JP2019026926A - Vapor deposition mask - Google Patents

Vapor deposition mask Download PDF

Info

Publication number
JP2019026926A
JP2019026926A JP2017191494A JP2017191494A JP2019026926A JP 2019026926 A JP2019026926 A JP 2019026926A JP 2017191494 A JP2017191494 A JP 2017191494A JP 2017191494 A JP2017191494 A JP 2017191494A JP 2019026926 A JP2019026926 A JP 2019026926A
Authority
JP
Japan
Prior art keywords
frame
vapor deposition
mask
layer
deposition mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017191494A
Other languages
Japanese (ja)
Other versions
JP7067889B2 (en
JP2019026926A5 (en
Inventor
樹一郎 石川
Kiichiro Ishikawa
樹一郎 石川
裕仁 田丸
Hirohito Tamaru
裕仁 田丸
良弘 小林
Yoshihiro Kobayashi
良弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to TW107123244A priority Critical patent/TWI791549B/en
Priority to KR1020180085784A priority patent/KR20190013534A/en
Priority to CN201810834458.5A priority patent/CN109321879B/en
Publication of JP2019026926A publication Critical patent/JP2019026926A/en
Publication of JP2019026926A5 publication Critical patent/JP2019026926A5/ja
Priority to JP2022073416A priority patent/JP7470734B2/en
Application granted granted Critical
Publication of JP7067889B2 publication Critical patent/JP7067889B2/en
Priority to JP2023110688A priority patent/JP2023126306A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Outer Garments And Coats (AREA)

Abstract

To provide a vapor deposition mask capable of improving an accuracy relating to vapor deposition by optimizing strength setting based on a cross-sectional profile of a frame to suppress deformation of a mask body by the frame and prevent shift of the mask body from a correct position.SOLUTION: A cross sectional profile of a minimum width part in an inner frame part of a frame 3 is optimized to make a relation of its width and thickness suitable. A flexure rigidity at the minimum width part is appropriately provided, so that a sufficient strength against force form a mask body 2 side is provided. Together with another part of the frame 3 which is wider and has strength higher than that of the minimum width part, a deviation in position of each part of the mask body 2 as a whole frame 3 from a proper position is suppressed, so that an alignment status between a mask in a vapor deposition process and a substrate to be deposited is secured, resulting in a precise vapor deposition on a proper position of the substrate to be deposited.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、有機EL素子の発光層を蒸着マスク法により形成する際に用いられるような、蒸着マスクに関する。   The present invention relates to a vapor deposition mask used, for example, when forming a light emitting layer of an organic EL element by a vapor deposition mask method.

有機EL(Electroluminescence)素子の発光層を形成する方法としては、蒸着マスク法が多く用いられている。この蒸着マスク法では、ガラス等の透明材質からなる基板上の所望の位置に有機発光物質を蒸着形成するために、基板の蒸着部位に対応する箇所を除去穿孔した蒸着マスクが使用される。   As a method for forming a light emitting layer of an organic EL (Electroluminescence) element, a vapor deposition mask method is often used. In this vapor deposition mask method, a vapor deposition mask in which a portion corresponding to the vapor deposition portion of the substrate is removed and perforated is used in order to vapor-deposit and form an organic light emitting material on a substrate made of a transparent material such as glass.

蒸着を行う蒸着装置においては、蒸着対象の基板に対し蒸着マスクを正しく位置合せした状態で設置し、蒸着が実行される。ただし、蒸着に際しては蒸着装置内を蒸着可能な環境とするために一般に加熱がなされることから、蒸着マスクとガラス基板の熱変形状態が異なる場合、蒸着マスクと基板との相対位置関係が変化し、形成される発光層の要求される精度を満足できなくなるという問題がある。   In a vapor deposition apparatus that performs vapor deposition, the vapor deposition mask is installed in a state where the vapor deposition mask is correctly aligned with respect to the substrate to be vapor deposited, and vapor deposition is performed. However, during vapor deposition, heating is generally performed in order to make the inside of the vapor deposition apparatus capable of vapor deposition. Therefore, when the thermal deformation state of the vapor deposition mask and the glass substrate is different, the relative positional relationship between the vapor deposition mask and the substrate changes. There is a problem that the required accuracy of the light emitting layer to be formed cannot be satisfied.

近年、薄いマスク本体の外周縁に、ガラス等の被蒸着基板と同等の熱膨張係数を有する素材又は低熱膨張係数の素材からなる補強用の枠体が装着されたマスク構造を採用することで、被蒸着基板とは熱膨張係数が異なる素材製のマスク本体を用いても、マスク本体が被蒸着基板と同等の熱膨張係数を有する枠体の膨張に追随して形状変化する、あるいは低熱膨張係数を有する枠体に抑制されて形状変化しない状態となり、蒸着装置内での昇温時における被蒸着基板に対するマスク本体の整合精度を担保でき、被蒸着基板上に発光層を高精度に形成できる蒸着マスクが提案されている。
このような従来の蒸着マスクの一例として、特開2005−15908号公報に開示されるものがある。
In recent years, by adopting a mask structure in which a reinforcing frame made of a material having a thermal expansion coefficient equivalent to that of a deposition target substrate such as glass or a low thermal expansion coefficient is attached to the outer peripheral edge of a thin mask body, Even if a mask body made of a material having a different thermal expansion coefficient from that of the deposition substrate is used, the shape of the mask body changes following the expansion of the frame having the same thermal expansion coefficient as the deposition substrate, or a low thermal expansion coefficient. Vapor deposition that can be controlled by a frame body having no change in shape, can ensure the alignment accuracy of the mask body with the substrate to be deposited at the time of temperature rise in the deposition apparatus, and can form a light emitting layer on the substrate to be deposited with high accuracy. Masks have been proposed.
An example of such a conventional vapor deposition mask is disclosed in Japanese Patent Application Laid-Open No. 2005-15908.

特開2005−15908号公報JP 2005-15908 A

従来の蒸着マスクは前記特許文献1に示される構成となっており、熱膨張係数の差異によるマスクと基板の相対変形を抑え、蒸着形成物の位置精度の著しい悪化を防止することができる。
ただし、市場では蒸着形成物のさらなる高精度化の要求があり、マスクの変位によるずれの発生をさらに抑えることが求められている。
The conventional vapor deposition mask has a configuration shown in Patent Document 1 described above, and can suppress relative deformation of the mask and the substrate due to a difference in thermal expansion coefficient, thereby preventing a significant deterioration in the positional accuracy of the vapor deposition product.
However, in the market, there is a demand for higher accuracy of the deposited product, and it is required to further suppress the occurrence of displacement due to the displacement of the mask.

従来のマスク本体と枠体との組合せ構造については、変位しようとするマスク本体に対抗可能な枠体強度確保のために、枠体を厚くすることが容易に考えられるが、マスク本体近傍の枠体が厚くなり過ぎると、蒸着の際に有機発光物質などの蒸着材料がマスク本体の通孔へ進行するのが枠体によって一部妨げられるなど、悪影響が及ぶことから、厚さを単純に増加させることはできなかった。また、枠体がある程度厚くなると、枠体の重量も増加して、枠体自体の重量による撓み等変形の問題が生じ、その場合却ってマスク本体に影響を与えて位置精度を悪化させることに繋がった。このため、枠体の厚さを大きくして強度向上を図り、マスクの精度を高める手法は、適用可能な厚さの限界値が存在し、それを超えるように強度向上を図ることは現実的とはいえなかった。   As for the conventional combined structure of the mask body and the frame, it is easy to increase the thickness of the frame in order to ensure the strength of the frame that can resist the mask body to be displaced. If the body becomes too thick, the thickness is simply increased because the frame prevents the deposition material, such as organic light-emitting substances, from propagating to the through holes of the mask body. I couldn't make it. Also, if the frame becomes thick to some extent, the weight of the frame also increases, causing problems such as bending due to the weight of the frame itself, which in turn affects the mask body and deteriorates the positional accuracy. It was. For this reason, it is realistic to increase the strength by increasing the thickness of the frame to increase the accuracy of the mask, and there is a limit value for the thickness that can be applied. That wasn't true.

また、枠体を一般に流通して入手が容易な金属板素材から形成する場合、こうした板素材は圧延等加工を経て製造されていることから、板素材には加工による歪が内部に少なからず残った状態となっている。このような製造の過程で生じた板素材の内部歪の影響は、その板厚が大きくなるほど顕著にあらわれるものである。よって、枠体の板厚を増やす、すなわち枠体に用いる板素材の厚さを大きくしていくと、板素材から切断等さらなる加工により最終的に枠体が得られた段階で、歪が枠体のわずかな反り等となって現れ、枠体の本来あるべき形状を厳密には実現できず、マスクの精度に悪影響を与えることとなる。こうした点からも、枠体を単純に厚くして強度向上を図ることは困難であるといえる。   In addition, when forming a frame from a metal plate material that is generally distributed and easily available, since such a plate material is manufactured through a process such as rolling, a considerable amount of distortion due to the processing remains in the plate material. It is in the state. The influence of the internal strain of the plate material generated in the manufacturing process becomes more prominent as the plate thickness increases. Therefore, as the plate thickness of the frame is increased, that is, the thickness of the plate material used for the frame is increased, the distortion is reduced when the frame is finally obtained from the plate material by further processing such as cutting. Appearing as a slight warp of the body, the shape of the frame should not be exactly realized, and the accuracy of the mask is adversely affected. From these points, it can be said that it is difficult to increase the strength by simply increasing the thickness of the frame.

なお、枠体に用いる金属板素材として、特殊な加工で製造された歪のない板素材や、あらかじめ内部応力除去処理を施した板素材を採用して、枠体が歪みの影響を受けないようにすることも可能であるが、歪のない板素材や応力除去処理は高コストであることから、経済的に枠体を得ることはできなかった。   In addition, as a metal plate material used for the frame body, a plate material without distortion produced by special processing or a plate material that has been subjected to internal stress relief processing in advance is used so that the frame body is not affected by distortion. However, it is not possible to obtain a frame economically because the plate material without stress and the stress removal treatment are expensive.

以上のように、従来のマスク構造では、高精度化に伴い厳しくなる許容範囲にマスク本体の変位を収めることが枠体の強度の面で難しく、蒸着形成物の位置ずれによる歩留まりの悪化が避けられないという課題を有していた。   As described above, in the conventional mask structure, it is difficult in terms of the strength of the frame body to keep the displacement of the mask body within an allowable range that becomes severe as accuracy increases, and the yield is not deteriorated due to the misalignment of the deposited product. It had the problem that it was not possible.

本発明は前記課題を解消するためになされたもので、枠体の断面形状に基づく強度の設定を最適化して、枠体でマスク本体の変形を適切に抑えられ、マスク本体の正しい位置からのずれを防いで、蒸着に係る精度を向上させられる蒸着マスクを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and by optimizing the strength setting based on the cross-sectional shape of the frame body, the frame body can appropriately suppress the deformation of the mask body, and the mask body can be moved from the correct position. An object of the present invention is to provide a vapor deposition mask that prevents deviation and improves the accuracy of vapor deposition.

本発明の開示に係る蒸着マスクは、独立した多数の蒸着通孔を所定パターンで設けられる複数のマスク本体と、マスク本体の周囲に配置される枠体とを備える蒸着マスクにおいて、前記枠体が、最外周に位置する矩形又は方形状の外枠部と、当該外枠部の内側を複数の開口領域に区画する内枠部とを有して、全体として格子状に形成され、前記マスク本体が、枠体における複数の開口領域にそれぞれ位置して、枠体と一体化されてなり、枠体の前記内枠部のうち、最も細幅となる箇所の断面形状が、幅寸法に対する厚さ寸法の割合を0.8/5以上2/5以下とする矩形断面とされるものである。   A vapor deposition mask according to the present disclosure includes a plurality of mask main bodies provided with a plurality of independent vapor deposition through holes in a predetermined pattern, and a frame disposed around the mask main body. The mask body having a rectangular or rectangular outer frame located on the outermost periphery and an inner frame that divides the inside of the outer frame into a plurality of opening regions, and is formed in a lattice shape as a whole. Are located in a plurality of opening regions in the frame body and integrated with the frame body, and the cross-sectional shape of the narrowest portion of the inner frame portion of the frame body is the thickness with respect to the width dimension. A rectangular cross section having a dimensional ratio of 0.8 / 5 to 2/5.

このように本発明の開示によれば、枠体の内枠部における最小幅部の断面形状を、その幅と厚さの関係が適切なものとなるようにして、最小幅部の曲げ剛性(曲げ変形のしにくさ)を的確に付与することにより、マスク本体側からの力に対する必要十分な強度を与えられ、この最小幅部より幅広で強度の高い枠体の他部分と合わせて、枠体全体としてマスク本体各部の本来あるべき位置からのずれを抑えられ、蒸着工程におけるマスクと被蒸着基板との整合状態を確保でき、被蒸着基板の適切な位置に精度よく蒸着が行える。
また、最小幅部の曲げ変形のしにくさにより、最小幅部の自重による撓みも抑えられ、枠体の変形とそれによるマスク本体への影響を抑えられる。
As described above, according to the disclosure of the present invention, the cross-sectional shape of the minimum width portion in the inner frame portion of the frame body is set so that the relationship between the width and the thickness is appropriate, and the bending rigidity ( By giving the resistance to bending deformation) properly, the necessary and sufficient strength against the force from the mask body side is given, and the frame is combined with the other part of the frame wider and stronger than this minimum width part. The entire body can be prevented from being displaced from the original position of each part of the mask body, the alignment state of the mask and the deposition substrate in the deposition process can be secured, and the deposition can be accurately performed at an appropriate position of the deposition substrate.
Further, due to the difficulty of bending deformation of the minimum width portion, bending due to the weight of the minimum width portion can be suppressed, and deformation of the frame body and its influence on the mask body can be suppressed.

また、本発明の開示に係る蒸着マスクは、必要に応じて、前記枠体における外枠部及び内枠部のうち最も細幅となる箇所以外の部位における各断面形状が、幅寸法に対する厚さ寸法の割合を0.8/90以上で、且つ、前記内枠部の最も細幅となる箇所における幅寸法に対する厚さ寸法の割合より小さくする、矩形断面とされるものである。   In addition, in the vapor deposition mask according to the disclosure of the present invention, as necessary, each cross-sectional shape in a portion other than the narrowest portion of the outer frame portion and the inner frame portion in the frame body has a thickness with respect to the width dimension. The ratio of the dimension is 0.8 / 90 or more, and the rectangular cross section is made smaller than the ratio of the thickness dimension to the width dimension at the narrowest portion of the inner frame portion.

このように本発明の開示によれば、枠体における最小幅部以外の各部についても適切な断面形状として、枠体各部で幅寸法に対してある程度以上の厚さ寸法を設定して、撓みにくくする必要最小限の曲げ剛性を付与することにより、マスク本体側からの力に対する枠体の強度を十分に確保でき、枠体の変形とそれによるマスク本体への影響を抑え、マスク本体の通孔位置に係る精度を高めて、蒸着対象に対する高精度の蒸着を可能にする。   As described above, according to the disclosure of the present invention, each part other than the minimum width part in the frame body has an appropriate cross-sectional shape, and a thickness dimension of a certain degree or more with respect to the width dimension is set in each part of the frame body so that it is difficult to bend. By providing the necessary minimum bending rigidity, the frame body can sufficiently secure the strength against the force from the mask body side, suppressing the deformation of the frame body and the effect on the mask body, and the through hole of the mask body The accuracy related to the position is increased, and highly accurate vapor deposition for the vapor deposition target is enabled.

また、本発明の開示に係る蒸着マスクは、必要に応じて、前記枠体が、各部の厚さ寸法を0.8mm以上2mm以下とするように形成されるものである。   Moreover, the vapor deposition mask which concerns on this indication is formed so that the said frame may be 0.8 mm or more and 2 mm or less in thickness as needed.

このように本発明の開示によれば、枠体各部における撓みにくい断面形状が得られる現実的な幅寸法の範囲で、断面形状のうちの厚さ寸法を大きくなりすぎないように設定することにより、枠体各部で自重による撓みや内部歪みの変形としての発現を抑えられて、精度の高い枠体とすることができ、蒸着も高い精度で行える。また、必要以上に厚さを大きくしないことで、枠体の重量増加を抑制することができ、蒸着マスクの取扱性が悪化するのを防げる。   As described above, according to the disclosure of the present invention, by setting the thickness dimension of the cross-sectional shape so as not to become too large in the range of the practical width dimension in which the cross-sectional shape which is difficult to bend in each part of the frame body is obtained. In addition, it is possible to obtain a highly accurate frame body by suppressing the occurrence of bending due to its own weight and deformation of internal strain at each part of the frame body, and it is possible to perform vapor deposition with high accuracy. In addition, by not increasing the thickness more than necessary, it is possible to suppress an increase in the weight of the frame body and to prevent deterioration of the handleability of the vapor deposition mask.

また、本発明の開示に係る蒸着マスクは、必要に応じて、前記枠体が、第一枠部材と第二枠部材とを重ねて一体化した積層構造とされ、前記第一枠部材と第二枠部材は、金属薄板素材から形成された反りのある枠部材で、且つそれぞれの反り方向を逆向きとされるものである。   Further, the vapor deposition mask according to the disclosure of the present invention has a laminated structure in which the frame body is integrated by overlapping the first frame member and the second frame member as necessary, and the first frame member and the first frame member The two-frame member is a warped frame member formed from a metal thin plate material, and each warp direction is reversed.

このように本発明の開示によれば、枠体を、金属薄板材を素材とする第一枠部材と第二枠部材とを重ねて接合一体化した積層構造とし、反りを有する第一枠部材と第二枠部材が、それぞれの反り方向が逆向きになるように積層配置されて枠体をなすことにより、枠体では反りが相殺され、平坦な状態が得られることとなり、平坦度を向上させた枠体をより低コストで得られ、マスクの形状精度を高めつつ蒸着を効率よく実行できる。また、枠体を第一枠部材と第二枠部材が組み合わされた構成としていることで、枠体の厚さが単純な一枚の薄板材を用いた場合に反りを生じかねない厚さに達している場合でも、反り等の不要な変形が現れない状態にでき、マスク本体の位置精度に悪影響を与えることがなく、強度を高めたマスク構造が得られ、このマスクを用いて蒸着を高い精度で実行できる。   Thus, according to the disclosure of the present invention, the frame has a laminated structure in which the first frame member and the second frame member made of a thin metal plate material are joined and integrated, and the first frame member having warpage. And the second frame member are stacked and arranged so that their warping directions are opposite to each other to form a frame, so that the warpage is offset in the frame and a flat state is obtained, improving the flatness. The obtained frame can be obtained at a lower cost, and the vapor deposition can be efficiently performed while improving the shape accuracy of the mask. In addition, since the frame body has a configuration in which the first frame member and the second frame member are combined, the frame body has a thickness that may cause warping when a single thin plate material is used. Even when it has reached, it is possible to prevent unnecessary deformation such as warpage, and it is possible to obtain a mask structure with increased strength without adversely affecting the positional accuracy of the mask body. Can be executed with accuracy.

また、本発明の開示に係る蒸着マスクは、必要に応じて、前記枠体が、内枠部の材質と外枠部の材質とを異ならせて形成されるものである。   Further, in the vapor deposition mask according to the disclosure of the present invention, the frame body is formed by changing the material of the inner frame portion and the material of the outer frame portion as necessary.

このように本発明の開示によれば、枠体における内枠部と外枠部の材質をそれぞれ異ならせるようにし、内枠部と外枠部に異なる性質を付与することにより、例えば、外枠部に内枠部より比強度の高い材質を用いた場合、マスク本体側からの力に基づいた変形を主に外枠部で抑えるようにしてマスク本体を効率よく補強でき、マスク本体の位置の精度を高めることができる。この他、例えば枠体の内枠部に外枠部より線膨張係数の小さな材質を用いた場合は、蒸着工程等での昇温状態でマスク本体の熱変形によるマスク各位置の変位を、マスク本体に隣接する内枠部で効率よく抑えることができ、常温状態でのマスクと被蒸着基板との位置関係を昇温状態でも確実に維持でき、蒸着を高い精度で行えることとなる。   Thus, according to the disclosure of the present invention, the inner frame portion and the outer frame portion of the frame body are made of different materials, and different properties are given to the inner frame portion and the outer frame portion, for example, the outer frame portion. When a material with higher specific strength than the inner frame is used for the part, the mask body can be reinforced efficiently by suppressing deformation based on the force from the mask body mainly at the outer frame. Accuracy can be increased. In addition, for example, when a material having a smaller linear expansion coefficient than the outer frame portion is used for the inner frame portion of the frame body, the displacement of each position of the mask due to the thermal deformation of the mask body in the temperature rising state in the vapor deposition process etc. The inner frame portion adjacent to the main body can be efficiently suppressed, and the positional relationship between the mask and the deposition target substrate in the normal temperature state can be reliably maintained even in the elevated temperature state, and the deposition can be performed with high accuracy.

本発明の一実施形態に係る蒸着マスクの概略平面図である。It is a schematic plan view of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの要部構成説明図である。It is principal part structure explanatory drawing of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの要部概略断面図である。It is a principal part schematic sectional drawing of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクにおける枠体の平面図である。It is a top view of the frame in the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクにおける枠体の形成工程説明図である。It is forming process explanatory drawing of the frame in the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの製造における一次パターンレジスト形成過程説明図である。It is primary pattern resist formation process explanatory drawing in manufacture of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの製造における一次電着層形成工程説明図である。It is primary electrodeposition layer formation process explanatory drawing in manufacture of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの製造における二次パターンレジスト形成過程前半説明図である。It is explanatory drawing of the first half of the secondary pattern resist formation process in manufacture of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの製造における二次パターンレジスト形成過程後半説明図である。It is a latter half explanatory drawing of the secondary pattern resist formation process in manufacture of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの製造における枠体の圧着工程説明図である。It is pressure-bonding process explanatory drawing of the frame in manufacture of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクの製造における金属層形成工程及び蒸着マスクと母型の分離状態説明図である。It is a metal layer formation process in manufacture of the vapor deposition mask which concerns on one Embodiment of this invention, and the isolation | separation state explanatory drawing of a vapor deposition mask and a mother mold. 本発明の一実施形態に係る蒸着マスクの他例の概略平面図である。It is a schematic plan view of the other example of the vapor deposition mask which concerns on one Embodiment of this invention. 本発明の一実施形態に係る蒸着マスクにおける他の枠体の平面図及び概略断面図である。It is the top view and schematic sectional drawing of the other frame in the vapor deposition mask which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係る蒸着マスクを図1ないし図11に基づいて説明する。本実施形態においては、有機EL素子用蒸着マスクに適用した例について説明する。
前記各図において本実施形態に係る蒸着マスク1は、多数の蒸着通孔8を所定パターンで設けられる複数のマスク本体2と、マスク本体2の周囲に配置される枠体3とを備える構成である。
Hereinafter, a vapor deposition mask according to an embodiment of the present invention will be described with reference to FIGS. In this embodiment, an example applied to a vapor deposition mask for organic EL elements will be described.
In each of the drawings, the vapor deposition mask 1 according to the present embodiment is configured to include a plurality of mask bodies 2 provided with a plurality of vapor deposition through holes 8 in a predetermined pattern, and a frame body 3 arranged around the mask body 2. is there.

前記マスク本体2は、ニッケルやニッケルコバルト等のニッケル合金、その他の電着金属を素材として、電鋳によりシート状に形成され、蒸着物質を通す独立した多数の蒸着通孔8を所定パターンで設けられる構成である。   The mask body 2 is formed into a sheet by electroforming using a nickel alloy such as nickel or nickel cobalt, or other electrodeposited metal, and has a large number of independent vapor deposition through holes 8 through which the vapor deposition material passes. It is the structure which is made.

マスク本体2は、多数の蒸着通孔8を設けられる内部のパターン形成領域2aと、めっきにより形成される金属層7を介して枠体3と一体に接合される外周縁2bとを含むものである。パターン形成領域2aでは、多数の蒸着通孔8が、発光層形成用として、前後方向に直線的に並ぶ複数個の通孔群を列とし、複数個の列が左右方向に並列状に配設されたマトリクス状の蒸着パターン9を形成している。
マスク本体2の厚みは、好ましくは5〜20μmの範囲とし、本実施形態では8μmに設定した。
The mask body 2 includes an internal pattern forming region 2a provided with a large number of vapor deposition through holes 8, and an outer peripheral edge 2b joined integrally with the frame body 3 through a metal layer 7 formed by plating. In the pattern formation region 2a, a large number of vapor deposition through holes 8 are used for forming a light emitting layer, and a plurality of through hole groups arranged linearly in the front-rear direction are arranged in rows, and the plurality of rows are arranged in parallel in the left-right direction. A matrix-shaped vapor deposition pattern 9 is formed.
The thickness of the mask body 2 is preferably in the range of 5 to 20 μm, and is set to 8 μm in this embodiment.

前記枠体3は、マスク本体2よりも肉厚の板状体を矩形の枠形状としたもので、マスク本体2の補強用としてマスク本体2の外側を取り囲んで配置され、マスク本体2と連結一体化される構成である。詳細には、枠体3は、最外周に位置する矩形状の外枠部4と、この外枠部4の内側を複数の開口領域6に区画する内枠部5とを有して、全体として格子状に形成されるものである。そして、枠体3の内枠部5で区画される各開口領域6に、マスク本体2がそれぞれ位置し、金属層7を介して枠体3と一体化される構成である。   The frame body 3 is a plate-like body that is thicker than the mask body 2 and has a rectangular frame shape. The frame body 3 is disposed around the outside of the mask body 2 to reinforce the mask body 2 and is connected to the mask body 2. It is the structure integrated. Specifically, the frame body 3 includes a rectangular outer frame portion 4 positioned on the outermost periphery and an inner frame portion 5 that partitions the inside of the outer frame portion 4 into a plurality of opening regions 6. Are formed in a lattice shape. The mask body 2 is positioned in each opening region 6 partitioned by the inner frame portion 5 of the frame body 3 and is integrated with the frame body 3 via the metal layer 7.

この枠体3は、その内枠部5のうち、最も細幅となる箇所の断面形状を、幅寸法Wに対する厚さ寸法Tの割合(アスペクト比)が0.8/4以上で2/4以下である矩形断面とされてなる構成である。
一方、枠体3の外枠部4や、内枠部5のうち、最も細幅となる箇所以外の各断面形状は、幅寸法Wに対する厚さ寸法Tの割合(アスペクト比)が0.8/90以上である矩形断面とされる。
This frame 3 has a cross-sectional shape of the narrowest portion of the inner frame portion 5 with a ratio of the thickness dimension T to the width dimension W (aspect ratio) of not less than 0.8 / 4. It is the structure made into the following rectangular cross section.
On the other hand, in each of the cross-sectional shapes other than the narrowest portion of the outer frame portion 4 and the inner frame portion 5 of the frame body 3, the ratio (aspect ratio) of the thickness dimension T to the width dimension W is 0.8. The rectangular cross section is / 90 or more.

そして、枠体3における外枠部4と内枠部5は一様な厚さとされ、その厚さ寸法を0.2mm以上で6mm以下、好ましくは0.8mm以上で3mm以下、より好ましくは2mm、とするように形成される。ここで、厚さ寸法は0.8mm以上が好ましいとされるのは、枠体各部の厚さ寸法が0.8mm未満の場合、枠体の強度がマスク本体に内在する張力(引張応力)に対抗できず変形するおそれがあることによるものである。   And the outer frame part 4 and the inner frame part 5 in the frame 3 are made into uniform thickness, and the thickness dimension is 0.2 mm or more and 6 mm or less, preferably 0.8 mm or more and 3 mm or less, more preferably 2 mm. , And so on. Here, the thickness dimension is preferably 0.8 mm or more. When the thickness dimension of each part of the frame is less than 0.8 mm, the strength of the frame is determined by the tension (tensile stress) inherent in the mask body. This is because there is a risk of deformation without being able to compete.

一方、こうした枠体各部の厚さ寸法が2mmを超えると、蒸着の際にいわゆるシャドーの問題(枠体が蒸着材料の進行を妨げる障害物となること)が起り得ることや、枠体に対し母型の厚さは通常1mmとされるため、枠体の圧着後のハンドリングが困難になることなどから、厚さ寸法を2mm以下とするのが好ましい。   On the other hand, if the thickness of each part of the frame exceeds 2 mm, a so-called shadow problem may occur during vapor deposition (the frame may become an obstacle that prevents the progress of the vapor deposition material). Since the thickness of the matrix is usually 1 mm, it is difficult to handle the frame body after pressure bonding, and therefore the thickness dimension is preferably 2 mm or less.

本実施形態では、内枠部5の最も細幅となる箇所(最小幅部)の幅寸法W1は4mm、最も広い幅となる箇所(最大幅部)の幅寸法W2は約90mmとしている。この最小幅部の幅寸法が4mm未満になると、枠体の強度がマスク本体に内在する張力(引張応力)に対抗できず変形するおそれがあることから、幅寸法は4mm以上とするのが好ましい。 In the present embodiment, the width dimension W 1 of the narrowest part (minimum width part) of the inner frame part 5 is 4 mm, and the width dimension W 2 of the widest part (maximum width part) is about 90 mm. . If the width dimension of the minimum width portion is less than 4 mm, the width dimension is preferably set to 4 mm or more because the strength of the frame cannot cope with the tension (tensile stress) inherent in the mask body. .

この他、最大幅部の幅寸法が90mmを超える場合、一枚の母型上に形成できるマスク本体の数(取り数)が過度に減ることとなり、マスク製造効率が下がることから、幅寸法は90mm以下とするのが好ましい。   In addition, when the width dimension of the maximum width portion exceeds 90 mm, the number of mask bodies (number of pieces) that can be formed on one matrix is excessively reduced, and the mask manufacturing efficiency is lowered. 90 mm or less is preferable.

こうして枠体3は、内枠部の最小幅部の矩形断面形状を、最小幅部の幅寸法Wに対する厚さ寸法Tの割合が前記範囲内の値となるという条件を満たす形状として形成される。このように、最小幅部の断面形状のアスペクト比を所定範囲内として、幅に対し過大でない適切な厚さが確保されるようにし、断面形状に基づく最小幅部の曲げに対する変形しにくさ(剛性)を的確に付与することで、最小幅部の自重による撓みを生じにくくすると共に、マスク本体側から枠体3を変形させようとする力に対する強度を確保して、枠体3の変形とそれによるマスク本体2への影響を抑え、マスク本体2の通孔位置に係る精度を高めて、蒸着対象に対する高精度の蒸着を可能にする。   Thus, the frame 3 is formed in a shape that satisfies the condition that the ratio of the thickness dimension T to the width dimension W of the minimum width part is a value within the above range. . In this way, the aspect ratio of the cross-sectional shape of the minimum width portion is set within a predetermined range so that an appropriate thickness that is not excessive with respect to the width is ensured, and the resistance to deformation due to bending of the minimum width portion based on the cross-sectional shape ( (Rigidity) is appropriately given to make it difficult for the minimum width portion to be bent due to its own weight, and to ensure the strength against the force of deforming the frame body 3 from the mask body side. This suppresses the influence on the mask main body 2 and increases the accuracy related to the through-hole position of the mask main body 2, thereby enabling highly accurate vapor deposition on the vapor deposition target.

また、枠体3の最小幅部以外の各部でも、必要な曲げ剛性を付与可能となる断面形状として、マスク本体側からの力に対する強度を十分に確保しつつ、その幅寸法に対する厚さを適切に設定することで、必要以上に厚さ(断面積)が大きくなることによる枠体3の重量増加を抑制して、蒸着マスク全体の重量や自重による撓みが大きくなるのを防いでいる。   Moreover, in each part other than the minimum width part of the frame 3, as a cross-sectional shape capable of providing the necessary bending rigidity, the thickness with respect to the width dimension is appropriately secured while sufficiently securing the strength against the force from the mask body side. By setting to, an increase in the weight of the frame body 3 due to an unnecessarily large thickness (cross-sectional area) is suppressed, and the deflection due to the weight of the entire deposition mask and its own weight is prevented.

一方、枠体3は、同一形状の第一枠部材3aと第二枠部材3bとを、接着剤を介在させつつ重ねて接合一体化した積層構造とされる構成である。第一枠部材3aと第二枠部材3bは、同じ薄板製造工程を経て製造された金属薄板素材から形成された枠部材で、且つ薄板製造工程に由来する金属薄板素材の内部歪に基づいた反りを有してなり、それぞれの反り方向を逆向きにして枠体3としての積層構造をなす。   On the other hand, the frame 3 is configured to have a laminated structure in which the first frame member 3a and the second frame member 3b having the same shape are stacked and joined together with an adhesive interposed therebetween. The 1st frame member 3a and the 2nd frame member 3b are the frame members formed from the metal thin plate raw material manufactured through the same thin plate manufacturing process, and the curvature based on the internal distortion of the metal thin plate raw material derived from a thin plate manufacturing process And has a laminated structure as the frame 3 with the respective warping directions reversed.

こうして同じ薄板製造工程、具体的には圧延工程、を経て製造された金属薄板素材から切断等の加工により形成された同一形状の第一枠部材3aと第二枠部材3bを、それぞれの反り方向を逆向きにして接着剤で接合一体化することで、得られる枠体3では反りが相殺され、平坦な状態となる(図5参照)。なお、図5において、第一枠部材3aと第二枠部材3bにおける反りの大きさは、理解を容易にするため誇張して図示しており、実際の反りは極めて小さいものとなる。ただし、これらの反りは、仮にそのまま枠体3に現れると、マスク本体2に影響を与えてその位置に係る精度を悪化させ、蒸着マスクの高精度化の支障となりうる大きさであることから、上記の積層構造により反りの解消を図っている。   Thus, the first frame member 3a and the second frame member 3b having the same shape formed by processing such as cutting from a thin metal plate material manufactured through the same thin plate manufacturing process, specifically, a rolling process, are respectively warped. In the opposite direction, the warping is canceled out in the frame body 3 obtained by joining and integrating with an adhesive, and a flat state is obtained (see FIG. 5). In FIG. 5, the magnitude of warpage in the first frame member 3 a and the second frame member 3 b is exaggerated for easy understanding, and the actual warpage is extremely small. However, if these warpages appear in the frame 3 as they are, they affect the mask body 2 and deteriorate the accuracy related to the position, and this is a size that can hinder the accuracy of the vapor deposition mask. Warp is eliminated by the above laminated structure.

本実施形態において、接着剤としては、シート状の未硬化感光性ドライフィルムレジストを第一枠部材3aと第二枠部材3bとの間に介在させて使用する。第一枠部材3aと第二枠部材3bの接合後、第一枠部材3aと第二枠部材3b間で接着層3cとなる部分以外のレジスト不要部分は除去される。この他、接着剤は一般的に入手可能な種々の接着剤を用いることもできる。なお、接合で反りが相殺された平坦状態、すなわち、枠体3となった段階での枠体表裏面の平面度や平行度が許容範囲に収まる状態、にできれば、第一枠部材3aと第二枠部材3bの平面形状や断面形状、反りの大きさは異なっていてもよい。   In the present embodiment, as the adhesive, a sheet-like uncured photosensitive dry film resist is used between the first frame member 3a and the second frame member 3b. After joining the first frame member 3a and the second frame member 3b, the resist unnecessary portions other than the portion that becomes the adhesive layer 3c between the first frame member 3a and the second frame member 3b are removed. In addition to this, various commonly available adhesives can be used as the adhesive. In addition, if the flat state in which the warpage is canceled by the joining, that is, the flatness and parallelism of the front and back surfaces of the frame body at the stage of becoming the frame body 3 can be within an allowable range, the first frame member 3a and the first frame member 3a The two-frame member 3b may have different planar shapes, cross-sectional shapes, and warpage sizes.

第一枠部材3aと第二枠部材3bを、それぞれの反り方向を逆向きにして接合一体化して平坦な枠体3を形成することで、枠体3の厚さが単純な一枚の薄板材を用いた場合に反りを生じかねない厚さに達している場合でも、反り等の不要な変形が現れない状態にでき、マスク本体の位置精度に悪影響を与えることがなく、このマスク本体を用いて蒸着を高い精度で実行できる。   The first frame member 3a and the second frame member 3b are joined and integrated with their respective warping directions reversed to form a flat frame body 3, so that the thickness of the frame body 3 is a single thin sheet. Even when the thickness has reached a thickness that may cause warpage when using a plate material, unnecessary deformation such as warpage can be prevented from appearing, and the mask body position accuracy is not adversely affected. It is possible to perform vapor deposition with high accuracy.

この枠体3は、低熱膨張係数の材質、例えば、ニッケル−鉄合金であるインバー材、あるいはニッケル−鉄−コバルト合金であるスーパーインバー材等のような材質で形成される。そして、枠体3は、電鋳により形成された金属層7により、マスク本体2のパターン形成領域2aの外周縁2bと互いに離れないよう連結一体化される。   The frame 3 is formed of a material having a low thermal expansion coefficient, for example, a material such as an invar material that is a nickel-iron alloy or a super invar material that is a nickel-iron-cobalt alloy. The frame 3 is connected and integrated with the outer peripheral edge 2b of the pattern forming region 2a of the mask body 2 by a metal layer 7 formed by electroforming so as not to be separated from each other.

枠体3の材質としてインバー材やスーパーインバー材を採用した場合、その熱膨張係数が極めて小さいことで、蒸着工程における熱影響によるマスク本体2の寸法変化を良好に抑制できる。すなわち、マスク本体2が、例えばニッケルなどの、熱膨張係数が被蒸着基板(図示を省略)である一般ガラスの熱膨張係数に比べて大きいものであっても、蒸着時の高温による熱膨張率の違いから、常温下で蒸着マスク1を被蒸着基板に整合させた際の、基板に対する通孔位置と、実際の蒸着時における蒸着物質の蒸着位置との間にずれが生じることもなく、マスク本体2を保持する枠体3の熱膨張係数が小さい特徴により、昇温時におけるマスク本体2の膨張に起因する寸法変化、形状変化をよく抑えて、常温時における整合精度を蒸着時の昇温時にも良好に保つことができる。   When an invar material or a super invar material is employed as the material of the frame body 3, the dimensional change of the mask body 2 due to the thermal influence in the vapor deposition process can be satisfactorily suppressed because the coefficient of thermal expansion is extremely small. That is, even if the mask body 2 has a larger coefficient of thermal expansion than that of general glass which is a substrate to be deposited (not shown), such as nickel, the coefficient of thermal expansion due to the high temperature during vapor deposition. Because of this difference, there is no deviation between the position of the through hole in the substrate when the deposition mask 1 is aligned with the substrate to be deposited at room temperature and the deposition position of the deposition material during the actual deposition. Due to the small thermal expansion coefficient of the frame 3 that holds the main body 2, the dimensional change and shape change caused by the expansion of the mask main body 2 at the time of temperature rise are well suppressed, and the alignment accuracy at room temperature is increased during the deposition. Sometimes it can be kept good.

なお、枠体3の材質は、被蒸着基板であるガラス等に近い低熱膨張係数の材料、例えばガラスやセラミックのようなものを用いることもできる。この場合、これら材料の少なくとも表面に導電性を付与させることとなる。   In addition, the material of the frame 3 can also use the material of the low thermal expansion coefficient close | similar to the glass etc. which are vapor deposition substrates, for example, things, such as glass and a ceramic. In this case, conductivity is imparted to at least the surface of these materials.

前記蒸着マスク1は、母型10の表面に、一次電着層15の非配置部分に対応させて一次パターンレジスト14が設けられた後、母型10上に電着金属の電鋳により一次電着層15を形成され、この一次電着層15のパターン形成領域2a対応部分を覆う二次パターンレジスト18を形成され、さらに、一次電着層15を囲むように枠体3を配置された後、枠体3の表面と一次電着層15の外周縁2b表面とを覆うように電鋳により金属層7を形成されて、この金属層7を介して一次電着層15と枠体3とを離れないよう一体に連結された状態で、これら一体の一次電着層15、枠体3及び金属層7と母型10とを分離することで製造されるものである。   The vapor deposition mask 1 has a primary pattern resist 14 provided on the surface of the mother die 10 so as to correspond to the non-arranged portions of the primary electrodeposition layer 15, and then the primary electrode is electroplated on the mother die 10 by electroforming metal. After the deposition layer 15 is formed, the secondary pattern resist 18 covering the portion corresponding to the pattern formation region 2 a of the primary electrodeposition layer 15 is formed, and the frame body 3 is disposed so as to surround the primary electrodeposition layer 15. The metal layer 7 is formed by electroforming so as to cover the surface of the frame body 3 and the surface of the outer peripheral edge 2b of the primary electrodeposition layer 15, and the primary electrodeposition layer 15 and the frame body 3 are formed through the metal layer 7. The integrated primary electrodeposition layer 15, the frame body 3, the metal layer 7, and the mother die 10 are manufactured in a state where they are integrally connected so as not to be separated from each other.

本実施形態に係る蒸着マスク1の製造工程で用いられる前記母型10は、ステンレス材や真ちゅう、鋼等の導電性を有する材質で形成され、蒸着マスクの製造工程で分離されるまで、マスク本体2をなす一次電着層15他を支持するものであり、蒸着マスク製造工程の各段階で、表面側に一次パターンレジスト14、一次電着層15、二次パターンレジスト18、及び金属層7が形成される。一次電着層15や金属層7の形成の際には、この母型10を介した通電がなされることで、母型10表面のレジストに覆われない通電可能な部分に電鋳(めっき)により一次電着層15又は金属層7が形成されることとなる。   The mother die 10 used in the manufacturing process of the vapor deposition mask 1 according to the present embodiment is formed of a conductive material such as stainless steel, brass, steel, etc., and until the mask body is separated in the vapor deposition mask manufacturing process. The primary pattern resist 14, the primary electrodeposition layer 15, the secondary pattern resist 18, and the metal layer 7 are formed on the surface side at each stage of the deposition mask manufacturing process. It is formed. When the primary electrodeposition layer 15 and the metal layer 7 are formed, the energization through the mother die 10 is performed, so that electroconductive (plating) is performed on the energizable portion that is not covered with the resist on the surface of the mother die 10. Thus, the primary electrodeposition layer 15 or the metal layer 7 is formed.

母型10は、例えば、42アロイ(42%ニッケル−鉄合金)やインバー(36%ニッケル−鉄合金)、SUS430等の低熱膨張係数の素材とすることもできる。この他、母型は、ガラス板や樹脂板など絶縁性基板の表面にクロムやチタンなどの導電性を有する金属からなる金属膜を形成したものでもかまわない。   The mother die 10 can be made of a material having a low thermal expansion coefficient such as 42 alloy (42% nickel-iron alloy), Invar (36% nickel-iron alloy), SUS430, or the like. In addition, the mother die may be a metal plate made of a conductive metal such as chromium or titanium on the surface of an insulating substrate such as a glass plate or a resin plate.

蒸着マスク1の製造工程では、母型10上にめっきにより金属層7が形成されたら(図11(B)参照)、母型10がこれらから分離除去される(図11(C)参照)。母型10がステンレス材の場合には、力を加えて蒸着マスク側から物理的に引き剥がして除去する方法を用いるのが好ましく、また、母型10が他の金属材の場合、薬液を用いて溶解除去するエッチングの方法を用いるのが好ましい。エッチングの場合、母型10は溶解するが一次電着層15や枠体3、金属層7をなす材質が冒されないような選択エッチング性を有するエッチング液を用いることとなる。   In the manufacturing process of the vapor deposition mask 1, when the metal layer 7 is formed on the mother die 10 by plating (see FIG. 11B), the mother die 10 is separated and removed from these (see FIG. 11C). In the case where the mother die 10 is made of stainless steel, it is preferable to use a method in which force is applied and physically peeled off from the vapor deposition mask side, and when the mother die 10 is other metal material, a chemical solution is used. It is preferable to use an etching method that dissolves and removes. In the case of etching, an etching solution having a selective etching property is used so that the matrix 10 is dissolved but the material forming the primary electrodeposition layer 15, the frame 3, and the metal layer 7 is not affected.

前記一次電着層15は、電鋳に適したニッケルやニッケル−コバルト等のニッケル合金からなり、母型10上の一次パターンレジスト14のない部分に、電鋳で形成される構成である。蒸着マスク1において、一次電着層15は、被蒸着基板における発光層等の蒸着対象箇所に対応する蒸着通孔8を除いた、被蒸着基板の表面を覆うマスク本体2をなすものとして形成されることとなる。   The primary electrodeposition layer 15 is made of a nickel alloy such as nickel or nickel-cobalt suitable for electroforming, and is formed by electroforming on a portion of the matrix 10 where the primary pattern resist 14 is not present. In the vapor deposition mask 1, the primary electrodeposition layer 15 is formed as a mask main body 2 that covers the surface of the vapor deposition substrate excluding the vapor deposition through holes 8 corresponding to vapor deposition target portions such as a light emitting layer in the vapor deposition substrate. The Rukoto.

前記一次パターンレジスト14は、一次電着層15の電鋳で使用する電解液に対する耐溶解性を備えた絶縁性材で形成され、母型10上にあらかじめ設定される一次電着層15の非配置部分に対応させて配設され、一次電着層15の形成後には除去されるものである(図6、図7参照)。   The primary pattern resist 14 is formed of an insulating material having resistance to dissolution with respect to an electrolytic solution used for electroforming the primary electrodeposition layer 15, and the primary electrodeposition layer 15 that is preset on the mother die 10 is not formed. It is arranged corresponding to the arrangement part and is removed after the formation of the primary electrodeposition layer 15 (see FIGS. 6 and 7).

この一次パターンレジスト14は、母型10上に一次電着層15の形成に先立って配設され、感光性レジスト、例えば、ネガタイプの感光性ドライフィルムレジストを、母型10に所定の厚さ、例えば約20μmの厚さとなるようにして配設し、蒸着マスク1のマスク本体2位置、すなわち、一次電着層15の配置位置に対応する所定パターンのマスクフィルム12を載せた状態で、紫外線照射による露光での硬化、非照射部分のレジストを除去する現像等の処理を経て、一次電着層15の非配置部分に対応させた形状で形成される。   The primary pattern resist 14 is disposed prior to the formation of the primary electrodeposition layer 15 on the mother die 10, and a photosensitive resist, for example, a negative photosensitive dry film resist is applied to the mother die 10 with a predetermined thickness, For example, it is disposed so as to have a thickness of about 20 μm, and ultraviolet irradiation is performed with a mask film 12 having a predetermined pattern corresponding to the position of the mask body 2 of the vapor deposition mask 1, that is, the position of the primary electrodeposition layer 15. The film is formed in a shape corresponding to the non-arranged portion of the primary electrodeposition layer 15 through processing such as curing by exposure and development for removing the resist in the non-irradiated portion.

前記二次パターンレジスト18は、金属層7のめっきで使用する電解液に対する耐溶解性を備えた、好ましくは100〜120μmの範囲の厚さとなる絶縁性材で形成され、一次電着層15にあらかじめ設定される金属層7の非配置部分に対応するように金属層7の形成に先立って配設され、金属層7の形成後には除去されるものである(図8、図9参照)。   The secondary pattern resist 18 is formed of an insulating material having a resistance to dissolution with respect to an electrolytic solution used for plating of the metal layer 7, and preferably has a thickness in the range of 100 to 120 μm, and is formed on the primary electrodeposition layer 15. The metal layer 7 is disposed prior to the formation of the metal layer 7 so as to correspond to the non-arranged portion of the metal layer 7, and is removed after the formation of the metal layer 7 (see FIGS. 8 and 9).

この二次パターンレジスト18は、感光性レジスト、例えばネガタイプの感光性ドライフィルムレジストを、母型10及び既に配置された一次電着層15上に貼着配設すると共に、蒸着マスク1の金属層7及び枠体3位置に対応する所定パターンのマスクフィルム17を載せた状態での紫外線照射による露光を行う一連の工程を、一回又は複数回繰り返し行って、必要なレジスト厚さとした後、露光における非照射部分の感光性材料を除去する現像等の処理を経て、金属層7の非配置部分(マスク本体2のパターン形成領域2a)に対応させた形状で形成される。   The secondary pattern resist 18 is formed by sticking a photosensitive resist, for example, a negative photosensitive dry film resist, on the master 10 and the primary electrodeposition layer 15 that has already been arranged, and at the same time, the metal layer of the vapor deposition mask 1. 7 and a series of steps of performing exposure by ultraviolet irradiation in a state where a mask film 17 having a predetermined pattern corresponding to the position of the frame 3 is placed is repeated once or plural times to obtain a required resist thickness, and then exposed. Through a process such as development for removing the photosensitive material in the non-irradiated portion, the metal layer 7 is formed in a shape corresponding to the non-arranged portion (pattern forming region 2a of the mask body 2).

前記金属層7は、めっきにより形成されるものであり、ニッケルやニッケル−コバルト合金等からなり、母型10及び既に配置された一次電着層15及び枠体3上の、二次パターンレジスト18が配設されず露出した部分に、めっきで形成される構成である。   The metal layer 7 is formed by plating, and is made of nickel, a nickel-cobalt alloy, or the like, and the secondary pattern resist 18 on the matrix 10, the primary electrodeposition layer 15 and the frame 3 that have already been arranged. In this configuration, the exposed portion is not plated and is formed by plating.

この金属層7は、マスク本体2のパターン形成領域2aの外周縁2bと枠体3とを接合するものである。金属層7は、パターン形成領域の外周縁2bに係るマスク本体2の上面にめっきにより積層される。詳しくは、金属層7は、パターン形成領域2aの外周縁2bの上面と、枠体3の上面及びパターン形成領域2a側の側面と、マスク本体2と枠体3との間隙部分に形成されており、これでパターン形成領域2aの外周縁2bと枠体3の開口周縁とを離れないよう一体に連結する。   The metal layer 7 joins the outer peripheral edge 2b of the pattern formation region 2a of the mask body 2 and the frame body 3. The metal layer 7 is laminated by plating on the upper surface of the mask body 2 related to the outer peripheral edge 2b of the pattern formation region. Specifically, the metal layer 7 is formed on the upper surface of the outer peripheral edge 2b of the pattern formation region 2a, the upper surface of the frame body 3 and the side surface on the pattern formation region 2a side, and the gap portion between the mask body 2 and the frame body 3. Thus, the outer peripheral edge 2b of the pattern forming region 2a and the opening peripheral edge of the frame body 3 are integrally connected so as not to leave.

次に、本実施形態に係る蒸着マスクにおける枠体の形成工程及びこの枠体を含む蒸着マスク全体の製造工程について説明する。
初めに、マスク本体2の補強に用いる枠体3の形成工程について説明する。
Next, a frame forming process in the vapor deposition mask according to the present embodiment and a manufacturing process of the entire vapor deposition mask including the frame will be described.
First, a process for forming the frame 3 used for reinforcing the mask body 2 will be described.

まず、圧延加工等を経た一般的な金属薄板素材から、同一形状の第一枠部材3aと第二枠部材3bを、放電加工やレーザ加工等による切断工程で形成する。金属薄板素材から第二枠部材3bを切断する際、金属薄板素材上で第二枠部材3bとして設定する部位は、第一枠部材3aの部位に対し、その向きが反転するようにして設け、第一枠部材3aと第二枠部材3bとでは歪に起因する反りが逆向きに生じるようにする。   First, the first frame member 3a and the second frame member 3b having the same shape are formed by a cutting process by electric discharge machining, laser machining, or the like from a general metal thin plate material that has undergone rolling or the like. When cutting the second frame member 3b from the metal thin plate material, the portion set as the second frame member 3b on the metal thin plate material is provided so that the direction is reversed with respect to the portion of the first frame member 3a, The first frame member 3a and the second frame member 3b are warped due to distortion in opposite directions.

切断後、切り出した各部材に対しエッチングやレーザ加工等により開口領域6を設けて、第一枠部材3a及び第二枠部材3bとして完成させる。得られた第一枠部材3aと第二枠部材3bとの間に接着層3cとなる接着剤を介在させ、反りの向きが逆になる状態で接合一体化することで、各部が所定の断面形状をなす枠体3を得る。   After cutting, an opening region 6 is provided for each cut out member by etching, laser processing, or the like to complete the first frame member 3a and the second frame member 3b. By interposing an adhesive serving as an adhesive layer 3c between the obtained first frame member 3a and the second frame member 3b and joining and integrating them in a state in which the direction of warping is reversed, each part has a predetermined cross section. A frame 3 having a shape is obtained.

第一枠部材3aと第二枠部材3bを一体化するための接着剤として、例えば、未硬化状態で粘着性を有する、シート状の感光性ドライフィルムレジストを用い、後工程でも使用する材料と同じにすることで、その分とまとめて準備、補充した中から一部流用する形で用意でき、接着層とするためだけに市販の接着剤等を別途用意する必要がなく、こうした専用の接着剤に係るコストが発生せず、その分蒸着マスクの製造コストを削減できるため好ましい。   As an adhesive for integrating the first frame member 3a and the second frame member 3b, for example, a sheet-like photosensitive dry film resist having adhesiveness in an uncured state is used, and a material used in a subsequent process By making it the same, it can be prepared in a form that can be partially diverted from the preparation and replenishment, and there is no need to separately prepare a commercially available adhesive etc. just to make an adhesive layer, such a dedicated adhesion This is preferable because the cost associated with the agent does not occur and the manufacturing cost of the vapor deposition mask can be reduced accordingly.

必要に応じて、接合一体化した第一枠部材3aと第二枠部材3bを、一対の加圧用ローラなど、積層した部材に対し挟圧力を付与可能な装置に通して、接合状態の定着を図る工程を実行するようにしてもよい。   If necessary, the bonded first and second frame members 3a and 3b are passed through a device capable of applying a clamping force to the stacked members, such as a pair of pressure rollers, to fix the bonded state. You may make it perform the process to plan.

接合後、接着層3cの不要部分、すなわち開口領域6や外枠部4の外側に位置する部分、を除去することにより、枠体3は完成となる。なお、接着剤がフィルムレジストの場合は、現像工程により除去することとなる。   After joining, the frame body 3 is completed by removing unnecessary portions of the adhesive layer 3c, that is, portions located outside the opening region 6 and the outer frame portion 4. In addition, when an adhesive agent is a film resist, it will remove by the image development process.

完成した枠体3に対しては、これを母型10に接着するための別の接着層19が配設される。この接着層19としては、例えば、未硬化状態で粘着性を有する、感光性ドライフィルムレジストを貼り付けて用いることができ、枠体3へのフィルムレジストの貼り付け後、枠体3の開口領域6に位置する部分や外枠部4からはみ出した部分のフィルムレジストを除去することで、接着層19が得られることとなる。   For the completed frame 3, another adhesive layer 19 for adhering it to the mother die 10 is provided. As the adhesive layer 19, for example, a photosensitive dry film resist having adhesiveness in an uncured state can be attached and used. After the film resist is attached to the frame 3, the opening region of the frame 3 is used. The adhesive layer 19 is obtained by removing the film resist of the portion located at 6 and the portion protruding from the outer frame portion 4.

一方、蒸着マスクの製造工程については、まず、母型10上にあらかじめ設定される、マスク本体2の蒸着通孔8、すなわち一次電着層15の非配置部分、に対応させて、母型10にレジスト層11を配設する(図6参照)。具体的には、母型10の表面側に、例えば、ネガタイプの感光性ドライフィルムレジストを、一次電着層15の形成に必要な所定厚さ(例えば約20μm)に合わせて一ないし数枚積層し、熱圧着によりレジスト層11を形成する(図6(A)参照)。   On the other hand, as for the manufacturing process of the vapor deposition mask, first, the matrix 10 is set in correspondence with the vapor deposition through holes 8 of the mask body 2, that is, the non-arranged portions of the primary electrodeposition layer 15 set in advance on the matrix 10. A resist layer 11 is disposed on the substrate (see FIG. 6). Specifically, one or several negative photosensitive dry film resists, for example, are laminated on the surface side of the mother die 10 in accordance with a predetermined thickness (for example, about 20 μm) necessary for forming the primary electrodeposition layer 15. Then, the resist layer 11 is formed by thermocompression bonding (see FIG. 6A).

そして、レジスト層11の表面に、前記蒸着通孔8に対応する透光孔12aを有するなど、一次電着層15の配置位置に対応する所定パターンのマスクフィルム(ガラスマスク)12を密着させた後、紫外線照射による露光での硬化(図6(B)、(C)参照)、マスクされていた非照射部分のレジストを除去する現像、乾燥、といった各処理を行う。こうして、一次電着層15の非配置部分に対応させた一次パターンレジスト14を母型10上に形成する(図7(A)参照)。
なお、このような一次パターンレジスト14は、フォトレジスト等を使用したリソグラフィー法その他の任意の方法で形成することができ、その形成方法は上記に限定されるものではない。
Then, a mask film (glass mask) 12 having a predetermined pattern corresponding to the arrangement position of the primary electrodeposition layer 15 is adhered to the surface of the resist layer 11 such as having a light transmitting hole 12a corresponding to the vapor deposition through hole 8. Then, each process of hardening by exposure by ultraviolet irradiation (refer FIG. 6 (B), (C)), the development which removes the resist of the non-irradiated part masked, and drying is performed. In this way, the primary pattern resist 14 corresponding to the non-arranged portion of the primary electrodeposition layer 15 is formed on the mother die 10 (see FIG. 7A).
The primary pattern resist 14 can be formed by a lithography method using a photoresist or the like or any other method, and the formation method is not limited to the above.

この一次パターンレジスト14を有する母型10を、所定の条件に建浴した電鋳槽に入れ、一次パターンレジスト14の厚さの範囲内で、母型10の一次パターンレジスト14で覆われていない表面(露出領域)に、ニッケル合金等の電着金属の電鋳により、例えば8μm厚の、マスク本体2となる一次電着層15を形成する(図7(B)参照)。   The mother die 10 having the primary pattern resist 14 is put in an electroforming tank bathed under a predetermined condition, and is not covered with the primary pattern resist 14 in the thickness range of the primary pattern resist 14. On the surface (exposed region), a primary electrodeposition layer 15 to be the mask body 2 having a thickness of, for example, 8 μm is formed by electroforming of an electrodeposited metal such as a nickel alloy (see FIG. 7B).

この後、一次パターンレジスト14を溶解除去することにより、所定の蒸着パターン9をなす独立した多数の蒸着通孔8を設けられたマスク本体2となる一次電着層15が得られる(図7(C)参照)。   Thereafter, the primary pattern resist 14 is dissolved and removed to obtain a primary electrodeposition layer 15 to be the mask body 2 provided with a large number of independent vapor deposition holes 8 forming a predetermined vapor deposition pattern 9 (FIG. 7 ( C)).

この一次電着層15が得られた後、この一次電着層15の形成部分を含む母型10の表面全体に、好ましくは50〜60μmの範囲の厚さとなるレジスト層16を配設する。具体的には、母型10の表面側に、例えば、厚さ56μmのネガタイプの感光性ドライフィルムレジストを貼り、要部を露光により硬化させる。こうした工程を、レジスト層16から最終的に得られる二次パターンレジスト18があらかじめ設定された所定厚さとなるように必要に応じ複数回繰り返して、一枚又は複数枚のフィルムレジストからなる単層又は積層構造のレジスト層16を形成する。   After the primary electrodeposition layer 15 is obtained, a resist layer 16 having a thickness preferably in the range of 50 to 60 μm is disposed on the entire surface of the mother die 10 including the portion where the primary electrodeposition layer 15 is formed. Specifically, for example, a negative type photosensitive dry film resist having a thickness of 56 μm is pasted on the surface side of the mother die 10, and the main part is cured by exposure. These steps are repeated a plurality of times as necessary so that the secondary pattern resist 18 finally obtained from the resist layer 16 has a predetermined thickness, and a single layer or a single film resist or a plurality of film resists. A resist layer 16 having a laminated structure is formed.

フィルムレジストの露光は、一枚貼るごとに行われる。詳細には、新たに貼り付けたフィルムレジストの表面に、マスク本体2のパターン形成領域2aに対応する透光孔17aを有するマスクフィルム17を密着させた後、紫外線照射による露光で硬化させる工程として行われる(図8(B)、図9(A)参照)。
これが必要に応じ繰り返されて、パターン形成領域2aに対応する部分では露光により硬化したレジスト層16aが、それ以外の部分では未露光のレジスト層16bが、あらかじめ設定された所定厚さとして得られることとなる。
The exposure of the film resist is performed every time one sheet is applied. Specifically, as a step of making the mask film 17 having the light transmitting holes 17a corresponding to the pattern formation region 2a of the mask body 2 adhere to the surface of the newly applied film resist, and then curing by exposure by ultraviolet irradiation. Is performed (see FIG. 8B and FIG. 9A).
This is repeated as necessary to obtain a resist layer 16a cured by exposure at a portion corresponding to the pattern formation region 2a and an unexposed resist layer 16b at a predetermined thickness set in other portions. It becomes.

本実施形態では、フィルムレジストを貼って露光を行う工程を2回繰り返して、厚さ56μmのレジスト層16を二層形成する。
この後、表面に露出している未露光のレジスト層16bを溶解除去する処理を行って、パターン形成領域2aを覆う厚さ112μmの二次パターンレジスト18を形成する(図9(C)参照)。
In this embodiment, the process of attaching a film resist and performing exposure is repeated twice to form two resist layers 16 each having a thickness of 56 μm.
Thereafter, a process of dissolving and removing the unexposed resist layer 16b exposed on the surface is performed to form a secondary pattern resist 18 having a thickness of 112 μm covering the pattern formation region 2a (see FIG. 9C). .

こうして二次パターンレジスト18を形成した後、前記枠体形成工程を経て形成済みの枠体3の下面側にあらかじめ接着層19を配置したものを、一次電着層15上のあらかじめ設定された箇所に位置合せして配置する(図9(C)参照)。
この状態での枠体3は、接着層19の粘着性により、一次電着層15上に容易に動かないよう仮固定できる。
After the secondary pattern resist 18 is formed in this way, a predetermined position on the primary electrodeposition layer 15 is obtained by arranging the adhesive layer 19 in advance on the lower surface side of the frame 3 that has been formed through the frame forming step. (See FIG. 9C).
The frame 3 in this state can be temporarily fixed so as not to move easily on the primary electrodeposition layer 15 due to the adhesiveness of the adhesive layer 19.

仮固定した枠体3に対しては、枠体3の上から荷重を加えて圧着する工程を実行し、枠体3が一次電着層15から容易に離れないようにする(図10参照)。具体的には、まず、仮圧着として、枠体3にこれを母型側に押し付ける静荷重を所定時間加える。すなわち、枠体3上に50kg以上、例えば105kgのガラス板等を載置して1時間以上、例えば4時間放置する。なお、この仮圧着においては、静荷重として枠体3上に載置可能な物体であれば、ガラス板以外のものも使用できる。   For the temporarily fixed frame 3, a process of applying a load from above the frame 3 and performing pressure bonding is performed so that the frame 3 is not easily separated from the primary electrodeposition layer 15 (see FIG. 10). . Specifically, first, as a temporary pressure bonding, a static load is applied to the frame 3 to press it against the mother die for a predetermined time. That is, a glass plate of 50 kg or more, for example, 105 kg, is placed on the frame 3 and left for 1 hour or more, for example, 4 hours. In addition, in this temporary crimping | bonding, things other than a glass plate can also be used if it is an object which can be mounted on the frame 3 as a static load.

続いて、本圧着として、枠体3各部をむらなく押圧して一次電着層15に確実に固定する。具体例としては、ガラス板等を除去した後、枠体3に対し相対移動しながら0.1MPa以上、例えば0.6MPaの圧力で押圧する加圧ローラ(ラミネータ)を枠体3上で1往復以上、例えば3往復、往復動作するようにして押圧を実行する。   Subsequently, as the main pressure bonding, each part of the frame body 3 is pressed evenly to be surely fixed to the primary electrodeposition layer 15. As a specific example, after removing the glass plate or the like, a pressure roller (laminator) that presses with a pressure of 0.1 MPa or more, for example, 0.6 MPa while moving relative to the frame 3 is reciprocated once on the frame 3. As described above, the pressing is performed so as to reciprocate three times, for example.

この本圧着として加圧ローラで押圧を行う際に、容易に変形しない剛性の高い板体、例えばSUS材からなる板、を枠体3とローラ間に介在させ、この板体を介してローラでの押圧を実行するようにすれば、ローラからの力が板体で分散されて枠体3に伝わることとなり、ローラで直接押圧を行う場合に比べて押圧力の偏りが生じにくく、好ましい。   When pressing with a pressure roller as the main pressure bonding, a highly rigid plate that is not easily deformed, for example, a plate made of SUS material, is interposed between the frame 3 and the roller, and the roller is interposed through this plate. If the pressing is performed, the force from the roller is dispersed by the plate and transmitted to the frame 3, and it is preferable that the pressing force is less biased than when the pressing is directly performed by the roller.

この他、剛性の高い板体とゴムなどの弾性体製のシートとを重ね合わせたものを、シート側が枠体3に面する状態で枠体3とローラ間に介在させ、これら板体とシートを介してローラでの押圧を行うようにすることもできる。この場合、板体表面のわずかな傾きや歪み、凹凸等による板体と枠体との間隔の不均一状態を、板体と枠体間に介在するシートの弾性変形で吸収でき、ローラからの力が枠体3に密着するシートを介して枠体3により均一に伝わることとなり、枠体3を一次電着層15に対しより一層むらなく均一に圧着でき、枠体3と一次電着層15との間に隙間が生じるのを抑えて、金属層7形成時における隙間でのめっきの異常成長などの悪影響を防止できる。   In addition, a laminate of a highly rigid plate and an elastic sheet such as rubber is interposed between the frame 3 and the roller with the sheet side facing the frame 3, and the plate and the sheet. It is also possible to perform the pressing with the roller via the. In this case, the uneven state of the gap between the plate body and the frame body due to slight inclination, distortion, unevenness, etc. on the plate body surface can be absorbed by the elastic deformation of the sheet interposed between the plate body and the frame body. The force is uniformly transmitted to the frame body 3 through the sheet that is in close contact with the frame body 3, and the frame body 3 can be more uniformly and uniformly bonded to the primary electrodeposition layer 15. The frame body 3 and the primary electrodeposition layer It is possible to suppress the generation of a gap between the first and second layers, and to prevent adverse effects such as abnormal growth of plating in the gap when the metal layer 7 is formed.

なお、加圧ローラ(ラミネータ)を用いて本圧着としての枠体3の押圧を行う他に、押圧部分を枠体3の厚さ方向のみに作動させて枠体3を押圧可能な、プレス式の装置を用いることもでき、押圧にローラを用いる場合のように、転動するローラから誤ってローラ接線方向(横向き)の力が枠体に加わって、枠体の横ずれを招くおそれはなく、好ましい。   In addition to pressing the frame 3 as a main press using a pressure roller (laminator), a press type capable of pressing the frame 3 by operating the pressing portion only in the thickness direction of the frame 3. As in the case of using a roller for pressing, there is no possibility that a roller tangential direction (lateral direction) force is applied to the frame body by mistake from the rolling roller, causing a lateral displacement of the frame body, preferable.

こうした圧着工程の後、二次パターンレジスト18に覆われず、パターン形成領域2aの外周縁2bに係る表面に露出する一次電着層15の上面、枠体3下側の一次電着層15aとその側方で表面に露出する母型10の各露出面、及び枠体3の表面上に、電着金属のめっきにより金属層7を形成する(図11(B)参照)。この金属層7により一次電着層15と枠体3とを離れないよう一体に連結できる。   After such a crimping step, the upper surface of the primary electrodeposition layer 15 that is not covered with the secondary pattern resist 18 and is exposed on the surface of the outer peripheral edge 2b of the pattern formation region 2a, the primary electrodeposition layer 15a on the lower side of the frame 3 and A metal layer 7 is formed by plating with an electrodeposited metal on each exposed surface of the mother die 10 exposed on the side and on the surface of the frame body 3 (see FIG. 11B). By this metal layer 7, the primary electrodeposition layer 15 and the frame 3 can be integrally connected so as not to leave.

この場合、金属層7は、パターン形成領域2aの外周縁2bに係る表面に露出する一次電着層15の上面や、一次電着層15と枠体3との間で表面に露出する母型10表面における厚さに対し、枠体3の表面での金属層7の厚さはより薄く形成されることとなる。この厚さの差異は、金属層7が母型10や一次電着層15の表面から順次積層されて、接着層19の高さ寸法を超えて枠体3に達してはじめて、枠体3が母型10や一次電着層15と導通状態となり、枠体3の表面への金属層7の形成が開始することによるものである。   In this case, the metal layer 7 is an upper surface of the primary electrodeposition layer 15 exposed on the surface related to the outer peripheral edge 2b of the pattern formation region 2a, or a matrix exposed on the surface between the primary electrodeposition layer 15 and the frame 3. The thickness of the metal layer 7 on the surface of the frame 3 is formed thinner than the thickness on the surface 10. The difference in thickness is that the metal layer 7 is sequentially laminated from the surface of the mother die 10 and the primary electrodeposition layer 15 and reaches the frame body 3 beyond the height dimension of the adhesive layer 19. This is because the metal mold 7 is brought into conduction with the matrix 10 and the primary electrodeposition layer 15 and the formation of the metal layer 7 on the surface of the frame 3 is started.

金属層7の形成が完了したら、最終工程として、母型10から一体の一次電着層15、枠体3及び金属層7を剥離する(図11(C)参照)。さらに、枠体3の下側に存在する一次電着層15aを接着層19と共に除去し、次いで二次パターンレジスト18を除去することで、蒸着マスク1の製造が完了となる。なお、枠体3の下側に接着層19が残存している場合は、二次パターンレジスト18の除去時に除去する。   When the formation of the metal layer 7 is completed, the integrated primary electrodeposition layer 15, the frame body 3, and the metal layer 7 are peeled from the mother die 10 as a final step (see FIG. 11C). Further, the primary electrodeposition layer 15a existing on the lower side of the frame 3 is removed together with the adhesive layer 19, and then the secondary pattern resist 18 is removed, whereby the production of the vapor deposition mask 1 is completed. If the adhesive layer 19 remains on the lower side of the frame 3, it is removed when the secondary pattern resist 18 is removed.

このように、本実施形態に係る蒸着マスクは、枠体3の内枠部5における最小幅部の断面形状を、その幅と厚さの関係が適切なものとなるようにして、最小幅部の曲げ剛性を的確に付与することから、マスク本体2側からの力に対する必要十分な強度を与えられ、この最小幅部より幅広で強度の高い枠体3の他部分と合わせて、枠体3全体としてマスク本体2各部の本来あるべき位置からのずれを抑えられ、蒸着工程におけるマスクと被蒸着基板との整合状態を確保でき、被蒸着基板の適切な位置に精度よく蒸着が行える。また、最小幅部の曲げ変形のしにくさにより、最小幅部の自重による撓みも抑えられ、枠体3の変形とそれによるマスク本体2への影響を抑えられる。   As described above, the vapor deposition mask according to the present embodiment is configured so that the cross-sectional shape of the minimum width portion of the inner frame portion 5 of the frame body 3 has an appropriate relationship between the width and thickness, and the minimum width portion. Therefore, the frame body 3 is provided with necessary and sufficient strength against the force from the mask body 2 side, and is combined with the other part of the frame body 3 wider and stronger than the minimum width portion. As a whole, the displacement of each part of the mask main body 2 from the proper position can be suppressed, the alignment state between the mask and the deposition target substrate in the deposition process can be secured, and the deposition can be performed accurately at an appropriate position of the deposition target substrate. Further, due to the difficulty of bending deformation of the minimum width portion, bending due to its own weight of the minimum width portion can be suppressed, and deformation of the frame body 3 and its influence on the mask body 2 can be suppressed.

なお、前記実施形態に係る蒸着マスクにおいて、マスク本体2は、枠体3の各開口領域6に位置するように配設され、多数の蒸着通孔8が設けられるパターン形成領域2aを内部に一つのみ配置して形成される構成としているが、これに限らず、図12に示すように、マスク本体2が複数のパターン形成領域2aを有する構成としてもかまわない。この場合、マスク本体2の位置ずれを確実に抑えるために、マスク本体周囲の枠体各部の幅を、最小幅部として許容される幅寸法より大きめに形成して、十分な剛性を確保するのが望ましい。この他、枠体3の各開口領域6に位置するマスク本体2を一つのみとする構成に代えて、一つの開口領域6に複数のマスク本体2を並べて配置する構成としてもよい。その場合、マスク本体2の外周縁は、枠体3に隣接する部位と、マスク本体同士で隣接する部位とに分かれるが、このマスク本体同士で隣接する部位では、マスク本体2と枠体3とを一体に接合するものと同様に、マスク本体同士をめっきにより形成される金属層で一体に接合することとなる。   In the vapor deposition mask according to the embodiment, the mask main body 2 is disposed so as to be positioned in each opening region 6 of the frame 3, and has a pattern forming region 2 a provided with a large number of vapor deposition through holes 8. However, the present invention is not limited to this, and the mask body 2 may have a plurality of pattern formation regions 2a as shown in FIG. In this case, in order to reliably suppress the displacement of the mask main body 2, the width of each part of the frame around the mask main body is formed larger than the width dimension allowed as the minimum width portion to ensure sufficient rigidity. Is desirable. In addition, instead of a configuration in which only one mask main body 2 is located in each opening region 6 of the frame 3, a plurality of mask main bodies 2 may be arranged side by side in one opening region 6. In that case, the outer peripheral edge of the mask main body 2 is divided into a part adjacent to the frame body 3 and a part adjacent to the mask main body. In the part adjacent to the mask main body, the mask main body 2 and the frame body 3 As in the case of integrally joining the mask bodies, the mask bodies are joined together with a metal layer formed by plating.

また、前記実施形態に係る蒸着マスクにおいて、枠体3は、同一形状の第一枠部材3aと第二枠部材3bとを接合一体化して形成する構成としているが、これに限られるものではなく、第一枠部材3aと第二枠部材3bの形状を異ならせる、例えば、図13に示すように、マスク本体2に近い側の第二枠部材3bの開口に対し、マスク本体2から遠い側の第一枠部材3aの開口をより大きくするように設けて、第二枠部材3bにおける各部の幅を第一枠部材3aより大きく形成した上で、第一枠部材3aと第二枠部材3bとを接合一体化して枠体3を形成する構成とすることもできる。この場合、枠体3の開口領域6がマスク本体2から遠い部位で広がって、開口領域6を取り囲む周縁部分が後退した状態となることで、蒸着工程において、枠体3の開口領域6及びマスク本体2の蒸着通孔8を経て蒸着対象基板に向かう蒸着材料に対し、枠体3における開口領域6周りの周縁部分が蒸着材料の進行を妨げる障害物になりにくく、各蒸着通孔8に枠体3の影響を排除して蒸着材料を問題なく進行させることができ、より適切に蒸着を実行できることとなる。   Moreover, in the vapor deposition mask which concerns on the said embodiment, although the frame 3 is set as the structure formed by joining and integrating the 1st frame member 3a and the 2nd frame member 3b of the same shape, it is not restricted to this. The shapes of the first frame member 3a and the second frame member 3b are made different. For example, as shown in FIG. 13, the side farther from the mask body 2 with respect to the opening of the second frame member 3b closer to the mask body 2 The first frame member 3a and the second frame member 3b are formed so that the opening of the first frame member 3a is made larger and the width of each part in the second frame member 3b is made larger than that of the first frame member 3a. And the frame 3 can be formed by joining and integrating. In this case, the opening region 6 of the frame 3 spreads in a portion far from the mask main body 2 and the peripheral portion surrounding the opening region 6 is retracted. With respect to the vapor deposition material directed to the vapor deposition target substrate through the vapor deposition through hole 8 of the main body 2, the peripheral portion around the opening region 6 in the frame body 3 is unlikely to become an obstacle that hinders the progress of the vapor deposition material. The influence of the body 3 can be eliminated and the vapor deposition material can be allowed to proceed without problems, and vapor deposition can be performed more appropriately.

また、前記実施形態に係る蒸着マスクの製造においては、一次電着層15と枠体3とに接するように金属層7を形成して、金属層7で一次電着層15と枠体3の一体化を図る構成としているが、これに限らず、枠体3を下側の一次電着層15に対し、未硬化のフィルムレジストより強力な接着剤を介在させつつ載置して、一次電着層15と枠体3とを接着で一体化する構成とすることもでき、一次電着層、すなわちマスク本体2と、枠体3との一体化を簡略に実行でき、マスクの製造能率の向上が図れる。この場合、さらに、マスク本体2の表面と枠体3の表面を覆うように金属層を形成することで、マスク本体2と枠体3の接合状態をより好ましいものにできる。特に、接着剤の表面(側部)を金属層で覆うことで、洗浄処理や昇温に起因する接着剤の変質を効果的に防ぐことができ、マスク本体2と枠体3との接合状態を長期にわたり維持できる。   Further, in the manufacture of the vapor deposition mask according to the embodiment, the metal layer 7 is formed so as to be in contact with the primary electrodeposition layer 15 and the frame body 3, and the primary electrodeposition layer 15 and the frame body 3 are formed of the metal layer 7. However, the present invention is not limited to this, and the frame 3 is placed on the lower primary electrodeposition layer 15 with a stronger adhesive than the uncured film resist interposed therebetween, thereby The adhesion layer 15 and the frame 3 can be integrated by bonding, and the primary electrodeposition layer, that is, the mask body 2 and the frame 3 can be simply integrated, and the mask manufacturing efficiency can be improved. Improvement can be achieved. In this case, by further forming a metal layer so as to cover the surface of the mask body 2 and the surface of the frame body 3, the bonding state of the mask body 2 and the frame body 3 can be made more preferable. In particular, by covering the surface (side part) of the adhesive with a metal layer, it is possible to effectively prevent the deterioration of the adhesive due to the cleaning process and the temperature rise, and the bonding state of the mask body 2 and the frame 3 Can be maintained for a long time.

また、前記実施形態に係る蒸着マスクの製造においては、母型10上に枠体3を配置した後、枠体3表面に金属層7を形成するようにしているが、これに限らず、めっきで金属層7を形成する前に、枠体上面の一部又は全部にレジストを配設して、金属層7を枠体上面全体には形成せず、必要な部位以外は金属層7を枠体上面の一部にのみ設けたり、省略したりして、枠体3表面に応力緩和部を設けた構成とすることもできる。   Moreover, in the manufacture of the vapor deposition mask according to the embodiment, the metal layer 7 is formed on the surface of the frame body 3 after the frame body 3 is arranged on the mother die 10. Before forming the metal layer 7, a resist is disposed on a part or all of the upper surface of the frame body, and the metal layer 7 is not formed on the entire upper surface of the frame body. It is also possible to adopt a configuration in which a stress relaxation portion is provided on the surface of the frame 3 by providing or omitting only on a part of the upper surface of the body.

この場合、枠体3の上面において金属層7が一様に連続せず部分的、断片的なものとなることで、金属層に仮に内部応力が発生しても枠体3全体ではなく部分的、断片的に作用するものとなり、枠体3が変形などの悪影響を受けにくく、平面形状を確保できる。   In this case, the metal layer 7 is not uniformly continuous on the upper surface of the frame 3 and is partially and fragmented, so that even if internal stress is generated in the metal layer, it is not the entire frame 3. Thus, the frame body 3 acts in a fragmentary manner, and the frame body 3 is less susceptible to adverse effects such as deformation, and a planar shape can be secured.

また、前記実施形態に係る蒸着マスクの製造においては、一次電着層15が形成された後、一次電着層には特に表面処理を行うことなく、金属層7を形成するようにしているが、これに限らず、一次電着層15が形成された後、金属層7を形成する前の段階で、一次電着層15における金属層を重ねて配設する予定の所定範囲に対して酸浸漬や電解処理等の活性化処理を施すこともできる。   Moreover, in the manufacture of the vapor deposition mask according to the embodiment, after the primary electrodeposition layer 15 is formed, the metal layer 7 is formed on the primary electrodeposition layer without any particular surface treatment. Not limited to this, after the primary electrodeposition layer 15 is formed and before the formation of the metal layer 7, the metal layer in the primary electrodeposition layer 15 is acidified with respect to a predetermined range to be disposed. An activation treatment such as immersion or electrolytic treatment can also be performed.

この場合、無処理の場合に比べて、一次電着層15の活性化処理部分とその上の金属層7との間の接合強度の大幅な向上を図れることとなる。また、活性化処理の代わりに、一次電着層15の所定範囲に対して、ストライクニッケルや無光沢ニッケル等の薄層を形成してもよい。これによっても、一次電着層15の薄層形成部分とその上の金属層7との接合強度の向上を図ることができる。   In this case, the bonding strength between the activation treatment portion of the primary electrodeposition layer 15 and the metal layer 7 thereon can be greatly improved as compared with the case of no treatment. Further, instead of the activation treatment, a thin layer such as strike nickel or matte nickel may be formed on a predetermined range of the primary electrodeposition layer 15. Also by this, the joint strength between the thin layer forming portion of the primary electrodeposition layer 15 and the metal layer 7 thereon can be improved.

また、前記実施形態に係る蒸着マスクの製造においては、一次電着層15や枠体3と金属層7とが重なる箇所は単純に平面同士で接触する構成とされているが、この他、一次電着層15(マスク本体2)におけるパターン形成領域2aの外周縁2bの全周にわたって多数個の貫通孔又は凹部を設けて、一次電着層15の外周縁2b上に形成する金属層7については、前記貫通孔又は凹部を埋めて金属層7が外周縁2bに一部食い込む状態に形成する構成とすることもできる。   In addition, in the manufacture of the vapor deposition mask according to the embodiment, the primary electrodeposition layer 15 and the portion where the frame 3 and the metal layer 7 overlap each other are simply configured to contact each other on the plane. Regarding the metal layer 7 formed on the outer peripheral edge 2b of the primary electrodeposition layer 15 by providing a large number of through holes or recesses over the entire periphery of the outer peripheral edge 2b of the pattern formation region 2a in the electrodeposition layer 15 (mask body 2). Can be configured to fill the through-hole or recess and form the metal layer 7 partially biting into the outer peripheral edge 2b.

この場合、金属層7は、一次電着層15に対し、パターン形成領域2aの外周縁2bの上面に加えて、外周縁2bの各貫通孔又は凹部内に存在して、一次電着層15の外周縁2bとの接合強度をより大きなものとする。これにより、金属層7を介して、マスク本体2と枠体3とをより強固に連結一体化できることとなり、枠体3に対するマスク本体2の不用意な脱落や位置ずれを確実に抑えられ、蒸着精度及び蒸着形成物の再現精度のさらなる向上を図ることができる。   In this case, the metal layer 7 is present in each through hole or recess of the outer peripheral edge 2b in addition to the upper surface of the outer peripheral edge 2b of the pattern formation region 2a with respect to the primary electrodeposition layer 15, and the primary electrodeposition layer 15 The bonding strength with the outer peripheral edge 2b is made larger. As a result, the mask body 2 and the frame body 3 can be more firmly connected and integrated via the metal layer 7, and the inadvertent dropping and misalignment of the mask body 2 with respect to the frame body 3 can be reliably suppressed, and vapor deposition is performed. It is possible to further improve the accuracy and the reproduction accuracy of the deposited product.

また、前記実施形態に係る蒸着マスクの製造において、母型10の一次パターンレジスト14で覆われていない表面に形成する、マスク本体2となる一次電着層15の構造については、特に詳述していないが、この一次電着層15を、母型10側に形成される無光沢ニッケル層と、この無光沢ニッケル層上に形成される光沢ニッケル層との二層構造とすることもできる。詳細には、母型10の一次パターンレジスト14で覆われていない表面に、無光沢ニッケルからなる電着層を電鋳により形成した後、この上に光沢ニッケルからなる電着層を電鋳により形成して、一次電着層15とすることとなる。無光沢ニッケル層と光沢ニッケル層との厚さの関係は、無光沢ニッケル層を厚くしすぎると、完成後のマスク本体2で発生する張力が過度に大きくなり、枠体3の変形を招くおそれがあることから、無光沢ニッケル層に対する光沢ニッケル層の厚さの割合が約5/7となるようにするのが好ましい。   In the manufacturing of the vapor deposition mask according to the embodiment, the structure of the primary electrodeposition layer 15 to be the mask body 2 formed on the surface not covered with the primary pattern resist 14 of the mother die 10 will be described in detail. However, the primary electrodeposition layer 15 can also have a two-layer structure of a matte nickel layer formed on the matrix 10 side and a glossy nickel layer formed on the matte nickel layer. Specifically, an electrodeposition layer made of matte nickel is formed by electroforming on the surface not covered with the primary pattern resist 14 of the mother die 10, and then an electrodeposition layer made of bright nickel is formed thereon by electroforming. Thus, the primary electrodeposition layer 15 is formed. Regarding the relationship between the thickness of the matte nickel layer and the glossy nickel layer, if the matte nickel layer is made too thick, the tension generated in the completed mask body 2 becomes excessively large, and the frame 3 may be deformed. Therefore, the ratio of the thickness of the bright nickel layer to the non-glossy nickel layer is preferably about 5/7.

無光沢ニッケル層と光沢ニッケル層の形成順序を逆にして、光沢ニッケル層上に無光沢ニッケル層を形成した二層構造とすることもできる。ただし、この後者の光沢ニッケル層上に無光沢ニッケル層を形成した二層構造の場合、層間剥離の発生確率が前者の二層構造の場合より高くなると考えられることから、前者の、無光沢ニッケル層上に光沢ニッケル層を形成した二層構造を採用するのが好ましい。   The formation order of the matte nickel layer and the glossy nickel layer can be reversed to form a two-layer structure in which the matte nickel layer is formed on the glossy nickel layer. However, in the case of a two-layer structure in which a matte nickel layer is formed on the latter glossy nickel layer, it is considered that the probability of delamination is higher than in the former two-layer structure. It is preferable to adopt a two-layer structure in which a bright nickel layer is formed on the layer.

このように、無光沢ニッケル層の上側に光沢ニッケル層を配置した二層構造とすると共に、無光沢ニッケル層を光沢ニッケル層より適度に厚くすることで、完成後のマスク本体2において、内方に収縮しようとする張力(引張応力)を大きくすることができ、熱による各部の膨張の影響を受けてもマスク本体2の変形がない、耐熱性に優れた蒸着マスク1を得ることができる。   As described above, the two-layer structure in which the bright nickel layer is disposed on the upper side of the matte nickel layer and the matte nickel layer is appropriately thicker than the bright nickel layer, the inner mask layer 2 in the completed mask body 2 The vapor deposition mask 1 having excellent heat resistance can be obtained in which the tension (tensile stress) to be shrunk can be increased and the mask main body 2 is not deformed even under the influence of expansion of each part due to heat.

なお、一次電着層を無光沢ニッケルのみで形成した場合、完成後のマスク本体2で発生する張力が過度に大きくなり、枠体3の変形を招くおそれがあることに加え、この一次電着層をなす無光沢ニッケル層の表面は粗面であることから、表面へのめっき等の接合力が大きくなり、マスク製造工程で一次電着層15aと金属層7とを分離できない等の問題が生じやすい。上記の無光沢ニッケル層上に光沢ニッケル層を形成した二層構造の一次電着層は、こうした問題も回避できる。この無光沢ニッケル層上に光沢ニッケル層を形成した二層構造の場合、一次電着層の光沢ニッケル層部分では、接合力が無光沢ニッケル層に比べ小さくなる分、一次電着層15と金属層7とが分離しやすくなるものの、一次電着層への通孔の形成、活性化処理、又はストライクニッケルや無光沢ニッケル等の薄層形成などにより、金属層との接合強度を十分に確保することができる。   In addition, when the primary electrodeposition layer is formed only of matte nickel, the tension generated in the mask body 2 after completion becomes excessively large, which may cause deformation of the frame 3, and this primary electrodeposition. Since the surface of the matte nickel layer forming the layer is rough, there is a problem that the bonding force such as plating on the surface is increased and the primary electrodeposition layer 15a and the metal layer 7 cannot be separated in the mask manufacturing process. Prone to occur. The primary electrodeposition layer having a two-layer structure in which a bright nickel layer is formed on the non-glossy nickel layer can avoid such problems. In the case of the two-layer structure in which the bright nickel layer is formed on the matte nickel layer, the primary electrodeposition layer 15 and the metal are reduced in the bright nickel layer portion of the primary electrodeposition layer because the bonding force is smaller than that of the matte nickel layer. Although it is easy to separate from the layer 7, sufficient bonding strength with the metal layer is ensured by forming a through hole in the primary electrodeposition layer, activation treatment, or forming a thin layer such as strike nickel or matte nickel. can do.

1 蒸着マスク
2 マスク本体
2a パターン形成領域
2b 外周縁
3 枠体
3a 第一枠部材
3b 第二枠部材
3c 接着層
4 外枠部
5 内枠部
6 開口領域
7 金属層
8 蒸着通孔
9 蒸着パターン
10 母型
11 レジスト層
12 マスクフィルム
12a 透光孔
14 一次パターンレジスト
15、15a 一次電着層
16 レジスト層
16a、16b レジスト層
17 マスクフィルム
17a 透光孔
18 二次パターンレジスト
19 接着層
DESCRIPTION OF SYMBOLS 1 Deposition mask 2 Mask main body 2a Pattern formation area 2b Outer periphery 3 Frame 3a First frame member 3b Second frame member 3c Adhesion layer 4 Outer frame part 5 Inner frame part 6 Opening area 7 Metal layer 8 Deposition through hole 9 Deposition pattern DESCRIPTION OF SYMBOLS 10 Matrix 11 Resist layer 12 Mask film 12a Light transmission hole 14 Primary pattern resist 15, 15a Primary electrodeposition layer 16 Resist layer 16a, 16b Resist layer 17 Mask film 17a Light transmission hole 18 Secondary pattern resist 19 Adhesive layer

Claims (5)

独立した多数の蒸着通孔を所定パターンで設けられる複数のマスク本体と、マスク本体の周囲に配置される枠体とを備える蒸着マスクにおいて、
前記枠体が、最外周に位置する矩形又は方形状の外枠部と、当該外枠部の内側を複数の開口領域に区画する内枠部とを有して、全体として格子状に形成され、
前記マスク本体が、枠体における複数の開口領域にそれぞれ位置して、枠体と一体化されてなり、
枠体の前記内枠部のうち、最も細幅となる箇所の断面形状が、幅寸法に対する厚さ寸法の割合を0.8/5以上2/5以下とする矩形断面とされることを
特徴とする蒸着マスク。
In a vapor deposition mask comprising a plurality of mask main bodies provided with a plurality of independent vapor deposition through holes in a predetermined pattern, and a frame disposed around the mask main body,
The frame body has a rectangular or rectangular outer frame portion located on the outermost periphery and an inner frame portion that divides the inside of the outer frame portion into a plurality of opening regions, and is formed in a lattice shape as a whole. ,
The mask body is located in each of a plurality of opening regions in the frame, and is integrated with the frame;
The cross-sectional shape of the narrowest portion of the inner frame portion of the frame is a rectangular cross-section in which the ratio of the thickness dimension to the width dimension is 0.8 / 5 or more and 2/5 or less. Vapor deposition mask.
前記請求項1に記載の蒸着マスクにおいて、
前記枠体における外枠部及び内枠部のうち最も細幅となる箇所以外の部位における各断面形状が、幅寸法に対する厚さ寸法の割合を0.8/90以上で、且つ、前記内枠部の最も細幅となる箇所における幅寸法に対する厚さ寸法の割合より小さくする、矩形断面とされることを
特徴とする蒸着マスク。
The vapor deposition mask according to claim 1,
Each cross-sectional shape in a portion other than the narrowest portion of the outer frame portion and the inner frame portion in the frame body has a ratio of a thickness dimension to a width dimension of 0.8 / 90 or more, and the inner frame The vapor deposition mask characterized by being made into the rectangular cross section made smaller than the ratio of the thickness dimension with respect to the width dimension in the location which becomes the narrowest part of a part.
前記請求項1又は2に記載の蒸着マスクにおいて、
前記枠体が、各部の厚さ寸法を0.8mm以上2mm以下とするように形成されることを
特徴とする蒸着マスク。
In the vapor deposition mask according to claim 1 or 2,
The vapor deposition mask, wherein the frame is formed so that a thickness dimension of each part is 0.8 mm or more and 2 mm or less.
前記請求項1ないし3のいずれかに記載の蒸着マスクにおいて、
前記枠体が、第一枠部材と第二枠部材とを重ねて一体化した積層構造とされ、
前記第一枠部材と第二枠部材は、金属薄板素材から形成された反りのある枠部材で、且つそれぞれの反り方向を逆向きとされるものであることを
特徴とする蒸着マスク。
In the vapor deposition mask according to any one of claims 1 to 3,
The frame body has a laminated structure in which the first frame member and the second frame member are stacked and integrated,
The vapor deposition mask characterized in that the first frame member and the second frame member are warped frame members formed of a thin metal plate material, and the respective warp directions are reversed.
前記請求項1ないし3のいずれかに記載の蒸着マスクにおいて、
前記枠体が、内枠部の材質と外枠部の材質とを異ならせて形成されることを
特徴とする蒸着マスク。
In the vapor deposition mask according to any one of claims 1 to 3,
The vapor deposition mask, wherein the frame body is formed by different materials of an inner frame portion and a material of an outer frame portion.
JP2017191494A 2017-07-31 2017-09-29 Vapor deposition mask Active JP7067889B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW107123244A TWI791549B (en) 2017-07-31 2018-07-05 Evaporation hood
KR1020180085784A KR20190013534A (en) 2017-07-31 2018-07-24 Mask for vapor deposition
CN201810834458.5A CN109321879B (en) 2017-07-31 2018-07-26 Vapor deposition mask
JP2022073416A JP7470734B2 (en) 2017-07-31 2022-04-27 Frame and deposition mask
JP2023110688A JP2023126306A (en) 2017-07-31 2023-07-05 Frame body and vapor deposition mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148250 2017-07-31
JP2017148250 2017-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022073416A Division JP7470734B2 (en) 2017-07-31 2022-04-27 Frame and deposition mask

Publications (3)

Publication Number Publication Date
JP2019026926A true JP2019026926A (en) 2019-02-21
JP2019026926A5 JP2019026926A5 (en) 2020-08-13
JP7067889B2 JP7067889B2 (en) 2022-05-16

Family

ID=65477826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191494A Active JP7067889B2 (en) 2017-07-31 2017-09-29 Vapor deposition mask

Country Status (2)

Country Link
JP (1) JP7067889B2 (en)
TW (1) TWI791549B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164913A (en) * 2019-03-29 2020-10-08 マクセルホールディングス株式会社 Vapor deposition mask
CN113308666A (en) * 2020-02-26 2021-08-27 皮姆思株式会社 Mask assembly for thin film vapor deposition with improved flatness and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449485B2 (en) * 2019-03-28 2024-03-14 大日本印刷株式会社 Vapor deposition mask and method for manufacturing a vapor deposition mask

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371349A (en) * 2001-06-19 2002-12-26 Optonix Seimitsu:Kk Mask for vapor deposition
JP2006244746A (en) * 2005-03-01 2006-09-14 Kyocera Corp Mask structure, depositing method using the same, and method of manufacturing organic light-emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696708B (en) * 2015-02-10 2020-06-21 日商大日本印刷股份有限公司 Manufacturing method of vapor deposition mask for organic EL display device, metal plate to be used for manufacturing vapor deposition mask for organic EL display device, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371349A (en) * 2001-06-19 2002-12-26 Optonix Seimitsu:Kk Mask for vapor deposition
JP2006244746A (en) * 2005-03-01 2006-09-14 Kyocera Corp Mask structure, depositing method using the same, and method of manufacturing organic light-emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164913A (en) * 2019-03-29 2020-10-08 マクセルホールディングス株式会社 Vapor deposition mask
JP7473298B2 (en) 2019-03-29 2024-04-23 マクセル株式会社 Evaporation mask
CN113308666A (en) * 2020-02-26 2021-08-27 皮姆思株式会社 Mask assembly for thin film vapor deposition with improved flatness and method for manufacturing same
CN113308666B (en) * 2020-02-26 2023-06-30 皮姆思株式会社 Mask assembly for thin film vapor deposition with improved flatness and method for manufacturing the same

Also Published As

Publication number Publication date
JP7067889B2 (en) 2022-05-16
TWI791549B (en) 2023-02-11
TW201911622A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
CN107419217B (en) Vapor deposition mask and method for manufacturing same
JP7470734B2 (en) Frame and deposition mask
JP7422818B2 (en) vapor deposition mask
JP5751810B2 (en) Metal mask manufacturing method, frame member, and manufacturing method thereof
JP2019026926A (en) Vapor deposition mask
JP7157841B2 (en) Mother mold for electroforming
JP2022167910A (en) Vapor deposition mask
JP4475496B2 (en) Vapor deposition mask for organic EL device and manufacturing method thereof
TWI772559B (en) Evaporation mask and method of making the same
WO2016104207A1 (en) Vapor deposition mask and manufacturing method therefor
JP4782548B2 (en) Deposition method
JP7203887B2 (en) Mask and manufacturing method thereof
JP2021105221A (en) Support device
JP7464415B2 (en) Adhesive layer and metal mask using the adhesive layer
JP7168732B2 (en) frame
JP6695678B2 (en) Intaglio for gravure offset printing and method of manufacturing the same
JP2020075515A (en) Intaglio plate for gravure off-set printing and method for producing the same
JP2020164913A (en) Vapor deposition mask

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220428

R150 Certificate of patent or registration of utility model

Ref document number: 7067889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150