WO2016104207A1 - Vapor deposition mask and manufacturing method therefor - Google Patents

Vapor deposition mask and manufacturing method therefor Download PDF

Info

Publication number
WO2016104207A1
WO2016104207A1 PCT/JP2015/084885 JP2015084885W WO2016104207A1 WO 2016104207 A1 WO2016104207 A1 WO 2016104207A1 JP 2015084885 W JP2015084885 W JP 2015084885W WO 2016104207 A1 WO2016104207 A1 WO 2016104207A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
metal layer
mask
pattern
resist
Prior art date
Application number
PCT/JP2015/084885
Other languages
French (fr)
Japanese (ja)
Inventor
良弘 小林
裕仁 田丸
貴士 中島
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2016104207A1 publication Critical patent/WO2016104207A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a vapor deposition mask and a manufacturing method thereof.
  • the present invention can be applied to a vapor deposition mask for an organic EL element used when forming a light emitting layer of an organic EL element, for example, by a vapor deposition mask method, and a manufacturing method thereof.
  • Patent Document 1 discloses a vapor deposition mask in which a reinforcing frame 103 of the mask main body 102 is attached to the outer peripheral edge of the mask main body 102 as shown in FIG.
  • the frame 103 there is made of a material having a thermal expansion coefficient equivalent to that of the deposition target substrate 30 or a material having a low thermal expansion coefficient.
  • the frame 103 is fixed on the mask body 102 via an adhesive 108 made of an adhesive that is stable against temperature changes, such as a heat-resistant ceramic adhesive or a heat-resistant epoxy resin adhesive.
  • the mask body 102 includes a vapor deposition pattern 106 for forming a light emitting layer 310 of an organic EL element, which is composed of a large number of independent vapor deposition through holes 105, in the pattern formation region 104.
  • the mask main body 102 has a thermal linear expansion coefficient equivalent to that of the vapor deposition substrate 30 even when the thermal linear expansion coefficient of the forming material of the mask main body 102 is different from that of the vapor deposition substrate 30.
  • the shape changes following the expansion of the frame 103, or the shape is not changed by being restrained by the frame 103 having a low thermal expansion coefficient.
  • the alignment accuracy of the mask body 102 with respect to the evaporation target substrate 30 at room temperature can be increased. Since it can be secured well even when the temperature rises in the kiln, there is an advantage that the light emitting layer 310 can be formed on the deposition target substrate 30 with high accuracy and good reproducibility.
  • the vapor deposition mask method is a method in which a vapor deposition mask is arranged on a vapor deposition substrate, an organic material vaporized by a vaporization source is vapor deposited in a vapor deposition through hole of the vapor deposition mask, and a light emitting layer is formed on the vapor deposition substrate.
  • the light emitting layer formed on the deposition target substrate is required to have a uniform height dimension.
  • the vapor deposition through hole 105 is straight like the vapor deposition mask shown in FIG.
  • the organic material comes not only in the straight direction but also from the oblique direction, so The organic material incident on the vapor deposition through hole 105 from the direction is blocked by the upper edge of the opening of the mask, and only a small amount of the organic material is vapor deposited on the vapor deposition substrate 30 at the edge of the vapor deposition through hole 105.
  • the layer 310 tends to have a substantially water-drop shape in a cross-sectional view in which the central portion swells and the edge portion gradually decreases. Such a distorted light-emitting layer 310 has uneven luminance, which is a major obstacle to increasing the accuracy of the element.
  • An object of the present invention is to provide a vapor deposition mask capable of forming a light emitting layer having a uniform height dimension with high accuracy and good reproducibility, and a method for manufacturing the same.
  • the vapor deposition mask 1 is provided with a vapor deposition pattern 6 comprising a large number of independent vapor deposition holes 5 in the mask body 2.
  • the vapor deposition through hole 5 communicates with the small hole portion 5a located on the vapor deposition substrate 30 side and the large hole portion 5b located on the vaporization source side and formed larger than the opening shape of the small hole portion 5a. It is characterized by being.
  • the mask body 2 includes first metal layers 13 and 44 and second metal layers 16 and 45, and the second metal layers 16 and 45 cover the upper surfaces and side surfaces of the first metal layers 13 and 44. It is formed and the cross-sectional shape of the mask main body 2 between the vapor deposition through-holes 5 is stepped.
  • each of the upper edge peripheral portions of the second metal layers 16 and 45 facing the peripheral surfaces of the large hole portion 5b and the small hole portion 5a has an R shape.
  • a vapor deposition pattern 6 is formed in the pattern formation region 4, and a frame 3 made of a material having a low coefficient of thermal expansion is disposed on the outer periphery of the mask main body 2, and the outer peripheral edge of the pattern formation region 4 of the mask main body 2. 4a and the frame 3 are integrally joined via the metal layer 9.
  • the present invention also relates to a method of manufacturing a vapor deposition mask in which a mask body 2 is provided with a vapor deposition pattern 6 comprising a large number of independent vapor deposition through holes 5, and a primary pattern resist having a resist body 12 a on the surface of a matrix 10. 12, a step of forming the first metal layer 13 on the mother die 10 using the primary pattern resist 12, and a secondary pattern resist 15 having a resist body 15 a on the surface of the mother die 10. A step of forming a second metal layer 16 on the mother die 10 and the first metal layer 13 using the secondary pattern resist 15, and a step of forming the first metal layer 13 and the second metal layer 16 from the mother die 10. And a step of peeling them together.
  • the present invention is a method of manufacturing a vapor deposition mask in which a vapor deposition pattern 6 comprising a large number of independent vapor deposition holes 5 is provided on the mask body 2, and a step of preparing a mother die 40 on which a metal film 41 is formed.
  • the method includes a step of forming a second metal layer 45 on one metal layer 44 and a step of integrally peeling the first metal layer 44 and the second metal layer 45 from the mother die 10.
  • the vapor deposition through hole 5 provided in the mask main body 2 is located on the vapor deposition source 30 side and the small hole portion 5a located on the vapor deposition substrate 30 side. Since the large hole portion 5b formed larger than the shape is formed in communication, the vapor deposition through hole 5 has an outwardly extending shape toward the vaporization source, and can accept an organic material from the vaporization source at a wide angle. Therefore, it is possible to eliminate the shadow due to the upper edge of the opening, which is generated because the vapor deposition through hole is straight, and to accurately form a light emitting layer having a uniform height.
  • the said mask main body 2 has 1st metal layer 13 * 44 and 2nd metal layer 16 * 45, The surface of 1st metal layer 13 * 44 Since the second metal layers 16 and 45 are formed so as to cover the surface, the adhesion between the first metal layers 13 and 44 and the second metal layers 16 and 45 is good, and a highly accurate vapor deposition mask can be produced. Can be manufactured well.
  • FIG. 1 is a longitudinal side view of a vapor deposition mask according to a first embodiment of the present invention.
  • Vertical side view of a vapor deposition mask according to a second embodiment of the present invention The top view of the principal part of the vapor deposition mask which concerns on 2nd Embodiment of this invention.
  • a vapor deposition mask 1 is a mask body 2 provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition holes 5.
  • the mask body 2 is formed by electroforming using a nickel alloy such as nickel or nickel-cobalt, copper, or other electrodeposited metal as a raw material.
  • the mask main body 2 is independently formed in a square matrix of 200 ⁇ 200 mm, for example, in a square shape of 50 ⁇ 50 mm, and includes a pattern formation region 4 therein. .
  • a vapor deposition pattern 6 including vapor deposition through holes 5 is formed in the pattern formation region 4.
  • the mask body 2 has a first metal layer 13 and a second metal layer 16.
  • the second metal layer 16 is formed so as to cover the upper surface and side surfaces of the first metal layer 13.
  • the upper surface indicates the vaporization source side
  • the side surface indicates the surface facing the vapor deposition through hole 5.
  • the thickness of the mask body 2 is preferably in the range of 10 to 100 ⁇ m, and is set to 20 ⁇ m in this embodiment.
  • the thickness t1 of the first metal layer 13 is preferably in the range of 5 to 90 ⁇ m and is set to 16 ⁇ m in this embodiment, and the thickness t2 of the second metal layer 16 is preferably 10 ⁇ m or less. In the example, it was set to 4 ⁇ m.
  • the shadow by the upper end periphery of the vapor deposition through-hole 5 can be eliminated, so that the thickness t2 of the 2nd metal layer 16 is thin.
  • Each vapor deposition through hole 5 is formed by communicating a small hole portion 5a with a large hole portion 5b formed larger than the opening shape of the small hole portion 5a.
  • the small hole portion 5a is a flat surface.
  • the front and rear length dimensions are 150 ⁇ m and the left and right width dimensions are 50 ⁇ m, and the large hole portion 5 b has a front and rear length dimension of 300 ⁇ m and a left and right width dimensions of 150 ⁇ m.
  • the small hole portion 5a is on the deposition target substrate 30 side, and the large hole portion 5b is on the vaporization source side.
  • These vapor deposition through holes 5 are arranged in parallel in the front-rear and / or left-right direction to constitute a vapor deposition pattern 6. As shown in FIG.
  • the mask body 2 (first metal layer 13 and second metal layer 16) between the vapor deposition through holes 5 is formed in a step shape in a cross-sectional view, so that the vapor deposition through holes 5 are small. It becomes the form comprised by the hole 5a and the large hole 5b.
  • This large hole portion 5b allows the organic material from the vaporization source to be received at a wide angle, and can cope with the organic material incident from an oblique direction, so that a light emitting layer having a uniform height can be formed. Can contribute.
  • each of the upper end peripheral portions (vaporization source side peripheral portions) of the second metal layer 16 facing the peripheral surfaces of the large hole portion 5 b and the small hole portion 5 a is formed into an R shape.
  • FIG. 1 does not show the actual state of the vapor deposition pattern 6, but schematically shows it.
  • the mask body 2 can be provided with a reinforcing frame 3 for the mask body 2.
  • the frame 3 is made of a material having a low coefficient of thermal expansion such as an invar material that is a nickel-iron alloy or a super invar material that is a nickel-iron-cobalt alloy.
  • the frame 3 is a molded product that is thicker than the mask main body 2, and is joined to the outer peripheral edge 4 a of the pattern forming region 4 of the mask main body 2 by the metal layer 9 in an integral manner.
  • four mask bodies 2 are held by one frame body 3. That is, the frame 3 has four openings 3a aligned on the plate surface, and one mask body 2 is attached to each opening 3a.
  • the frame 3 is provided with an opening 3a corresponding to the mask body 2 and is formed in a flat plate shape.
  • the thickness dimension of the frame 3 is, for example, about 100 to 500 ⁇ m, and is set to 200 ⁇ m in this embodiment.
  • the invar material or super invar material was used as the material for forming the frame 3 because its linear expansion coefficient was 2 ⁇ 10 ⁇ -6> / ⁇ 0> C or 1 * 10 ⁇ sup> ⁇ -6> sup> / ° C. or less, which is based on being able to satisfactorily suppress the dimensional change of the mask body 2 due to the thermal influence in the vapor deposition process. That is, for example, when the mask main body 2 is made of nickel as described above, the linear expansion coefficient is 12.80 ⁇ 10 ⁇ -6> / ⁇ 0> C, and the deposition target substrate 30 (FIG.
  • reference numeral 9 denotes a metal layer laminated on the upper surface of the mask body 2 related to the outer peripheral edge 4a of the pattern formation region. Specifically, the metal layer 9 is formed on the upper surface of the outer peripheral edge 4 a of the pattern formation region 4, the upper surface of the frame body 3 and the side surface facing the pattern formation region 4, and the gap portion between the mask body 2 and the frame body 3. Thus, the outer peripheral edge 4a of the pattern forming region 4 and the opening peripheral edge of the frame body 3 are joined together in an integrated manner.
  • the metal layer 9 is made of nickel, nickel-cobalt alloy, or the like, and can be formed by a plating method.
  • a photoresist layer 11 is formed on the surface of the mother die 10.
  • the mother die 10 is made of a conductive material such as stainless steel or brass steel.
  • the photoresist layer 11 is formed by laminating one or several negative photosensitive dry film resists at a predetermined height and then thermocompression bonding.
  • the mother die 10 is put in an electroforming tank bathed under a predetermined condition.
  • the resist member 12a of the mother die 10 is within the height range of the previous resist member 12a.
  • the first metal layer 13 was formed by electroforming a nickel-cobalt alloy on the uncovered surface (exposed region), preferably in the range of 5 to 90 ⁇ m thick, in this embodiment 16 ⁇ m thick. After forming the first metal layer 13, the primary pattern resist 12 (resist body 12a) is removed as shown in FIG.
  • a photoresist layer 14 was formed on the entire surface of the mother die 10 including the region where the first metal layer 13 was formed.
  • the photoresist layer 14 is formed by thermocompression bonding by laminating one or several negative photosensitive dry film resists at a predetermined height.
  • the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and as shown in FIG. 4C, within the range of the height of the resist body 15a, the mother die 10 and the first metal layer.
  • the second metal layer 16 was formed by electroforming a nickel-cobalt alloy on the surface (exposed region) not covered with the resist body 16a, preferably with a thickness of 10 ⁇ m or less, in this embodiment 4 ⁇ m. .
  • the second metal layer 16 formed in a portion facing the end (top or root) of the first metal layer 13 has an R shape.
  • the edge part of the 2nd metal layer 16 which faces the vapor deposition through-hole 5 also becomes R shape.
  • the curvature of R (R) concerned can obtain desired R (R) by adjusting the thickness of the second metal layer 16. Then, by removing the secondary pattern resist 15 (resist body 15a), as shown in FIG. 4D, a mask body 2 provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5 was obtained.
  • a photoresist layer 17 was formed on the entire surface of the mother die 10 including the portions where the first metal layer 13 and the second metal layer 16 (mask body 2) were formed.
  • the photoresist layer 17 is formed by laminating one or several negative-type photosensitive dry film resists according to a predetermined height and then thermocompression bonding.
  • exposure was performed by irradiating with ultraviolet light.
  • the frame 3 was disposed so as to surround the first metal layer 13 and the second metal layer 16.
  • the frame 3 was temporarily fixed on the mother die 10 by using the adhesiveness of the unexposed photoresist layer 17b.
  • the unexposed photoresist layer 17b exposed on the surface was dissolved and removed, and a tertiary pattern resist 18 having a resist body 18a covering the pattern forming region 4 was formed.
  • the unexposed photoresist layer 17 b existing on the lower surface of the frame 3 remains on the mother die 10.
  • the metal layer 9 is formed by electroforming an electrodeposited metal on the surface of the frame 10 and the surface of the frame 3, and the second metal layer 16 including the first metal layer 13 and the frame 3 are formed by the metal layer 9. Were joined.
  • the layer thickness of the metal layer 9 on the surface of the frame 3 was 15 ⁇ m.
  • the layer thickness is different between the surface of the mother die 10 and the frame 3 because the metal layer 9 is sequentially laminated from the surface of the mother die 10 and the metal layer 9 is not exposed.
  • the frame 3 becomes conductive with the mother die 10 and the metal layer 9 is formed on the surface of the frame 3.
  • a vapor deposition mask 1 includes a mask main body 2 provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5.
  • the mask main body 2 includes nickel alloys such as nickel and nickel cobalt, copper, and the like. It is formed by electroforming using an electrodeposited metal as a raw material.
  • the vapor deposition mask 1 has a square shape of 500 mm ⁇ 400 mm, and includes a plurality of mask bodies 2 therein. Each mask body 2 is formed in a square shape of 50 ⁇ 40 mm, and includes a pattern formation region 4 therein.
  • a vapor deposition pattern 6 for forming a light emitting layer is formed which is composed of a large number of independent vapor deposition through holes 5.
  • the mask body 2 has a first metal layer 13 and a second metal layer 16. Specifically, as shown in FIG. 6, the second metal layer 16 is formed so as to cover the upper surface and the side surface of the first metal layer 13, and the first metal layer 13 and the second metal layer between the vapor deposition through holes 5.
  • the cross-sectional shape of 16 (mask body 2) is formed in a stepped shape. In this way, by forming the second metal layer 16 so as to cover the surface of the first metal layer 13, the first metal layer 13 and the second metal layer 16 can be compared with a configuration in which the first metal layer 13 and the second metal layer 16 are simply laminated.
  • the thickness of the mask body 2 is preferably in the range of 10 to 100 ⁇ m, and is set to 20 ⁇ m in this embodiment.
  • the thickness t1 of the first metal layer 13 is preferably in the range of 5 to 90 ⁇ m and is set to 16 ⁇ m in this embodiment, and the thickness t2 of the second metal layer 16 is preferably 10 ⁇ m or less. In the example, it was set to 4 ⁇ m.
  • the upper surface of the first metal layer 13 indicates the vaporization source side, and the side surface of the first metal layer 13 indicates the surface facing the vapor deposition through hole 5.
  • Each vapor deposition through hole 5 is formed by communicating a small hole portion 5a with a large hole portion 5b formed larger than the opening shape of the small hole portion 5a.
  • the small hole portion 5a is a flat surface.
  • the front and rear length dimensions are 150 m and the left and right width dimensions are 50 ⁇ m, and the large hole portion 5 b has a front and rear length dimension of 300 ⁇ m and a left and right width dimensions of 150 ⁇ m.
  • the small hole portion 5a is on the deposition target substrate 30 side, and the large hole portion 5b is on the vaporization source side.
  • These vapor deposition through holes 5 are arranged in parallel in the front-rear direction or the left-right direction to form a vapor deposition pattern 6.
  • the vapor deposition through-hole 5 is configured by the small hole portion 5a and the large hole portion 5b by forming the first metal layer 13 and the second metal layer 16 in a step shape in a cross-sectional view.
  • the large hole portion 5b makes it possible to accept an organic material from a vaporization source at a wide angle, and to deal with an organic material incident from an oblique direction. Can contribute to formation.
  • each of the upper edge peripheral portions (vaporization source side peripheral portions) of the second metal layer 16 facing the peripheral surfaces of the large hole portions 5b and the small hole portions 5a is formed in an R shape, so that the large hole portions 5b and the small hole portions 5a are formed.
  • FIG. 1 does not show the actual state of the vapor deposition pattern 6, but schematically shows it.
  • the mask body 2 can be equipped with a frame 3 for reinforcement of the mask body 2.
  • the frame 3 is made of a material having a low coefficient of thermal expansion such as an invar material that is a nickel-iron alloy or a super invar material that is a nickel-iron-cobalt alloy.
  • the frame 3 is a molded product that is thicker than the mask main body 2, and is joined to the outer peripheral edge 4 a of the pattern forming region 4 of the mask main body 2 by the metal layer 9 in an integral manner.
  • 30 mask bodies 2 are held by one frame body 3. That is, the frame 3 has 30 openings 3a aligned on the plate surface, and one mask body 2 is attached to each opening 3a.
  • the frame 3 is provided with an opening 3a corresponding to the mask body 2 and is formed in a flat plate shape.
  • the thickness dimension of the frame 3 is, for example, about 100 to 500 ⁇ m, and is set to 250 ⁇ m in this embodiment.
  • the invar material or super invar material was used as the material for forming the frame 3 because its linear expansion coefficient was 2 ⁇ 10 ⁇ -6> / ⁇ 0> C or 1 * 10 ⁇ sup> ⁇ -6> sup> / ° C. or less, which is based on being able to satisfactorily suppress the dimensional change of the mask body 2 due to the thermal influence in the vapor deposition process. That is, for example, when the mask main body 2 is made of nickel as described above, the linear expansion coefficient is 12.80 ⁇ 10 ⁇ -6> / ⁇ 0> C, and the deposition target substrate 30 (FIG.
  • reference numeral 9 denotes a metal layer that joins the outer peripheral edge 4 a of the pattern formation region 4 of the mask body 2 and the frame 3.
  • the metal layer 9 is formed by a plating method and is made of an electroformed metal such as nickel or a nickel-cobalt alloy.
  • a large number of through holes 21 are provided over the entire circumference of the outer peripheral edge 4 a of the pattern formation region 4 of the mask body 2, and pattern formation of the mask body 2 is performed.
  • the outer peripheral edge 4a of the region 4 and the frame 3 are integrally joined via the metal layer 9 formed so as to fill the through hole 21.
  • the metal layer 9 according to the present embodiment includes the upper surface of the outer peripheral edge 4 a of the pattern formation region 4, the upper surface of the frame body 3, the side surface facing the pattern formation region 4, and the gap portion between the mask body 2 and the frame body 3.
  • the bonding strength between the two and the third layer can be improved. Therefore, inadvertent dropping or misalignment of the mask body 2 with respect to the frame 3 can be reliably suppressed. Accordingly, it is possible to improve the reproduction accuracy and vapor deposition accuracy of the light emitting layer.
  • the four corners of the mask body 2 are chamfered in plan view. According to this, when the mask main body 2 thermally expands, it can suppress that stress concentrates on a corner
  • a photoresist layer 11 is formed on the surface of the mother die 10.
  • a material having conductivity and a low-temperature expansion coefficient is desirable, and examples thereof include 42 alloy, Invar, and SUS430 (stainless steel).
  • the photoresist layer 11 is formed by laminating one or several negative photosensitive dry film resists according to a predetermined height by thermocompression bonding.
  • the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and the resist member 12a of the mother die 10 is within the height range of the previous resist member 12a as shown in FIG.
  • the first metal layer 13 was formed by electroforming a nickel-cobalt alloy on the uncovered surface (exposed region), preferably in the range of 5 to 90 ⁇ m thick, in this example 16 ⁇ m thick.
  • the primary pattern resist 12 resist body 12a
  • the first metal layer 13 may have a two-layer structure of a bright nickel layer and a dull nickel layer.
  • an electrodeposition layer made of bright nickel is electroformed on the mother die 10 by 5 ⁇ m, and an electrodeposition layer made of non-gloss nickel is then electroformed by 11 ⁇ m.
  • symbol 13a shows the 1st metal layer formed between the mask main bodies 2 * 2.
  • a photoresist layer 14 was formed on the entire surface of the mother die 10 including the formation region of the first metal layer 13.
  • the photoresist layer 14 is formed by thermocompression bonding by laminating one or several negative photosensitive dry film resists at a predetermined height.
  • the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and as shown in FIG. 11C, the mother die 10 and the first metal layer are within the range of the height of the resist body 15a.
  • the second metal layer 16 was formed by electroforming a nickel-cobalt alloy on the surface (exposed region) not covered with the resist body 16a, preferably with a thickness of 10 ⁇ m or less, in this embodiment 4 ⁇ m. .
  • the second metal layer 16 formed in a portion facing the end (top or root) of the first metal layer 13 has an R shape.
  • the edge part of the 2nd metal layer 16 which faces the vapor deposition through-hole 5 also becomes R shape.
  • the curvature of R (R) concerned can obtain desired R (R) by adjusting the thickness of the second metal layer 16. Then, by removing the secondary pattern resist 15 (resist body 15a), as shown in FIG. 11D, the vapor deposition pattern 6 composed of a large number of independent vapor deposition holes 5, and the entire outer peripheral edge of the vapor deposition pattern 6 Thus, a mask body 2 provided with through holes 21 for increasing the bonding strength was obtained. Each corner of the mask body 2 is formed in a chamfered shape in plan view as shown in FIGS.
  • reference numeral 16a indicates a second metal layer formed between the mask bodies 2 and 2, and is formed on the first metal layer 13a.
  • a photoresist layer 17 was formed on the entire surface of the mother die 10 including the portions where the first metal layer 13 and the second metal layer 16 (mask body 2) were formed.
  • the photoresist layer 17 is formed by thermocompression bonding of one or several negative photosensitive dry film resists having a predetermined height in the same manner as described above.
  • exposure was performed by irradiating with ultraviolet light.
  • the frame 3 was disposed so as to surround the first metal layer 13 and the second metal layer 16.
  • the frame 3 was temporarily fixed on the mother die 10 by using the adhesiveness of the unexposed photoresist layer 17b.
  • the unexposed photoresist layer 17b exposed on the surface was dissolved and removed to form a tertiary pattern resist 18 having a resist body 18a covering the pattern formation region.
  • the unexposed photoresist layer 17 b existing on the lower surface of the frame 3 remains on the mother die 10.
  • an electrodeposited metal is electroformed to form the metal layer 9, and the metal layer 9 forms the first electrodeposited layer 13 and the second metal layer 16 ( The mask body 2) and the frame 3 were joined together.
  • the first electrodeposition layer 13 around the through hole 21 specifically the inner wall surface of the through hole 21 and the upper surface of the first electrodeposition layer 13 around the through hole 21.
  • a treatment such as acid dipping, electrolytic treatment, strike plating, etc.
  • FIGS. 13 and FIG. 14 show a method for manufacturing a vapor deposition mask according to the present embodiment, and each step of the manufacturing method will be described below.
  • a mother die 40 on which a metal film 41 is formed is prepared.
  • an insulating substrate such as a glass plate or a resin plate is used.
  • the metal film 41 is made of a conductive metal such as chromium or titanium.
  • the metal film 41 is formed by depositing a metal film on the entire surface of the mother die 40 by sputtering, forming a resist pattern using a photolithography technique, etching away the metal film exposed from the resist pattern, and removing the resist pattern. By removing, the metal film 41 is patterned on the surface of the mother die 40.
  • a first metal layer 44 and a second metal layer 45 described later are formed on the metal film 41 thus patterned, and the space between the metal films 41 corresponds to the position of the small hole portion 5a of the vapor deposition through hole 5.
  • a glass plate is used as the matrix 40 and chromium is used as the metal film 41, and the thickness of the metal film 41 is 1 ⁇ m or less.
  • a photoresist layer 42 is formed on the surface of the mother die 40.
  • the photoresist layer 11 is formed by laminating one or several negative photosensitive dry film resists according to a predetermined height by thermocompression bonding.
  • the mother die 40 is put in an electroforming bath that is bathed under a predetermined condition, and as shown in FIG. 14A, the resist member 43a of the mother die 40 is within the height range of the previous resist member 43a.
  • the first metal layer 44 was formed by electroforming a nickel-cobalt alloy on the uncovered surface (exposed region), preferably in the range of 5 to 90 ⁇ m thick, in this embodiment 16 ⁇ m thick. Before forming the first metal layer 44, an oxide film, an organic film, a polymer film, or the like may be formed on the surface of the metal film 41 exposed from the resist body 43a.
  • the pattern resist 43 (resist body 43a) is removed.
  • the mother die 40 is placed in an electroforming tank bathed under predetermined conditions, and as shown in FIG. 14 (c), a nickel-cobalt alloy is formed on the surface of the metal film 41 and the first metal layer 44, preferably 10 ⁇ m.
  • the second metal layer 45 was formed by electroforming with a thickness of 4 ⁇ m in the present embodiment.
  • the second metal layer 45 formed in a portion facing the ends (the top and the base) of the metal film 41 and the first metal layer 44 has an R shape. Thereby, the shadow by the upper-end periphery of the large hole part 5b and the small hole part 5a can be eliminated as much as possible.
  • the curvature of R (R) can be obtained by adjusting the thickness of the second metal layer 45.
  • an oxide film, an organic film, a polymer film, or the like may be formed on the surfaces of the metal film 41 and the first metal layer 44 before the second metal layer 45 is formed.
  • the mask main body 2 in the present embodiment has a minute recess 50 on the back surface side (deposition target substrate 30 side) of the first metal layer 44.
  • the shape of the minute recess 50 is formed corresponding to the shape of the metal film 41. Since the micro dent 50 is present, the outer peripheral portion of the micro dent 50 (the peripheral portion of the small hole portion 5a on the vapor deposition substrate 30 side) has a protruding shape, and thus the vapor deposition mask 1 is mounted on the vapor deposition substrate 30.
  • the vapor deposition mask 1 When vapor deposition is performed, the vapor deposition mask 1 can be placed on the vapor deposition substrate 30 with good contact by the line contact between the vapor deposition through hole 5 of the mask body 2 and the vapor deposition substrate 30, and vaporized from the vaporization source. It is possible to prevent the organic material from bleeding and vapor deposition on the back surface of the vapor deposition mask 1.
  • the metal layer 9 is formed in a state where a tension is applied so that the tensile stress F1 acts to draw the first metal layer 13 and the second metal layer 16, that is, the mask body 2 toward the frame 3 side. can do.
  • the application of such tensile stress can be realized by adjusting the content ratio of carbon in the second type brightener added to the electroforming tank.
  • the first metal layer 13 and the second metal layer 16 are stretched in a state in which a tensile stress tensioned to the frame body 3 is applied via the metal layer 9, the ambient temperature during the vapor deposition operation Even with the rise, the expansion of the mask body 2 due to the difference in thermal expansion coefficient with the frame 3 is absorbed, and the deposition mask 1 is less likely to vary in dimensional accuracy due to heat. It can contribute to improvement. Furthermore, the influence of heat can be suppressed as much as possible by adopting a material that hardly undergoes thermal expansion as the frame 3 that holds the mask body 2.
  • the mask body 2 that is, the first metal layer 13 and the second metal layer 16 are formed in a state where a tension is applied so that the stress F ⁇ b> 2 in the direction in which the mask body 2 contracts inwardly acts.
  • tensile stress F2 is caused by the temperature difference between the temperature of the electroformed layer (40 to 50 ° C.) and the normal temperature (20 ° C.) when the first metal layer 13 and the second metal layer 16 are formed. This can be realized by causing the first metal layer 13 and the second metal layer 16 to contract.
  • the first metal layer 13 and the second metal in the electroformed layer at 40 to 50 ° C.
  • the first metal layer 13 such as nickel or nickel alloy and the second metal layer 16 have a higher expansion coefficient than the mother die 10, so that stress that tends to expand acts on the mother die ( However, the expansion of the metal layer 9 at this time is regulated by the mother die 10).
  • the first metal layer 13 and the second metal layer 16 tend to shrink inward, and thus peel off from the mother die 10.
  • the first metal layer 13 and the second metal layer 16, that is, the mask main body 2 is subjected to a tensile stress F ⁇ b> 2 on the frame body 3.
  • the mask body 2 can be stretched with a pin having no wrinkles, so that the expansion of the mask body 2 itself due to the difference in the thermal expansion coefficient with the frame 3 can be achieved even when the ambient temperature rises during the vapor deposition operation.
  • the deposition mask 1 is less likely to vary in dimensional accuracy due to heat, and can contribute to improvement in the light emitting layer reproduction accuracy and vapor deposition accuracy.
  • the formation of the through holes 21, the corners of the mask main body 2 are chamfered, and the frame body 3 itself that holds the mask main body 2 is made of a material that hardly thermally expands, thereby causing variations in dimensional accuracy due to heat. This can be further reduced by improving the reproduction accuracy and vapor deposition accuracy of the light emitting layer.
  • the surface activation treatment (acid immersion, cathode) is performed on the surface of the first metal layer 13/44 before the second metal layer 16/45 is formed on the first metal layer 13/44. Electrolysis, chemical etching, strike plating, etc.) may be performed.
  • an overhang 60 is formed on the upper edge of the first metal layer 13, 44, and the second metal layer 16, 45 is formed on the first metal layer 13, 44.
  • the overhanging portion 60 When the first metal layers 13 and 44 are formed, the overhanging portion 60 performs electroforming, so-called overhang, exceeding the thickness of the resist bodies 12a and 43a, so that the upper ends of the first metal layers 13 and 44 are formed. It is possible to obtain a shape in which an overhanging portion 60 having a cross-sectional ridge shape is integrally formed on the periphery.
  • the number of mask main bodies 2 that the vapor deposition mask 1 has is not limited to that shown in the above embodiments.
  • the second metal layer 16 may be formed after the first metal layer 13 is polished and smoothed before or after removing the primary pattern resist 12.
  • the second metal layer 16 may be polished and smoothed, and then the tertiary pattern resist 18 may be formed in the pattern formation region 4.
  • a material of the frame 3 in addition to a metal material such as an invar material shown in the embodiment, a material having a low coefficient of thermal expansion as close to glass as a deposition substrate as much as possible, such as glass or ceramic, is used. You can choose. In this case, it is necessary to impart conductivity to at least the surface of these materials.
  • the formed vapor deposition mask 1 may be pulled and a fixed frame such as stainless steel or aluminum may be separately fixed to the outer periphery by a known method.
  • a fixed frame such as stainless steel or aluminum
  • a tension applied via the metal layer 9 as in the embodiment, a so-called frame-less operation requiring no fixed frame is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided are: a vapor deposition mask, with which a luminous layer with a uniform height can be formed with high precision and good reproducibility; and a manufacturing method therefor. A vapor deposition pattern 6 obtained from multiple independent vapor deposition through holes 5 is provided on a mask body 2. In the vapor deposition through holes 5, small hole parts 5a, which are located on the side of the substrate 30 to be coated, are formed so as to be in communication with large hole parts 5b, which are located on the vaporization source-side and are formed to be larger than the shape of the opening of the small hole parts 5a. As a result, the vapor deposition through holes 5 have a form that widens toward vaporization source, making it possible for the holes to accept organic material from the vaporization source at a wide angle and making it possible to form a luminous layer with a uniform height with good precision.

Description

蒸着マスク及びその製造方法Vapor deposition mask and manufacturing method thereof
 本発明は、蒸着マスクおよびその製造方法に関する。本発明は、例えば蒸着マスク法により、有機EL素子の発光層を形成する際に用いられる有機EL素子用の蒸着マスク、及びその製造方法に適用できる。 The present invention relates to a vapor deposition mask and a manufacturing method thereof. The present invention can be applied to a vapor deposition mask for an organic EL element used when forming a light emitting layer of an organic EL element, for example, by a vapor deposition mask method, and a manufacturing method thereof.
 特許文献1には、図17に示すごとく、マスク本体102の外周縁に、該マスク本体102の補強用の枠体103が装着された蒸着マスクが開示されている。そこでの枠体103は、被蒸着基板30と同等の熱線膨張係数を有する素材、あるいは低熱線膨張係数の素材からなる。枠体103は、耐熱セラミック系接着剤や耐熱エポキシ樹脂接着剤などの温度変化に対して安定した接着剤からなる接着剤108を介してマスク本体102上に固定されている。マスク本体102は、多数独立の蒸着通孔105からなる有機EL素子の発光層310形成用の蒸着パターン106を、パターン形成領域104内に備える。特許文献1に開示の蒸着マスクによれば、マスク本体102の形成素材が有する熱線膨張係数が被蒸着基板30のそれと異なる場合でも、マスク本体102は被蒸着基板30と同等の熱線膨張係数を有する枠体103の膨張に追随して形状変化し、あるいは低熱線膨張係数を有する枠体103に抑制されて形状変化せず、従って、常温時における被蒸着基板30に対するマスク本体102の整合精度を蒸着窯内における昇温時においても良好に担保できるので、被蒸着基板30上に発光層310を高精度に再現性良く形成できる利点がある。 Patent Document 1 discloses a vapor deposition mask in which a reinforcing frame 103 of the mask main body 102 is attached to the outer peripheral edge of the mask main body 102 as shown in FIG. The frame 103 there is made of a material having a thermal expansion coefficient equivalent to that of the deposition target substrate 30 or a material having a low thermal expansion coefficient. The frame 103 is fixed on the mask body 102 via an adhesive 108 made of an adhesive that is stable against temperature changes, such as a heat-resistant ceramic adhesive or a heat-resistant epoxy resin adhesive. The mask body 102 includes a vapor deposition pattern 106 for forming a light emitting layer 310 of an organic EL element, which is composed of a large number of independent vapor deposition through holes 105, in the pattern formation region 104. According to the vapor deposition mask disclosed in Patent Document 1, the mask main body 102 has a thermal linear expansion coefficient equivalent to that of the vapor deposition substrate 30 even when the thermal linear expansion coefficient of the forming material of the mask main body 102 is different from that of the vapor deposition substrate 30. The shape changes following the expansion of the frame 103, or the shape is not changed by being restrained by the frame 103 having a low thermal expansion coefficient. Therefore, the alignment accuracy of the mask body 102 with respect to the evaporation target substrate 30 at room temperature can be increased. Since it can be secured well even when the temperature rises in the kiln, there is an advantage that the light emitting layer 310 can be formed on the deposition target substrate 30 with high accuracy and good reproducibility.
特開2002-371349号公報JP 2002-371349 A
 蒸着マスク法は、被蒸着基板上に蒸着マスクを配置し、該蒸着マスクの蒸着通孔に、気化源により気化された有機材料を蒸着させて、被蒸着基板上に発光層を形成する方法であり、被蒸着基板上に形成される発光層は、均一な高さ寸法を有することが求められている。しかしながら、図17に示す蒸着マスクのように、蒸着通孔105がストレート状であると、蒸着マスクの蒸着通孔105には直進方向だけでなく、斜め方向からも有機材料が飛来するため、斜め方向から蒸着通孔105内に入射する有機材料がマスクの開口上端縁に遮られ、蒸着通孔105の縁部分の被蒸着基板30上には少量の有機材料しか蒸着されず、完成された発光層310は、中央部分が膨らみ、縁部分が漸減した断面視で略水滴状の形状となりやすい。このような歪な形状の発光層310は、輝度にムラがあり、素子の高精度化を図るうえでの大きな障害となる。 The vapor deposition mask method is a method in which a vapor deposition mask is arranged on a vapor deposition substrate, an organic material vaporized by a vaporization source is vapor deposited in a vapor deposition through hole of the vapor deposition mask, and a light emitting layer is formed on the vapor deposition substrate. In addition, the light emitting layer formed on the deposition target substrate is required to have a uniform height dimension. However, when the vapor deposition through hole 105 is straight like the vapor deposition mask shown in FIG. 17, the organic material comes not only in the straight direction but also from the oblique direction, so The organic material incident on the vapor deposition through hole 105 from the direction is blocked by the upper edge of the opening of the mask, and only a small amount of the organic material is vapor deposited on the vapor deposition substrate 30 at the edge of the vapor deposition through hole 105. The layer 310 tends to have a substantially water-drop shape in a cross-sectional view in which the central portion swells and the edge portion gradually decreases. Such a distorted light-emitting layer 310 has uneven luminance, which is a major obstacle to increasing the accuracy of the element.
 本発明の目的は、均一な高さ寸法を有する発光層を高精度に再現性良く形成することができる蒸着マスク及びその製造方法を提供することにある。 An object of the present invention is to provide a vapor deposition mask capable of forming a light emitting layer having a uniform height dimension with high accuracy and good reproducibility, and a method for manufacturing the same.
 本発明に係る蒸着マスク1は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられている。そして、蒸着通孔5は、被蒸着基板30側に位置する小孔部5aと、気化源側に位置し、小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通形成されていることを特徴とする。 The vapor deposition mask 1 according to the present invention is provided with a vapor deposition pattern 6 comprising a large number of independent vapor deposition holes 5 in the mask body 2. The vapor deposition through hole 5 communicates with the small hole portion 5a located on the vapor deposition substrate 30 side and the large hole portion 5b located on the vaporization source side and formed larger than the opening shape of the small hole portion 5a. It is characterized by being.
 また、マスク本体2は、第一金属層13・44と第二金属層16・45とを有し、第一金属層13・44の上面及び側面を覆うように第二金属層16・45が形成されており、蒸着通孔5間におけるマスク本体2の断面形状が段差状となっていることを特徴とする。 The mask body 2 includes first metal layers 13 and 44 and second metal layers 16 and 45, and the second metal layers 16 and 45 cover the upper surfaces and side surfaces of the first metal layers 13 and 44. It is formed and the cross-sectional shape of the mask main body 2 between the vapor deposition through-holes 5 is stepped.
 また、大孔部5bおよび小孔部5aの周面に臨む第二金属層16・45の各上端周縁部をR状とすることを特徴とする。 Further, each of the upper edge peripheral portions of the second metal layers 16 and 45 facing the peripheral surfaces of the large hole portion 5b and the small hole portion 5a has an R shape.
 また、蒸着パターン6がパターン形成領域4内に形成されており、マスク本体2の外周に、低熱線膨張係数の材質からなる枠体3が配置され、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを金属層9を介して一体的に接合してあることを特徴とする。 Further, a vapor deposition pattern 6 is formed in the pattern formation region 4, and a frame 3 made of a material having a low coefficient of thermal expansion is disposed on the outer periphery of the mask main body 2, and the outer peripheral edge of the pattern formation region 4 of the mask main body 2. 4a and the frame 3 are integrally joined via the metal layer 9.
 また本発明は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクの製造方法であって、母型10の表面に、レジスト体12aを有する一次パターンレジスト12を形成する工程と、一次パターンレジスト12を用いて、母型10上に第一金属層13を形成する工程と、母型10の表面に、レジスト体15aを有する二次パターンレジスト15を形成する工程と、二次パターンレジスト15を用いて、母型10及び第一金属層13上に第二金属層16を形成する工程と、母型10から第一金属層13および第二金属層16を一体に剥離する工程とを含むことを特徴とする。 The present invention also relates to a method of manufacturing a vapor deposition mask in which a mask body 2 is provided with a vapor deposition pattern 6 comprising a large number of independent vapor deposition through holes 5, and a primary pattern resist having a resist body 12 a on the surface of a matrix 10. 12, a step of forming the first metal layer 13 on the mother die 10 using the primary pattern resist 12, and a secondary pattern resist 15 having a resist body 15 a on the surface of the mother die 10. A step of forming a second metal layer 16 on the mother die 10 and the first metal layer 13 using the secondary pattern resist 15, and a step of forming the first metal layer 13 and the second metal layer 16 from the mother die 10. And a step of peeling them together.
 さらに本発明は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクの製造方法であって、金属膜41がパターン形成された母型40を準備する工程と、母型40表面に、レジスト体43aを有するパターンレジスト43を形成する工程と、パターンレジスト43を用いて、金属膜41上に第一金属層44を形成する工程と、金属膜41及び第一金属層44上に、第二金属層45を形成する工程と、母型10から第一金属層44および第二金属層45を一体に剥離する工程とを含むことを特徴とする。 Furthermore, the present invention is a method of manufacturing a vapor deposition mask in which a vapor deposition pattern 6 comprising a large number of independent vapor deposition holes 5 is provided on the mask body 2, and a step of preparing a mother die 40 on which a metal film 41 is formed. A step of forming a pattern resist 43 having a resist body 43 a on the surface of the mother die 40, a step of forming a first metal layer 44 on the metal film 41 using the pattern resist 43, The method includes a step of forming a second metal layer 45 on one metal layer 44 and a step of integrally peeling the first metal layer 44 and the second metal layer 45 from the mother die 10.
 本発明に係る蒸着マスクによれば、マスク本体2に設けられた蒸着通孔5は、被蒸着基板30側に位置する小孔部5aと、気化源側に位置し、小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通形成されているので、蒸着通孔5が気化源に向かって外広がり形状となって、広い角度で気化源からの有機材料を受け入れることが可能となり、よって、蒸着通孔がストレート状であるため発生していた開口上端縁による影をなくして、均一な高さ寸法を有する発光層を精度良く形成することが可能となる。 According to the vapor deposition mask according to the present invention, the vapor deposition through hole 5 provided in the mask main body 2 is located on the vapor deposition source 30 side and the small hole portion 5a located on the vapor deposition substrate 30 side. Since the large hole portion 5b formed larger than the shape is formed in communication, the vapor deposition through hole 5 has an outwardly extending shape toward the vaporization source, and can accept an organic material from the vaporization source at a wide angle. Therefore, it is possible to eliminate the shadow due to the upper edge of the opening, which is generated because the vapor deposition through hole is straight, and to accurately form a light emitting layer having a uniform height.
 また、本発明に係る蒸着マスクの製造方法によれば、前記マスク本体2が第一金属層13・44と第二金属層16・45と有するものであり、第一金属層13・44の表面を覆うように前記第二金属層16・45を形成しているので、第一金属層13・44と第二金属層16・45との密着性が良く、しかも高精度の蒸着マスクを生産性良く製造することができる。 Moreover, according to the manufacturing method of the vapor deposition mask which concerns on this invention, the said mask main body 2 has 1st metal layer 13 * 44 and 2nd metal layer 16 * 45, The surface of 1st metal layer 13 * 44 Since the second metal layers 16 and 45 are formed so as to cover the surface, the adhesion between the first metal layers 13 and 44 and the second metal layers 16 and 45 is good, and a highly accurate vapor deposition mask can be produced. Can be manufactured well.
本発明の第1実施形態に係る蒸着マスクの縦断側面図1 is a longitudinal side view of a vapor deposition mask according to a first embodiment of the present invention. 本発明の第1実施形態に係る蒸着マスクの分解斜視図The disassembled perspective view of the vapor deposition mask which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacturing process of the vapor deposition mask which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacturing process of the vapor deposition mask which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacturing process of the vapor deposition mask which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの縦断側面図Vertical side view of a vapor deposition mask according to a second embodiment of the present invention 本発明の第2実施形態に係る蒸着マスクの要部の平面図The top view of the principal part of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの要部の斜視図The perspective view of the principal part of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの分解斜視図The disassembled perspective view of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacture process of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacture process of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacture process of the vapor deposition mask which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacture process of the vapor deposition mask which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る蒸着マスクの製造過程の工程説明図Process explanatory drawing of the manufacture process of the vapor deposition mask which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る蒸着マスクの縦断側面図Vertical side view of the vapor deposition mask according to the third embodiment of the present invention 本発明のその他実施形態に係る蒸着マスクの縦断側面図Vertical side view of a vapor deposition mask according to another embodiment of the present invention 従来例の蒸着マスクを示す縦断面図Longitudinal sectional view showing a conventional deposition mask
 (第1実施形態)
 図1において、蒸着マスク1は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられたものである。マスク本体2は、ニッケルやニッケル-コバルト等のニッケル合金、銅、その他の電着金属を素材として、電鋳法により形成される。図2において、マスク本体2は、200×200mmの四角形状の母型領域の中に、例えば50×50mmの正方形状に4つ独立して形成されており、その内部にパターン形成領域4を備える。このパターン形成領域4に、蒸着通孔5からなる蒸着パターン6が形成されている。
(First embodiment)
In FIG. 1, a vapor deposition mask 1 is a mask body 2 provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition holes 5. The mask body 2 is formed by electroforming using a nickel alloy such as nickel or nickel-cobalt, copper, or other electrodeposited metal as a raw material. In FIG. 2, the mask main body 2 is independently formed in a square matrix of 200 × 200 mm, for example, in a square shape of 50 × 50 mm, and includes a pattern formation region 4 therein. . A vapor deposition pattern 6 including vapor deposition through holes 5 is formed in the pattern formation region 4.
 マスク本体2は、第一金属層13と第二金属層16とを有する。詳しくは、第一金属層13の上面及び側面を覆うように第二金属層16が形成されている。本実施形態において、上面は気化源側を指し、側面は蒸着通孔5に臨む面を指す。このように、第一金属層13の表面を覆うように第二金属層16を形成することで、第一金属層13と第二金属層16とが単に積層された形態に比べ、第一金属層13と第二金属層16との接触する表面積が大きくなるので、第一金属層13と第二金属層16とが強固に密着した積層構造が得られる。マスク本体2の厚みは、好ましくは10~100μmの範囲とし、本実施例では20μmに設定した。具体的には、第一金属層13の厚みt1は、好ましくは5~90μmの範囲とし、本実施例では16μmに設定し、第二金属層16の厚みt2は、好ましくは10μm以下とし、本実施例では4μmに設定した。なお、第二金属層16の厚みt2が薄いほど、蒸着通孔5の上端周縁による影をなくすことができる。 The mask body 2 has a first metal layer 13 and a second metal layer 16. Specifically, the second metal layer 16 is formed so as to cover the upper surface and side surfaces of the first metal layer 13. In the present embodiment, the upper surface indicates the vaporization source side, and the side surface indicates the surface facing the vapor deposition through hole 5. In this way, by forming the second metal layer 16 so as to cover the surface of the first metal layer 13, the first metal layer 13 and the second metal layer 16 can be compared with a configuration in which the first metal layer 13 and the second metal layer 16 are simply laminated. Since the surface area of contact between the layer 13 and the second metal layer 16 is increased, a laminated structure in which the first metal layer 13 and the second metal layer 16 are firmly adhered can be obtained. The thickness of the mask body 2 is preferably in the range of 10 to 100 μm, and is set to 20 μm in this embodiment. Specifically, the thickness t1 of the first metal layer 13 is preferably in the range of 5 to 90 μm and is set to 16 μm in this embodiment, and the thickness t2 of the second metal layer 16 is preferably 10 μm or less. In the example, it was set to 4 μm. In addition, the shadow by the upper end periphery of the vapor deposition through-hole 5 can be eliminated, so that the thickness t2 of the 2nd metal layer 16 is thin.
 各蒸着通孔5は、小孔部5aと、この小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通してなるものであり、例えば、小孔部5aは、平面視で前後の長さ寸法が150μm、左右幅寸法が50μmの四角形状を有しており、大孔部5bは、平面視で前後の長さ寸法が300μm、左右幅寸法が150μmの四角形状を有している。小孔部5aが被蒸着基板30側となり、大孔部5bが気化源側となる。これら蒸着通孔5は、前後および/または左右方向に並列状に配設されて蒸着パターン6を構成している。図1に示すように、蒸着通孔5間におけるマスク本体2(第一金属層13及び第二金属層16)は、断面視で段差状に形成されていることにより、蒸着通孔5が小孔部5aと大孔部5bとで構成される形態となる。この大孔部5bによって、広い角度で気化源からの有機材料を受け入れることを可能とし、斜め方向から入射する有機材料にも対応することができるので、均一な高さ寸法の発光層の形成に寄与できる。しかも、図1に示すように、大孔部5bおよび小孔部5aの周面に臨む第二金属層16のそれぞれの上端周縁部(気化源側周縁部)をR状とすることで、大孔部5bおよび小孔部5aの上端周縁による影を限りなくなくすことができ、有機材料の受け入れ角度をより広げることができ、より一層均一な高さ寸法の発光層を得ることができる。なお、図1の縦断面図は、実際の蒸着パターン6の様子を示したものではなく、それを模式的に示したものである。 Each vapor deposition through hole 5 is formed by communicating a small hole portion 5a with a large hole portion 5b formed larger than the opening shape of the small hole portion 5a. For example, the small hole portion 5a is a flat surface. The front and rear length dimensions are 150 μm and the left and right width dimensions are 50 μm, and the large hole portion 5 b has a front and rear length dimension of 300 μm and a left and right width dimensions of 150 μm. Have. The small hole portion 5a is on the deposition target substrate 30 side, and the large hole portion 5b is on the vaporization source side. These vapor deposition through holes 5 are arranged in parallel in the front-rear and / or left-right direction to constitute a vapor deposition pattern 6. As shown in FIG. 1, the mask body 2 (first metal layer 13 and second metal layer 16) between the vapor deposition through holes 5 is formed in a step shape in a cross-sectional view, so that the vapor deposition through holes 5 are small. It becomes the form comprised by the hole 5a and the large hole 5b. This large hole portion 5b allows the organic material from the vaporization source to be received at a wide angle, and can cope with the organic material incident from an oblique direction, so that a light emitting layer having a uniform height can be formed. Can contribute. Moreover, as shown in FIG. 1, each of the upper end peripheral portions (vaporization source side peripheral portions) of the second metal layer 16 facing the peripheral surfaces of the large hole portion 5 b and the small hole portion 5 a is formed into an R shape. Shadows due to the upper edge of the hole 5b and the small hole 5a can be eliminated as much as possible, the acceptance angle of the organic material can be further widened, and a light emitting layer having a more uniform height can be obtained. In addition, the longitudinal cross-sectional view of FIG. 1 does not show the actual state of the vapor deposition pattern 6, but schematically shows it.
 マスク本体2には、マスク本体2の補強用の枠体3を装着することができる。この枠体3は、ニッケル-鉄合金であるインバー材、あるいはニッケル-鉄-コバルト合金であるスーパーインバー材等のような低熱線膨張係数の材質からなる。枠体3は、マスク本体2よりも肉厚の成形品であり、金属層9によりマスク本体2のパターン形成領域4の外周縁4aと不離一体的に接合される。ここでは、図2に示すごとく、4枚のマスク本体2を1枚の枠体3で保持している。すなわち、枠体3は、その板面上に4つの開口3aが整列配置されており、各開口3aに一枚のマスク本体2が装着される。枠体3は、マスク本体2に対応する開口3aを備え、平板形状に形成されている。枠体3の厚み寸法は、例えば100~500μm程度とし、本実施例においては200μmに設定した。 The mask body 2 can be provided with a reinforcing frame 3 for the mask body 2. The frame 3 is made of a material having a low coefficient of thermal expansion such as an invar material that is a nickel-iron alloy or a super invar material that is a nickel-iron-cobalt alloy. The frame 3 is a molded product that is thicker than the mask main body 2, and is joined to the outer peripheral edge 4 a of the pattern forming region 4 of the mask main body 2 by the metal layer 9 in an integral manner. Here, as shown in FIG. 2, four mask bodies 2 are held by one frame body 3. That is, the frame 3 has four openings 3a aligned on the plate surface, and one mask body 2 is attached to each opening 3a. The frame 3 is provided with an opening 3a corresponding to the mask body 2 and is formed in a flat plate shape. The thickness dimension of the frame 3 is, for example, about 100 to 500 μm, and is set to 200 μm in this embodiment.
 枠体3の形成素材としてインバー材やスーパーインバー材を採用したのは、その線膨張係数が2×10<sup>-6</sup>/℃、あるいは1×10<sup>-6</sup>/℃以下と極めて小さく、蒸着工程における熱影響によるマスク本体2の寸法変化を良好に抑制できることに拠る。すなわち、例えば、上述のようにマスク本体2がニッケルからなるものであると、その線膨張係数は12.80×10<sup>-6</sup>/℃であり、被蒸着基板30(図17参照)である一般ガラスの線膨張係数3.20×10<sup>-6</sup>/℃に比べて数倍大きいため、蒸着時の高温による熱膨張率の違いから、常温下で蒸着マスク1を被蒸着基板30に整合させた際の蒸着位置と、実際の蒸着時における蒸着物質の蒸着位置との間に位置ズレが生じることは避けられない。そこで、マスク本体2を保持する枠体3の形成素材として、インバー材などの線膨張係数の小さな素材を採用してあると、昇温時におけるマスク本体2の膨張に起因する寸法変化、形状変化をよく抑えて、常温時における整合精度を蒸着時の昇温時にも良好に保つことができる。 The invar material or super invar material was used as the material for forming the frame 3 because its linear expansion coefficient was 2 × 10 <-6> / <0> C or 1 * 10 <sup> <-6> sup> / ° C. or less, which is based on being able to satisfactorily suppress the dimensional change of the mask body 2 due to the thermal influence in the vapor deposition process. That is, for example, when the mask main body 2 is made of nickel as described above, the linear expansion coefficient is 12.80 × 10 <-6> / <0> C, and the deposition target substrate 30 (FIG. 17) is a few times larger than the linear expansion coefficient of general glass 3.20 × 10 <sup> -6 </ sup> / ° C. It is inevitable that a positional deviation occurs between the deposition position when the deposition mask 1 is aligned with the deposition target substrate 30 and the deposition position of the deposition material during actual deposition. Therefore, if a material having a small linear expansion coefficient such as an invar material is used as a material for forming the frame body 3 that holds the mask body 2, dimensional changes and shape changes caused by expansion of the mask body 2 at the time of temperature rise. The alignment accuracy at room temperature can be kept good even when the temperature rises during vapor deposition.
 図1において、符号9は、パターン形成領域の外周縁4aに係るマスク本体2の上面に積層された金属層を示す。詳しくは、金属層9は、パターン形成領域4の外周縁4aの上面と、枠体3の上面およびパターン形成領域4に臨む側面と、マスク本体2と枠体3との間隙部分に形成されており、これでパターン形成領域4の外周縁4aと枠体3の開口周縁とを不離一体的に接合する。この金属層9は、ニッケルやニッケル-コバルト合金等からなり、メッキ法により形成することができる。 In FIG. 1, reference numeral 9 denotes a metal layer laminated on the upper surface of the mask body 2 related to the outer peripheral edge 4a of the pattern formation region. Specifically, the metal layer 9 is formed on the upper surface of the outer peripheral edge 4 a of the pattern formation region 4, the upper surface of the frame body 3 and the side surface facing the pattern formation region 4, and the gap portion between the mask body 2 and the frame body 3. Thus, the outer peripheral edge 4a of the pattern forming region 4 and the opening peripheral edge of the frame body 3 are joined together in an integrated manner. The metal layer 9 is made of nickel, nickel-cobalt alloy, or the like, and can be formed by a plating method.
 図3ないし図5は、本実施形態に係る蒸着マスクの製造方法を示す。まず、図3(a)に示すごとく、母型10の表面にフォトレジスト層11を形成する。母型10は、例えば、ステンレスや真ちゅう鋼製などの導電性を有するものからなる。また、フォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 3 to 5 show a method for manufacturing a vapor deposition mask according to the present embodiment. First, as shown in FIG. 3A, a photoresist layer 11 is formed on the surface of the mother die 10. The mother die 10 is made of a conductive material such as stainless steel or brass steel. The photoresist layer 11 is formed by laminating one or several negative photosensitive dry film resists at a predetermined height and then thermocompression bonding.
 次いで、フォトレジスト層11の上に、蒸着通孔5の大孔部5b位置に対応する透光孔を有するパターンフィルム(ガラスマスク)を密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図3(b)に示すごとく、蒸着通孔5の大孔部5b位置に対応する、ストレート状のレジスト体12aを有する一次パターンレジスト12を母型10上に形成した。 Next, after making a pattern film (glass mask) having a light transmitting hole corresponding to the position of the large hole portion 5b of the vapor deposition through hole 5 adhere on the photoresist layer 11, exposure is performed by irradiating ultraviolet light. By performing each process of development and drying, and removing the unexposed portion, as shown in FIG. 3B, a straight resist body 12a corresponding to the position of the large hole portion 5b of the vapor deposition through hole 5 is provided. A primary pattern resist 12 was formed on the matrix 10.
 次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図3(c)に示すごとく、先のレジスト体12aの高さの範囲内で、母型10のレジスト体12aで覆われていない表面(露出領域)にニッケル-コバルト合金を、好ましくは5~90μm厚の範囲、本実施形態では16μm厚で電鋳して、第一金属層13を形成した。この第一金属層13を形成後、図3(d)に示すごとく、一次パターンレジスト12(レジスト体12a)を除去する。 Next, the mother die 10 is put in an electroforming tank bathed under a predetermined condition. As shown in FIG. 3C, the resist member 12a of the mother die 10 is within the height range of the previous resist member 12a. The first metal layer 13 was formed by electroforming a nickel-cobalt alloy on the uncovered surface (exposed region), preferably in the range of 5 to 90 μm thick, in this embodiment 16 μm thick. After forming the first metal layer 13, the primary pattern resist 12 (resist body 12a) is removed as shown in FIG.
 続いて、図4(a)に示すごとく、第一金属層13の形成領域を含む母型10の表面全体に、フォトレジスト層14を形成した。このフォトレジスト層14は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 Subsequently, as shown in FIG. 4A, a photoresist layer 14 was formed on the entire surface of the mother die 10 including the region where the first metal layer 13 was formed. The photoresist layer 14 is formed by thermocompression bonding by laminating one or several negative photosensitive dry film resists at a predetermined height.
 次いで、蒸着通孔5の小孔部5a位置に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図4(b)に示すごとく、蒸着通孔5の小孔部5a位置に対応するストレート状のレジスト体15aを有する二次パターンレジスト15を母型10上に形成した。 Next, after a pattern film having a light transmitting hole corresponding to the position of the small hole portion 5a of the vapor deposition through hole 5 is adhered, exposure is performed by irradiating with ultraviolet light, and each process of development and drying is performed. By removing the portion, as shown in FIG. 4B, a secondary pattern resist 15 having a straight resist body 15 a corresponding to the position of the small hole portion 5 a of the vapor deposition through hole 5 was formed on the matrix 10. .
 次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図4(c)に示すごとく、先のレジスト体15aの高さの範囲内で、母型10及び第一金属層13のレジスト体16aで覆われていない表面(露出領域)にニッケル-コバルト合金を、好ましくは10μm以下の厚さ、本実施形態では4μm厚で電鋳して、第二金属層16を形成した。この時、第一金属層13の端部(頂部や根元)と対向する部分に形成される第二金属層16はR状となる。また、蒸着通孔5に臨む第二金属層16の端部もR状となる。なお、係るR(アール)の曲率は、第二金属層16の厚みを調整することで、所望のR(アール)が得られる。そして、二次パターンレジスト15(レジスト体15a)を除去することにより、図4(d)に示すごとく、多数独立の蒸着通孔5からなる蒸着パターン6を備えたマスク本体2を得た。 Next, the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and as shown in FIG. 4C, within the range of the height of the resist body 15a, the mother die 10 and the first metal layer. The second metal layer 16 was formed by electroforming a nickel-cobalt alloy on the surface (exposed region) not covered with the resist body 16a, preferably with a thickness of 10 μm or less, in this embodiment 4 μm. . At this time, the second metal layer 16 formed in a portion facing the end (top or root) of the first metal layer 13 has an R shape. Moreover, the edge part of the 2nd metal layer 16 which faces the vapor deposition through-hole 5 also becomes R shape. In addition, the curvature of R (R) concerned can obtain desired R (R) by adjusting the thickness of the second metal layer 16. Then, by removing the secondary pattern resist 15 (resist body 15a), as shown in FIG. 4D, a mask body 2 provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5 was obtained.
 続いて、図5(a)に示すごとく、第一金属層13及び第二金属層16(マスク本体2) の形成部分を含む母型10の表面全体に、フォトレジスト層17を形成した。このフォトレジスト層17は、ネガタネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。次いで、前記パターン形成領域4に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行った。かくして、パターン形成領域4に係る部分が露光(17a)されており、それ以外の部分が未露光(17b)のフォトレジスト層17を得たうえで、図5(b)に示すごとく、母型10上に、第一金属層13及び第二金属層16を囲むようにして枠体3を配した。ここでは、未露光のフォトレジスト層17bの粘着性を利用して、母型10上に枠体3を仮止め固定した。 Subsequently, as shown in FIG. 5A, a photoresist layer 17 was formed on the entire surface of the mother die 10 including the portions where the first metal layer 13 and the second metal layer 16 (mask body 2) were formed. The photoresist layer 17 is formed by laminating one or several negative-type photosensitive dry film resists according to a predetermined height and then thermocompression bonding. Next, after a pattern film having a light transmitting hole corresponding to the pattern forming region 4 was adhered, exposure was performed by irradiating with ultraviolet light. Thus, after obtaining the photoresist layer 17 in which the portion related to the pattern formation region 4 is exposed (17a) and the other portion is unexposed (17b), as shown in FIG. On 10, the frame 3 was disposed so as to surround the first metal layer 13 and the second metal layer 16. Here, the frame 3 was temporarily fixed on the mother die 10 by using the adhesiveness of the unexposed photoresist layer 17b.
 次いで、図5(c)に示すごとく、表面に露出している未露光のフォトレジスト層17bを溶解除去して、パターン形成領域4を覆うレジスト体18aを有する三次パターンレジスト18を形成した。なお、このとき、枠体3の下面に存する未露光のフォトレジスト層17bは、母型10上に残留している。 Next, as shown in FIG. 5C, the unexposed photoresist layer 17b exposed on the surface was dissolved and removed, and a tertiary pattern resist 18 having a resist body 18a covering the pattern forming region 4 was formed. At this time, the unexposed photoresist layer 17 b existing on the lower surface of the frame 3 remains on the mother die 10.
 次いで、図5(d)に示すごとく、パターン形成領域4の外周縁4aに係る表面に露出する第二金属層16の上面、枠体3と第二金属層16との間で露出する母型10の表面、および枠体3の表面上に電着金属を電鋳して金属層9を形成し、この金属層9により、第一金属層13を含む第二金属層16と枠体3とを接合した。この時、パターン形成領域4の外周縁4aに係る表面に露出する第二金属層16の上面、および枠体3と第二金属層16との間で露出する母型10の表面における金属層9の層厚が30μmとなっており、枠体3の表面における金属層9の層厚は15μmとなっていた。このように、母型10の表面等と枠体3との間で層厚が異なるのは、金属層9は、母型10の表面から順次積層されていき、そして、金属層9が未露光のフォトレジスト層17bの高さ寸法を超えて枠体3に至ると、枠体3が母型10と導通状態となって、該枠体3の表面に金属層9が形成されることによる。 Next, as shown in FIG. 5 (d), the upper surface of the second metal layer 16 exposed on the surface related to the outer peripheral edge 4 a of the pattern formation region 4, the matrix exposed between the frame 3 and the second metal layer 16. The metal layer 9 is formed by electroforming an electrodeposited metal on the surface of the frame 10 and the surface of the frame 3, and the second metal layer 16 including the first metal layer 13 and the frame 3 are formed by the metal layer 9. Were joined. At this time, the metal layer 9 on the upper surface of the second metal layer 16 exposed on the surface related to the outer peripheral edge 4 a of the pattern formation region 4 and on the surface of the mother die 10 exposed between the frame 3 and the second metal layer 16. The layer thickness of the metal layer 9 on the surface of the frame 3 was 15 μm. As described above, the layer thickness is different between the surface of the mother die 10 and the frame 3 because the metal layer 9 is sequentially laminated from the surface of the mother die 10 and the metal layer 9 is not exposed. When the height of the photoresist layer 17 b is exceeded and the frame 3 is reached, the frame 3 becomes conductive with the mother die 10 and the metal layer 9 is formed on the surface of the frame 3.
 最後に、母型10から第一金属層13、第二金属層16、および金属層9を剥離してから、三次パターンレジスト18および枠体3の下面に存する未露光のフォトレジスト層17bを除去することにより、図1に示すようなマスク1を得た。 Finally, after the first metal layer 13, the second metal layer 16, and the metal layer 9 are peeled from the matrix 10, the tertiary pattern resist 18 and the unexposed photoresist layer 17b existing on the lower surface of the frame 3 are removed. As a result, a mask 1 as shown in FIG. 1 was obtained.
(第2実施形態)
 本発明の第2実施形態に係る蒸着マスクを図6ないし図12に基づいて説明する。図6において、蒸着マスク1は、多数独立の蒸着通孔5からなる蒸着パターン6が設けられたマスク本体2を備え、このマスク本体2は、ニッケルやニッケルコバルト等のニッケル合金、銅、その他の電着金属を素材として、電鋳法により形成される。図9において、蒸着マスク1は、500mm×400mmの四角形状を呈しており、その内部に複数個のマスク本体2を備える。各マスク本体2は、50×40mmの四角形状に形成されており、その内部にパターン形成領域4を備える。パターン形成領域4には、多数独立の蒸着通孔5からなる発光層形成用の蒸着パターン6が形成されている。
(Second Embodiment)
A vapor deposition mask according to a second embodiment of the present invention will be described with reference to FIGS. In FIG. 6, a vapor deposition mask 1 includes a mask main body 2 provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5. The mask main body 2 includes nickel alloys such as nickel and nickel cobalt, copper, and the like. It is formed by electroforming using an electrodeposited metal as a raw material. In FIG. 9, the vapor deposition mask 1 has a square shape of 500 mm × 400 mm, and includes a plurality of mask bodies 2 therein. Each mask body 2 is formed in a square shape of 50 × 40 mm, and includes a pattern formation region 4 therein. In the pattern formation region 4, a vapor deposition pattern 6 for forming a light emitting layer is formed which is composed of a large number of independent vapor deposition through holes 5.
 マスク本体2は、第一金属層13と第二金属層16とを有する。詳しくは、図6に示すように、第一金属層13の上面及び側面を覆うように第二金属層16が形成されており、蒸着通孔5間における第一金属層13及び第二金属層16(マスク本体2)の断面形状は段差状に形成されている。このように、第一金属層13の表面を覆うように第二金属層16を形成することで、第一金属層13と第二金属層16とが単に積層された形態に比べ、第一金属層13と第二金属層16との接触する表面積が大きくなるので、第一金属層13と第二金属層16とが強固に密着した積層構造が得られる。マスク本体2の厚みは、好ましくは10~100μmの範囲とし、本実施例では20μmに設定した。具体的には、第一金属層13の厚みt1は、好ましくは5~90μmの範囲とし、本実施例では16μmに設定し、第二金属層16の厚みt2は、好ましくは10μm以下とし、本実施例では4μmに設定した。なお、第一金属層13の上面は気化源側を指し、第一金属層13の側面は蒸着通孔5に臨む面を指す。 The mask body 2 has a first metal layer 13 and a second metal layer 16. Specifically, as shown in FIG. 6, the second metal layer 16 is formed so as to cover the upper surface and the side surface of the first metal layer 13, and the first metal layer 13 and the second metal layer between the vapor deposition through holes 5. The cross-sectional shape of 16 (mask body 2) is formed in a stepped shape. In this way, by forming the second metal layer 16 so as to cover the surface of the first metal layer 13, the first metal layer 13 and the second metal layer 16 can be compared with a configuration in which the first metal layer 13 and the second metal layer 16 are simply laminated. Since the surface area of contact between the layer 13 and the second metal layer 16 is increased, a laminated structure in which the first metal layer 13 and the second metal layer 16 are firmly adhered can be obtained. The thickness of the mask body 2 is preferably in the range of 10 to 100 μm, and is set to 20 μm in this embodiment. Specifically, the thickness t1 of the first metal layer 13 is preferably in the range of 5 to 90 μm and is set to 16 μm in this embodiment, and the thickness t2 of the second metal layer 16 is preferably 10 μm or less. In the example, it was set to 4 μm. The upper surface of the first metal layer 13 indicates the vaporization source side, and the side surface of the first metal layer 13 indicates the surface facing the vapor deposition through hole 5.
 各蒸着通孔5は、小孔部5aと、この小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通してなるものであり、例えば、小孔部5aは、平面視で前後の長さ寸法が150m、左右幅寸法が50μmの四角形状を有しており、大孔部5bは、平面視で前後の長さ寸法が300μm、左右幅寸法が150μmの四角形状を有している。小孔部5aが被蒸着基板30側となり、大孔部5bが気化源側となる。これら蒸着通孔5は、前後または左右方向に並列状に配設されて蒸着パターン6を構成している。このように、蒸着通孔5は、第一金属層13と第二金属層16とが断面視で段差状に形成されることにより、小孔部5aと大孔部5bとで構成される形態となり、この大孔部5bによって、広い角度で気化源からの有機材料を受け入れることを可能とし、斜め方向から入射する有機材料にも対応することができるので、均一な高さ寸法の発光層の形成に寄与できる。しかも、大孔部5bおよび小孔部5aの周面に臨む第二金属層16の各上端周縁部(気化源側周縁部)をR状とすることで、大孔部5bおよび小孔部5aの上端周縁による影を限りなくなくすことができるとともに、有機材料の受け入れ角度をより広げることができ、より一層均一な高さ寸法の発光層を得ることができる。なお、図1の縦断面図は、実際の蒸着パターン6の様子を示したものではなく、それを模式的に示したものである。 Each vapor deposition through hole 5 is formed by communicating a small hole portion 5a with a large hole portion 5b formed larger than the opening shape of the small hole portion 5a. For example, the small hole portion 5a is a flat surface. The front and rear length dimensions are 150 m and the left and right width dimensions are 50 μm, and the large hole portion 5 b has a front and rear length dimension of 300 μm and a left and right width dimensions of 150 μm. Have. The small hole portion 5a is on the deposition target substrate 30 side, and the large hole portion 5b is on the vaporization source side. These vapor deposition through holes 5 are arranged in parallel in the front-rear direction or the left-right direction to form a vapor deposition pattern 6. Thus, the vapor deposition through-hole 5 is configured by the small hole portion 5a and the large hole portion 5b by forming the first metal layer 13 and the second metal layer 16 in a step shape in a cross-sectional view. Thus, the large hole portion 5b makes it possible to accept an organic material from a vaporization source at a wide angle, and to deal with an organic material incident from an oblique direction. Can contribute to formation. Moreover, each of the upper edge peripheral portions (vaporization source side peripheral portions) of the second metal layer 16 facing the peripheral surfaces of the large hole portions 5b and the small hole portions 5a is formed in an R shape, so that the large hole portions 5b and the small hole portions 5a are formed. As a result, it is possible to eliminate the shadow caused by the upper edge of the light source as much as possible, to further widen the acceptance angle of the organic material, and to obtain a light emitting layer having a more uniform height. In addition, the longitudinal cross-sectional view of FIG. 1 does not show the actual state of the vapor deposition pattern 6, but schematically shows it.
 マスク本体2には、マスク本体2の補強用の枠体3が装着することができる。この枠体3は、ニッケル-鉄合金であるインバー材、あるいはニッケル-鉄-コバルト合金であるスーパーインバー材等のような低熱線膨張係数の材質からなる。枠体3は、マスク本体2よりも肉厚の成形品であり、金属層9によりマスク本体2のパターン形成領域4の外周縁4aと不離一体的に接合される。ここでは、図9に示すごとく、30枚のマスク本体2を1枚の枠体3で保持している。すなわち、枠体3は、その板面上に30個の開口3aが整列配置されており、各開口3aに一枚のマスク本体2が装着される。枠体3は、マスク本体2に対応する開口3aを備え、平板形状に形成されている。枠体3の厚み寸法は、例えば100~500μm程度とし、本実施例においては250μmに設定した。 The mask body 2 can be equipped with a frame 3 for reinforcement of the mask body 2. The frame 3 is made of a material having a low coefficient of thermal expansion such as an invar material that is a nickel-iron alloy or a super invar material that is a nickel-iron-cobalt alloy. The frame 3 is a molded product that is thicker than the mask main body 2, and is joined to the outer peripheral edge 4 a of the pattern forming region 4 of the mask main body 2 by the metal layer 9 in an integral manner. Here, as shown in FIG. 9, 30 mask bodies 2 are held by one frame body 3. That is, the frame 3 has 30 openings 3a aligned on the plate surface, and one mask body 2 is attached to each opening 3a. The frame 3 is provided with an opening 3a corresponding to the mask body 2 and is formed in a flat plate shape. The thickness dimension of the frame 3 is, for example, about 100 to 500 μm, and is set to 250 μm in this embodiment.
 枠体3の形成素材としてインバー材やスーパーインバー材を採用したのは、その線膨張係数が2×10<sup>-6</sup>/℃、あるいは1×10<sup>-6</sup>/℃以下と極めて小さく、蒸着工程における熱影響によるマスク本体2の寸法変化を良好に抑制できることに拠る。すなわち、例えば、上述のようにマスク本体2がニッケルからなるものであると、その線膨張係数は12.80×10<sup>-6</sup>/℃であり、被蒸着基板30(図17参照)である一般ガラスの線膨張係数3.20×10<sup>-6</sup>/℃に比べて数倍大きいため、蒸着時の高温による熱膨張率の違いから、常温下で蒸着マスク1を被蒸着基板30に整合させた際の蒸着位置と、実際の蒸着時における蒸着物質の蒸着位置との間に位置ズレが生じることは避けられない。そこで、マスク本体2を保持する枠体3の形成素材として、インバー材などの線膨張係数の小さな素材を採用してあると、昇温時におけるマスク本体2の膨張に起因する寸法変化、形状変化をよく抑えて、常温時における整合精度を蒸着時の昇温時にも良好に保つことができる。 The invar material or super invar material was used as the material for forming the frame 3 because its linear expansion coefficient was 2 × 10 <-6> / <0> C or 1 * 10 <sup> <-6> sup> / ° C. or less, which is based on being able to satisfactorily suppress the dimensional change of the mask body 2 due to the thermal influence in the vapor deposition process. That is, for example, when the mask main body 2 is made of nickel as described above, the linear expansion coefficient is 12.80 × 10 <-6> / <0> C, and the deposition target substrate 30 (FIG. 17) is a few times larger than the linear expansion coefficient of general glass 3.20 × 10 <sup> -6 </ sup> / ° C. It is inevitable that a positional deviation occurs between the deposition position when the deposition mask 1 is aligned with the deposition target substrate 30 and the deposition position of the deposition material during actual deposition. Therefore, if a material having a small linear expansion coefficient such as an invar material is used as a material for forming the frame body 3 that holds the mask body 2, dimensional changes and shape changes caused by expansion of the mask body 2 at the time of temperature rise. The alignment accuracy at room temperature can be kept good even when the temperature rises during vapor deposition.
 図6において、符号9は、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを接合する金属層を示す。かかる金属層9は、メッキ法により形成されるものであり、ニッケルやニッケル-コバルト合金等の電鋳金属からなる。このように、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを金属層9で接合してあると、マスク本体2と枠体3とを接着剤で接合する形態では不可避であった、洗浄処理等において使用される有機溶剤が接着剤に作用することに起因する接着剤の変質などの不具合は一切生じず、マスク本体2と枠体3との間の良好な接合状態を長期にわたってよく維持できる。 6, reference numeral 9 denotes a metal layer that joins the outer peripheral edge 4 a of the pattern formation region 4 of the mask body 2 and the frame 3. The metal layer 9 is formed by a plating method and is made of an electroformed metal such as nickel or a nickel-cobalt alloy. Thus, if the outer peripheral edge 4a of the pattern forming region 4 of the mask body 2 and the frame 3 are joined by the metal layer 9, it is inevitable in the form in which the mask body 2 and the frame 3 are joined by an adhesive. There is no problem such as deterioration of the adhesive caused by the organic solvent used in the cleaning treatment acting on the adhesive, and a good bonding state between the mask body 2 and the frame 3 is obtained. It can be well maintained for a long time.
 そのうえで、本実施形態においては、図6ないし図8に示すごとく、マスク本体2のパターン形成領域4の外周縁4aの全周にわたって多数個の通孔21を設けてあり、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを、該通孔21を埋めるように形成された金属層9を介して一体的に接合してある点が着目される。すなわち、本実施形態に係る金属層9は、パターン形成領域4の外周縁4aの上面と、枠体3の上面およびパターン形成領域4に臨む側面と、マスク本体2と枠体3との間隙部分のみならず、さらに通孔21を埋めるように成長・形成されている点が着目される。このように、通孔21を埋めるように成長・形成された金属層9を介してマスク本体2と枠体3とを接合してあると、両者2・3間の接合強度の向上を図ることができるため、枠体3に対するマスク本体2の不用意な脱落や位置ずれを確実に抑えることができる。従って、発光層の再現精度・蒸着精度の向上を図ることができる。 In addition, in this embodiment, as shown in FIGS. 6 to 8, a large number of through holes 21 are provided over the entire circumference of the outer peripheral edge 4 a of the pattern formation region 4 of the mask body 2, and pattern formation of the mask body 2 is performed. It is noted that the outer peripheral edge 4a of the region 4 and the frame 3 are integrally joined via the metal layer 9 formed so as to fill the through hole 21. That is, the metal layer 9 according to the present embodiment includes the upper surface of the outer peripheral edge 4 a of the pattern formation region 4, the upper surface of the frame body 3, the side surface facing the pattern formation region 4, and the gap portion between the mask body 2 and the frame body 3. In addition, attention is paid to the fact that the growth and formation are further performed so as to fill the through holes 21. As described above, when the mask body 2 and the frame body 3 are bonded via the metal layer 9 grown and formed so as to fill the through hole 21, the bonding strength between the two and the third layer can be improved. Therefore, inadvertent dropping or misalignment of the mask body 2 with respect to the frame 3 can be reliably suppressed. Accordingly, it is possible to improve the reproduction accuracy and vapor deposition accuracy of the light emitting layer.
 また、図7および図8に示すごとく、マスク本体2の四つの角部を平面視で面取り状に形成している。これによれば、マスク本体2が熱膨張した際に角部に応力が集中することを抑えることができる。なお、図7および図8においては、蒸着通孔5を小孔部5aと大孔部5bとで構成されるものではなく、ストレート状のもので表現している。 Further, as shown in FIGS. 7 and 8, the four corners of the mask body 2 are chamfered in plan view. According to this, when the mask main body 2 thermally expands, it can suppress that stress concentrates on a corner | angular part. 7 and 8, the vapor deposition through hole 5 is not constituted by the small hole portion 5a and the large hole portion 5b, but is expressed by a straight shape.
 図10ないし図12は、本実施形態に係る蒸着マスクの製造方法を示す。まず、図10(a)に示すごとく、母型10の表面にフォトレジスト層11を形成する。母型10としては、導電性を有し、低温膨張係数の素材が望ましく、例えば、42アロイやインバー、SUS430(ステンレス)等が挙げられる。フォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 10 to 12 show a method for manufacturing a vapor deposition mask according to this embodiment. First, as shown in FIG. 10A, a photoresist layer 11 is formed on the surface of the mother die 10. As the mother mold 10, a material having conductivity and a low-temperature expansion coefficient is desirable, and examples thereof include 42 alloy, Invar, and SUS430 (stainless steel). The photoresist layer 11 is formed by laminating one or several negative photosensitive dry film resists according to a predetermined height by thermocompression bonding.
 次いで、フォトレジスト層11の上に、蒸着通孔5の大孔部5bおよび接着強度アップ用の通孔21の位置に対応する透光孔を有するパターンフィルム(ガラスマスク)を密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を溶解除去することにより、図10(b)に示すごとく、前記蒸着通孔5の大孔部5bおよび通孔21の位置に対応する、ストレート状のレジスト体12aを有する一次パターンレジスト12を母型10上に形成した。 Next, after closely attaching a pattern film (glass mask) having a light transmitting hole corresponding to the position of the large hole portion 5b of the vapor deposition through hole 5 and the through hole 21 for increasing the adhesive strength on the photoresist layer 11, By exposing to ultraviolet light, performing exposure, developing and drying, and dissolving and removing unexposed portions, as shown in FIG. 10 (b), the large holes 5b of the vapor deposition through holes 5 and A primary pattern resist 12 having a straight resist body 12 a corresponding to the position of the through hole 21 was formed on the matrix 10.
 次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図10(c)に示すごとく、先のレジスト体12aの高さの範囲内で、母型10のレジスト体12aで覆われていない表面(露出領域)にニッケル-コバルト合金を、好ましくは5~90μm厚の範囲、本実施例では16μm厚で電鋳して、第一金属層13を形成した。第一金属層13を形成後は、図10(d)に示すごとく、一次パターンレジスト12(レジスト体12a)を除去する。ここで、第一金属層13は、光沢ニッケル層と無光沢ニッケル層との2層構造としても良い。この場合、母型10に光沢ニッケルからなる電着層を5μm電鋳したのち、その上に無光沢ニッケルからなる電着層を11μm電鋳する。このように、第一金属層13を2層構造とすれば、光沢ニッケルが母型10に対してくっつき難く、最後の蒸着マスク1の母型10からの剥離工程を作業効率良く進めることができる。なお、図10(d)において、符号13aは、マスク本体2・2どうしの間に形成された第一金属層を示す。 Next, the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and the resist member 12a of the mother die 10 is within the height range of the previous resist member 12a as shown in FIG. The first metal layer 13 was formed by electroforming a nickel-cobalt alloy on the uncovered surface (exposed region), preferably in the range of 5 to 90 μm thick, in this example 16 μm thick. After the first metal layer 13 is formed, the primary pattern resist 12 (resist body 12a) is removed as shown in FIG. Here, the first metal layer 13 may have a two-layer structure of a bright nickel layer and a dull nickel layer. In this case, an electrodeposition layer made of bright nickel is electroformed on the mother die 10 by 5 μm, and an electrodeposition layer made of non-gloss nickel is then electroformed by 11 μm. In this way, if the first metal layer 13 has a two-layer structure, the bright nickel is difficult to adhere to the mother die 10, and the process of removing the last vapor deposition mask 1 from the mother die 10 can be carried out efficiently. . In addition, in FIG.10 (d), the code | symbol 13a shows the 1st metal layer formed between the mask main bodies 2 * 2.
 続いて、図11(a)に示すごとく、第一金属層13の形成領域を含む母型10の表面全体に、フォトレジスト層14を形成した。このフォトレジスト層14は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 Subsequently, as shown in FIG. 11A, a photoresist layer 14 was formed on the entire surface of the mother die 10 including the formation region of the first metal layer 13. The photoresist layer 14 is formed by thermocompression bonding by laminating one or several negative photosensitive dry film resists at a predetermined height.
 次いで、蒸着通孔5の小孔部5a位置に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図11(b)に示すごとく、蒸着通孔5の小孔部5a位置に対応するストレート状のレジスト体15aを有する二次パターンレジスト15を母型10上に形成した。 Next, after a pattern film having a light transmitting hole corresponding to the position of the small hole portion 5a of the vapor deposition through hole 5 is adhered, exposure is performed by irradiating with ultraviolet light, and each process of development and drying is performed. By removing the portion, as shown in FIG. 11B, a secondary pattern resist 15 having a straight resist body 15 a corresponding to the position of the small hole portion 5 a of the vapor deposition through hole 5 was formed on the matrix 10. .
 次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図11(c)に示すごとく、先のレジスト体15aの高さの範囲内で、母型10及び第一金属層13のレジスト体16aで覆われていない表面(露出領域)にニッケル-コバルト合金を、好ましくは10μm以下の厚さ、本実施形態では4μm厚で電鋳して、第二金属層16を形成した。この時、第一金属層13の端部(頂部や根元)と対向する部分に形成される第二金属層16はR状となる。また、蒸着通孔5に臨む第二金属層16の端部もR状となる。なお、係るR(アール)の曲率は、第二金属層16の厚みを調整することで、所望のR(アール)が得られる。そして、二次パターンレジスト15(レジスト体15a)を除去することにより、図11(d)に示すごとく、多数独立の蒸着通孔5からなる蒸着パターン6と、および該蒸着パターン6の外周縁全体に接合強度アップ用の通孔21とを備えたマスク本体2を得た。マスク本体2の各角部は、図7および図8に示すごとく、平面視で面取り状に形成している。なお、図11(d)において、符号16aは、マスク本体2・2どうしの間に形成された第二金属層を示しており、第一金属層13a上に形成される。 Next, the mother die 10 is put in an electroforming tank bathed under a predetermined condition, and as shown in FIG. 11C, the mother die 10 and the first metal layer are within the range of the height of the resist body 15a. The second metal layer 16 was formed by electroforming a nickel-cobalt alloy on the surface (exposed region) not covered with the resist body 16a, preferably with a thickness of 10 μm or less, in this embodiment 4 μm. . At this time, the second metal layer 16 formed in a portion facing the end (top or root) of the first metal layer 13 has an R shape. Moreover, the edge part of the 2nd metal layer 16 which faces the vapor deposition through-hole 5 also becomes R shape. In addition, the curvature of R (R) concerned can obtain desired R (R) by adjusting the thickness of the second metal layer 16. Then, by removing the secondary pattern resist 15 (resist body 15a), as shown in FIG. 11D, the vapor deposition pattern 6 composed of a large number of independent vapor deposition holes 5, and the entire outer peripheral edge of the vapor deposition pattern 6 Thus, a mask body 2 provided with through holes 21 for increasing the bonding strength was obtained. Each corner of the mask body 2 is formed in a chamfered shape in plan view as shown in FIGS. In FIG. 11D, reference numeral 16a indicates a second metal layer formed between the mask bodies 2 and 2, and is formed on the first metal layer 13a.
 続いて、図12(a)に示すごとく、第一金属層13及び第二金属層16(マスク本体2)の形成部分を含む母型10の表面全体に、フォトレジスト層17を形成した。このフォトレジスト層17は、先と同様にネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。次いで、パターン形成領域4に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行った。かくして、パターン形成領域4に係る部分が露光(17a)されており、それ以外の部分が未露光(17b)のフォトレジスト層17を得たうえで、図12(b)に示すごとく、母型10上に、第一金属層13及び第二金属層16を囲むようにして枠体3を配した。ここでは、未露光のフォトレジスト層17bの粘着性を利用して、母型10上に枠体3を仮止め固定した。 Subsequently, as shown in FIG. 12A, a photoresist layer 17 was formed on the entire surface of the mother die 10 including the portions where the first metal layer 13 and the second metal layer 16 (mask body 2) were formed. The photoresist layer 17 is formed by thermocompression bonding of one or several negative photosensitive dry film resists having a predetermined height in the same manner as described above. Next, after a pattern film having a light transmitting hole corresponding to the pattern forming region 4 was adhered, exposure was performed by irradiating with ultraviolet light. Thus, after obtaining the photoresist layer 17 in which the portion related to the pattern formation region 4 is exposed (17a) and the other portions are not exposed (17b), as shown in FIG. On 10, the frame 3 was disposed so as to surround the first metal layer 13 and the second metal layer 16. Here, the frame 3 was temporarily fixed on the mother die 10 by using the adhesiveness of the unexposed photoresist layer 17b.
 次いで、図12(c)に示すごとく、表面に露出している未露光のフォトレジスト層17bを溶解除去して、パターン形成領域を覆うレジスト体18aを有する三次パターンレジスト18を形成した。なお、このとき、枠体3の下面に存する未露光のフォトレジスト層17bは、母型10上に残留している。 Next, as shown in FIG. 12C, the unexposed photoresist layer 17b exposed on the surface was dissolved and removed to form a tertiary pattern resist 18 having a resist body 18a covering the pattern formation region. At this time, the unexposed photoresist layer 17 b existing on the lower surface of the frame 3 remains on the mother die 10.
 次いで、図12(d)に示すごとく、パターン形成領域4の外周縁4aに係る表面に露出する第二金属層16の上面、枠体3と第二金属層16との間で露出する母型10の表面、枠体3の表面上、および通孔21内に電着金属を電鋳して金属層9を形成し、かかる金属層9により第一電着層13及び第二金属層16(マスク本体2)と枠体3とを一体的に接合した。なお、金属層9を形成する前に、通孔21の周辺の第一電着層13、詳しくは、通孔21の内壁面及び該通孔21周辺の第一電着層13上面に対して、酸浸漬、電解処理、ストライクメッキ等の処理を施すことにより、該処理を施した部分と金属層9との接合強度の向上を図ることができる。 Next, as shown in FIG. 12D, the upper surface of the second metal layer 16 exposed on the surface related to the outer peripheral edge 4 a of the pattern formation region 4, the matrix exposed between the frame 3 and the second metal layer 16. 10, on the surface of the frame 3, and in the through hole 21, an electrodeposited metal is electroformed to form the metal layer 9, and the metal layer 9 forms the first electrodeposited layer 13 and the second metal layer 16 ( The mask body 2) and the frame 3 were joined together. Before forming the metal layer 9, the first electrodeposition layer 13 around the through hole 21, specifically the inner wall surface of the through hole 21 and the upper surface of the first electrodeposition layer 13 around the through hole 21. By applying a treatment such as acid dipping, electrolytic treatment, strike plating, etc., the bonding strength between the treated portion and the metal layer 9 can be improved.
 最後に、母型10から第一金属層13、第二金属層16、および金属層9を剥離したうえで、これら金属層から枠体3の下面に存する第一金属層13aを剥離し、三次パターンレジスト18および未露光のフォトレジスト層17bを除去することにより、図6に示すような蒸着マスク1を得た。 Finally, after the first metal layer 13, the second metal layer 16, and the metal layer 9 are peeled from the matrix 10, the first metal layer 13a existing on the lower surface of the frame body 3 is peeled from these metal layers, and the tertiary By removing the pattern resist 18 and the unexposed photoresist layer 17b, an evaporation mask 1 as shown in FIG. 6 was obtained.
(第3実施形態)
 本発明の第3実施形態に係る蒸着マスクを図13ないし図15に基づいて説明する。上記各実施形態におけるマスク本体2(蒸着マスク1)は、母型として導電性基板を用い、その表面にパターンレジストを形成後、電鋳して製造しているが、母型として絶縁性基板を用いて製造することもできる。図13および図14は、本実施形態に係る蒸着マスクの製造方法を示すものであり、以下に該製造方法の各工程について説明する。
(Third embodiment)
A vapor deposition mask according to a third embodiment of the present invention will be described with reference to FIGS. The mask main body 2 (deposition mask 1) in each of the above embodiments uses a conductive substrate as a matrix and is manufactured by electroforming after forming a pattern resist on the surface. It can also be manufactured. FIG. 13 and FIG. 14 show a method for manufacturing a vapor deposition mask according to the present embodiment, and each step of the manufacturing method will be described below.
 まず、図13(a)に示すごとく、金属膜41が形成された母型40を用意する。母型40は、例えば、ガラス板や樹脂板など絶縁性基板を用いる。また、金属膜41は、クロムやチタンなどの導電性を有する金属からなる。この金属膜41は、母型40の表面全体に金属膜をスパッタリングにより堆積させ、フォトリソグラフィー技術を用いてレジストパターンを形成後、レジストパターンから露出している金属膜をエッチング除去し、レジストパターンを除去することにより、母型40の表面に金属膜41がパターン形成される。こうしてパターン形成された金属膜41上に、後述する第一金属層44及び第二金属層45が形成され、金属膜41間が蒸着通孔5の小孔部5aの位置に対応する。本実施形態では、母型40としてガラス板、金属膜41としてクロムを用いており、金属膜41の厚みは1μm以下である。 First, as shown in FIG. 13A, a mother die 40 on which a metal film 41 is formed is prepared. For the mother die 40, for example, an insulating substrate such as a glass plate or a resin plate is used. The metal film 41 is made of a conductive metal such as chromium or titanium. The metal film 41 is formed by depositing a metal film on the entire surface of the mother die 40 by sputtering, forming a resist pattern using a photolithography technique, etching away the metal film exposed from the resist pattern, and removing the resist pattern. By removing, the metal film 41 is patterned on the surface of the mother die 40. A first metal layer 44 and a second metal layer 45 described later are formed on the metal film 41 thus patterned, and the space between the metal films 41 corresponds to the position of the small hole portion 5a of the vapor deposition through hole 5. In this embodiment, a glass plate is used as the matrix 40 and chromium is used as the metal film 41, and the thickness of the metal film 41 is 1 μm or less.
 次いで、図13(b)に示すごとく、母型40の表面にフォトレジスト層42を形成する。フォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 Next, as shown in FIG. 13B, a photoresist layer 42 is formed on the surface of the mother die 40. The photoresist layer 11 is formed by laminating one or several negative photosensitive dry film resists according to a predetermined height by thermocompression bonding.
 次いで、フォトレジスト層42の上に、第一金属層44の形成位置に対応する透光孔を有するパターンフィルム(ガラスマスク)を密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図13(c)に示すごとく、第一金属層44の形成位置に対応する、ストレート状のレジスト体43aを有するパターンレジスト43を母型40上に形成した。 Next, after a pattern film (glass mask) having a light transmitting hole corresponding to the formation position of the first metal layer 44 is adhered onto the photoresist layer 42, exposure is performed by irradiation with ultraviolet light, development, A pattern resist 43 having a straight resist body 43a corresponding to the position where the first metal layer 44 is formed, as shown in FIG. Formed on the mother mold 40.
 次いで、上記母型40を所定の条件に建浴した電鋳槽に入れ、図14(a)に示すごとく、先のレジスト体43aの高さの範囲内で、母型40のレジスト体43aで覆われていない表面(露出領域)にニッケル-コバルト合金を、好ましくは5~90μm厚の範囲、本実施形態では16μm厚で電鋳して、第一金属層44を形成した。なお、第一金属層44を形成する前に、レジスト体43aから露出する金属膜41表面に、酸化膜、有機膜、高分子膜などを形成しても良い。 Next, the mother die 40 is put in an electroforming bath that is bathed under a predetermined condition, and as shown in FIG. 14A, the resist member 43a of the mother die 40 is within the height range of the previous resist member 43a. The first metal layer 44 was formed by electroforming a nickel-cobalt alloy on the uncovered surface (exposed region), preferably in the range of 5 to 90 μm thick, in this embodiment 16 μm thick. Before forming the first metal layer 44, an oxide film, an organic film, a polymer film, or the like may be formed on the surface of the metal film 41 exposed from the resist body 43a.
 次いで、図14(b)に示すごとく、パターンレジスト43(レジスト体43a)を除去する。 Next, as shown in FIG. 14B, the pattern resist 43 (resist body 43a) is removed.
 次いで、上記母型40を所定の条件に建浴した電鋳槽に入れ、図14(c)に示すごとく、金属膜41及び第一金属層44の表面にニッケル-コバルト合金を、好ましくは10μm以下厚、本実施形態では4μm厚で電鋳して、第二金属層45を形成した。この時、金属膜41及び第一金属層44の端部(頂部や根元)と対向する部分に形成される第二金属層45はR状となる。これにより、大孔部5bおよび小孔部5aの上端周縁による影を限りなくなくすことができる。なお、係るR(アール)の曲率は、第二金属層45の厚みを調整することで、所望のR(アール)が得られる。また、第二金属層45を形成する前に、金属膜41及び第一金属層44の表面に、酸化膜、有機膜、高分子膜などを形成しても良い。 Next, the mother die 40 is placed in an electroforming tank bathed under predetermined conditions, and as shown in FIG. 14 (c), a nickel-cobalt alloy is formed on the surface of the metal film 41 and the first metal layer 44, preferably 10 μm. Thereafter, the second metal layer 45 was formed by electroforming with a thickness of 4 μm in the present embodiment. At this time, the second metal layer 45 formed in a portion facing the ends (the top and the base) of the metal film 41 and the first metal layer 44 has an R shape. Thereby, the shadow by the upper-end periphery of the large hole part 5b and the small hole part 5a can be eliminated as much as possible. The curvature of R (R) can be obtained by adjusting the thickness of the second metal layer 45. In addition, an oxide film, an organic film, a polymer film, or the like may be formed on the surfaces of the metal film 41 and the first metal layer 44 before the second metal layer 45 is formed.
 最後に、母型40から第一金属層44及び第二金属層45を剥離することにより、図15に示すような、小孔部5aと大孔部5bとを有する蒸着通孔5を備えたマスク本体2(蒸着マスク1)を得た。 Finally, by peeling the first metal layer 44 and the second metal layer 45 from the mother die 40, the vapor deposition through hole 5 having the small hole portion 5a and the large hole portion 5b as shown in FIG. 15 was provided. A mask body 2 (deposition mask 1) was obtained.
 本実施形態におけるマスク本体2は、第一金属層44の裏面側(被蒸着基板30側)に微小凹み50を有する。この微小凹み50の形状は、金属膜41の形状に対応して形成される。係る微小凹み50が存在することにより、微小凹み50の外周部(小孔部5aの被蒸着基板30側の周縁部)が出っ張り形状となるので、本蒸着マスク1を被蒸着基板30上に載置して蒸着する時に、マスク本体2の蒸着通孔5周辺と被蒸着基板30との線接触により、蒸着マスク1を被蒸着基板30上に密着良く載置することができ、気化源から気化された有機材料のにじみや蒸着マスク1裏面への蒸着を防ぐことができる。 The mask main body 2 in the present embodiment has a minute recess 50 on the back surface side (deposition target substrate 30 side) of the first metal layer 44. The shape of the minute recess 50 is formed corresponding to the shape of the metal film 41. Since the micro dent 50 is present, the outer peripheral portion of the micro dent 50 (the peripheral portion of the small hole portion 5a on the vapor deposition substrate 30 side) has a protruding shape, and thus the vapor deposition mask 1 is mounted on the vapor deposition substrate 30. When vapor deposition is performed, the vapor deposition mask 1 can be placed on the vapor deposition substrate 30 with good contact by the line contact between the vapor deposition through hole 5 of the mask body 2 and the vapor deposition substrate 30, and vaporized from the vaporization source. It is possible to prevent the organic material from bleeding and vapor deposition on the back surface of the vapor deposition mask 1.
 上記各実施形態において、金属層9は、第一金属層13及び第二金属層16、すなわちマスク本体2を枠体3側に引き寄せる、引っ張り応力F1が作用するようなテンションを加えた状態で形成することができる。かかる引っ張り応力の付与は、電鋳槽中に添加する第2種光沢剤中のカーボンの含有比率を調製することによって実現できる。これにより、第一金属層13及び第二金属層16は、金属層9を介して枠体3に対してピンと張った引っ張り応力が作用した状態で張設されるため、蒸着作業時の周囲温度上昇に対しても、枠体3との熱膨張係数の差に伴うマスク本体2の膨張を吸収し、蒸着マスク1が熱による寸法精度のばらつきが生じ難く、発光層の再現精度・蒸着精度の向上に寄与できる。さらに、マスク本体2を保持する枠体3として熱膨張しにくい材料を採用することで、熱の影響を可及的に抑えることができる。 In each of the above embodiments, the metal layer 9 is formed in a state where a tension is applied so that the tensile stress F1 acts to draw the first metal layer 13 and the second metal layer 16, that is, the mask body 2 toward the frame 3 side. can do. The application of such tensile stress can be realized by adjusting the content ratio of carbon in the second type brightener added to the electroforming tank. Thereby, since the first metal layer 13 and the second metal layer 16 are stretched in a state in which a tensile stress tensioned to the frame body 3 is applied via the metal layer 9, the ambient temperature during the vapor deposition operation Even with the rise, the expansion of the mask body 2 due to the difference in thermal expansion coefficient with the frame 3 is absorbed, and the deposition mask 1 is less likely to vary in dimensional accuracy due to heat. It can contribute to improvement. Furthermore, the influence of heat can be suppressed as much as possible by adopting a material that hardly undergoes thermal expansion as the frame 3 that holds the mask body 2.
 また、上記各実施形態において、マスク本体2、すなわち、第一金属層13及び第二金属層16は、それが内方に収縮する方向の応力F2が作用するようなテンションを加えた状態で形成することもできる。かかる引っ張り応力F2は、第一金属層13及び第二金属層16を作成する際の電鋳層の温度(40~50℃)と常温(20℃)との温度差に起因して、常温時に第一金属層13及び第二金属層16が収縮するようにすることによって実現できる。より詳しく説明すると、母型10として42アロイやインバー、SUS430(ステンレス)等の低温膨張係数の素材を用いたうえで、40~50℃の電鋳層内で第一金属層13及び第二金属層16を形成すると、ニッケルやニッケル合金等の第一金属層13及び第二金属層16は、母型10よりも膨張率が大きいため、母型に対して膨張しようとする応力が作用する(尤も、このときの金属層9の膨張は、母型10により規制される)。しかるに、電鋳層温度(40~50℃)よりも低い常温(20℃)においては、第一金属層13及び第二金属層16は、内方に収縮しようとし、従って母型10から剥離することによって、第一金属層13及び第二金属層16、すなわち、マスク本体2は枠体3に対して引っ張り応力F2が作用することとなる。これにより、マスク本体2を、皺の無いピンと張った状態とできるため、蒸着作業時の周囲温度上昇に対しても、枠体3との熱膨張係数の差に伴うマスク本体2自体の膨張を吸収し、蒸着マスク1が熱による寸法精度のばらつきが生じ難く、発光層の再現精度・蒸着精度の向上に寄与できる。しかも、通孔21を形成すること、マスク本体2の角部を面取り状とすること、マスク本体2を保持する枠体3自体を熱膨張しにくい材質とすることで、熱による寸法精度のばらつきをさらに抑え、発光層の再現精度・蒸着精度の向上により一層寄与できる。 In each of the above embodiments, the mask body 2, that is, the first metal layer 13 and the second metal layer 16 are formed in a state where a tension is applied so that the stress F <b> 2 in the direction in which the mask body 2 contracts inwardly acts. You can also Such tensile stress F2 is caused by the temperature difference between the temperature of the electroformed layer (40 to 50 ° C.) and the normal temperature (20 ° C.) when the first metal layer 13 and the second metal layer 16 are formed. This can be realized by causing the first metal layer 13 and the second metal layer 16 to contract. More specifically, after using a low-temperature expansion coefficient material such as 42 alloy, Invar, or SUS430 (stainless steel) as the matrix 10, the first metal layer 13 and the second metal in the electroformed layer at 40 to 50 ° C. When the layer 16 is formed, the first metal layer 13 such as nickel or nickel alloy and the second metal layer 16 have a higher expansion coefficient than the mother die 10, so that stress that tends to expand acts on the mother die ( However, the expansion of the metal layer 9 at this time is regulated by the mother die 10). However, at a normal temperature (20 ° C.) lower than the electroforming layer temperature (40 to 50 ° C.), the first metal layer 13 and the second metal layer 16 tend to shrink inward, and thus peel off from the mother die 10. As a result, the first metal layer 13 and the second metal layer 16, that is, the mask main body 2 is subjected to a tensile stress F <b> 2 on the frame body 3. As a result, the mask body 2 can be stretched with a pin having no wrinkles, so that the expansion of the mask body 2 itself due to the difference in the thermal expansion coefficient with the frame 3 can be achieved even when the ambient temperature rises during the vapor deposition operation. Absorbing, the deposition mask 1 is less likely to vary in dimensional accuracy due to heat, and can contribute to improvement in the light emitting layer reproduction accuracy and vapor deposition accuracy. In addition, the formation of the through holes 21, the corners of the mask main body 2 are chamfered, and the frame body 3 itself that holds the mask main body 2 is made of a material that hardly thermally expands, thereby causing variations in dimensional accuracy due to heat. This can be further reduced by improving the reproduction accuracy and vapor deposition accuracy of the light emitting layer.
 また、上記各実施形態において、母型の剥離時などに、第一金属層13・44と第二金属層16・45の界面から剥離する場合がある。これを防止するために、第一金属層13・44上に第二金属層16・45を形成する前に、第一金属層13・44表面に対して、表面活性化処理(酸浸漬、陰極電解、化学エッチング、ストライクメッキなど)行うと良い。その他に、図16に示すように、第一金属層13・44の上端周縁に張出部60を形成し、この第一金属層13・44上に第二金属層16・45を形成することで、第一金属層13・44と第二金属層16・45との剥離を防ぐことができる。係る張出部60は、第一金属層13・44を形成する際に、レジスト体12a・43aの厚みを超えて電鋳、いわゆるオーバーハングをさせることで、第一金属層13・44の上端周縁に断面庇形状の張出部60が一体に形成された形状を得ることができる。 Further, in each of the above embodiments, there is a case where peeling occurs from the interface between the first metal layers 13 and 44 and the second metal layers 16 and 45 when the mother die is peeled off. In order to prevent this, the surface activation treatment (acid immersion, cathode) is performed on the surface of the first metal layer 13/44 before the second metal layer 16/45 is formed on the first metal layer 13/44. Electrolysis, chemical etching, strike plating, etc.) may be performed. In addition, as shown in FIG. 16, an overhang 60 is formed on the upper edge of the first metal layer 13, 44, and the second metal layer 16, 45 is formed on the first metal layer 13, 44. Thus, peeling between the first metal layers 13 and 44 and the second metal layers 16 and 45 can be prevented. When the first metal layers 13 and 44 are formed, the overhanging portion 60 performs electroforming, so-called overhang, exceeding the thickness of the resist bodies 12a and 43a, so that the upper ends of the first metal layers 13 and 44 are formed. It is possible to obtain a shape in which an overhanging portion 60 having a cross-sectional ridge shape is integrally formed on the periphery.
 蒸着マスク1が有するマスク本体2の枚数は、上記各実施形態に示したものに限られない。また、一次パターンレジスト12を除去する前もしくは後に、第一金属層13を研磨して平滑化してから、第2金属層16を形成するようにしてもよい。また、二次パターンレジスト15を除去する前もしくは後に、第2金属層16を研磨して平滑化してから、パターン形成領域4に三次パターンレジスト18を形成するようにしてもよい。枠体3の材質としては、実施形態に示すインバー材等のような金属材料のほか、できる限り被蒸着基板であるガラス等に近い低熱線膨張係数の材料、例えばガラスやセラミックのようなものを選択することができる。この場合にはこれら材料の少なくとも表面に導電性を付与させることが必要となる。さらに、形成された蒸着マスク1を引っ張り状態で、その外周縁に別途ステンレス、アルミ等の固定枠を周知の方法で固定しても良い。ただ、実施形態のごとく枠体3に各マスク本体2が金属層9を介してテンションを加えた状態で保持されているような場合、固定枠を必要としない所謂フレームレス化が可能となる。 The number of mask main bodies 2 that the vapor deposition mask 1 has is not limited to that shown in the above embodiments. Alternatively, the second metal layer 16 may be formed after the first metal layer 13 is polished and smoothed before or after removing the primary pattern resist 12. Alternatively, before or after removing the secondary pattern resist 15, the second metal layer 16 may be polished and smoothed, and then the tertiary pattern resist 18 may be formed in the pattern formation region 4. As a material of the frame 3, in addition to a metal material such as an invar material shown in the embodiment, a material having a low coefficient of thermal expansion as close to glass as a deposition substrate as much as possible, such as glass or ceramic, is used. You can choose. In this case, it is necessary to impart conductivity to at least the surface of these materials. Furthermore, the formed vapor deposition mask 1 may be pulled and a fixed frame such as stainless steel or aluminum may be separately fixed to the outer periphery by a known method. However, when each mask body 2 is held on the frame 3 with a tension applied via the metal layer 9 as in the embodiment, a so-called frame-less operation requiring no fixed frame is possible.
 1  蒸着マスク
 2  マスク本体
 3  枠体
 4  パターン形成領域
 4a パターン形成領域の外周縁
 5  蒸着通孔
 6  蒸着パターン
 9  金属層
 10 母型
 12 一次パターンレジスト
 13 第一金属層
 15 二次パターンレジスト
 16 第二金属層
 17 パターンフィルム
 18 三次パターンレジスト
 21 通孔
 40 母型
 43 パターンレジスト
 44 第一金属層
 45 第二金属層
 50 微小凹み
 60 張出部
DESCRIPTION OF SYMBOLS 1 Deposition mask 2 Mask main body 3 Frame body 4 Pattern formation area 4a The outer periphery of a pattern formation area 5 Deposition through-hole 6 Deposition pattern 9 Metal layer 10 Master mold 12 Primary pattern resist 13 First metal layer 15 Secondary pattern resist 16 Second Metal layer 17 Pattern film 18 Tertiary pattern resist 21 Through hole 40 Master mold 43 Pattern resist 44 First metal layer 45 Second metal layer 50 Micro-dent 60 Overhang

Claims (6)

  1.  マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクであって、
     前記蒸着通孔5は、被蒸着基板30側に位置する小孔部5aと、気化源側に位置し、前記小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通形成されていることを特徴とする蒸着マスク。
    A vapor deposition mask provided with a vapor deposition pattern 6 comprising a large number of independent vapor deposition through holes 5 on the mask body 2,
    The vapor deposition through hole 5 communicates with a small hole portion 5a located on the vapor deposition substrate 30 side and a large hole portion 5b located on the vaporization source side and formed larger than the opening shape of the small hole portion 5a. The vapor deposition mask characterized by being made.
  2.  前記マスク本体2は、第一金属層13・44と第二金属層16・45とを有し、前記第一金属層13・44の上面及び側面を覆うように前記第二金属層16・45が形成されており、前記蒸着通孔5間におけるマスク本体2の断面形状は、段差状となっていることを特徴とする請求項1に記載の蒸着マスク。 The mask body 2 includes first metal layers 13 and 44 and second metal layers 16 and 45, and the second metal layers 16 and 45 so as to cover the upper surfaces and side surfaces of the first metal layers 13 and 44. The vapor deposition mask according to claim 1, wherein a cross-sectional shape of the mask body 2 between the vapor deposition through holes 5 is stepped.
  3.  前記大孔部5bおよび前記小孔部5aの周面に臨む前記第二金属層16・45の各上端周縁部をR状とすることを特徴とする請求項2に記載の蒸着マスク。 3. The vapor deposition mask according to claim 2, wherein each of the upper peripheral edges of the second metal layers 16 and 45 facing the peripheral surfaces of the large hole portion 5 b and the small hole portion 5 a has an R shape.
  4.  前記蒸着パターン6がパターン形成領域4内に形成されており、前記マスク本体2の外周に、低熱線膨張係数の材質からなる枠体3が配置され、前記マスク本体2のパターン形成領域4の外周縁4aと前記枠体3とを金属層9を介して一体的に接合してあることを特徴とする請求項1ないし3のいずれかに記載の蒸着マスク。 The vapor deposition pattern 6 is formed in the pattern formation region 4, and a frame 3 made of a material having a low thermal expansion coefficient is disposed on the outer periphery of the mask main body 2, and the outside of the pattern formation region 4 of the mask main body 2. 4. The vapor deposition mask according to claim 1, wherein a peripheral edge 4 a and the frame body 3 are integrally joined to each other through a metal layer 9.
  5.  マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクの製造方法であって、
     母型10の表面に、レジスト体12aを有する一次パターンレジスト12を形成する工程と、
     前記一次パターンレジスト12を用いて、前記母型10上に第一金属層13を形成する工程と、
     前記母型10の表面に、レジスト体15aを有する二次パターンレジスト15を形成する工程と、
     前記二次パターンレジスト15を用いて、前記母型10及び前記第一金属層13上に第二金属層16を形成する工程と、
     前記母型10から前記第一金属層13および前記第二金属層16を一体に剥離する工程とを含むことを特徴とする蒸着マスクの製造方法。
    A method of manufacturing a vapor deposition mask in which a vapor deposition pattern 6 including a large number of independent vapor deposition through holes 5 is provided in the mask body 2,
    Forming a primary pattern resist 12 having a resist body 12a on the surface of the matrix 10;
    Forming a first metal layer 13 on the matrix 10 using the primary pattern resist 12;
    Forming a secondary pattern resist 15 having a resist body 15a on the surface of the matrix 10;
    Forming a second metal layer 16 on the matrix 10 and the first metal layer 13 using the secondary pattern resist 15;
    And a step of integrally peeling the first metal layer 13 and the second metal layer 16 from the matrix 10.
  6.  マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクの製造方法であって、
     金属膜41がパターン形成された母型40を準備する工程と、
     前記母型40表面に、レジスト体43aを有するパターンレジスト43を形成する工程と、
     前記パターンレジスト43を用いて、前記金属膜41上に第一金属層44を形成する工程と、
     前記金属膜41及び前記第一金属層44上に、第二金属層45を形成する工程と、
     前記母型10から前記第一金属層44および前記第二金属層45を一体に剥離する工程とを含むことを特徴とする蒸着マスクの製造方法。
    A method of manufacturing a vapor deposition mask in which a vapor deposition pattern 6 including a large number of independent vapor deposition through holes 5 is provided in the mask body 2,
    A step of preparing a mother die 40 on which a metal film 41 is patterned;
    Forming a pattern resist 43 having a resist body 43a on the surface of the mother die 40;
    Forming a first metal layer 44 on the metal film 41 using the pattern resist 43;
    Forming a second metal layer 45 on the metal film 41 and the first metal layer 44;
    And a step of integrally peeling the first metal layer 44 and the second metal layer 45 from the matrix 10.
PCT/JP2015/084885 2014-12-27 2015-12-14 Vapor deposition mask and manufacturing method therefor WO2016104207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-266887 2014-12-27
JP2014266887A JP6599103B2 (en) 2014-12-27 2014-12-27 Vapor deposition mask and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016104207A1 true WO2016104207A1 (en) 2016-06-30

Family

ID=56150236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084885 WO2016104207A1 (en) 2014-12-27 2015-12-14 Vapor deposition mask and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP6599103B2 (en)
WO (1) WO2016104207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099055A1 (en) * 2016-11-30 2018-06-07 京东方科技集团股份有限公司 Deposition mask and deposition method
CN109811301A (en) * 2017-11-22 2019-05-28 麦克赛尔控股株式会社 Deposition mask and its manufacturing method
CN113088875A (en) * 2021-04-02 2021-07-09 京东方科技集团股份有限公司 Mask and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132907A1 (en) * 2016-02-03 2017-08-10 Applied Materials, Inc. A shadow mask with tapered openings formed by double electroforming

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045657A (en) * 2001-05-24 2003-02-14 Kyushu Hitachi Maxell Ltd Deposition mask for organic el element and its manufacturing method
JP2003107723A (en) * 2001-09-25 2003-04-09 Eastman Kodak Co Manufacturing method for metal mask and metal mask
JP2005154879A (en) * 2003-11-28 2005-06-16 Canon Components Inc Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same
JP2009009777A (en) * 2007-06-27 2009-01-15 Canon Inc Film forming mask
JP2011042877A (en) * 2010-10-01 2011-03-03 Kyushu Hitachi Maxell Ltd Metallic porous body and method of manufacturing the same
JP2012111195A (en) * 2010-11-26 2012-06-14 Kyushu Hitachi Maxell Ltd Method of manufacturing metal mask, frame member, and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818321B2 (en) * 1990-06-11 1998-10-30 富士写真フイルム株式会社 Method of forming metal pattern on substrate and method of manufacturing thin-film magnetic head
JPH05255846A (en) * 1992-03-12 1993-10-05 Toshiba Corp Sputtering device
JP2001237072A (en) * 2000-02-24 2001-08-31 Tohoku Pioneer Corp Metal mask and manufacturing method of the same
JP2003170352A (en) * 2001-12-05 2003-06-17 Alps Engineering Co Ltd Mask for organic molecule vapor deposition and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045657A (en) * 2001-05-24 2003-02-14 Kyushu Hitachi Maxell Ltd Deposition mask for organic el element and its manufacturing method
JP2003107723A (en) * 2001-09-25 2003-04-09 Eastman Kodak Co Manufacturing method for metal mask and metal mask
JP2005154879A (en) * 2003-11-28 2005-06-16 Canon Components Inc Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same
JP2009009777A (en) * 2007-06-27 2009-01-15 Canon Inc Film forming mask
JP2011042877A (en) * 2010-10-01 2011-03-03 Kyushu Hitachi Maxell Ltd Metallic porous body and method of manufacturing the same
JP2012111195A (en) * 2010-11-26 2012-06-14 Kyushu Hitachi Maxell Ltd Method of manufacturing metal mask, frame member, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099055A1 (en) * 2016-11-30 2018-06-07 京东方科技集团股份有限公司 Deposition mask and deposition method
US11104984B2 (en) 2016-11-30 2021-08-31 Boe Technology Group Co., Ltd. Evaporation mask and evaporation method
CN109811301A (en) * 2017-11-22 2019-05-28 麦克赛尔控股株式会社 Deposition mask and its manufacturing method
CN113088875A (en) * 2021-04-02 2021-07-09 京东方科技集团股份有限公司 Mask and preparation method thereof

Also Published As

Publication number Publication date
JP2016125097A (en) 2016-07-11
JP6599103B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP5751810B2 (en) Metal mask manufacturing method, frame member, and manufacturing method thereof
KR102474454B1 (en) Deposition mask manufacturing method and deposition mask
JP4369199B2 (en) Vapor deposition mask and manufacturing method thereof
JP4677363B2 (en) Vapor deposition mask and manufacturing method thereof
JP2008255449A (en) Vapor deposition mask, and method for producing the same
JP5607312B2 (en) Vapor deposition mask and manufacturing method thereof
WO2016104207A1 (en) Vapor deposition mask and manufacturing method therefor
KR20200137032A (en) Deposition mask, method of manufacturing deposition mask and metal plate
JP2023174734A (en) vapor deposition mask
JP2006152396A (en) Method for manufacturing metal mask, mask of artwork master for electroforming and artwork master
JP6728733B2 (en) Method for manufacturing vapor deposition mask and vapor deposition mask
JP4475496B2 (en) Vapor deposition mask for organic EL device and manufacturing method thereof
JP2022103212A (en) Frame body and vapor deposition mask
KR20200094094A (en) Vapor deposition mask and method of manufacture thereof, vapor deposition mask device and method of manufacture thereof, intermediate, vapor deposition method, and method for manufacturing organic el display device
JP7421617B2 (en) vapor deposition mask
CN108486616B (en) Metal shadow mask and method for manufacturing the same
TWI487443B (en) Method of fabricating substrate structure and substrate structure fabricated by the same method
TWI791549B (en) Evaporation hood
KR20110135552A (en) Jig-integrated mask and fabricating method the same
JP4782548B2 (en) Deposition method
KR20060106146A (en) Mask and method for fabricating thereof
KR20030049964A (en) Shadow mask and the method of its fabrication
JP7450076B2 (en) vapor deposition mask
JP2003323980A (en) Vapor deposition mask for organic el element and its manufacturing method
JP2023006792A (en) Vapor deposition mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872776

Country of ref document: EP

Kind code of ref document: A1