも良い。   As shown in FIG. 3B, the holding jig 50 is preferably disposed at a position avoiding the upper part of the vapor deposition through hole 5. FIG. 3 is a schematic view, but FIG. 3B will be described. The vapor deposition material is vapor-deposited on a light-transmitting substrate 30 made of, for example, glass or the like disposed above the vapor deposition apparatus. Therefore, the vapor deposition mask 1 in which the vapor deposition through holes 5 are formed in the mask body 2 is mounted on the side where the vapor deposition source 40 of the substrate 30 is located, that is, the side where the light emitting layer is to be formed. The end portions of the vapor deposition mask 1 and the substrate 30, at least the end portions of the vapor deposition mask 1, are supported by a known method such as sandwiching with a mask holder. The weight 20 is placed on the side opposite to the side on which the vapor deposition mask 1 is mounted via a holding jig 50. In such a case, if the holding jig 50 is disposed above the vapor deposition through hole 5, the shape of the vapor deposition through hole 5 may change or the pitch accuracy may deteriorate. It is desirable to arrange the pressing jig 50 at a position avoiding the upper part of the vapor deposition through hole 5. FIG. 3A is a partially enlarged view of the portion A in FIG. 3B as viewed from above, and shows the positional relationship between the vapor deposition through hole 5 (vapor deposition mask 1) and the holding jig 50. FIG. Although FIG. 3 shows an example, any form may be used as long as the vapor deposition through hole 5 is avoided.

前記おもり20は必要な重さを有するものであれば何でも良く、また、その形状や重さ等は蒸着マスク1の形状等によって適宜変わるものであるが、例えば、おもり20の重さは、好ましくは500〜800gの範囲とし、本実施形態では600gとした。そして、おもり20の形状寸法は、縦200〜230mm、横200〜230mmの範囲が好ましく、本実施形態では、200×200mmとした。なお、高さについては、おもり20の比重などを考慮して必要な重さとなるように設定すれば良い。   The weight 20 may be anything as long as it has a necessary weight, and the shape, weight, and the like of the weight 20 vary depending on the shape of the vapor deposition mask 1, for example, the weight of the weight 20 is preferably Is in the range of 500 to 800 g, and 600 g in this embodiment. The shape dimension of the weight 20 is preferably in the range of 200 to 230 mm in length and 200 to 230 mm in width, and in this embodiment, it is 200 × 200 mm. The height may be set so as to be a necessary weight in consideration of the specific gravity of the weight 20 and the like.

また、押さえ治具50とおもり20との間には平面板60を介在させている。これは、基板30に対してより安定性良く荷重がかかるようにするためのものであるが、おもり20の荷重が基板30に安定性良くかかっていれば、必ずしも必要とするものではない。この平面板60の寸法や材質は特に限定されないが、本実施形態では、押さえ治具50と略同形状かつ同程度の寸法のガラス板を用いた。   Further, a flat plate 60 is interposed between the holding jig 50 and the weight 20. This is intended to apply a load with higher stability to the substrate 30, but is not necessarily required if the load of the weight 20 is applied to the substrate 30 with good stability. Although the size and material of the flat plate 60 are not particularly limited, in the present embodiment, a glass plate having substantially the same shape and the same size as the pressing jig 50 is used.

そして、前記押さえ治具50の形状は上述したように蒸着マスク1に合わせて自由に設定できるものであり、また、その断面形状は、特に限定されるものではなく、丸状や三角状、四角状など何でも良い。また、押さえ治具50の材質は、本実施形態ではインバーから成るものであるが、これに限定されず、例えば、弾性体で形成すれば、おもり20の荷重を基板30によりしっかりとかけることができるし、前記基板30や前記平面板60に傷を付けにくくできて良い。また、前記押さえ治具50が前記おもり20の重さ(荷重)と略同等の重さ(荷重)を持つものであれば、前記おもり20は用いなくとも良い。   The shape of the holding jig 50 can be freely set according to the vapor deposition mask 1 as described above, and the cross-sectional shape thereof is not particularly limited, and is round, triangular, or square. It can be anything. The material of the holding jig 50 is made of invar in the present embodiment, but is not limited to this. For example, if the holding jig 50 is made of an elastic body, the load of the weight 20 can be firmly applied to the substrate 30. In addition, the substrate 30 and the flat plate 60 may not be easily damaged. Further, if the holding jig 50 has a weight (load) substantially equal to the weight (load) of the weight 20, the weight 20 may not be used.

ここで、蒸着マスク1と基板30の間で蒸着材の回り込みが生じてしまうのは、蒸着マスク1のパターン形成領域4と基板30とに隙間があるためであるが、この隙間が生じる原因として基板30とパターン形成領域の外周縁4aにおいて密着性が悪いのがその一つである。これは、そもそもパターン形成領域4における面は平面性があるのだが、パターン形成領域の外周縁4aにおいて高さのバラツキがあるためパターン形成領域4では基板30と密着しない箇所ができ、蒸着材の回り込みが起きてしまう。このバラツキが生じるのはパターン形成領域4とパターン形成領域の外周縁4aの境目で生じやすいひずみによるものである。そこで、押さえ治具50を用いてパターン形成領域4とパターン形成領域の外周縁4aの境目により大きな荷重がかかるようにすれば、前記蒸着通孔5の形状変化などといった悪影響がない状態でバラツキが抑えられるので平面性が良くなり、よって密着性を良くすることができる。   Here, the reason why the vapor deposition material wraps around between the vapor deposition mask 1 and the substrate 30 is that there is a gap between the pattern formation region 4 of the vapor deposition mask 1 and the substrate 30. One of them is poor adhesion between the substrate 30 and the outer peripheral edge 4a of the pattern formation region. In the first place, the surface in the pattern formation region 4 is flat, but there is a variation in height at the outer peripheral edge 4a of the pattern formation region, so that a portion that does not adhere to the substrate 30 is formed in the pattern formation region 4, and the deposition material A wraparound will occur. This variation is caused by strain that is likely to occur at the boundary between the pattern formation region 4 and the outer peripheral edge 4a of the pattern formation region. Therefore, if a large load is applied to the boundary between the pattern formation region 4 and the outer peripheral edge 4a of the pattern formation region using the holding jig 50, the variation occurs without adverse effects such as a change in the shape of the vapor deposition through hole 5. Since it can be suppressed, the flatness is improved, and therefore the adhesion can be improved.

では、押さえ治具50を用いてパターン形成領域4とパターン形成領域の外周縁4aの境目により大きな荷重がかかるようにするためにはどのようにすればいいかと言うと、隣り合うパターン形成領域4・4間に前記押さえ治具50を配すれば良いが、好ましくは、隣り合うパターン形成領域4・4間であって、隣り合うパターン形成領域4・4間の中心を対称にして前記押さえ治具50を配する。具体的には、図4に示すような形態である。このようにすることで、前記蒸着通孔5上方を避けるとともにパターン形成領域の外周縁4aにより大きな荷重をかけることができる。図5に示す形態も同様である。さらに好ましくは、図6に示すように、パターン形成領域の外周縁4a全てに荷重がかかるように前記押さえ治具50を配するのが好ましい。このようにすれば、パターン形成領域4よりパターン形成領域の外周縁4aに強い荷重をかけることができるので、パターン形成領域の外周縁4aと基板30はしっかりと密着し、よって、蒸着材の回り込みを起こすのを防止できる。なお、図4ないし図6(a)は、本実施形態に係る蒸着時の状態を示す断面図であり、図4ないし図6(b)は、(a)における蒸着マスク1および押さえ治具50の斜視図である。   Then, how to apply a large load to the boundary between the pattern formation region 4 and the outer peripheral edge 4a of the pattern formation region using the holding jig 50 is as follows. The pressing jig 50 may be arranged between the four, but preferably, the pressing jig 50 is located between the adjacent pattern forming regions 4 and 4, and the center between the adjacent pattern forming regions 4 and 4 is symmetrical. The tool 50 is arranged. Specifically, the configuration is as shown in FIG. By doing so, it is possible to avoid the upper portion of the vapor deposition through hole 5 and apply a larger load to the outer peripheral edge 4a of the pattern formation region. The configuration shown in FIG. 5 is the same. More preferably, as shown in FIG. 6, it is preferable to arrange the pressing jig 50 so that a load is applied to the entire outer peripheral edge 4a of the pattern formation region. In this way, a stronger load can be applied to the outer peripheral edge 4a of the pattern formation region than the pattern formation region 4, so that the outer peripheral edge 4a of the pattern formation region and the substrate 30 are in close contact with each other. Can be prevented. 4A to 6A are cross-sectional views showing a state during vapor deposition according to the present embodiment, and FIGS. 4A to 6B are vapor deposition masks 1 and a holding jig 50 in FIG. FIG.

さらには、前記押さえ治具50を図7に示すように各パターン形成領域4を囲むような格子状に形成することが望ましい。前記押さえ治具50は所望の位置からズレて配されてパターン形成領域4aより強い荷重がパターン形成領域4にかかることは好ましくない。図6に示すような形態であれば、それは解決できるが、各パターン形成領域4に対して1つ1つ精度良く押さえ治具50を配するのは時間を要してしまう。しかし、図7に示すような押さえ治具50を用いれば、容易にかつパターン形成領域4から余裕を持たせて押さえ治具50を配することができるとともに、局部的荷重がかかった箇所はしっかりと密着させることができる。しかも、前記パターン形成領域4が整列して配設された蒸着マスク1であれば、マスク全体においてもバランス良く荷重をかけることができ、密着ムラを少なくできる。   Furthermore, it is desirable to form the pressing jig 50 in a lattice shape surrounding each pattern forming region 4 as shown in FIG. It is not preferable that the pressing jig 50 is arranged with a deviation from a desired position and a load stronger than the pattern forming region 4a is applied to the pattern forming region 4. If it is a form as shown in FIG. 6, it can be solved, but it takes time to arrange the pressing jigs 50 one by one with high accuracy for each pattern formation region 4. However, if the holding jig 50 as shown in FIG. 7 is used, the holding jig 50 can be arranged easily and with a margin from the pattern formation region 4, and the portion where the local load is applied is firmly Can be adhered to. Moreover, if the deposition mask 1 has the pattern formation regions 4 arranged in an aligned manner, a load can be applied in a well-balanced manner over the entire mask, and adhesion unevenness can be reduced.

(第2実施形態)
次に、本発明に係る蒸着方法の第2実施形態について説明する。なお、前記実施形態と同一部材には同一符号を付して、その説明を省略する。
(Second Embodiment)
Next, a second embodiment of the vapor deposition method according to the present invention will be described. In addition, the same code | symbol is attached | subjected to the same member as the said embodiment, and the description is abbreviate | omitted.

本実施形態の蒸着マスク1は、図8に示すようにニッケルやニッケル−コバルト等のニッケル合金、その他の電着金属を素材として、電鋳方法により形成されたマスク本体2と、このマスク本体2を囲むように装着された枠体3とから成る。図11において、マスク本体2は、600×700mmの四角形状の母型領域の中に、例えば36×48mm(2.4インチ)の四角形状に9つ独立して形成されており、その内部にパターン形成領域4を1つ備える。パターン形成領域4には、多数独立の蒸着通孔5からなる発光層形成用の蒸着パターン6が形成されている。   As shown in FIG. 8, the vapor deposition mask 1 of this embodiment includes a mask main body 2 formed by an electroforming method using a nickel alloy such as nickel or nickel-cobalt or other electrodeposited metal, and the mask main body 2. And a frame 3 mounted so as to surround the frame. In FIG. 11, nine mask bodies 2 are independently formed in, for example, a 36 × 48 mm (2.4 inch) square shape in a 600 × 700 mm square matrix region. One pattern forming region 4 is provided. In the pattern formation region 4, a vapor deposition pattern 6 for forming a light emitting layer is formed which is composed of a large number of independent vapor deposition through holes 5.

マスク本体2の厚みは、好ましくは10〜20μmの範囲とし、本実施例では15μmに設定した。各蒸着通孔5は、例えば平面視で前後の長さ寸法が100〜300μm、左右幅寸法が40〜90μmの四角形状を有しており、これら蒸着通孔5は、前後方向に直線的に並ぶ複数個の通孔群を列とし、複数個の列が左右方向に並列状に配設されたマトリクス状の蒸着パターン6を構成した。なお、図8の断面図は、実際の蒸着パターン6の様子を示したものではなく、それを模式的に示している。   The thickness of the mask body 2 is preferably in the range of 10 to 20 μm, and is set to 15 μm in this embodiment. Each vapor deposition through hole 5 has, for example, a rectangular shape with a front-rear length dimension of 100 to 300 μm and a left-right width dimension of 40 to 90 μm in plan view, and these vapor deposition through holes 5 are linear in the front-rear direction. A matrix-like vapor deposition pattern 6 in which a plurality of arranged through-hole groups are arranged in a row and the plurality of rows are arranged in parallel in the left-right direction is configured. In addition, the cross-sectional view of FIG. 8 does not show the actual state of the vapor deposition pattern 6, but schematically shows it.

マスク本体2の上面側には、マスク本体2の補強用の枠体3が装着される。この枠体3は、ニッケル−鉄合金であるインバー材、あるいはニッケル−鉄−コバルト合金であるスーパーインバー材等のような低熱線膨張係数の材質からなる。枠体3は、マスク本体2よりも肉厚の成形品であり、電鋳法により形成された電着金属層9によりマスク本体2のパターン形成領域4の外周縁4aと不離一体的に接合される。ここでは図11に示すごとく、9枚のマスク本体2を1枚の枠体3で保持している。すなわち、枠体3は、その板面上に9つの開口3aが整列配置されており、各開口3aに一枚のマスク本体2が装着される。枠体3は、マスク本体2に対応する9つの開口3aを備える平板形状に形成されている。枠体3の厚み寸法は、例えば1〜2mm程度とし、本実施例においては1mmに設定した。   A frame 3 for reinforcement of the mask body 2 is attached to the upper surface side of the mask body 2. The frame 3 is made of a material having a low coefficient of thermal expansion such as an invar material that is a nickel-iron alloy or a super invar material that is a nickel-iron-cobalt alloy. The frame 3 is a molded product that is thicker than the mask body 2 and is integrally and integrally joined to the outer peripheral edge 4a of the pattern formation region 4 of the mask body 2 by an electrodeposited metal layer 9 formed by electroforming. The Here, as shown in FIG. 11, nine mask bodies 2 are held by one frame 3. That is, the frame 3 has nine openings 3a aligned on the plate surface, and one mask body 2 is mounted in each opening 3a. The frame 3 is formed in a flat plate shape having nine openings 3 a corresponding to the mask main body 2. The thickness dimension of the frame 3 is, for example, about 1 to 2 mm, and is set to 1 mm in this embodiment.

枠体3の形成素材としてインバー材やスーパーインバー材を採用したのは、その線膨張係数が2×10-6/℃ 、あるいは1×10-6/℃ 以下と極めて小さく、蒸着工程における熱影響によるマスク本体2の寸法変化を良好に抑制できることに拠る。すなわち、例えば上述のようにマスク本体2がニッケルからなるものであると、その線膨張係数は12.80×10-6/℃ であり、被蒸着基板30である一般ガラスの線膨張係数3.20×10-6/℃に比べて数倍大きいため、蒸着時の高温による熱膨張率の違いから、常温下で蒸着マスク1を基板30に整合させた際の蒸着位置と、実際の蒸着時における蒸着物質の蒸着位置との間に位置ズレが生じることは避けられない。そこで、マスク本体2を保持する枠体3の形成素材として、インバー材などの線膨張係数の小さな素材を採用してあると、昇温時におけるマスク本体2の膨張に起因する寸法変化、形状変化をよく抑えて、常温時における整合精度を蒸着時の昇温時にも良好に保つことができる。 The invar material or super invar material was adopted as the material for forming the frame 3 because its linear expansion coefficient was 2 × 10 −6 / ° C. or 1 × 10 −6 / ° C. or less, and the thermal effect in the vapor deposition process. This is because the dimensional change of the mask body 2 due to can be satisfactorily suppressed. That is, for example, if the mask body 2 is made of nickel as described above, the linear expansion coefficient is 12.80 × 10 −6 / ° C., and the linear expansion coefficient of the general glass as the deposition substrate 30 is 3. Since it is several times larger than 20 × 10 −6 / ° C., the vapor deposition position when the vapor deposition mask 1 is aligned with the substrate 30 at room temperature and the actual vapor deposition due to the difference in thermal expansion coefficient due to the high temperature during vapor deposition It is inevitable that a positional deviation occurs between the vapor deposition position of the vapor deposition material in FIG. Therefore, if a material having a small linear expansion coefficient such as an invar material is used as a material for forming the frame body 3 that holds the mask body 2, dimensional changes and shape changes caused by expansion of the mask body 2 at the time of temperature rise. The alignment accuracy at room temperature can be kept good even when the temperature rises during vapor deposition.

図8において符号9は、パターン形成領域の外周縁4aに係るマスク本体2の上面にメッキ法により積層されたニッケルやニッケル−コバルト合金等の電着金属層を示す。詳しくは、電着金属層9は、パターン形成領域4の外周縁4aの上面と、枠体3の上面およびパターン形成領域4に臨む側面と、マスク本体2と枠体3との間隙部分に形成されており、これでパターン形成領域4の外周縁4aと枠体3の開口周縁とを不離一体的に接合する。   In FIG. 8, reference numeral 9 denotes an electrodeposited metal layer such as nickel or nickel-cobalt alloy, which is laminated by plating on the upper surface of the mask body 2 related to the outer peripheral edge 4a of the pattern formation region. Specifically, the electrodeposited metal layer 9 is formed on the upper surface of the outer peripheral edge 4 a of the pattern forming region 4, the upper surface of the frame 3 and the side surface facing the pattern forming region 4, and the gap between the mask body 2 and the frame 3. Thus, the outer peripheral edge 4a of the pattern forming region 4 and the opening peripheral edge of the frame body 3 are joined together in an integrated manner.

図9および図10は本実施形態に係る有機EL素子用の蒸着マスクの製造方法を示す。まず、図9(a)に示すごとく、導電性を有する例えばステンレスや真ちゅう鋼製の母型10の表面にフォトレジスト層11を形成する。このフォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成した。   9 and 10 show a method for manufacturing a vapor deposition mask for an organic EL element according to this embodiment. First, as shown in FIG. 9A, a photoresist layer 11 is formed on the surface of a mother mold 10 made of, for example, stainless steel or brass having conductivity. This photoresist layer 11 was formed by laminating one or several negative photosensitive dry film resists according to a predetermined height, and then thermocompression bonding.

次いで、図9(b)に示すごとくフォトレジスト層11の上に、前記蒸着通孔5に対応する透光孔12aを有するパターンフィルム12(ガラスマスク)を密着させたのち、紫外光ランプ13で紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を溶解除去することにより、図9(c)に示すごとく、前記蒸着通孔5に対応するストレート状のレジスト体14aを有する一次パターンレジスト14を母型10上に形成した。   Next, as shown in FIG. 9 (b), a pattern film 12 (glass mask) having a light transmitting hole 12 a corresponding to the vapor deposition through hole 5 is brought into close contact with the photoresist layer 11, and then the ultraviolet light lamp 13 is used. By exposing to ultraviolet light, performing exposure, developing and drying, and dissolving and removing unexposed portions, as shown in FIG. 9C, a straight shape corresponding to the vapor deposition through-hole 5 is obtained. A primary pattern resist 14 having a resist body 14 a was formed on the mother die 10.

続いて、上記母型10を所定の条件に建浴した電鋳槽に入れ、図9(d)に示すごとく先のレジスト体14aの高さの範囲内で、母型10のレジスト体14aで覆われていない表面にニッケル合金等の電着金属を好ましくは10〜20μm厚の範囲とし、本実施例では15μm厚で一次電鋳して、一次電着層15、すなわち前記マスク本体2となる層を形成した。ここでは、母型10の略全面にわたって、一次電着層15を形成した。次に、レジスト体14aを溶解除去することにより、図9(e)に示すごとく多数独立の蒸着通孔5からなる有機EL素子の発光層形成用の蒸着パターン6を備えるマスク本体2を得た。ここまでは、図2に示す製造工程とほとんど一緒である。   Subsequently, the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and the resist member 14a of the mother die 10 is within the height range of the previous resist member 14a as shown in FIG. An electrodeposited metal such as a nickel alloy is preferably in a range of 10 to 20 μm on the uncovered surface, and in this embodiment, primary electroforming is performed with a thickness of 15 μm to form the primary electrodeposition layer 15, that is, the mask body 2. A layer was formed. Here, the primary electrodeposition layer 15 was formed over substantially the entire surface of the mother die 10. Next, by dissolving and removing the resist body 14a, a mask main body 2 provided with a vapor deposition pattern 6 for forming a light emitting layer of an organic EL element composed of a large number of independent vapor deposition through holes 5 as shown in FIG. 9E was obtained. . Up to this point, it is almost the same as the manufacturing process shown in FIG.

次に、図10(a)に示すごとく、一次電着層15(マスク本体2)の形成部分を含む母型10の表面全体に、フォトレジスト層16を形成した。このフォトレジスト層16は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成したものであり、ここでは、15μm厚にフォトレジスト層16を形成した。続いて、図10(b)に示すごとく、前記パターン形成領域4に対応する透光孔17aを有するパターンフィルム17を密着させたのち、紫外光ランプ13で紫外線光を照射して露光を行った。かくして、パターン形成領域4に係る部分が露光されており(16a)、それ以外の部分が未露光(16b)のフォトレジスト層16を得た。   Next, as shown in FIG. 10A, a photoresist layer 16 was formed on the entire surface of the mother die 10 including the portion where the primary electrodeposition layer 15 (mask body 2) was formed. This photoresist layer 16 is formed by laminating one or several negative photosensitive dry film resists in accordance with a predetermined height and thermocompression bonding. Here, the photoresist layer 16 has a thickness of 15 μm. Formed. Subsequently, as shown in FIG. 10B, after the pattern film 17 having the light transmitting holes 17a corresponding to the pattern formation region 4 was brought into close contact, exposure was performed by irradiating ultraviolet light with the ultraviolet light lamp 13. . Thus, a photoresist layer 16 was obtained in which the part related to the pattern formation region 4 was exposed (16a) and the other part was unexposed (16b).

続いて、図10(c)に示すごとく、母型10上に一次電着層15を囲むように、枠体3を配した。ここでは、未露光のフォトレジスト層16bの粘着性を利用して、母型10上に枠体3を仮止め固定した。   Subsequently, as shown in FIG. 10C, the frame body 3 was arranged on the mother die 10 so as to surround the primary electrodeposition layer 15. Here, the frame 3 was temporarily fixed on the mother die 10 using the adhesiveness of the unexposed photoresist layer 16b.

次に、図10(d)に示すごとく、表面に露出している未露光のフォトレジスト層16bを溶解除去して、パターン形成領域4を覆うレジスト体18aを有する二次パターンレジスト18を形成した。なお、このとき、枠体3の下面に存する未露光のフォトレジスト層16bは、母型10上に残留している。   Next, as shown in FIG. 10 (d), the unexposed photoresist layer 16b exposed on the surface was dissolved and removed to form a secondary pattern resist 18 having a resist body 18a covering the pattern formation region 4. . At this time, the unexposed photoresist layer 16 b existing on the lower surface of the frame 3 remains on the mother die 10.

次に、図10(e)に示すごとく、パターン形成領域4の外周縁4aに係る表面に露出する一次電着層15の上面、枠体3と一次電着層15との間で表面に露出する母型10の表面、および枠体3の表面上に電着金属を電鋳して電着金属層9を形成し、電着金属層9により一次電着層15と枠体3とを接合した。ここではパターン形成領域4の外周縁4aに係る表面に露出する一次電着層15の上面、および枠体3とレジスト体との間で表面に露出する母型10の表面の層厚は30μmとなるように電着金属層9を形成した。このとき、枠体3の表面の層厚は15μmとなっていた。このように、母型10の表面等と枠体3との間で層厚が異なるのは、電着金属層9は、母型10の表面から順次積層されていき、そして、電着金属層9が未露光のフォトレジスト層16bの高さ寸法を超えて枠体3に至ると、枠体3が母型10と導通状態となって、該枠体3の表面に電着金属層9が形成されることによる。   Next, as shown in FIG. 10 (e), the upper surface of the primary electrodeposition layer 15 exposed on the surface related to the outer peripheral edge 4 a of the pattern formation region 4, and the surface exposed between the frame 3 and the primary electrodeposition layer 15. An electrodeposited metal is electroformed on the surface of the mother mold 10 and the surface of the frame 3 to form an electrodeposited metal layer 9, and the primary electrodeposition layer 15 and the frame 3 are joined by the electrodeposited metal layer 9. did. Here, the layer thickness of the upper surface of the primary electrodeposition layer 15 exposed on the surface related to the outer peripheral edge 4a of the pattern formation region 4 and the surface of the mother die 10 exposed on the surface between the frame 3 and the resist body is 30 μm. An electrodeposited metal layer 9 was formed in such a manner. At this time, the layer thickness of the surface of the frame 3 was 15 μm. Thus, the layer thickness differs between the surface of the mother die 10 and the frame 3 because the electrodeposited metal layer 9 is sequentially laminated from the surface of the mother die 10, and the electrodeposited metal layer When 9 exceeds the height dimension of the unexposed photoresist layer 16b and reaches the frame 3, the frame 3 becomes conductive with the mother die 10, and the electrodeposited metal layer 9 is formed on the surface of the frame 3. By being formed.

最後に、母型10から一次および電着金属層15・9を剥離してから、二次パターンレジスト18および枠体3の下面に存する未露光のフォトレジスト層16bを除去することにより、図8に示すような蒸着マスク1を得た。   Finally, the primary and electrodeposited metal layers 15 and 9 are peeled off from the mother die 10, and then the secondary pattern resist 18 and the unexposed photoresist layer 16b existing on the lower surface of the frame body 3 are removed, whereby FIG. A vapor deposition mask 1 as shown in FIG.

図8に示すごとく、枠体3に各マスク本体2が電着金属層9を介してテンションを加えた状態で保持されているような場合、固定枠を必要としない所謂フレームレス化が可能であるが、図8に示す蒸着マスク1を引っ張り状態で、その外周縁に別途ステンレス、アルミ等の固定枠を周知の方法で固定しても良い。   As shown in FIG. 8, when each mask body 2 is held on the frame 3 with the electrodeposited metal layer 9 in tension, a so-called frameless structure that does not require a fixed frame is possible. However, in a state where the vapor deposition mask 1 shown in FIG. 8 is pulled, a fixing frame such as stainless steel or aluminum may be separately fixed to the outer peripheral edge by a known method.

電着金属層9は、一次電着層15、すなわちマスク本体2を枠体3側に引き寄せる、引っ張り応力F1が作用するようなテンションを加えた状態で形成するのが望ましい。かかる引っ張り応力の付与は、電鋳槽中に添加する第2種光沢剤中のカーボンの含有比率を調製することによって実現できる。これにより一次電着層15は、電着金属層9を介して枠体3に対してピンと張った引っ張り応力が作用した状態で張設されるため、蒸着作業時の周囲温度上昇に対しても、枠体3との熱膨張係数の差に伴うマスク本体2の膨張を吸収し、さらにマスク本体2を保持する枠体3自体が熱膨張しにくいことと相俟って、蒸着マスク1全てが熱による寸法精度のばらつきが生じ難く、発光層の再現精度・蒸着精度の向上に寄与できる。   The electrodeposited metal layer 9 is desirably formed in a state where a tension is applied so that the tensile stress F1 acts to draw the primary electrodeposition layer 15, that is, the mask body 2 toward the frame 3 side. The application of such tensile stress can be realized by adjusting the content ratio of carbon in the second type brightener added to the electroforming tank. As a result, the primary electrodeposition layer 15 is stretched in a state in which a tensile stress tensioned to the frame 3 is applied to the frame body 3 via the electrodeposited metal layer 9. Combined with the fact that the expansion of the mask body 2 due to the difference in thermal expansion coefficient with the frame body 3 is absorbed, and the frame body 3 itself holding the mask body 2 is difficult to thermally expand, Variations in dimensional accuracy due to heat are unlikely to occur, and can contribute to improvement in the reproduction accuracy and vapor deposition accuracy of the light emitting layer.

同様に、マスク本体2、すなわち一次電着層15は、それが内方に収縮する方向の応力F2が作用するようなテンションを加えた状態で形成するのが望ましい。かかる引っ張り応力F2は、一次電着層15を作成する際の電鋳層の温度(40〜50℃)と常温(20℃)との温度差に起因して、常温時に一次電着層15が収縮するようにすることによって実現できる。より詳しく説明すると、母型10として42アロイやインバー、SUS430(ステンレス)等の低温膨張係数の素材を用いたうえで、40〜50℃の電鋳層内で一次電着層15を形成すると、このとき電着金属であるニッケルやニッケル合金等の一次電着層15は母型10よりも膨張率が大きいため母型に対して膨張しようとする応力が作用する(尤も、このときの電着金属層9の膨張は、母型10により規制される)。しかるに、電鋳層温度(40〜50℃)よりも低い常温(20℃)においては、一次電着層15は内方に収縮しようとし、従って母型10から剥離することによって、一次電着層15すなわちマスク本体2は枠体3に対して引っ張り応力F2が作用することとなる。これにより一次電着層15を、皺の無いピンと張った状態とできるため、蒸着作業時の周囲温度上昇に対しても、枠体3との熱膨張係数の差に伴うマスク本体2自体の膨張を吸収し、さらにマスク本体2を保持する枠体3自体が熱膨張しにくいことと相俟って、蒸着マスク1全てが熱による寸法精度のばらつきが生じ難く、発光層の再現精度・蒸着精度の向上に寄与できる。さらには、マスク本体2と電着金属層9との接合強度を向上させるためマスク本体2に通孔を設けそこからも電鋳して電着金属層9を形成したり、マスク本体2の角部を面取り状としたりすれば、その効果はより一層良いものとなる。   Similarly, it is desirable to form the mask body 2, that is, the primary electrodeposition layer 15 in a state where a tension is applied so that the stress F <b> 2 in the direction in which the mask body 2 contracts inwardly acts. The tensile stress F2 is caused by the temperature difference between the temperature of the electroformed layer (40 to 50 ° C.) and the room temperature (20 ° C.) when the primary electrodeposition layer 15 is formed. This can be realized by contracting. More specifically, when a primary electrodeposition layer 15 is formed in an electroformed layer at 40 to 50 ° C. after using a material having a low-temperature expansion coefficient such as 42 alloy, Invar, SUS430 (stainless steel) as the matrix 10, At this time, the primary electrodeposition layer 15 such as nickel or nickel alloy, which is an electrodeposited metal, has a larger expansion coefficient than that of the mother die 10, so that stress that tends to expand acts on the mother die. The expansion of the metal layer 9 is regulated by the mother die 10). However, at a room temperature (20 ° C.) lower than the electroforming layer temperature (40 to 50 ° C.), the primary electrodeposition layer 15 tends to shrink inward, and therefore peels off from the mother die 10, thereby forming the primary electrodeposition layer. 15, that is, the mask body 2 is subjected to the tensile stress F <b> 2 on the frame 3. As a result, the primary electrodeposition layer 15 can be in a state of being stretched with no wrinkles, so that the expansion of the mask body 2 itself due to the difference in the thermal expansion coefficient with the frame 3 even when the ambient temperature rises during the vapor deposition operation. Furthermore, coupled with the fact that the frame 3 itself that holds the mask body 2 is less likely to thermally expand, all the deposition masks 1 are less likely to vary in dimensional accuracy due to heat, and the light emitting layer reproduction accuracy and deposition accuracy It can contribute to improvement. Further, in order to improve the bonding strength between the mask main body 2 and the electrodeposited metal layer 9, a through hole is provided in the mask main body 2, and the electrodeposited metal layer 9 is formed by electroforming from the through hole. If the part is chamfered, the effect becomes even better.

このような蒸着マスク1であれば、図12に示すように、パターン形成領域4・4間にある枠体3上に押さえ治具50を配すると良い。これは、基板30と密着が必要なパターン形成領域の外周縁4aに荷重をかけることができるし、また、枠体3は硬く変形しにくいものであるとともに例え変形しても問題になることがほとんどないからである。よって、蒸着マスク1に悪影響なく前記基板30に密着させることができ、したがって、蒸着材の回り込みのない精度良い蒸着が可能となる。さらに、枠体3がインバー材などといった低熱線膨張係数の材質から成るものとすれば、上記のように荷重の影響による変形を防ぐだけでなく、熱の影響による変形も防ぐことができて良い。もちろん、図11に示すような前記マスク本体2が整列して配設された蒸着マスクであれば、前記押さえ治具50を図7に示すように前記マスク本体2を囲むような格子状とすることで、局部的荷重がかかった箇所はしっかりと密着させることができるとともに、マスク全体においてもバランス良く荷重をかけることができるので、密着ムラを少なくすることもできる。   In the case of such a vapor deposition mask 1, as shown in FIG. 12, a holding jig 50 may be arranged on the frame 3 between the pattern formation regions 4 and 4. This can apply a load to the outer peripheral edge 4a of the pattern formation region that needs to be in close contact with the substrate 30, and the frame 3 is hard and difficult to deform, and even if it is deformed, there is a problem. Because there is almost no. Therefore, the vapor deposition mask 1 can be brought into close contact with the substrate 30 without adversely affecting the vapor deposition mask 1, so that the vapor deposition can be performed with high accuracy without the wraparound of the vapor deposition material. Furthermore, if the frame 3 is made of a material having a low coefficient of thermal expansion such as an invar material, it is possible not only to prevent deformation due to the influence of the load as described above but also to prevent deformation due to the influence of heat. . Of course, if the mask main body 2 as shown in FIG. 11 is an evaporation mask in which the mask main body 2 is arranged and arranged, the holding jig 50 has a lattice shape surrounding the mask main body 2 as shown in FIG. As a result, the portion where the local load is applied can be firmly adhered, and the load can be applied in a well-balanced manner in the entire mask, so that uneven adhesion can be reduced.

ここで、前記押さえ治具50の断面形状は、特に限定されるものではなく、丸状や三角状、四角状など何でも良いが、断面形状の寸法について述べると、幅寸法は図12に示すように、マスク本体2に形成されている蒸着通孔5の最外周にある蒸着通孔5’と隣り合うマスク本体2の最外周にある蒸着通孔5’との間寸法(C)から各最外周にある蒸着通孔5’・5’から寸法(B)を差し引いた寸法(A)を最大とする幅寸法とするのが望ましい。寸法(B)は3.5〜4.0mmが好ましく、例えば、C=10mm、B=3.8mmとした場合は、幅寸法A=2.4mmとなる。また、高さ寸法については、好ましくは0.2〜1.0mmの範囲とし、本実施形態では0.5mmとした。   Here, the cross-sectional shape of the holding jig 50 is not particularly limited, and any shape such as a round shape, a triangular shape, or a square shape may be used. The dimensions of the cross-sectional shape are as shown in FIG. Further, from the dimension (C) between the vapor deposition through hole 5 ′ on the outermost circumference of the vapor deposition through hole 5 formed in the mask body 2 and the vapor deposition through hole 5 ′ on the outermost circumference of the adjacent mask main body 2, It is desirable to set the width dimension that maximizes the dimension (A) obtained by subtracting the dimension (B) from the vapor deposition through holes 5 'and 5' on the outer periphery. The dimension (B) is preferably 3.5 to 4.0 mm. For example, when C = 10 mm and B = 3.8 mm, the width dimension A = 2.4 mm. Further, the height dimension is preferably in the range of 0.2 to 1.0 mm, and in this embodiment, 0.5 mm.

その他実施形態として、図13に示すようにおもり20の上にさらに磁石70を置いた形態や図14に示すように押さえ治具50とおもり20との間に磁石70を介在させた形態、図15に示すようにおもり20の代わりに磁石70とした形態が考えられる。もちろん、おもり20および/または磁石70を置かずに、磁力を有する押さえ治具50のみを基板30に置く形態も考えられる。このような形態とすれば、上記各実施形態の蒸着マスク1は強磁性体と言われるニッケルやニッケル・コバルトから成るため、蒸着マスク1を基板30に引き寄せるとともに押さえ治具50による局部的荷重が蒸着マスク1にかかるのでより良い密着となることが予想される。   As other embodiments, a form in which a magnet 70 is further placed on the weight 20 as shown in FIG. 13, a form in which the magnet 70 is interposed between the holding jig 50 and the weight 20 as shown in FIG. As shown in FIG. 15, a configuration in which a magnet 70 is used instead of the weight 20 is conceivable. Of course, a configuration in which only the holding jig 50 having magnetic force is placed on the substrate 30 without placing the weight 20 and / or the magnet 70 is also conceivable. With such a configuration, since the vapor deposition mask 1 of each of the above embodiments is made of nickel or nickel / cobalt, which is called a ferromagnetic material, the vapor deposition mask 1 is attracted to the substrate 30 and a local load by the holding jig 50 is applied. Since it is applied to the vapor deposition mask 1, it is expected that the adhesion will be better.

上記各実施形態において、蒸着マスク1の形状などは、図示例に限られない。また、蒸着マスク1は図示例のような電鋳によって形成したものに限らず、例えば、エッチングやレーザー等によって形成したものでも良い。また、一次パターンレジスト14を除去し、一次電着層15を研磨して平滑化してから、パターン形成領域4に二次パターンレジスト18を形成するようにしてもよい。枠体3の材質としては、実施形態に示すインバー材等のような金属材料のほか、できる限り基板30であるガラス等に近い低熱線膨張係数の材料、例えばガラスやセラミックのようなものを選択することができる。この場合には、これら材料の少なくとも表面に導電性を付与させることが必要となる。   In each said embodiment, the shape of the vapor deposition mask 1 etc. are not restricted to the example of illustration. Further, the vapor deposition mask 1 is not limited to the one formed by electroforming as shown in the figure, and may be one formed by etching or laser, for example. Alternatively, the secondary pattern resist 18 may be formed in the pattern formation region 4 after removing the primary pattern resist 14 and polishing and smoothing the primary electrodeposition layer 15. As the material of the frame 3, in addition to a metal material such as the Invar material shown in the embodiment, a material having a low coefficient of thermal expansion as close to the glass as the substrate 30 as much as possible, such as glass or ceramic, is selected. can do. In this case, it is necessary to impart conductivity to at least the surface of these materials.

本発明の第1実施形態に係る蒸着マスクの斜視図The perspective view of the vapor deposition mask which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacturing process of the vapor deposition mask which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの断面図Sectional drawing of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacture process of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacture process of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの分解斜視図The disassembled perspective view of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on 2nd Embodiment of this invention. 本発明のその他実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on other embodiment of this invention. 本発明のその他実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on other embodiment of this invention. 本発明のその他実施形態に係る蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of vapor deposition which concerns on other embodiment of this invention. 従来の蒸着時の状態を示す説明図Explanatory drawing which shows the state at the time of conventional vapor deposition

符号の説明Explanation of symbols

1 蒸着マスク
2 マスク本体
3 枠体
4 パターン形成領域
4a パターン形成領域の外周縁
5 蒸着通孔
6 蒸着パターン
9 電着金属層
10 母型
14 一次パターンレジスト
14a レジスト体
15 一次電着層
16 フォトレジスト層
16a 露光されたフォトレジスト層
16b 未露光のフォトレジスト層
17 パターンフィルム
18 二次パターンレジスト
18a レジスト体
20 おもり
30 基板
50 押さえ治具
70 磁石
DESCRIPTION OF SYMBOLS 1 Deposition mask 2 Mask main body 3 Frame body 4 Pattern formation area 4a Outer periphery of pattern formation area 5 Deposition through hole 6 Deposition pattern 9 Electrodeposition metal layer 10 Master mold 14 Primary pattern resist 14a Resist body 15 Primary electrodeposition layer 16 Photoresist Layer 16a Exposed photoresist layer 16b Unexposed photoresist layer 17 Pattern film 18 Secondary pattern resist 18a Resist body 20 Weight 30 Substrate 50 Holding jig 70 Magnet

Claims (3)

蒸着装置内の上方に配置した基板30に蒸着材を蒸着するために、蒸着通孔5が形成されたパターン形成領域4を囲むように枠体3が形成された蒸着マスク1を前記基板30の片側に搭載し、少なくとも前記蒸着マスク1の端部が支持してあって、前記基板30の蒸着マスク1が搭載される側とは反対側に押さえ治具50を介しておもり20を置いており、前記押さえ治具50とおもり20との間には平面板60を介在させ、前記押さえ治具50は、前記枠体3上に配することを特徴とする蒸着方法。 In order to deposit a deposition material on the substrate 30 disposed above in the deposition apparatus, the deposition mask 1 in which the frame 3 is formed so as to surround the pattern formation region 4 in which the deposition through holes 5 are formed is provided on the substrate 30. Mounted on one side, at least the end of the vapor deposition mask 1 is supported, and the weight 20 is placed on the opposite side of the substrate 30 from the side on which the vapor deposition mask 1 is mounted via a holding jig 50. A vapor deposition method , wherein a flat plate 60 is interposed between the pressing jig 50 and the weight 20, and the pressing jig 50 is disposed on the frame 3. 前記パターン形成領域4が整列形成された蒸着マスク1であって、前記押さえ治具50を前記各パターン形成領域4を囲むように格子状に形成することを特徴とする請求項1に記載の蒸着方法。The vapor deposition mask 1 in which the pattern formation regions 4 are formed in alignment, and the pressing jig 50 is formed in a lattice shape so as to surround the pattern formation regions 4. Method. 前記枠体3はインバー材から成ることを特徴とする請求項1または2に記載の蒸着方法。The vapor deposition method according to claim 1, wherein the frame body 3 is made of an invar material.
JP2005334172A 2005-11-18 2005-11-18 Deposition method Active JP4782548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334172A JP4782548B2 (en) 2005-11-18 2005-11-18 Deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334172A JP4782548B2 (en) 2005-11-18 2005-11-18 Deposition method

Publications (2)

Publication Number Publication Date
JP2007138256A JP2007138256A (en) 2007-06-07
JP4782548B2 true JP4782548B2 (en) 2011-09-28

Family

ID=38201491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334172A Active JP4782548B2 (en) 2005-11-18 2005-11-18 Deposition method

Country Status (1)

Country Link
JP (1) JP4782548B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258278B2 (en) * 2007-12-13 2013-08-07 キヤノントッキ株式会社 Deposition mask and mask adhesion method
JP5297046B2 (en) 2008-01-16 2013-09-25 キヤノントッキ株式会社 Deposition equipment
JP6418440B2 (en) * 2014-06-03 2018-11-07 Tianma Japan株式会社 Metal mask, metal mask manufacturing method, and film forming method using metal mask
KR102311586B1 (en) * 2014-12-26 2021-10-12 삼성디스플레이 주식회사 Apparatus for deposition and substrate alignment method in the same
JP7161163B2 (en) * 2016-10-17 2022-10-26 株式会社昭和真空 Annular film-forming method, annular film-forming tool, and annular film-forming mask

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506214B2 (en) * 2003-03-13 2010-07-21 東レ株式会社 Organic electroluminescent device and manufacturing method thereof
JP2005158571A (en) * 2003-11-27 2005-06-16 Seiko Epson Corp Method of manufacturing organic electroluminescent panel, manufacturing apparatus of organic electroluminescent panel, and organic electroluminescent panel
JP2005206939A (en) * 2003-12-26 2005-08-04 Seiko Epson Corp Thin film formation method, thin film formation equipment, method of manufacturing organic electroluminescence device, organic electroluminescence device, and electronic apparatus
JP2005232474A (en) * 2004-02-17 2005-09-02 Dainippon Screen Mfg Co Ltd Mask for vapor deposition
JP2005281746A (en) * 2004-03-29 2005-10-13 Seiko Epson Corp Vapor deposition system, vapor deposition method, electro-optical device and electronic device

Also Published As

Publication number Publication date
JP2007138256A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP5751810B2 (en) Metal mask manufacturing method, frame member, and manufacturing method thereof
JP4677363B2 (en) Vapor deposition mask and manufacturing method thereof
KR102654794B1 (en) Mask for deposition and method for manufacturing the same
JP4369199B2 (en) Vapor deposition mask and manufacturing method thereof
JP2008255449A (en) Vapor deposition mask, and method for producing the same
JP4444911B2 (en) Mask for thin film deposition of flat panel display device and manufacturing method thereof
JP4782548B2 (en) Deposition method
JP4475496B2 (en) Vapor deposition mask for organic EL device and manufacturing method thereof
JP2008263053A (en) Mask for arrangement, and its manufacturing method
JP2023126306A (en) Frame body and vapor deposition mask
JP6599103B2 (en) Vapor deposition mask and manufacturing method thereof
JP2019094573A (en) Vapor deposition mask and production method for the same
JP2019026926A (en) Vapor deposition mask
JP7149369B2 (en) Evaporation mask
JP7203888B2 (en) Support device
JP4798631B2 (en) Solder ball arrangement mask and manufacturing method thereof
JP7118800B2 (en) Evaporation mask and its manufacturing method
JP7450076B2 (en) vapor deposition mask
JP7168732B2 (en) frame
JP4861507B2 (en) Metal porous body and method for producing the same
JP7133383B2 (en) Evaporation mask
JP2023042234A (en) Metal mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250