JP2023174734A - vapor deposition mask - Google Patents

vapor deposition mask Download PDF

Info

Publication number
JP2023174734A
JP2023174734A JP2023171892A JP2023171892A JP2023174734A JP 2023174734 A JP2023174734 A JP 2023174734A JP 2023171892 A JP2023171892 A JP 2023171892A JP 2023171892 A JP2023171892 A JP 2023171892A JP 2023174734 A JP2023174734 A JP 2023174734A
Authority
JP
Japan
Prior art keywords
frame
vapor deposition
mask
deposition mask
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023171892A
Other languages
Japanese (ja)
Inventor
良弘 小林
Yoshihiro Kobayashi
裕仁 田丸
Hirohito Tamaru
基志 上原
Motoyuki Uehara
樹一郎 石川
Kiichiro Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2023171892A priority Critical patent/JP2023174734A/en
Publication of JP2023174734A publication Critical patent/JP2023174734A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a vapor deposition mask that makes a mask body and a frame body to less likely to deform using a frame, inhibits the mask body from deviating from a correct position, and improves accuracy relating to vapor deposition.SOLUTION: A vapor deposition mask includes: a mask body with which a number of independent vapor deposition through-holes can be provided at a predetermined pattern; and a frame body disposed integrally with the mask body. An isolating processing part is provided in the frame body. The isolating processing part includes a plurality of through-holes arrayed in a plurality of lines. The through-holes are provided with cut-out parts in ends in a direction in which the through-holes are arrayed in the plurality of lines. The isolating processing part has a shape in which removal parts are adjusted while being increased and decreased in accordance with deformable property of each part of the frame body.SELECTED DRAWING: Figure 1

Description

本発明は、蒸着マスクに関し、例えば、蒸着マスク法により、有機EL素子の発光層を形成する際に用いられる有機EL素子用の蒸着マスクに適用できる。 The present invention relates to a vapor deposition mask, and can be applied, for example, to a vapor deposition mask for an organic EL device used when forming a light emitting layer of an organic EL device by a vapor deposition mask method.

有機EL(Electroluminescence)素子の発光層を形成する方法としては、蒸着マスク
法が多く用いられている。この蒸着マスク法では、ガラス等の透明材質からなる基板上の
所望の位置に有機発光物質を蒸着形成するために、基板の蒸着部位に対応する箇所を除去
穿孔した蒸着マスクが使用される。
A vapor deposition mask method is often used as a method for forming a light emitting layer of an organic EL (Electroluminescence) element. In this vapor deposition mask method, in order to vapor-deposit an organic light-emitting substance at a desired position on a substrate made of a transparent material such as glass, a vapor deposition mask is used in which a portion of the substrate corresponding to the vapor deposition site is removed and perforated.

蒸着を行う蒸着装置においては、蒸着対象の基板に対し蒸着マスクを正しく位置合せし
た状態で設置し、蒸着が実行される。ただし、蒸着に際しては蒸着装置内を蒸着可能な環
境とするために一般に加熱がなされることから、蒸着マスクとガラス基板の熱変形状態が
異なる場合、蒸着マスクと基板との相対位置関係が変化し、形成される発光層の要求され
る精度を満足できなくなるという問題がある。
In a vapor deposition apparatus that performs vapor deposition, a vapor deposition mask is installed in a state where it is correctly aligned with a substrate to be vapor deposited, and vapor deposition is performed. However, during vapor deposition, heating is generally performed to create an environment in the vapor deposition apparatus that allows vapor deposition, so if the thermal deformation states of the vapor deposition mask and the glass substrate differ, the relative positional relationship between the vapor deposition mask and the substrate will change. However, there is a problem in that the required precision of the light emitting layer to be formed cannot be satisfied.

近年、薄いマスク本体の外周縁に、ガラス等の被蒸着基板と同等の熱膨張係数を有する
素材又は低熱膨張係数の素材からなる補強用の枠体が装着されたマスク構造を採用するこ
とで、被蒸着基板とは熱膨張係数が異なる素材製のマスク本体を用いても、マスク本体が
被蒸着基板と同等の熱膨張係数を有する枠体の膨張に追随して形状変化する、あるいは低
熱膨張係数を有する枠体に抑制されて形状変化しない状態となり、蒸着装置内での昇温時
における被蒸着基板に対するマスク本体の整合精度を担保でき、被蒸着基板上に発光層を
高精度に形成できる蒸着マスクが提案されている。
In recent years, by adopting a mask structure in which a reinforcing frame made of a material with a thermal expansion coefficient equivalent to that of the substrate to be evaporated, such as glass, or a material with a low thermal expansion coefficient is attached to the outer periphery of a thin mask body, Even if you use a mask body made of a material with a thermal expansion coefficient different from that of the deposition substrate, the shape of the mask body will change following the expansion of the frame that has the same thermal expansion coefficient as the deposition substrate, or the mask body will change shape due to the expansion of the frame body, which has a thermal expansion coefficient similar to that of the deposition substrate, or the mask body will change shape due to the expansion of the frame body, which has a thermal expansion coefficient similar to that of the deposition substrate. This vapor deposition method ensures that the mask body does not change shape as it is suppressed by the frame body, which ensures alignment accuracy of the mask body with respect to the substrate to be evaporated when the temperature rises in the evaporation equipment, and allows formation of a light-emitting layer on the substrate to be evaporated with high precision. Masks are suggested.

このような従来の蒸着マスクの一例として、特開2005-15908号公報に開示さ
れるものがある。
An example of such a conventional vapor deposition mask is one disclosed in Japanese Patent Laid-Open No. 2005-15908.

特開2005-15908号公報Japanese Patent Application Publication No. 2005-15908

従来の蒸着マスクは前記特許文献に示される構成となっており、熱膨張係数の差異によ
るマスクと基板の相対変形を抑え、蒸着形成物の位置精度の著しい悪化を防止することが
できる。
The conventional vapor deposition mask has the configuration shown in the above-mentioned patent document, and can suppress relative deformation between the mask and the substrate due to the difference in coefficient of thermal expansion, and can prevent significant deterioration in the positional accuracy of the vapor deposited product.

ただし、市場ではさらなる高精度化の要求があり、マスクの変位によるずれの発生をさ
らに抑えることが求められている。しかしながら、従来のマスク本体と枠体との組合せ構
造の場合、補強用の枠体も薄くすることが必要であることから、こうした薄型の枠体によ
る高強度化には限界があり、マスク本体側の応力の影響によるわずかな変形も回避できる
ような剛性を枠体のみで確保することはできなかった。このため、従来のマスク構造では
、高精度化に伴い厳しくなる許容範囲にマスク本体の変位を収めることが難しく、蒸着形
成物の位置ずれによる歩留まりの悪化が避けられないという課題を有していた。
However, there is a demand for higher precision in the market, and there is a need to further suppress the occurrence of misalignment due to mask displacement. However, in the case of the conventional combination structure of the mask body and frame, it is necessary to make the reinforcing frame thin, so there is a limit to how high the strength can be achieved with such a thin frame, and the mask body side It was not possible to ensure the rigidity of the frame alone to avoid even the slightest deformation due to the effects of stress. For this reason, with conventional mask structures, it is difficult to keep the displacement of the mask body within the tolerance range that is becoming stricter as precision increases, and the problem is that yields inevitably deteriorate due to misalignment of the deposited product. .

本発明は前記課題を解消するためになされたもので、フレームでマスク本体や枠体の変形を起こりにくくして、マスク本体の正しい位置からのずれを抑え、蒸着に係る精度を向上させられる蒸着マスクを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and is a vapor deposition method that makes it difficult for the mask body and frame to deform with the frame, suppresses deviation of the mask body from the correct position, and improves the accuracy of vapor deposition. The purpose is to provide masks.

本発明の開示に係る蒸着マスクは、独立した多数の蒸着通孔を所定パターンで設けられ
るマスク本体と、マスク本体と一体に配設される枠体とを備える蒸着マスクにおいて、前
記枠体が、マスク本体と連結一体化される保持枠部と、当該保持枠部と一体に配設される
補強枠部とを有するものである。
A vapor deposition mask according to the disclosure of the present invention includes a mask body provided with a large number of independent vapor deposition holes in a predetermined pattern, and a frame body disposed integrally with the mask body, wherein the frame body includes: It has a holding frame portion that is connected and integrated with the mask main body, and a reinforcing frame portion that is disposed integrally with the holding frame portion.

このように本発明の開示によれば、枠体におけるマスク本体を保持する保持枠部に対し
、これを補強する補強枠部を配設し、マスク本体の応力に対する枠体の剛性を高めること
により、マスク本体各部の本来あるべき位置からのずれを抑えた状態で、蒸着装置に固定
設置して、マスクと被蒸着基板との整合状態を確保でき、被蒸着基板の適切な位置に精度
よく蒸着が行える。
As described above, according to the disclosure of the present invention, a reinforcing frame portion for reinforcing the holding frame portion of the frame body that holds the mask body is provided, and the rigidity of the frame body against the stress of the mask body is increased. , the mask body can be fixedly installed in the evaporation equipment with the deviation of each part from its original position suppressed, and the alignment between the mask and the substrate to be evaporated can be ensured, allowing precise evaporation at the appropriate position on the evaporation target substrate. can be done.

また、本発明の開示に係る蒸着マスクは、必要に応じて、前記枠体における保持枠部と
補強枠部との境界部分に、貫通孔もしくは凹部の少なくともいずれかが規則的もしくは不
規則的に複数線状に並んだ配置とされる、又は、溝が線状に連続する配置とされる、切離
し用加工部が設けられるものである。
Further, in the vapor deposition mask according to the disclosure of the present invention, at least one of through holes or recesses may be formed regularly or irregularly in the boundary portion between the holding frame portion and the reinforcing frame portion in the frame body, as necessary. A cutting section is provided in which a plurality of grooves are arranged in a line or grooves are arranged in a continuous line.

このように本発明の開示によれば、枠体の保持枠部と補強枠部との境界部分に切り離し
用加工部を設けて、補強枠部を保持枠部から切り離す際の加工対象位置とすることにより
、蒸着装置側への枠体保持枠部及びマスク本体の位置決め、固定の後など、補強枠部によ
る枠体の剛性確保が不要となった場合に、補強枠部の保持枠部からの切り離し加工が無理
なく容易に行え、蒸着装置による蒸着工程にスムーズに移行できると共に、枠体として残
る保持枠部の形状や保持枠部によるマスク本体の補強状態に影響を与えずに補強枠部を切
り離すことができ、その後の蒸着工程を問題なく進められる。
As described above, according to the disclosure of the present invention, the separation processing part is provided at the boundary between the holding frame part and the reinforcing frame part of the frame body, and is used as a processing target position when separating the reinforcing frame part from the holding frame part. As a result, when it is no longer necessary to ensure the rigidity of the frame by the reinforcing frame, such as after positioning and fixing the frame holding frame and the mask body to the vapor deposition equipment side, the reinforcing frame can be removed from the holding frame. The separation process can be easily and effortlessly performed, allowing a smooth transition to the vapor deposition process using the vapor deposition equipment, and the reinforcing frame can be removed without affecting the shape of the holding frame that remains as a frame or the reinforcement state of the mask body by the holding frame. It can be separated and the subsequent vapor deposition process can proceed without any problems.

また、本発明の開示に係る蒸着マスクは、必要に応じて、前記マスク本体が、枠体に対
し内方に収縮しようとする応力を残存させた状態で枠体の保持枠部と一体化されてなり、
前記枠体が、前記応力に基づく力が枠体に加わった状態を仮定して枠体各部の予想変形量
をあらかじめ算出されてなり、前記切離し用加工部が、前記枠体の切離し用加工部を設け
る箇所における前記予想変形量が大きくなるほど、当該箇所で前記貫通孔、凹部、又は溝
として除去される部分の大きさの、除去されない残部に対する割合をより小さくする形状
に設定されるものである。
Further, in the vapor deposition mask according to the disclosure of the present invention, if necessary, the mask main body is integrated with the holding frame portion of the frame body in a state where stress that tends to contract inward with respect to the frame body remains. Then,
The frame body has an expected deformation amount of each part of the frame body calculated in advance assuming a state in which a force based on the stress is applied to the frame body, and the separation processing section is a separation processing section of the frame body. The larger the expected amount of deformation at the location, the smaller the ratio of the size of the portion removed as the through hole, recess, or groove at that location to the remaining portion that is not removed. .

このように本発明の開示によれば、枠体がマスク本体の応力に基づく力による枠体各部
の予想変形量をあらかじめ見積もられたものとされ、この枠体の切離し用加工部における
除去部分を、マスク本体の応力による枠体の予想変形量が大きくなる箇所では、除去され
ない残部に対する除去部分の割合を小さくする一方、マスク本体の応力による枠体の予想
変形量が小さくなる箇所では、除去されない残部に対する除去部分の割合を大きくするよ
うに設定して、切離し用加工部を枠体各部位の変形可能性に応じて除去部分を増減調整し
た形状とすることにより、マスク本体の応力で枠体の変形が大きく見込める箇所では、切
離し用加工部における凹部等の除去部分の割合を小さくして枠体の強度を十分に確保する
一方、枠体におけるマスク本体の応力が加わりにくい箇所では、切離し用加工部の除去部
分の割合を大きくして、適切な強度を確保しつつ補強枠部切離し加工の際の加工能率を高
められ、補強枠部の速やかな切り離しを可能にして蒸着工程へスムーズに移行できる。
As described above, according to the disclosure of the present invention, the amount of expected deformation of each part of the frame body due to the force based on the stress of the mask body is estimated in advance, and the portion to be removed in the cutting part of the frame body is In places where the expected amount of deformation of the frame due to the stress of the mask body is large, the ratio of the removed portion to the remaining part that will not be removed is reduced, while at places where the expected amount of deformation of the frame due to the stress of the mask body is small, the removal is By setting the ratio of the removed part to the remaining part that will not be removed to be large, and making the cutting part have a shape that increases or decreases the removed part depending on the deformability of each part of the frame, the stress of the mask body can be used to In areas where the body is expected to undergo significant deformation, the ratio of removed parts such as recesses in the cutting section is reduced to ensure sufficient strength of the frame, while in areas where the stress of the mask body is less likely to be applied to the frame, separation is done. By increasing the proportion of the removed part of the processed part, it is possible to increase the processing efficiency when cutting off the reinforcing frame part while ensuring appropriate strength, making it possible to quickly separate the reinforcing frame part and proceeding smoothly to the vapor deposition process. Can be migrated.

また、本発明の開示に係る蒸着マスクは、必要に応じて、前記切り離し用加工部が、保
持枠部と補強枠部との境界部分で線状に連続配置される溝と、当該溝内に溝連続方向へ所
定間隔をなす配置で複数穿設される貫通孔との組合せ形状とされ、当該貫通孔が、貫通孔
における溝の連続する方向の端部に鋭角の切欠き部を設けられるものである。
Further, in the vapor deposition mask according to the disclosure of the present invention, the cutting-off processed portion may be formed in a groove continuously arranged in a linear manner at the boundary between the holding frame portion and the reinforcing frame portion, and in the groove. The shape is a combination of a plurality of through holes drilled at predetermined intervals in the direction of continuous grooves, and each through hole has an acute notch at the end in the direction in which the grooves continue. It is.

このように本発明の開示によれば、枠体の切り離し用加工部を溝と貫通孔との組合せ構
造とすると共に、貫通孔を溝の連続方向へ一部延出させて鋭角の切欠き部を生じさせるこ
とにより、切り離し用加工部を切断加工して枠体の補強枠部を切り離す際に、切欠き部を
起点として切り離し用加工部に沿って切断面が無理なく生成されることとなり、保持枠部
側にバリ等が残りにくく、蒸着工程に付随する諸作業に悪影響を及ぼさない。
As described above, according to the disclosure of the present invention, the cutting part of the frame body has a combination structure of a groove and a through hole, and the through hole is partially extended in the continuous direction of the groove to form an acute-angled notch. By causing this, when the reinforcing frame portion of the frame body is separated by cutting the separation processing portion, a cut surface is easily generated along the separation processing portion starting from the notch portion, and It is difficult for burrs to remain on the holding frame side, and does not adversely affect various operations associated with the vapor deposition process.

また、本発明の開示に係る蒸着マスクの設置方法は、蒸着装置におけるあらかじめ設定
された位置に蒸着マスクを設置する蒸着マスクの設置方法において、前記蒸着マスクが、
独立した多数の蒸着通孔を所定パターンで設けられる複数のマスク本体に対し、マスク本
体の外周縁と一体に連結可能な保持枠部、及び当該保持枠部の外側を連続的に取り巻く配
置で保持枠部と一体に配設される補強枠部をそれぞれ有する枠体を、マスク本体の外側を
取り囲むように配置して製造されたものとされ、前記蒸着装置における蒸着マスク支持用
のフレームに、蒸着マスクの枠体における保持枠部を一体に固定し、前記フレームに固定
された状態における枠体の保持枠部に対し、補強枠部を切離して除去するものである。
Further, a method for installing a vapor deposition mask according to the disclosure of the present invention is a method for installing a vapor deposition mask in which a vapor deposition mask is installed at a preset position in a vapor deposition apparatus, in which the vapor deposition mask is
A plurality of mask bodies in which a large number of independent vapor deposition holes are provided in a predetermined pattern are held by a holding frame that can be integrally connected to the outer periphery of the mask body, and an arrangement that continuously surrounds the outside of the holding frame. It is manufactured by arranging a frame body each having a reinforcing frame part integrally arranged with the frame part so as to surround the outside of the mask main body, and a frame for supporting the vapor deposition mask in the vapor deposition apparatus is used for vapor deposition. The holding frame part of the frame of the mask is fixed integrally, and the reinforcing frame part is separated and removed from the holding frame part of the frame in a state fixed to the frame.

このように本発明の開示によれば、保持枠部の外側に配置した補強枠部で強度を高めて
変形しにくくした枠体と複数のマスク本体を連結した蒸着マスクを、蒸着装置のフレーム
に枠体の保持枠部を固定することで、蒸着装置に支持された状態を得られることにより、
枠体でマスク本体の変形を抑えた状態を維持したまま蒸着装置に蒸着マスクを設置でき、
マスク本体の変位を防いでマスクと被蒸着基板の整合状態を確保し、蒸着の精度を高めて
蒸着製品の歩留まりを向上させられる。また、枠体の蒸着装置への固定後に補強枠部を保
持枠部から切離すことで、補強枠部が蒸着マスクの固定支持以降の工程の障害にならず、
蒸着装置による蒸着を問題なく進められる。
As described above, according to the disclosure of the present invention, a vapor deposition mask in which a plurality of mask bodies are connected to a frame body whose strength is increased by a reinforcing frame portion disposed outside a holding frame portion to make it difficult to deform, is attached to a frame of a vapor deposition apparatus. By fixing the holding frame part of the frame body, it is possible to obtain a state in which it is supported by the vapor deposition apparatus.
The vapor deposition mask can be installed in the vapor deposition equipment while the frame body suppresses deformation of the mask body.
It prevents displacement of the mask body, ensures alignment between the mask and the substrate to be deposited, improves deposition accuracy, and improves the yield of deposited products. Furthermore, by separating the reinforcing frame part from the holding frame part after fixing the frame body to the vapor deposition apparatus, the reinforcing frame part does not become an obstacle to the process after fixing and supporting the vapor deposition mask.
Vapor deposition using a vapor deposition device can proceed without any problems.

また、本発明の開示に係る蒸着マスクの設置方法は、前記枠体が、矩形状の外形を有す
るものとされ、蒸着マスクの完成状態で、枠体及びマスク本体各位置における矩形状の枠
体外周各辺と平行な二方向の変位を測定する第一の工程と、所定箇所の内向きの変位があ
らかじめ設定された許容範囲に収まらない場合は、最大の変位が生じた箇所の外側にあた
る枠体外周部に、最大変位の向きと平行な外向きの所定の引張り力を、前記箇所の変位が
前記許容範囲に収まるような大きさの力として加える第二の工程と、引張り力を加えた状
態であらためて枠体及びマスク本体各位置の前記二方向の変位を測定する第三の工程と、
当該測定後、新たに内向きの変位が前記許容範囲に収まらない箇所が生じた場合は、引張
り力を加えている状態をそのまま維持しつつ、新たに最大の変位が生じた箇所の外側にあ
たる枠体外周部に、新たな最大変位の向きと平行な外向きの所定の引張り力を、前記箇所
の変位が前記許容範囲に収まるような大きさの力としてさらに加える第四の工程と、既に
引張り力を加えている枠体外周部の内側にあたるいずれかの箇所で、後からの他の引張り
力付加に伴って、外向きの変位があらかじめ設定された許容範囲に収まらない状態を測定
した場合は、前記箇所の変位が許容範囲に収まるように、前記箇所の外側の枠体外周部に
加える引張り力を小さくする調整を行う第五の工程とを含み、前記第三ないし第五の各工
程を、枠体及びマスク本体各位置における測定変位が許容範囲に収まるまで繰り返し行い
、変位が許容範囲に収まった蒸着マスクの枠体における保持枠部を、枠体に引張り力を付
加したまま前記フレームに固定し、固定後に枠体への引張り力の付加を解除するものであ
る。
Further, in the method for installing a vapor deposition mask according to the disclosure of the present invention, the frame body has a rectangular outer shape, and when the vapor deposition mask is in a completed state, outside the rectangular frame body at each position of the frame body and the mask body. The first step is to measure the displacement in two directions parallel to each side of the periphery, and if the inward displacement at a predetermined location does not fall within the preset tolerance range, a frame outside the location where the maximum displacement occurred is measured. a second step of applying a predetermined outward pulling force parallel to the direction of maximum displacement to the outer circumferential part of the body as a force of a magnitude such that the displacement of the part falls within the permissible range; and a second step of applying the pulling force. a third step of measuring the displacement of the frame body and the mask body in each position in the two directions again in the state;
After the measurement, if there is a new point where the inward displacement does not fall within the above tolerance range, while maintaining the state where the tensile force is applied, move the frame outside the point where the new maximum displacement has occurred. a fourth step of further applying a predetermined outward tensile force parallel to the direction of the new maximum displacement to the outer circumference of the body as a force of such a magnitude that the displacement of the said part falls within the permissible range; If you measure a situation where the outward displacement does not fall within the preset tolerance range due to the application of other tensile forces later on at any point inside the outer periphery of the frame where force is being applied, , a fifth step of adjusting to reduce the tensile force applied to the outer periphery of the frame outside the said location so that the displacement of the location falls within an allowable range, and each of the third to fifth steps are performed. The measurement is repeated until the measured displacement at each position of the frame and the mask body falls within the allowable range, and the holding frame of the vapor deposition mask frame whose displacement falls within the allowable range is attached to the frame while applying a tensile force to the frame. The frame body is fixed, and after the frame body is fixed, the application of tensile force to the frame body is released.

このように本発明の開示によれば、マスク本体の応力によって変形が大きく生じ得る枠
体の所定箇所に対し、外部から引張り力を加えて、変位を許容範囲に収める工程を、枠体
及びマスク本体のいずれの位置でも変位が許容範囲に収まる状態となるまで繰り返し、変
位が許容範囲に収まった枠体及びマスク本体の状態をそのままにして枠体の保持枠部をフ
レームに固定し、蒸発マスクを蒸発装置に設置した状態としてから、枠体に加えた引張り
力を解放することにより、蒸発マスクにおける、枠体の変形を伴うマスク本体の正しい位
置からのずれを、外力の付加で枠体ごと変形を抑える手法で確実に防ぎながら、枠体をフ
レームに固定して、蒸着マスクの蒸着装置への適切な設置状態を確保でき、蒸着に係る精
度をさらに向上させられる。
As described above, according to the disclosure of the present invention, the process of applying a tensile force from the outside to a predetermined location of the frame that can be significantly deformed due to the stress of the mask body to keep the displacement within an allowable range is performed on the frame and the mask. Repeat this until the displacement falls within the allowable range at any position on the main body, then fix the holding frame of the frame to the frame while leaving the frame and mask main body in the same state where the displacement falls within the allowable range, and remove the evaporation mask. By releasing the tensile force applied to the frame after installing the mask in the evaporator, we can correct the displacement of the mask body from its correct position due to the deformation of the frame by applying an external force to the frame. By fixing the frame body to the frame while reliably preventing deformation using a method of suppressing deformation, it is possible to ensure an appropriate installation state of the vapor deposition mask in the vapor deposition apparatus, and further improve the precision related to vapor deposition.

また、本発明の開示に係る蒸着マスクの製造方法は、多数の蒸着通孔を設けられる金属
製の複数のマスク本体と、マスク本体の外側を取り囲んで配置される金属製の枠体とから
なる、蒸着マスクの製造方法において、母型上の複数の所定位置に金属の電鋳で前記マス
ク本体に対応する一次電着層を形成する第1の電鋳工程と、前記枠体にあらかじめ設けら
れた複数の開口内に前記一次電着層が位置するように位置合わせしながら、母型上に枠体
を配置する枠体配設工程と、前記枠体に対し所定の除去加工を行って、貫通孔もしくは凹
部の少なくともいずれかが規則的もしくは不規則的に複数線状に並んだ配置とされる、又
は、溝が線状に連続する配置とされる、切離し用加工部を枠体に設ける枠体加工工程と、
前記枠体の一部又は全部の表面から前記一次電着層の外周縁表面にまたがる所定範囲に、
電鋳で金属層を形成し、当該金属層を介して枠体と一次電着層とを離れないよう一体に連
結する第2の電鋳工程と、前記母型から一体の一次電着層、枠体及び金属層を剥離する剥
離工程とを含むものである。
Further, the method for manufacturing a vapor deposition mask according to the disclosure of the present invention includes a plurality of metal mask bodies provided with a large number of vapor deposition holes, and a metal frame body disposed surrounding the outside of the mask body. , a method for manufacturing a vapor deposition mask, including a first electroforming step of forming a primary electrodeposition layer corresponding to the mask body by metal electroforming at a plurality of predetermined positions on a matrix; a frame arrangement step of arranging the frame on the matrix while aligning the primary electrodeposition layer so that it is located within the plurality of openings; and performing a predetermined removal process on the frame; A cutting section is provided in the frame, in which at least one of the through holes or recesses is arranged in a plurality of lines in a regular or irregular manner, or the groove is arranged in a continuous linear manner. Frame processing process,
in a predetermined range spanning from a part or all of the surface of the frame to the outer peripheral surface of the primary electrodeposition layer,
a second electroforming step in which a metal layer is formed by electroforming and the frame body and the primary electrodeposition layer are integrally connected through the metal layer so as not to be separated; and the primary electrodeposition layer is integrated from the matrix; The method includes a peeling step of peeling off the frame and the metal layer.

このように本発明の開示によれば、母型上にマスク本体となる一次電着層を形成し、こ
の一次電着層の周囲に位置するように枠体を配置し、さらに枠体表面から一次電着層の外
周縁表面にまたがる所定範囲にこれら枠体と一次電着層とを連結するための金属層を形成
する過程の中で、枠体に対し所定の除去加工により切離し用加工部を設けることにより、
母型から一次電着層、枠体及び金属層を一体に剥離して蒸着マスクを得た状態で、枠体に
切離し用加工部を境界として、内側のマスク本体を一体に保持する領域と、外側の枠体全
体を補強する領域とを設定でき、枠体の切離し用加工部より外側の領域を十分大きくすれ
ば、マスク本体の応力に基づいてマスク本体から枠体に加わる力に対する枠体の剛性を高
められることとなり、マスク本体各部の本来あるべき位置からのずれを抑えた状態で、蒸
着マスクを蒸着装置に固定設置して、マスクと被蒸着基板との整合状態を確保でき、被蒸
着基板の適切な位置に精度よく蒸着が行える。また、蒸着装置側への蒸着マスクの固定設
置後、枠体の切離し用加工部より外側の領域による枠体の剛性確保が不要となった場合に
、切離し用加工部で切り離し加工を行うことで枠体の外側領域部分を無理なく容易に切り
離せ、蒸着装置による蒸着工程にスムーズに移行できると共に、枠体として残る内側領域
部分の形状やこれによるマスク本体の保持状態に影響を与えずに外側領域部分を切り離す
ことができ、その後の蒸着工程を問題なく進められる。
As described above, according to the disclosure of the present invention, a primary electrodeposition layer serving as a mask body is formed on a matrix, a frame is arranged to be located around this primary electrodeposition layer, and the frame is further coated from the surface of the frame. In the process of forming a metal layer for connecting the frame and the primary electrodeposited layer in a predetermined range extending over the outer peripheral surface of the primary electrodeposition layer, the frame is subjected to a predetermined removal process to remove the separation processing part. By providing
In a state where a vapor deposition mask is obtained by peeling the primary electrodeposited layer, the frame body, and the metal layer together from the matrix, a region for holding the inner mask body together with the frame body separated by the processing part for separation; If you make the area outside the cutting part of the frame sufficiently large, the frame will be able to resist the force applied from the mask body to the frame based on the stress of the mask body. This increases the rigidity, and allows the deposition mask to be fixedly installed in the deposition equipment while suppressing the deviation of each part of the mask body from its original position, ensuring alignment between the mask and the substrate to be deposited, and improving the deposition process. Vapor deposition can be performed accurately at appropriate positions on the substrate. In addition, after the evaporation mask is fixedly installed on the evaporation equipment side, if it is no longer necessary to ensure the rigidity of the frame by the area outside the separation processing section of the frame, it is possible to perform the separation processing at the separation processing section. The outer region of the frame can be easily and effortlessly separated, allowing a smooth transition to the vapor deposition process using the vapor deposition device, and the outer region can be separated without affecting the shape of the inner region that remains as the frame or the holding state of the mask body. The parts can be separated and the subsequent deposition process can proceed without any problems.

本発明の第1の実施形態に係る蒸着マスクの概略平面図である。FIG. 1 is a schematic plan view of a vapor deposition mask according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of a vapor deposition mask according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの要部概略断面図である。1 is a schematic cross-sectional view of a main part of a vapor deposition mask according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクにおける枠体の平面図である。It is a top view of the frame in the vapor deposition mask based on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る蒸着マスクにおける枠体の切離し用加工部の一部拡大図である。FIG. 3 is a partially enlarged view of a separation processing portion of the frame in the vapor deposition mask according to the first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの製造における一次パターンレジスト形成過程説明図である。FIG. 3 is an explanatory diagram of a primary pattern resist forming process in manufacturing a vapor deposition mask according to the first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの製造における一次電着層形成工程説明図である。FIG. 3 is an explanatory diagram of a primary electrodeposition layer forming process in manufacturing a vapor deposition mask according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの製造における二次パターンレジスト形成過程説明図である。FIG. 3 is an explanatory diagram of a secondary pattern resist forming process in manufacturing a vapor deposition mask according to the first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの製造における金属層形成工程及び蒸着マスクと母型の分離状態説明図である。FIG. 3 is an explanatory diagram of a metal layer forming step and a separated state of a vapor deposition mask and a matrix in manufacturing a vapor deposition mask according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの製造装置フレームへの載置過程説明図である。FIG. 2 is an explanatory diagram of a process of mounting a vapor deposition mask on a manufacturing apparatus frame according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクの製造装置フレームへの固定状態説明図である。FIG. 3 is an explanatory diagram of a state in which the vapor deposition mask according to the first embodiment of the present invention is fixed to the manufacturing apparatus frame. 本発明の第1の実施形態に係る蒸着マスクにおける枠体からの補強枠部切離し状態説明図である。FIG. 2 is an explanatory diagram of a reinforcing frame portion separated from a frame body in a vapor deposition mask according to a first embodiment of the present invention. 本発明の第1の実施形態に係る蒸着マスクを設置する他の製造装置フレームの概略構成説明図である。It is a schematic structure explanatory drawing of another manufacturing apparatus frame in which the vapor deposition mask based on the 1st Embodiment of this invention is installed. 本発明の第1の実施形態に係る蒸着マスクの他の製造装置フレームへの固定状態説明図である。FIG. 7 is an explanatory diagram of a state in which the vapor deposition mask according to the first embodiment of the present invention is fixed to another manufacturing apparatus frame. 本発明の第1の実施形態に係る蒸着マスクにおける枠体の他の切離し用加工部の概略配置状態説明図である。FIG. 7 is an explanatory diagram of a schematic arrangement of another separation processing portion of the frame in the vapor deposition mask according to the first embodiment of the present invention. 本発明の第2の実施形態に係る蒸着マスクの製造方法における枠体への除去加工工程説明図である。FIG. 6 is an explanatory diagram of a process of removing a frame body in a method of manufacturing a vapor deposition mask according to a second embodiment of the present invention. 本発明の第3の実施形態に係る蒸着マスクの製造完了状態における枠体の変形状態説明図である。FIG. 7 is an explanatory diagram of a deformed state of a frame body in a state in which production of a vapor deposition mask according to a third embodiment of the present invention is completed; 本発明の第3の実施形態に係る蒸着マスクの製造装置への設置時における枠体への第一段階の引張り力付加状態説明図である。FIG. 7 is an explanatory diagram of a state in which a tensile force is applied in a first stage to a frame when a vapor deposition mask according to a third embodiment of the present invention is installed in a manufacturing apparatus. 本発明の第3の実施形態に係る蒸着マスクの製造装置への設置時における枠体への第二段階の引張り力付加状態説明図である。FIG. 7 is an explanatory diagram of a state in which a second stage of tensile force is applied to the frame when the vapor deposition mask according to the third embodiment of the present invention is installed in the manufacturing apparatus. 本発明の第3の実施形態に係る蒸着マスクの製造装置への設置時における枠体への第三段階の引張り力付加状態説明図である。FIG. 7 is an explanatory diagram of a state in which a third stage of tensile force is applied to the frame when the vapor deposition mask according to the third embodiment of the present invention is installed in the manufacturing apparatus. 本発明の第3の実施形態に係る蒸着マスクの製造装置への設置時における枠体への第四段階の引張り力付加状態説明図である。FIG. 7 is an explanatory diagram of a state in which a fourth stage of tensile force is applied to the frame when the vapor deposition mask according to the third embodiment of the present invention is installed in the manufacturing apparatus. 本発明の第3の実施形態に係る蒸着マスクの製造装置への設置時における枠体への第五段階の引張り力付加状態説明図である。FIG. 7 is an explanatory diagram of a fifth stage of applying a tensile force to the frame when installing the vapor deposition mask in the manufacturing apparatus according to the third embodiment of the present invention. 本発明の第3の実施形態に係る蒸着マスクの製造装置への設置時における枠体への第六段階の引張り力付加状態説明図である。FIG. 7 is an explanatory diagram of a state in which a tensile force is applied in a sixth stage to a frame when a vapor deposition mask according to a third embodiment of the present invention is installed in a manufacturing apparatus. 本発明の第3の実施形態に係る蒸着マスクの製造装置への設置時における枠体への第七段階の引張り力付加状態説明図である。FIG. 7 is an explanatory diagram of a state in which a tensile force is applied in a seventh stage to a frame when a vapor deposition mask according to a third embodiment of the present invention is installed in a manufacturing apparatus.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る蒸着マスクを図1ないし図12に基づいて説明す
る。本実施形態においては、有機EL素子用蒸着マスクに適用した例について説明する。
(First embodiment of the present invention)
EMBODIMENT OF THE INVENTION Hereinafter, the vapor deposition mask based on the 1st Embodiment of this invention is demonstrated based on FIG. 1 thru|or 12. In this embodiment, an example in which the present invention is applied to a vapor deposition mask for an organic EL element will be described.

前記各図において本実施形態に係る蒸着マスク1は、多数の蒸着通孔8を所定パターン
で設けられる複数のマスク本体2と、マスク本体2の外側を取り囲んで配置される枠体3
とを備える構成である。
In each of the above figures, the vapor deposition mask 1 according to the present embodiment includes a plurality of mask bodies 2 provided with a large number of vapor deposition holes 8 in a predetermined pattern, and a frame 3 disposed surrounding the outside of the mask body 2.
The configuration includes the following.

前記マスク本体2は、ニッケルやニッケルコバルト等のニッケル合金、その他の電着金
属を素材として、電鋳によりシート状に形成され、蒸着物質を通す独立した多数の蒸着通
孔8を所定パターンで設けられる構成である。
The mask body 2 is formed into a sheet shape by electroforming using nickel, a nickel alloy such as nickel-cobalt, or other electrodeposited metal as a material, and is provided with a large number of independent evaporation holes 8 in a predetermined pattern through which the evaporation material passes. It is a configuration that can be used.

マスク本体2は、多数の蒸着通孔8を設けられる内部のパターン形成領域2aと、電鋳
により形成される金属層7を介して枠体3と一体に接合される外周縁2bとを含むもので
ある。パターン形成領域2aでは、多数の蒸着通孔8が発光層形成用の蒸着パターン9を
形成している。
The mask body 2 includes an internal pattern forming area 2a provided with a large number of vapor deposition holes 8, and an outer peripheral edge 2b integrally joined to the frame 3 via a metal layer 7 formed by electroforming. . In the pattern forming region 2a, a large number of vapor deposition holes 8 form a vapor deposition pattern 9 for forming a light emitting layer.

マスク本体2の厚みは、好ましくは10~100μmの範囲とし、本実施形態では20
μmに設定した。各蒸着通孔8は、例えば平面視で前後の長さ寸法が70μm、左右幅寸
法が170~200μmの四角形状を有しており、これら蒸着通孔8は、前後方向に直線
的に並ぶ複数個の通孔群を列とし、複数個の列が左右方向に並列状に配設されたマトリク
ス状の蒸着パターン9を構成している。
The thickness of the mask body 2 is preferably in the range of 10 to 100 μm, and in this embodiment, the thickness is 20 μm.
It was set to μm. Each vapor deposition through hole 8 has a rectangular shape with, for example, a front-to-back length dimension of 70 μm and a left-right width dimension of 170 to 200 μm in plan view. A matrix-like vapor deposition pattern 9 is formed by forming a row of through-hole groups, and a plurality of rows are arranged in parallel in the left-right direction.

前記枠体3は、マスク本体2よりも肉厚の矩形状の薄板を枠形状としたもので、マスク
本体2の補強用としてマスク本体2の外周に配置され、金属層7を介してマスク本体2と
連結一体化される構成である。詳細には、枠体3は、マスク本体2の外周縁と連結一体化
される保持枠部4と、この保持枠部4の外側を連続的に取り巻く配置で保持枠部4と一体
に配設される補強枠部5とを有するものである。
The frame 3 is a frame-shaped rectangular thin plate that is thicker than the mask body 2, and is arranged on the outer periphery of the mask body 2 for reinforcement of the mask body 2, and is attached to the mask body through the metal layer 7. It is configured to be connected and integrated with 2. Specifically, the frame 3 includes a holding frame 4 that is connected and integrated with the outer peripheral edge of the mask body 2, and is integrally arranged with the holding frame 4 so as to continuously surround the outside of the holding frame 4. It has a reinforcing frame part 5.

この枠体3は、低熱膨張係数の材質、例えば、ニッケル-鉄合金であるインバー材、あ
るいはニッケル-鉄-コバルト合金であるスーパーインバー材等のような材質で形成され
る。そして、枠体3は、電鋳により形成された金属層7により、マスク本体2のパターン
形成領域2aの外周縁2bと互いに離れないよう連結一体化される。
The frame 3 is made of a material with a low coefficient of thermal expansion, such as Invar material, which is a nickel-iron alloy, or Super Invar material, which is a nickel-iron-cobalt alloy. The frame body 3 is connected and integrated with the outer peripheral edge 2b of the pattern forming area 2a of the mask body 2 so as not to be separated from each other by a metal layer 7 formed by electroforming.

枠体3の材質としてインバー材やスーパーインバー材を採用した場合、その熱膨張係数
が極めて小さいことで、蒸着工程における熱影響によるマスク本体2の寸法変化を良好に
抑制できる。すなわち、マスク本体2が、例えばニッケルなどの、熱膨張係数が被蒸着基
板(図示を省略)である一般ガラスの熱膨張係数に比べて大きいものである場合のように
、蒸着時の高温による熱膨張率の違いから、常温下で蒸着マスク1を被蒸着基板に整合さ
せた際の、基板に対する通孔位置と、実際の蒸着時における蒸着物質の蒸着位置との間に
ずれが生じることもなく、マスク本体2を保持する枠体3の熱膨張係数が小さい特徴によ
り、昇温時におけるマスク本体2の膨張に起因する寸法変化、形状変化をよく抑えて、常
温時における整合精度を蒸着時の昇温時にも良好に保つことができる。
When an Invar material or a Super Invar material is used as the material of the frame 3, the coefficient of thermal expansion is extremely small, so that dimensional changes in the mask body 2 due to thermal effects in the vapor deposition process can be suppressed well. That is, when the mask body 2 is made of a material such as nickel, which has a coefficient of thermal expansion larger than that of general glass that is the substrate to be deposited (not shown), Due to the difference in expansion coefficient, when the vapor deposition mask 1 is aligned with the substrate to be vapor-deposited at room temperature, there will be no deviation between the hole position relative to the substrate and the vapor-deposition position of the vapor-deposited substance during actual vapor deposition. Due to the small coefficient of thermal expansion of the frame 3 that holds the mask body 2, dimensional and shape changes caused by the expansion of the mask body 2 when the temperature rises are well suppressed, and alignment accuracy at room temperature is improved from that during vapor deposition. It can be maintained well even when the temperature rises.

なお、枠体3の材質は、被蒸着基板であるガラス等に近い低熱膨張係数の材料、例えば
ガラスやセラミックのようなものを用いることもできる。この場合、これら材料の少なく
とも表面に導電性を付与させることとなる。
Note that, as the material of the frame 3, a material having a low coefficient of thermal expansion close to that of glass, which is the substrate to be deposited, such as glass or ceramic, can also be used. In this case, conductivity is imparted to at least the surface of these materials.

枠体3は、図4に示すように、マスク本体2に対応する6つの開口3aを備える薄板製
の矩形枠形状に形成され、6枚のマスク本体2を一枚の枠体3で保持している。すなわち
、枠体3は、その板面上に6つの開口3aが整列配置されており、各開口3aに一枚のマ
スク本体2が装着される。枠体3のうち、補強枠部5のある幅広の外周部分における幅は
、例えば約60mmとされ、そのうち保持枠部4の幅は約10mm、補強枠部5の幅は約
50mmに設定される。また、枠体3の厚み寸法は、例えば0.1~5.0mm程度とし
、本実施形態においては1.0mmに設定した。
As shown in FIG. 4, the frame 3 is formed into a rectangular frame shape made of a thin plate and has six openings 3a corresponding to the mask bodies 2, and holds six mask bodies 2 with one frame 3. ing. That is, the frame body 3 has six openings 3a arranged in alignment on its plate surface, and one mask body 2 is attached to each opening 3a. The width of the frame 3 at the wide outer peripheral part where the reinforcing frame part 5 is located is, for example, about 60 mm, of which the width of the holding frame part 4 is set to about 10 mm, and the width of the reinforcing frame part 5 is set to about 50 mm. . Further, the thickness of the frame 3 is, for example, about 0.1 to 5.0 mm, and in this embodiment, it is set to 1.0 mm.

この枠体3における保持枠部4と補強枠部5との境界部分には、線状に連続する溝3c
と複数の貫通孔3dとを組み合わせた形状の切離し用加工部3bが設けられる。切離し用
加工部3bの幅は、例えば、約2mmに設定される。
A linearly continuous groove 3c is provided at the boundary between the holding frame portion 4 and the reinforcing frame portion 5 in the frame body 3.
A cutting portion 3b having a shape that combines a plurality of through holes 3d is provided. The width of the cutting section 3b is set to, for example, about 2 mm.

この切離し用加工部3bは、保持枠部4と補強枠部5との境界部分で線状に連続配置さ
れる溝3cと、この溝3c内に溝連続方向へ所定間隔をなす配置で複数穿設される貫通孔
3dとの組合せ形状とされる。このうち貫通孔3dは、この貫通孔における溝3cの連続
する方向の端部に鋭角の切欠き部3eを設けられる。
This separation processing part 3b includes a groove 3c that is continuously arranged in a linear manner at the boundary between the holding frame part 4 and the reinforcing frame part 5, and a plurality of holes formed in this groove 3c at predetermined intervals in the groove continuous direction. The shape is combined with the provided through hole 3d. Among these, the through hole 3d is provided with an acute-angled notch 3e at the end in the direction in which the groove 3c continues in the through hole.

なお、切欠き部3eの尖端(鋭角の隅部)位置は、切離し用加工部3bの幅方向の中心
位置から保持枠部4寄り又は補強枠部5寄りにずらすように設定するのが好ましく、マス
ク本体2側の保持枠部4寄りにずらすのがさらに好ましい。
Note that the position of the tip (acute corner) of the notch portion 3e is preferably set to be shifted toward the holding frame portion 4 or the reinforcing frame portion 5 from the center position in the width direction of the cutting portion 3b. It is more preferable to shift it toward the holding frame portion 4 on the mask main body 2 side.

切離し用加工部3bは、枠体3へのエッチングにより設ける他、機械加工やレーザ加工
で不要部分を除去することにより設けることもできる。
なお、切離し用加工部3bは、貫通孔3dを切欠き部3eのある断面形状とするものに
限られるものではなく、単純な四角形や円形断面の貫通孔としてもよい。また、切離し用
加工部3bは、溝3cと貫通孔3dとを組み合わせた形状の他、貫通孔が所定間隔で併設
されない溝が、線状に連続する配置として設けられる構成としてもかまわない。この他、
切離し用加工部3bは、貫通孔もしくは凹部の少なくともいずれかが規則的もしくは不規
則的に複数線状に並んだ配置として設けられる構成とすることもできる。
The cutting portion 3b may be provided by etching the frame 3, or may be provided by removing unnecessary portions by machining or laser processing.
Note that the cutting portion 3b is not limited to a through hole 3d having a cross-sectional shape with a cutout portion 3e, but may be a through hole having a simple rectangular or circular cross section. In addition to the shape of a combination of grooves 3c and through holes 3d, the separation processing portion 3b may have a configuration in which grooves without through holes are provided at predetermined intervals in a continuous linear arrangement. In addition,
The cutting portion 3b may also be configured such that at least one of through holes and recesses is arranged in a plurality of lines regularly or irregularly.

この切離し用加工部3bをあらかじめ設けられた状態の枠体3が、蒸着マスク1の製造
工程に供され、マスク本体となる一次電着層15の形成後、この一次電着層15の周囲に
位置するように母型10上に配置されるが、この他、未加工の枠体3を母型10上に配置
し、それ以降の製造工程における途中段階で、枠体3に切離し用加工部3bを設けるよう
にすることもできる。
The frame 3 with the separation processing part 3b provided in advance is subjected to the manufacturing process of the vapor deposition mask 1, and after the primary electrodeposition layer 15 which becomes the mask body is formed, the frame 3 is coated around the primary electrodeposition layer 15. In addition, an unprocessed frame 3 is placed on the mother mold 10 so that the frame 3 is placed on the mother mold 10, and a cutting part is formed on the frame 3 in the middle of the manufacturing process. 3b may also be provided.

前記蒸着マスク1は、母型10の表面に、一次電着層15の非配置部分に対応させて一
次パターンレジスト14が設けられた後、母型10上に電着金属の電鋳により一次電着層
15を形成され、この一次電着層15を囲むように枠体3を配置され、さらに、一次電着
層15のパターン形成領域2a対応部分を覆う二次パターンレジスト18を形成された後
、枠体3の表面と一次電着層15の外周縁2b表面とを覆うように電鋳により金属層7を
形成されて、この金属層7を介して一次電着層15と枠体3とを離れないよう一体に連結
された状態で、これら一体の一次電着層15、枠体3及び金属層7と母型10とを分離す
ることで製造されるものである。
In the vapor deposition mask 1, a primary pattern resist 14 is provided on the surface of a matrix 10 in correspondence with a portion where the primary electrodeposition layer 15 is not placed, and then a primary pattern resist 14 is formed on the matrix 10 by electroforming of an electrodeposited metal. After forming the deposited layer 15, placing the frame 3 so as to surround the primary electrodeposition layer 15, and further forming the secondary pattern resist 18 covering the portion of the primary electrodeposition layer 15 corresponding to the pattern forming area 2a. A metal layer 7 is formed by electroforming so as to cover the surface of the frame 3 and the surface of the outer peripheral edge 2b of the primary electrodeposition layer 15, and the primary electrodeposition layer 15 and the frame 3 are bonded through this metal layer 7. It is manufactured by separating the primary electrodeposited layer 15, the frame 3, and the metal layer 7 from the matrix 10, which are integrally connected to each other so as not to separate from each other.

本実施形態に係る蒸着マスク1の製造工程で用いられる前記母型10は、ステンレス材
や真ちゅう、鋼等の導電性を有する材質で形成され、蒸着マスクの製造工程で分離される
まで、マスク本体2をなす一次電着層15他を支持するものであり、蒸着マスク製造工程
の各段階で、表面側に一次パターンレジスト14、一次電着層15、二次パターンレジス
ト18、及び金属層7が形成される。一次電着層15や金属層7の形成の際には、この母
型10を介した通電がなされることで、母型10表面のレジストに覆われない通電可能な
部分に電鋳により一次電着層15又は金属層7が形成されることとなる。
The master mold 10 used in the manufacturing process of the vapor deposition mask 1 according to the present embodiment is made of a conductive material such as stainless steel, brass, or steel, and is attached to the mask body until it is separated in the manufacturing process of the vapor deposition mask. The primary pattern resist 14, the primary electrodeposition layer 15, the secondary pattern resist 18, and the metal layer 7 are formed on the surface side at each stage of the vapor deposition mask manufacturing process. It is formed. When forming the primary electrodeposited layer 15 and the metal layer 7, electricity is applied through the matrix 10, so that the primary electrode is electroformed to the part of the surface of the matrix 10 that is not covered with the resist and can be energized. A deposited layer 15 or metal layer 7 will be formed.

母型10は、例えば、42アロイ(42%ニッケル-鉄合金)やインバー(36%ニッ
ケル-鉄合金)、SUS430等の低熱膨張係数の素材とすることもできる。この他、母
型は、ガラス板や樹脂板など絶縁性基板の表面にクロムやチタンなどの導電性を有する金
属からなる金属膜を形成したものでもかまわない。
The mother mold 10 can also be made of a material with a low coefficient of thermal expansion, such as 42 alloy (42% nickel-iron alloy), Invar (36% nickel-iron alloy), SUS430, or the like. In addition, the matrix may be one in which a metal film made of a conductive metal such as chromium or titanium is formed on the surface of an insulating substrate such as a glass plate or a resin plate.

蒸着マスク1の製造工程では、母型10上に電鋳により金属層7が形成されたら(図9
(B)参照)、母型10がこれらから分離除去される(図9(C)参照)。母型10がス
テンレス材の場合には、力を加えて蒸着マスク側から物理的に引き剥がして除去する方法
を用いるのが好ましく、また、母型10が他の金属材の場合、薬液を用いて溶解除去する
エッチングの方法を用いるのが好ましい。エッチングの場合、母型10は溶解するが一次
電着層15や枠体3、金属層7をなす材質が冒されないような選択エッチング性を有する
エッチング液を用いることとなる。
In the manufacturing process of the vapor deposition mask 1, once the metal layer 7 is formed on the master mold 10 by electroforming (Fig.
(B)), and the matrix 10 is separated and removed from these (see FIG. 9(C)). When the matrix 10 is made of stainless steel, it is preferable to use a method of physically peeling it off from the vapor deposition mask side by applying force, and when the matrix 10 is made of another metal material, it is preferably removed using a chemical solution. It is preferable to use an etching method that dissolves and removes the film. In the case of etching, an etching solution having a selective etching property that dissolves the matrix 10 but does not damage the materials forming the primary electrodeposited layer 15, the frame 3, and the metal layer 7 is used.

前記一次電着層15は、電鋳に適したニッケルやニッケル-コバルト等のニッケル合金
からなり、母型10上の一次パターンレジスト14のない部分に、電鋳で形成される構成
である。蒸着マスク1において、一次電着層15は、被蒸着基板における発光層等の蒸着
対象箇所に対応する蒸着通孔8を除いた、被蒸着基板の表面を覆うマスク本体2をなすも
のとして形成されることとなる。
The primary electrodeposited layer 15 is made of nickel or a nickel alloy such as nickel-cobalt that is suitable for electroforming, and is formed by electroforming on a portion of the mother die 10 where the primary pattern resist 14 is not present. In the vapor deposition mask 1, the primary electrodeposited layer 15 is formed as a mask body 2 that covers the surface of the substrate to be vapor deposited, except for the vapor deposition holes 8 corresponding to the vapor deposition target locations such as light emitting layers on the substrate to be vapor deposited. The Rukoto.

前記一次パターンレジスト14は、一次電着層15の電鋳で使用する電解液に対する耐
溶解性を備えた絶縁性材で形成され、母型10上にあらかじめ設定される一次電着層15
の非配置部分に対応させて配設され、一次電着層15の形成後には除去されるものである
(図6、図7参照)。
The primary pattern resist 14 is made of an insulating material that is resistant to dissolution in the electrolyte used in electroforming the primary electrodeposited layer 15, and is formed of an insulating material that is resistant to dissolution in the electrolytic solution used in electroforming the primary electrodeposited layer 15.
It is disposed corresponding to the non-disposed portion, and is removed after the primary electrodeposited layer 15 is formed (see FIGS. 6 and 7).

この一次パターンレジスト14は、母型10上に一次電着層15の形成に先立って配設
され、感光性レジスト、例えば、ネガタイプの感光性ドライフィルムレジストを、母型1
0に所定の厚さ、例えば約20μmの厚さとなるようにして配設し、蒸着マスク1のマス
ク本体2位置、すなわち、一次電着層15の配置位置に対応する所定パターンのマスクフ
ィルム12を載せた状態で、紫外線照射による露光での硬化、非照射部分のレジストを除
去する現像等の処理を経て、一次電着層15の非配置部分に対応させた形状で形成される
This primary pattern resist 14 is disposed on the matrix 10 prior to the formation of the primary electrodeposited layer 15, and a photosensitive resist, for example, a negative type photosensitive dry film resist, is placed on the matrix 10.
0 to a predetermined thickness, for example, about 20 μm, and a mask film 12 of a predetermined pattern corresponding to the position of the mask body 2 of the vapor deposition mask 1, that is, the position of the primary electrodeposited layer 15. In the placed state, the resist is cured by exposure to ultraviolet rays, developed to remove the resist in non-irradiated areas, and is formed into a shape corresponding to the non-arranged areas of the primary electrodeposited layer 15.

前記二次パターンレジスト18は、金属層7の電鋳で使用する電解液に対する耐溶解性
を備えた絶縁性材で形成され、あらかじめ設定される金属層7の非配置部分に対応させて
配設され、金属層7の形成後には除去されるものである(図8、図9参照)。
The secondary pattern resist 18 is made of an insulating material that is resistant to dissolution in the electrolytic solution used in electroforming the metal layer 7, and is arranged in correspondence with a predetermined portion where the metal layer 7 is not placed. The metal layer 7 is removed after the metal layer 7 is formed (see FIGS. 8 and 9).

この二次パターンレジスト18は、金属層7の形成に先立って配設され、感光性レジス
ト、例えばネガタイプの感光性ドライフィルムレジストを、母型10及び既に配置された
一次電着層15上に所定の厚さ、例えば約15μmの厚さとなるようにして配設し、蒸着
マスク1の金属層7及び枠体3位置に対応する所定パターンのマスクフィルム17を載せ
た状態で、紫外線照射による露光での硬化、非照射部分の感光性材料を除去する現像等の
処理を経て、金属層7の非配置部分(マスク本体2のパターン形成領域2a)に対応させ
た形状で形成される。
This secondary pattern resist 18 is provided prior to the formation of the metal layer 7, and is a photosensitive resist, for example, a negative type photosensitive dry film resist, placed on the matrix 10 and the primary electrodeposited layer 15 that has already been placed. For example, with a mask film 17 of a predetermined pattern corresponding to the metal layer 7 of the vapor deposition mask 1 and the position of the frame 3 placed thereon, the mask film 17 is exposed to ultraviolet rays. After curing and development to remove the photosensitive material in non-irradiated areas, it is formed in a shape corresponding to the non-arranged area of the metal layer 7 (pattern formation area 2a of the mask body 2).

前記金属層7は、電鋳により形成されるものであり、ニッケルやニッケル-コバルト合
金等からなり、母型10及び既に配置された一次電着層15及び枠体3上の、二次パター
ンレジスト18が配設されず露出した部分に、電鋳で形成される構成である。
The metal layer 7 is formed by electroforming and is made of nickel, nickel-cobalt alloy, etc., and is formed by forming a secondary pattern resist on the matrix 10, the primary electrodeposited layer 15 already placed, and the frame 3. 18 is formed by electroforming on the exposed portion.

この金属層7は、マスク本体2と枠体3とを連結するものである。金属層7は、パター
ン形成領域の外周縁2bに係るマスク本体2の上面に電鋳により積層される。詳しくは、
金属層7は、マスク本体2におけるパターン形成領域2aの外周縁2bの上面と、枠体3
の上面及びパターン形成領域2a側の側面と、マスク本体2と枠体3との間隙部分に形成
されており、これでパターン形成領域2aの外周縁2bと枠体3の開口周縁とを離れない
よう一体に連結する。
This metal layer 7 connects the mask body 2 and the frame 3. The metal layer 7 is laminated by electroforming on the upper surface of the mask body 2 on the outer peripheral edge 2b of the pattern forming area. For more information,
The metal layer 7 covers the upper surface of the outer peripheral edge 2b of the pattern forming area 2a in the mask body 2 and the frame 3.
It is formed on the upper surface, the side surface on the pattern forming area 2a side, and in the gap between the mask body 2 and the frame 3, so that it does not leave the outer periphery 2b of the pattern forming area 2a and the opening periphery of the frame 3. Connect them as one.

なお、金属層7は、枠体3の保持枠部4と補強枠部5の両方を含む表面(上面)全体に
形成するようにできるが、後の切離し用加工部3bでの切断により、枠体3の補強枠部5
は分離除去されることから、金属層7は、保持枠部4の表面のみに形成するようにしても
よい。
Note that the metal layer 7 can be formed on the entire surface (upper surface) of the frame body 3 including both the holding frame part 4 and the reinforcing frame part 5, but the metal layer 7 can be formed on the entire surface (upper surface) of the frame body 3 including both the holding frame part 4 and the reinforcing frame part 5. Reinforcement frame portion 5 of body 3
Since the metal layer 7 is separated and removed, the metal layer 7 may be formed only on the surface of the holding frame portion 4.

次に、本実施形態に係る蒸着マスクの製造工程及び蒸着装置への設置工程について説明
する。
蒸着マスクの製造工程については、まず、母型10上にあらかじめ設定される、マスク
本体2の蒸着通孔8、すなわち一次電着層15の非配置部分、に対応させて、母型10に
レジスト層11を配設する(図6参照)。具体的には、母型10の表面側に、例えば、ネ
ガタイプの感光性ドライフィルムレジストを、形成する一次電着層15の高さに対応する
所定厚さ(例えば約20μm)に合わせて一ないし数枚積層し、熱圧着によりレジスト層
11を形成する(図6(A)参照)。
Next, a process for manufacturing a vapor deposition mask and a process for installing it in a vapor deposition apparatus according to this embodiment will be explained.
Regarding the manufacturing process of the vapor deposition mask, first, a resist is placed on the mother mold 10 in correspondence with the vapor deposition holes 8 of the mask body 2, that is, the areas where the primary electrodeposited layer 15 is not placed, which are set in advance on the mother mold 10. A layer 11 is provided (see FIG. 6). Specifically, for example, a negative type photosensitive dry film resist is coated on the surface side of the matrix 10 to a predetermined thickness (for example, about 20 μm) corresponding to the height of the primary electrodeposited layer 15 to be formed. A resist layer 11 is formed by laminating several layers and thermocompression bonding (see FIG. 6(A)).

そして、レジスト層11の表面に、前記蒸着通孔8に対応する透光孔12aを有するな
ど、一次電着層15の配置位置に対応する所定パターンのマスクフィルム(ガラスマスク
)12を密着させた後、紫外線照射による露光での硬化(図6(B)、(C)参照)、マ
スクされていた非照射部分のレジストを除去する現像、乾燥、といった各処理を行う。こ
うして、一次電着層15の非配置部分に対応させた一次パターンレジスト14を母型10
上に形成する(図7(A)参照)。
Then, on the surface of the resist layer 11, a mask film (glass mask) 12 having a predetermined pattern corresponding to the arrangement position of the primary electrodeposition layer 15, such as having transparent holes 12a corresponding to the vapor deposition through holes 8, was closely attached. Thereafter, various treatments such as curing by exposure to ultraviolet rays (see FIGS. 6B and 6C), development to remove the masked non-irradiated portions of the resist, and drying are performed. In this way, the primary pattern resist 14 corresponding to the non-placed portion of the primary electrodeposition layer 15 is applied to the matrix 10.
(See FIG. 7(A)).

なお、このような一次パターンレジスト14は、フォトレジスト等を使用したリソグラ
フィー法その他の任意の方法で形成することができ、その形成方法は上記に限定されるも
のではない。
Note that such primary pattern resist 14 can be formed by a lithography method using a photoresist or any other arbitrary method, and the forming method is not limited to the above.

この一次パターンレジスト14を有する母型10を、所定の条件に建浴した電鋳槽に入
れ、一次パターンレジスト14の厚さの範囲内で、母型10の一次パターンレジスト14
で覆われていない表面(露出領域)に、ニッケル合金等の電着金属の電鋳により、例えば
20μm厚の、マスク本体2となる一次電着層15を形成する(図7(B)参照)。
The mother mold 10 having the primary pattern resist 14 is placed in an electroforming bath prepared under predetermined conditions, and the primary pattern resist 10 of the mother mold 10 is placed within the thickness range of the primary pattern resist 14.
On the surface (exposed region) not covered with the mask, a primary electrodeposited layer 15 having a thickness of, for example, 20 μm and which will become the mask body 2 is formed by electroforming an electrodeposited metal such as a nickel alloy (see FIG. 7(B)). .

この後、一次パターンレジスト14を溶解除去することにより、所定の蒸着パターン9
をなす独立した多数の蒸着通孔8を設けられたマスク本体2となる一次電着層15が得ら
れる(図7(C)参照)。
Thereafter, by dissolving and removing the primary pattern resist 14, a predetermined vapor deposition pattern 9 is formed.
A primary electrodeposited layer 15, which will become the mask body 2, is obtained which is provided with a large number of independent vapor deposition holes 8 forming a shape (see FIG. 7(C)).

一次電着層15が得られた後、この一次電着層15の形成部分を含む母型10の表面全
体に、レジスト層16を配設する。具体的には、母型10の表面側に、例えば、ネガタイ
プの感光性ドライフィルムレジストを、あらかじめ設定された所定厚さ(例えば約15μ
m)に合わせて一ないし数枚積層し、熱圧着によりレジスト層16を形成する(図8(A
)参照)。
After the primary electrodeposited layer 15 is obtained, a resist layer 16 is provided over the entire surface of the matrix 10 including the portion where the primary electrodeposited layer 15 is formed. Specifically, for example, a negative type photosensitive dry film resist is applied to the surface side of the matrix 10 to a predetermined thickness (for example, about 15 μm).
8 (A
)reference).

そして、レジスト層16の表面に、図8(B)に示すように、マスク本体2のパターン
形成領域2aに対応する透光孔17aを有するマスクフィルム17を密着させた後、紫外
線照射による露光で硬化させる処理を行う(図8(B)、(C)参照)。これにより、パ
ターン形成領域2aに対応する部分が露光されたレジスト層16a、それ以外の部分が未
露光のレジスト層16bとなる。
Then, as shown in FIG. 8B, a mask film 17 having transparent holes 17a corresponding to the pattern forming areas 2a of the mask body 2 is brought into close contact with the surface of the resist layer 16, and then exposed to ultraviolet rays. A hardening process is performed (see FIGS. 8(B) and (C)). As a result, a portion of the resist layer 16a corresponding to the pattern forming region 2a is exposed, and the other portion is an unexposed resist layer 16b.

ここで、あらかじめ切離し用加工部3bが設けられている枠体3を、一次電着層15を
囲むように位置合せして母型10上に配置する(図8(C)参照)。
ここでの枠体3は、未露光のレジスト層16bの粘着性により、母型10上に容易に動
かないよう仮固定できる。
Here, the frame 3, on which the cutting portion 3b is provided in advance, is aligned and placed on the matrix 10 so as to surround the primary electrodeposited layer 15 (see FIG. 8(C)).
The frame 3 here can be temporarily fixed onto the matrix 10 so as not to easily move due to the adhesiveness of the unexposed resist layer 16b.

枠体3配置後、表面に露出している未露光のレジスト層16bを溶解除去する処理を行
って、パターン形成領域を覆う二次パターンレジスト18を形成する(図9(A)参照)
。なお、枠体3の下側に存在する未露光のレジスト層16bは、表面に現れていないこと
で除去されず、母型10上に残って枠体3を固定する役割を続けて果たすこととなる。
After placing the frame 3, a process is performed to dissolve and remove the unexposed resist layer 16b exposed on the surface to form a secondary pattern resist 18 that covers the pattern formation area (see FIG. 9(A)).
. Note that the unexposed resist layer 16b existing under the frame 3 is not removed because it does not appear on the surface, and remains on the matrix 10 and continues to play the role of fixing the frame 3. Become.

この後、二次パターンレジスト18に覆われず、パターン形成領域2aの外周縁2bに
係る表面に露出する一次電着層15の上面、枠体3と一次電着層15との間で表面に露出
する母型10の表面、及び枠体3の表面上に、電着金属の電鋳により金属層7を形成する
(図9(B)参照)。この金属層7により一次電着層15と枠体3とを離れないよう一体
に連結できる。
Thereafter, the upper surface of the primary electrodeposition layer 15 that is not covered with the secondary pattern resist 18 and is exposed on the surface of the outer peripheral edge 2b of the pattern forming area 2a, and the surface between the frame 3 and the primary electrodeposition layer 15 is A metal layer 7 is formed on the exposed surface of the matrix 10 and the surface of the frame 3 by electroforming of electrodeposited metal (see FIG. 9(B)). This metal layer 7 allows the primary electrodeposited layer 15 and the frame 3 to be integrally connected so that they do not separate.

この場合、金属層7は、パターン形成領域2aの外周縁2bに係る表面に露出する一次
電着層15の上面や、一次電着層15と枠体3との間で表面に露出する母型10表面にお
ける厚さが30μmとなるように形成される。一方、枠体3の表面での金属層7の厚さは
15μmとなる。この厚さの差異は、金属層7が母型10の表面から順次積層されて、未
露光のレジスト層16bの高さ寸法を超えて枠体3に達してはじめて、枠体3が母型10
と導通状態となり、枠体3の表面への金属層7の形成が開始することによるものである。
In this case, the metal layer 7 is formed on the upper surface of the primary electrodeposition layer 15 exposed on the surface of the outer peripheral edge 2b of the pattern forming area 2a, or on the matrix exposed on the surface between the primary electrodeposition layer 15 and the frame 3. 10 so that the thickness at the surface is 30 μm. On the other hand, the thickness of the metal layer 7 on the surface of the frame 3 is 15 μm. This difference in thickness is determined only when the metal layer 7 is sequentially laminated from the surface of the matrix 10 and reaches the frame 3 beyond the height dimension of the unexposed resist layer 16b.
This is because the metal layer 7 becomes electrically conductive and the formation of the metal layer 7 on the surface of the frame 3 starts.

金属層7の形成が完了したら、最終工程として、母型10から一体の一次電着層15、
枠体3及び金属層7を剥離する(図9(C)参照)。さらに、二次パターンレジスト18
及び枠体3の下側に存在する未露光のレジスト層16bを除去することで、蒸着マスク1
の製造が完了となる。
When the formation of the metal layer 7 is completed, as a final step, the primary electrodeposition layer 15, which is integral with the matrix 10, is
The frame 3 and metal layer 7 are peeled off (see FIG. 9(C)). Furthermore, the secondary pattern resist 18
By removing the unexposed resist layer 16b existing under the frame body 3, the vapor deposition mask 1
The production of is completed.

前記各製造工程を経て得られた蒸着マスク1は、そのマスク本体2が外側の枠体3に対
し内方に収縮する方向の応力Fを生じる状態とされる構成である。
詳細には、母型10に対し熱膨張係数の大きい材質で電鋳により一次電着層15を形成
することで、電鋳を行う常温より温度の高い環境で一次電着層15は母型を上回る線膨張
状態で母型表面に形成され、母型10上では変形を規制されていることで、常温の環境で
は母型10より多く収縮しようとするものの収縮が生じず、一次電着層15には内方に収
縮する方向の応力が生じる。
The vapor deposition mask 1 obtained through the above-mentioned manufacturing steps is configured such that the mask body 2 generates a stress F in the direction of inward contraction with respect to the outer frame 3.
Specifically, by forming the primary electrodeposited layer 15 on the matrix 10 by electroforming with a material having a large coefficient of thermal expansion, the primary electrodeposition layer 15 can be formed on the matrix in an environment where the temperature is higher than the room temperature in which electroforming is performed. It is formed on the surface of the matrix in a state of linear expansion exceeding that of the matrix 15, and its deformation is regulated on the matrix 10, so that although it tries to shrink more than the matrix 10 in an environment at room temperature, the primary electrodeposited layer 15 does not shrink. A stress is generated in the direction of inward contraction.

一方、枠体3は母型10に対し常温環境で配設され、枠体自体も低熱膨張係数の材質で
形成されていることから、金属層7の形成で一次電着層15と枠体3とを連結した状態で
も、一次電着層15は内方に収縮する方向の応力を内在させたままである。このため、一
体の一次電着層15と枠体3を母型10から分離すると、一次電着層15、すなわちマス
ク本体2は、枠体3に対し内方に収縮しようとし、枠体3に内向きの引張り力を作用させ
ることとなる。
On the other hand, since the frame 3 is placed on the matrix 10 at room temperature and the frame itself is made of a material with a low coefficient of thermal expansion, the formation of the metal layer 7 allows the primary electrodeposited layer 15 to be removed from the frame 3. Even in the state in which they are connected, the primary electrodeposition layer 15 still contains stress in the direction of shrinking inward. For this reason, when the integral primary electrodeposition layer 15 and frame 3 are separated from the matrix 10, the primary electrodeposition layer 15, that is, the mask body 2 tends to contract inward with respect to the frame 3, and the frame 3 An inward pulling force will be applied.

続いて、本実施形態に係る蒸着マスクの蒸着装置への設置工程について説明する。
上記のように、マスク本体2が枠体3に対し内方に収縮する方向の応力を発生させる状
態で形成されていることで、マスク本体2からは枠体3を変形させようとする力が加わる
。ここで、枠体3は保持枠部4の外側に補強枠部5を一体に配置した構成を有し、枠体3
における内側のマスク本体2を保持する保持枠部4に対し、補強枠部5が外側から補強す
る構造となっている。これにより、マスク本体2の応力に起因して枠体3を変形させよう
とする力に対する枠体3の剛性は高められ、力を受けた枠体3が大きく変形することはな
い。そして、枠体3が変形しにくいことで、マスク本体2の変形も起こりにくい状態とな
る。
Next, a process of installing the vapor deposition mask in the vapor deposition apparatus according to this embodiment will be explained.
As mentioned above, the mask body 2 is formed in a state that generates stress in the direction of inward contraction with respect to the frame body 3, so that the mask body 2 exerts a force that tries to deform the frame body 3. join. Here, the frame body 3 has a structure in which a reinforcing frame part 5 is integrally arranged on the outside of the holding frame part 4, and the frame body 3
A reinforcing frame portion 5 is configured to reinforce the holding frame portion 4 that holds the inner mask body 2 from the outside. As a result, the rigidity of the frame 3 against the force that tends to deform the frame 3 due to the stress of the mask body 2 is increased, and the frame 3 that receives the force does not deform significantly. Since the frame body 3 is difficult to deform, the mask main body 2 is also difficult to deform.

こうしたマスク本体2と枠体3との組合せからなる蒸着マスク1を、蒸着釜等の蒸着を
行う蒸着装置に対し、蒸着可能に設置する。設置に際しては、まず、蒸着マスク1を、蒸
着装置に蒸着マスク支持用として設けられるフレーム50に対し適切に位置決めしてから
固定する(図10、図11参照)。フレーム50は、例えば、インバー材など低熱膨張係
数の材質からなる枠状部材であり、その厚さを10~25mmとして形成される。
この固定は、蒸着マスク1の枠体3における保持枠部4を、フレーム50にスポット溶
接などの溶接により強固に且つ蒸着時の熱に耐えうる状態で一体化することでなされる。
A vapor deposition mask 1 consisting of a combination of the mask body 2 and the frame 3 is installed in a vapor deposition apparatus such as a vapor deposition pot for vapor deposition so as to be capable of vapor deposition. When installing, first, the vapor deposition mask 1 is properly positioned with respect to a frame 50 provided in the vapor deposition apparatus for supporting the vapor deposition mask, and then fixed (see FIGS. 10 and 11). The frame 50 is a frame-shaped member made of a material with a low coefficient of thermal expansion, such as Invar material, and is formed with a thickness of 10 to 25 mm.
This fixation is achieved by integrating the holding frame portion 4 of the frame body 3 of the vapor deposition mask 1 with the frame 50 by welding such as spot welding in a state that is strong and can withstand heat during vapor deposition.

なお、保持枠部4のフレーム50への溶接による固定は、蒸着装置内に設けられたフレ
ーム50に対し行う他、フレーム50を蒸着装置から取り外し可能な場合は、蒸発装置外
に取り出して取り扱いやすくしたフレーム50に対し行うこともできる。
Note that the holding frame portion 4 is fixed to the frame 50 by welding to the frame 50 provided inside the evaporation device, and if the frame 50 is removable from the evaporation device, it can be taken out of the evaporation device for easy handling. It is also possible to perform the process for the frame 50 that has been updated.

蒸着マスク1の枠体3に対し、フレーム50は著しく剛性が高く、保持枠部4をフレー
ム50に固定した状態で、保持枠部4はフレーム50に対しずれたり変形したりせず完全
に一体化し、保持枠部4内側に連結されて保持されるマスク本体2も、応力で変形するよ
うなことはなく、フレーム50に対する位置関係を維持できる。なお、フレーム50は、
枠形状の中間部を横断するバー51を設けたものであってもよい(図13、図14参照)
。この場合、蒸着マスク1をフレーム50に固定した状態で、蒸着マスク1の自重による
中央部分の撓みを抑えることができる。バー51は、フレーム50に対し縦、横、斜めの
いずれの向きでもよく、また格子状に組み合わせるなど、どのように設けてもよいが、マ
スク本体2に重なると蒸着の障害となるため、枠体3と重なるように設ける。このバー5
1は、フレーム50に当初から一体化させた状態としてフレーム50と同時に形成してよ
いが、フレーム50とは独立に形成されたものをフレーム50に後から取り付けて一体に
組み合わせるようにすることもできる。また、バー51は、例えば、インバー材やセラミ
ックなどの低熱膨張係数の材質で形成され、厚さを5~8mmとされるものであるが、こ
のバー51の材質については、フレーム50と同じものと、フレーム50とは異なるもの
とのいずれを採用してもかまわない。
The frame 50 has significantly higher rigidity than the frame 3 of the vapor deposition mask 1, and when the holding frame 4 is fixed to the frame 50, the holding frame 4 is completely integrated with the frame 50 without shifting or deforming. The mask body 2, which is connected and held inside the holding frame 4, is not deformed by stress and can maintain its positional relationship with the frame 50. Note that the frame 50 is
A bar 51 may be provided that crosses the middle part of the frame shape (see FIGS. 13 and 14).
. In this case, with the vapor deposition mask 1 fixed to the frame 50, deflection of the central portion of the vapor deposition mask 1 due to its own weight can be suppressed. The bars 51 may be oriented vertically, horizontally, or diagonally with respect to the frame 50, and may be provided in any manner such as being combined in a grid pattern. Provided so as to overlap body 3. This bar 5
1 may be formed at the same time as the frame 50 so that it is integrated with the frame 50 from the beginning, but it is also possible to form one formed independently of the frame 50 and later attach it to the frame 50 and combine them into one. can. Further, the bar 51 is made of a material with a low coefficient of thermal expansion, such as Invar material or ceramic, and has a thickness of 5 to 8 mm, but the material of the bar 51 is the same as that of the frame 50. or a frame different from the frame 50.

フレーム50への保持枠部固定後は、枠体3の保持枠部4の剛性を枠体3自体の構造で
担保する、すなわち、保持枠部4をその外側の補強枠部5で補強する構成をそのまま維持
する必要がなくなる。蒸着の工程において、蒸着マスク1は小さい方が都合がよいことか
ら、補強目的で残す必要がなく、不要部分となった補強枠部5については、保持枠部4と
の境界に設けられた切離し用加工部3bで切断し、保持枠部4から分離除去する(図12
参照)。
After the holding frame portion is fixed to the frame 50, the rigidity of the holding frame portion 4 of the frame body 3 is ensured by the structure of the frame body 3 itself, that is, the holding frame portion 4 is reinforced by the reinforcing frame portion 5 on the outside thereof. There is no need to maintain it as it is. In the vapor deposition process, it is convenient for the vapor deposition mask 1 to be smaller, so there is no need to leave it for reinforcement purposes. It is cut at the processing section 3b and separated and removed from the holding frame section 4 (Fig. 12
reference).

この保持枠部4の除去において、あらかじめ枠体3に切離し用加工部3bを設けて、補
強枠部5を保持枠部4から切り離す際の加工対象位置とすることで、切り離し加工が無理
なく容易に行えると共に、枠体として残る保持枠部4の形状や保持枠部4によるマスク本
体2の保持状態に影響を与えずに補強枠部5を切り離すことができ、蒸着装置による蒸着
工程にスムーズに移行できる。
In removing the holding frame part 4, by providing a cutting part 3b on the frame body 3 in advance and using it as a processing target position when separating the reinforcing frame part 5 from the holding frame part 4, the cutting process can be performed easily and easily. In addition, the reinforcing frame portion 5 can be separated without affecting the shape of the holding frame portion 4 that remains as a frame or the state in which the mask body 2 is held by the holding frame portion 4, and the vapor deposition process using the vapor deposition apparatus can be performed smoothly. Can be migrated.

加えて、加工対象となる切離し用加工部3bは、線状に連続配置される溝3cと、溝3
cの連続方向へ所定間隔で複数穿設される貫通孔3dとの組合せ形状とされると共に、貫
通孔3dには鋭角の切欠き部3eを設けた構造となっている。このため、この切離し用加
工部3bを切断加工して補強枠部5を切り離す際に、切欠き部3eを起点として切離し用
加工部3bに沿って切断面が無理なく生成され、保持枠部4側にバリ等が残りにくく、蒸
着工程に付随する諸作業に悪影響を及ぼさないようにできる。
In addition, the separation processing portion 3b to be processed includes a groove 3c continuously arranged in a linear manner, and a groove 3c that is continuously arranged in a linear manner.
It has a structure in which a plurality of through holes 3d are drilled at predetermined intervals in the continuous direction of c, and an acute-angled notch 3e is provided in the through hole 3d. Therefore, when the reinforcing frame portion 5 is separated by cutting the separation processing portion 3b, a cut surface is easily generated along the separation processing portion 3b starting from the notch portion 3e, and the holding frame portion 4 It is possible to prevent burrs etc. from remaining on the sides, and to avoid adversely affecting various operations associated with the vapor deposition process.

このように、本実施形態に係る蒸着マスクは、枠体3における内側のマスク本体2を保
持する保持枠部4に対し、これを外側から補強する補強枠部5を配設し、マスク本体2の
応力に基づいてマスク本体2から枠体3に加わる力に対する枠体3の剛性を高めることか
ら、マスク本体2各部の本来あるべき位置からのずれを抑えた状態で、蒸着装置に固定設
置して、マスクと被蒸着基板との整合状態を確保でき、被蒸着基板の適切な位置に精度よ
く蒸着が行える。
As described above, in the vapor deposition mask according to the present embodiment, the reinforcing frame part 5 for reinforcing the holding frame part 4 that holds the mask main body 2 on the inside of the frame body 3 from the outside is disposed, and the mask main body 2 Since the rigidity of the frame body 3 is increased against the force applied from the mask body 2 to the frame body 3 based on the stress of As a result, alignment between the mask and the substrate to be evaporated can be ensured, and evaporation can be performed accurately at appropriate positions on the substrate to be evaporated.

また、蒸着マスク1の設置に際しては、蒸着マスク1における枠体3の保持枠部4を、
蒸着装置のフレーム50に溶接等で固定して、蒸着装置への設置状態を得られることから
、枠体3でマスク本体2の変形を抑えた状態を維持したまま蒸着装置に蒸着マスク1を設
置でき、マスク本体2の変位を防いでマスクと被蒸着基板の整合状態を確実なものとして
、蒸着の精度を高められ、蒸着形成物の歩留まりを向上させられる。また、枠体3の蒸着
装置への固定後に補強枠部5を保持枠部4から切離すことで、補強枠部5が蒸着マスク1
の固定以降の工程の障害にならず、蒸着装置による蒸着を問題なく進められる。
In addition, when installing the vapor deposition mask 1, the holding frame portion 4 of the frame body 3 in the vapor deposition mask 1 is
The vapor deposition mask 1 can be installed in the vapor deposition apparatus by fixing it to the frame 50 of the vapor deposition apparatus by welding or the like, and thus the vapor deposition mask 1 can be installed in the vapor deposition apparatus while maintaining the state in which the deformation of the mask body 2 is suppressed by the frame 3. This can prevent displacement of the mask body 2 and ensure alignment between the mask and the substrate to be deposited, thereby increasing the precision of deposition and improving the yield of deposited products. Furthermore, by separating the reinforcing frame part 5 from the holding frame part 4 after fixing the frame body 3 to the vapor deposition apparatus, the reinforcing frame part 5 can be attached to the vapor deposition mask 1.
It does not interfere with the process after fixation, and the vapor deposition using the vapor deposition equipment can proceed without any problem.

なお、前記実施形態に係る蒸着マスクにおいては、枠体3の切離し用加工部3bを、線状に連続する溝3cと溝連続方向に所定間隔で複数穿設された貫通孔3dとを組み合わせた形状とし、保持枠部4と補強枠部5との境界部分のいずれの箇所でも一様な形状として設ける構成としているが、これに限らず、枠体3上の位置ごとに切離し用加工部3bの形状を変えたものとすることもでき、例えば、枠体3に対し内方に収縮しようとする応力を残存させた状態で一体化されるマスク本体2に対応する形で、枠体3を、前記応力に基づく力が枠体に加わった状態を仮定して枠体各部の予想変形量があらかじめ算出されたものとし、その切離し用加工部3bを、この切離し用加工部3bを設ける枠体3の所定箇所における予想変形量がより大きくなるほど、この箇所の切離し用加工部3bをなす貫通孔、凹部、又は溝として除去される部分の大きさの、除去されない残部に対する割合をより小さくする形状に設定する構成とすることもできる。 In addition, in the vapor deposition mask according to the embodiment, the separation processing part 3b of the frame body 3 is formed by combining a linearly continuous groove 3c and a plurality of through holes 3d drilled at predetermined intervals in the groove continuous direction. Although the configuration is such that the shape is uniform at any location on the boundary between the holding frame portion 4 and the reinforcing frame portion 5, the shape is not limited to this, and the cutting portion 3b is provided at each position on the frame body 3. The shape of the frame 3 can be changed, for example, the frame 3 can be shaped to correspond to the mask body 2 that is integrated with the frame 3 while retaining stress that tends to contract inward. Assume that the amount of expected deformation of each part of the frame body is calculated in advance assuming a state in which a force based on the stress is applied to the frame body, and that the cutting-off processed portion 3b is attached to the frame body in which the separating processed portion 3b is provided. The larger the expected amount of deformation at the predetermined location in No. 3, the smaller the ratio of the size of the portion removed as the through hole, recess, or groove that forms the cutting section 3b at this location to the remaining portion that is not removed. It is also possible to have a configuration in which it is set to .

この場合、枠体3の切離し用加工部3bを枠体各部位の変形可能性に応じて除去部分を
増減調整した形状とする、すなわち、切離し用加工部3bにおける除去部分を、マスク本
体2の応力に基づいて枠体3に加わる力による枠体3の変形量が大きくなる箇所では、除
去されない残部に対する除去部分の割合を小さくする一方、枠体の変形量が小さくなる箇
所では、除去されない残部に対する除去部分の割合を大きくするように設定することで、
枠体3の変形が大きく見込める箇所では、切離し用加工部3bにおける凹部等の除去部分
の割合を小さくして枠体3の強度を十分に確保する一方、枠体3の変形を予想しにくい箇
所では、切離し用加工部3bの除去部分の割合を大きくして、適切な強度を確保しつつ切
離し加工の際の加工能率を高められ、補強枠部5の速やかな切り離しを可能にして蒸着工
程へスムーズに移行できることとなる。
In this case, the cutting section 3b of the frame 3 has a shape in which the removed portion is adjusted to increase or decrease depending on the deformability of each part of the frame, that is, the removed section of the cutting section 3b is At locations where the amount of deformation of the frame 3 due to the force applied to the frame 3 based on stress increases, the ratio of the removed portion to the remaining portion that is not removed is reduced, while at locations where the amount of deformation of the frame is small, the amount of the remaining portion that is not removed is reduced. By setting the proportion of the removed part to be large,
In areas where the frame 3 is expected to undergo significant deformation, the ratio of removed portions such as recesses in the cutting section 3b is reduced to ensure sufficient strength of the frame 3, while in areas where it is difficult to predict deformation of the frame 3. In this case, by increasing the proportion of the removed portion of the cutting-off processing section 3b, it is possible to increase the processing efficiency during cutting-off processing while ensuring appropriate strength, and to enable prompt separation of the reinforcing frame section 5, which allows the process to proceed to the vapor deposition process. This will allow for a smooth transition.

具体例としては、図15に示すように、枠体3において、比較的剛性が小さく、マスク
本体2の応力に基づく力の影響を受けやすい、枠体各辺のうち矩形状のマスク本体2の各
辺に沿う縁部中間位置近傍の切離し用加工部3bでは、貫通孔、凹部、又は溝として除去
される部分をできるだけ少なくして、除去されない部分の割合を大きくし、除去部分によ
る剛性低下を最小限とし、実際の変形を起こりにくくすることができる。一方、剛性大で
マスク本体2の応力に基づく力の影響を受けにくい、枠体3の各枠辺が交わるコーナー部
分近傍の切離し用加工部3bでは、貫通孔、凹部、又は溝として除去される部分の大きさ
の、除去されない残部に対する割合を増やして、切り離し加工の際の手間を少なくするこ
とができる。
As a specific example, as shown in FIG. 15, in the frame 3, the rectangular mask body 2 has relatively low rigidity and is easily affected by the force based on the stress of the mask body 2. In the cutting section 3b near the intermediate position of the edge along each side, the portion that is removed as a through hole, recess, or groove is minimized, and the proportion of the portion that is not removed is increased to reduce the decrease in rigidity due to the removed portion. It is possible to minimize the occurrence of actual deformation. On the other hand, in the cutting part 3b near the corner where each frame side of the frame body 3 intersects, which has high rigidity and is not easily affected by the force due to the stress of the mask body 2, the cutting part 3b is removed as a through hole, recess, or groove. By increasing the ratio of the size of the portion to the remaining portion that is not removed, it is possible to reduce the effort required during the cutting process.

また、前記実施形態に係る蒸着マスクの製造においては、一次電着層15と枠体3とに
接するように金属層7を形成して、金属層7で一次電着層15と枠体3の一体化を図る構
成としているが、これに限らず、枠体配置の前に、一次電着層15を枠体配設位置に及ぶ
ように形成すると共に、枠体3を下側の一次電着層15に対し接着剤を介在させつつ載置
して、一次電着層15と枠体3とを接着で一体化する構成とすることもでき、一次電着層
、すなわちマスク本体2と、枠体3との一体化を簡略に実行でき、マスクの製造能率の向
上が図れる。なお、マスク本体2の表面と枠体3の表面を覆うように金属層7を形成する
ことで、マスク本体2と枠体3の接合状態をより好ましいものにできる。特に、接着剤の
表面(側部)を金属層7で覆うことで、洗浄処理や昇温に起因する接着剤の変質を効果的
に防ぐことができ、マスク本体2と枠体3との接合状態を長期にわたり維持できる。
Further, in manufacturing the vapor deposition mask according to the embodiment, the metal layer 7 is formed so as to be in contact with the primary electrodeposition layer 15 and the frame 3, and the metal layer 7 is used to connect the primary electrodeposition layer 15 and the frame 3. Although the structure is intended to be integrated, the present invention is not limited to this. Before arranging the frame body, the primary electrodeposition layer 15 is formed so as to cover the frame body arrangement position, and the frame body 3 is coated with the lower primary electrodeposition layer 15. It is also possible to have a structure in which the primary electrodeposited layer 15 and the frame 3 are integrated by adhesive by placing an adhesive on the layer 15, and the primary electrodeposited layer, that is, the mask body 2 and the frame Integration with the body 3 can be easily performed, and the manufacturing efficiency of the mask can be improved. Note that by forming the metal layer 7 to cover the surface of the mask body 2 and the surface of the frame 3, the bonding state between the mask body 2 and the frame 3 can be made more preferable. In particular, by covering the surface (side part) of the adhesive with the metal layer 7, deterioration of the adhesive due to cleaning treatment or temperature rise can be effectively prevented, and the bond between the mask body 2 and the frame 3 can be effectively prevented. The condition can be maintained for a long period of time.

また、前記実施形態に係る蒸着マスクの製造においては、母型10上に枠体3を配置し
た後、枠体3表面に金属層7を形成するようにしているが、これに限らず、電鋳で金属層
7を形成する前に、枠体上面の一部又は全部にレジストを配設して、金属層7を枠体上面
全体には形成せず、必要な部位以外は金属層7を枠体上面の一部にのみ設けたり、省略し
たりして、枠体3表面に応力緩和部を設けた構成とすることもできる。
Further, in manufacturing the vapor deposition mask according to the embodiment, after placing the frame 3 on the mother mold 10, the metal layer 7 is formed on the surface of the frame 3. However, the present invention is not limited to this. Before forming the metal layer 7 by casting, a resist is provided on a part or all of the upper surface of the frame, so that the metal layer 7 is not formed on the entire upper surface of the frame, but only in areas where it is not necessary. It is also possible to provide a stress relaxation portion on the surface of the frame 3 by providing it only on a part of the upper surface of the frame or omitting it.

この場合、枠体3の上面において金属層7が一様に連続せず部分的、断片的なものとな
ることで、金属層に仮に内部応力が発生しても枠体3全体ではなく部分的、断片的に作用
するものとなり、枠体3が変形などの悪影響を受けにくく、平面形状を確保できる。
In this case, the metal layer 7 is not uniformly continuous on the upper surface of the frame 3 and becomes partial or fragmented, so that even if internal stress occurs in the metal layer, it will not be applied to the entire frame 3 but only partially. , the frame body 3 is less susceptible to adverse effects such as deformation, and can maintain its planar shape.

また、前記実施形態に係る蒸着マスクの製造においては、一次電着層15が形成された
後、一次電着層には特に表面処理を行うことなく、金属層7を形成するようにしているが
、これに限らず、一次電着層15が形成された後、レジスト層16を形成する前の段階で
、一次電着層15の金属層7を重ねて配設する予定の所定範囲に対して酸浸漬や電解処理
等の活性化処理を施すこともできる。
Furthermore, in manufacturing the vapor deposition mask according to the embodiment, after the primary electrodeposition layer 15 is formed, the metal layer 7 is formed without performing any particular surface treatment on the primary electrodeposition layer. , but not limited to this, after the primary electrodeposited layer 15 is formed and before the resist layer 16 is formed, the metal layer 7 of the primary electrodeposited layer 15 is applied to a predetermined area where the metal layer 7 is to be overlaid. Activation treatment such as acid immersion or electrolytic treatment can also be performed.

この場合、無処理の場合に比べて、一次電着層15の活性化処理部分とその上の金属層
7との間の接合強度の大幅な向上を図れることとなる。また、活性化処理の代わりに、一
次電着層15の所定範囲に対して、ストライクニッケルや無光沢ニッケル等の薄層を形成
してもよい。これによっても、一次電着層15の薄層形成部分とその上の金属層7との接
合強度の向上を図ることができる。
In this case, the bonding strength between the activation-treated portion of the primary electrodeposited layer 15 and the metal layer 7 thereon can be significantly improved compared to the case of no treatment. Furthermore, instead of the activation treatment, a thin layer of strike nickel, matte nickel, or the like may be formed on a predetermined area of the primary electrodeposited layer 15. This also makes it possible to improve the bonding strength between the thin layer forming portion of the primary electrodeposited layer 15 and the metal layer 7 thereon.

また、前記実施形態に係る蒸着マスクの製造においては、一次電着層15や枠体3と金
属層7とが重なる箇所は単純に平面同士で接触する構成とされているが、この他、一次電
着層15(マスク本体2)におけるパターン形成領域2aの外周縁2bの全周にわたって
多数個の貫通孔又は凹部を設けて、一次電着層15の外周縁2b上に形成する金属層7に
ついては、前記貫通孔又は凹部を埋めて金属層7が外周縁2bに一部食い込む状態に形成
する構成とすることもできる。
In addition, in manufacturing the vapor deposition mask according to the embodiment, the primary electrodeposited layer 15 and the overlapping portions of the frame 3 and the metal layer 7 are configured so that they simply contact each other on a flat surface. Regarding the metal layer 7 formed on the outer periphery 2b of the primary electrodeposition layer 15 by providing a large number of through holes or recesses over the entire periphery of the outer periphery 2b of the pattern formation area 2a in the electrodeposition layer 15 (mask body 2). Alternatively, the metal layer 7 may be formed so as to partially bite into the outer peripheral edge 2b by filling the through hole or recess.

この場合、金属層7は、一次電着層15に対し、パターン形成領域2aの外周縁2bの
上面に加えて、外周縁2bの各貫通孔又は凹部内に存在して、一次電着層15の外周縁2
bとの接合強度をより大きなものとする。これにより、金属層7を介して、マスク本体2
と枠体3とをより強固に連結一体化できることとなり、枠体3に対するマスク本体2の不
用意な脱落や位置ずれを確実に抑えられ、蒸着精度及び蒸着形成物の再現精度の向上を図
ることができる。
In this case, the metal layer 7 is present in each through hole or recess of the outer periphery 2b in addition to the upper surface of the outer periphery 2b of the pattern forming area 2a with respect to the primary electrodeposition layer 15. outer periphery 2
To increase the bonding strength with b. As a result, the mask main body 2
The mask body 2 and the frame body 3 can be more firmly connected and integrated, and the mask body 2 can be reliably prevented from falling off or being misaligned with respect to the frame body 3, and the accuracy of vapor deposition and the reproduction accuracy of the vapor deposited product can be improved. I can do it.

(本発明の第2の実施形態)
前記第1の実施形態における蒸着マスクの製造においては、枠体3を母型10上に配置
する工程で、あらかじめ切離し用加工部3bが設けられた枠体3を用いるようにしている
が、この他、第2の実施形態として、図16に示すように、枠体3を母型10上に配置し
た後、マスク製造の一工程として、枠体3に切離し用加工部3bを設けるようにすること
もできる。
(Second embodiment of the present invention)
In the manufacturing of the vapor deposition mask in the first embodiment, the frame 3 provided with the cutting portion 3b in advance is used in the step of arranging the frame 3 on the matrix 10. In addition, as a second embodiment, as shown in FIG. 16, after the frame body 3 is placed on the master die 10, a cutting part 3b is provided on the frame body 3 as a step of mask manufacturing. You can also do that.

この場合、切離し用加工部3bを除去加工で設ける方法として、母型10上に配置した
枠体3をエッチング液に浸漬して溶解させる方法を用いることができる。このエッチング
の場合、枠体3は溶解するが母型10など枠体以外の部位の材質が冒されないような選択
エッチング性を有するエッチング液を用いたり、除去加工対象となる枠体所定範囲を除く
部位に対して、マスキング材19を配設する(図16(B)参照)。
In this case, as a method for providing the separation processing portion 3b by removal processing, a method may be used in which the frame body 3 placed on the mother mold 10 is immersed in an etching solution and dissolved. In the case of this etching, an etching solution that dissolves the frame 3 but has a selective etching property that does not affect the material of parts other than the frame, such as the matrix 10, is used, or a predetermined area of the frame to be removed is excluded. A masking material 19 is placed on the area (see FIG. 16(B)).

具体的には、エッチングの対象としない部位を覆うように、例えば感光性フィルムレジ
ストを熱圧着等により配設し、このレジストに対し、除去部分へのマスク配置、紫外線照
射による露光での硬化、現像等の処理を行い、マスキング材19を硬化形成する。この他
、マスキング材としては、エッチング液への耐性を有した保護フィルムを、エッチングの
対象としない部位を覆うように配設したりするようにしてもよい。
Specifically, for example, a photosensitive film resist is placed by thermocompression bonding or the like so as to cover the area not to be etched, and this resist is exposed to ultraviolet rays to be cured, and a mask is placed on the area to be removed. Processing such as development is performed to harden and form the masking material 19. In addition, as a masking material, a protective film having resistance to an etching solution may be disposed to cover a portion not to be etched.

マスキング材19を形成したら、枠体3を母型10ごとエッチング液に浸漬して、マス
キング材19で覆われていない枠体3表面側の一部が露出した部分をエッチングで所定深
さまで溶解、除去する(図16(C)参照)。このエッチングで枠体3の一部を除去した
部位が、枠体3の他の部分より薄肉で切断しやすい切離し用加工部3bとなる。
After forming the masking material 19, the frame 3 is immersed together with the matrix 10 in an etching solution, and the exposed part of the surface of the frame 3 that is not covered with the masking material 19 is etched and dissolved to a predetermined depth. (See FIG. 16(C)). A portion of the frame 3 that is partially removed by this etching becomes a cutting portion 3b that is thinner and easier to cut than other portions of the frame 3.

エッチングを経て、所望の深さ及び形状の切離し用加工部3bが得られたら、マスキン
グ材19を所定の除去剤で溶解させてそれぞれ除去すると、枠体3や一次電着層15が露
出して、金属層を電鋳で形成可能な状態となり、この後は前記第1の実施形態同様、電鋳
で金属層を形成する工程以降が進行することとなる。
After the cutting part 3b with the desired depth and shape is obtained through etching, the masking material 19 is dissolved and removed using a predetermined removing agent, and the frame 3 and the primary electrodeposited layer 15 are exposed. , a state is reached in which a metal layer can be formed by electroforming, and after this, the process of forming a metal layer by electroforming and the subsequent steps proceed as in the first embodiment.

なお、エッチングにより枠体3に切離し用加工部3bを設ける他に、母型10上に配置
した枠体3に対し、機械加工やレーザ加工で不要部分の除去加工を行って、切離し用加工
部3bを設けるようにすることもできる。
In addition to providing the cutting part 3b on the frame 3 by etching, unnecessary parts of the frame 3 placed on the mother mold 10 are removed by machining or laser processing to form the cutting part 3b. 3b may also be provided.

このように、本実施形態に係る蒸着マスクの製造方法は、母型10上にマスク本体とな
る一次電着層15を形成し、この一次電着層15の周囲に位置するように枠体3を配置し
、さらに枠体3表面から一次電着層15の外周縁2b表面にまたがる所定範囲に、これら
枠体3と一次電着層15とを連結するための金属層7を形成する過程の中で、枠体3に対
し所定の除去加工により切離し用加工部3bを設けることから、母型10から一体に剥離
された一次電着層15、枠体3及び金属層7が蒸着マスク1をなす状態では、枠体3に切
離し用加工部3bを境界として、マスク本体2を一体に保持する内側の領域(保持枠部4
)と、枠体全体を補強しつつ不要時には切離し可能な外側の領域(補強枠部5)とを生じ
させることができ、枠体3の切離し用加工部3bより外側の補強枠部5を十分大きくして
、マスク本体2の応力に対する枠体3の剛性を高められ、マスク本体各部の本来あるべき
位置からのずれを抑えた状態で、蒸着マスク1を蒸着装置に固定設置して、マスクと被蒸
着基板との整合状態を確保でき、被蒸着基板の適切な位置に精度よく蒸着が行える。
As described above, in the method for manufacturing a vapor deposition mask according to the present embodiment, the primary electrodeposition layer 15 that becomes the mask body is formed on the matrix 10, and the frame body 3 is positioned around the primary electrodeposition layer 15. and further form a metal layer 7 for connecting the frame 3 and the primary electrodeposition layer 15 in a predetermined range extending from the surface of the frame 3 to the surface of the outer peripheral edge 2b of the primary electrodeposition layer 15. In this process, since the cutting part 3b is provided on the frame 3 by a predetermined removal process, the primary electrodeposited layer 15, the frame 3, and the metal layer 7, which have been peeled off as one from the matrix 10, can be removed from the vapor deposition mask 1. In this state, the frame 3 has an inner area (holding frame 4
) and an outer region (reinforced frame portion 5) that can be separated when unnecessary while reinforcing the entire frame, and the reinforcing frame portion 5 outside the cut-off processing portion 3b of the frame 3 can be sufficiently By increasing the size, the rigidity of the frame 3 against the stress of the mask body 2 is increased, and the vapor deposition mask 1 is fixedly installed in the vapor deposition apparatus in a state where the displacement of each part of the mask body from its original position is suppressed. A state of alignment with the substrate to be evaporated can be ensured, and evaporation can be performed accurately at appropriate positions on the substrate to be evaporated.

また、蒸着装置側への蒸着マスク1の固定設置後、枠体3の切離し用加工部3bより外
側の補強枠部5による枠体3の剛性確保が不要となった場合に、切離し用加工部3bで切
り離し加工を行うことで補強枠部5を無理なく容易に切り離せ、蒸着装置による蒸着工程
にスムーズに移行できると共に、枠体3として残る保持枠部5の形状やこれによるマスク
本体2の保持状態に影響を与えずに補強枠部5を切り離すことができ、その後の蒸着工程
を問題なく進められる。
In addition, after the vapor deposition mask 1 is fixedly installed on the vapor deposition apparatus side, if it is no longer necessary to ensure the rigidity of the frame 3 by the reinforcing frame portion 5 outside the separation processing portion 3b of the frame 3, the separation processing portion By performing the separation process at 3b, the reinforcing frame portion 5 can be easily and effortlessly separated, allowing a smooth transition to the vapor deposition process using the vapor deposition device, and the shape of the holding frame portion 5 that remains as the frame body 3 and the holding of the mask body 2 thereby. The reinforcing frame portion 5 can be separated without affecting the condition, and the subsequent vapor deposition process can proceed without any problem.

(本発明の第3の実施形態)
前記第1の実施形態における蒸着マスク1の蒸着装置への設置においては、蒸着マスク
の製造完了後、蒸着マスク1をそのまま蒸着装置のフレーム50に固定するようにして、
蒸着装置に蒸着マスクを設置するようにしているが、この他、第3の実施形態として、図
17ないし図24に示すように、蒸着マスク1における枠体3の外周各部に引張り力を付
加して、枠体3及びマスク本体2の変位を許容範囲に収めた上で蒸着装置に設置するよう
にすることもできる。
(Third embodiment of the present invention)
In the installation of the vapor deposition mask 1 in the vapor deposition apparatus in the first embodiment, after the production of the vapor deposition mask is completed, the vapor deposition mask 1 is fixed to the frame 50 of the vapor deposition apparatus as it is,
Although a vapor deposition mask is installed in the vapor deposition apparatus, as a third embodiment, as shown in FIGS. Alternatively, the displacement of the frame 3 and the mask body 2 may be kept within an allowable range before installation in the vapor deposition apparatus.

蒸着装置に設置する前の、製造完了状態の蒸着マスク1においては、前記第1の実施形
態同様、マスク本体2が枠体3に対し内方に収縮する方向の応力を発生させる状態で形成
されていることで、マスク本体2からは枠体3を変形させようとする力が加わる。ここで
、枠体3は保持枠部4の外側に補強枠部5を一体に配置した構成を有し、枠体3における
内側のマスク本体2を保持する保持枠部4に対し、補強枠部5が外側から補強する構造と
なっている。これにより、マスク本体2の応力に起因して枠体3を変形させようとする力
に対する枠体3の剛性は高められ、力を受けた枠体3が大きく変形することはない。そし
て、枠体3が変形しにくいことで、マスク本体2の変形も起こりにくい状態となる。
In the vapor deposition mask 1 in a fully manufactured state before being installed in the vapor deposition apparatus, as in the first embodiment, the mask body 2 is formed in a state that generates stress in the direction of inward contraction with respect to the frame body 3. As a result, a force is applied from the mask body 2 to deform the frame 3. Here, the frame 3 has a structure in which a reinforcing frame part 5 is integrally arranged on the outside of a holding frame part 4, and the reinforcing frame part 5 is reinforced from the outside. As a result, the rigidity of the frame 3 against the force that tends to deform the frame 3 due to the stress of the mask body 2 is increased, and the frame 3 that receives the force does not deform significantly. Since the frame body 3 is difficult to deform, the mask main body 2 is also difficult to deform.

しかしながら、枠体3も蒸着マスク1の一部として薄く形成する必要性からあまり厚く
できない上、フレーム50への固定の際の取り扱いの関係上、補強枠部5の大きさにも一
定の制限があることから、枠体3の剛性強化には限度があり、枠体3の変形を完全に抑え
ることはできない。
However, the frame body 3 cannot be made very thick because it needs to be formed thinly as a part of the vapor deposition mask 1, and there are also certain restrictions on the size of the reinforcing frame portion 5 due to the handling when fixing it to the frame 50. Therefore, there is a limit to the rigidity reinforcement of the frame 3, and deformation of the frame 3 cannot be completely suppressed.

このため、マスク本体2から加わる力が大きいと、枠体3の一部が内方にわずかに変形
し、枠体3と一体のマスク本体2の収縮する変形を許容した状態となって、結果としてマ
スク本体2のわずかな変形を抑えられないことがある。この時、蒸着形成物の寸法精度条
件が厳しく、マスク本体2の位置ずれに係る許容範囲が小さい場合は、マスク本体2の所
定箇所で許容範囲を超える変位が生じることとなり、蒸着形成物の歩留まり悪化につなが
るおそれがある。
Therefore, if the force applied from the mask body 2 is large, a part of the frame 3 will deform slightly inward, allowing the mask body 2 that is integrated with the frame 3 to contract, resulting in As a result, slight deformation of the mask body 2 may not be suppressed. At this time, if the dimensional accuracy conditions of the vapor deposited product are strict and the tolerance range for the positional deviation of the mask body 2 is small, displacement exceeding the allowable range will occur at a predetermined location of the mask body 2, resulting in a reduction in the yield of the vapor deposited product. It may lead to deterioration.

これに対し、蒸着マスク1の蒸着装置への設置において、マスク本体2の応力に基づい
て枠体3を変形させようとする力に対抗する力を枠体3に加えて、枠体3の変位を許容範
囲に収め、この枠体3の変位が許容範囲に収まった状態をそのまま維持しつつ、枠体3の
保持枠部4をフレーム50に固定する工程を採用する。これにより、枠体3の変形を抑え
、同時に枠体3の変形を伴うようなマスク本体2の正しい位置からのずれも抑えられるこ
ととなる。
On the other hand, when the vapor deposition mask 1 is installed in the vapor deposition apparatus, a force is applied to the frame 3 that opposes the force that tries to deform the frame 3 based on the stress of the mask body 2, and the displacement of the frame 3 is changed. is within an allowable range, and the holding frame portion 4 of the frame body 3 is fixed to the frame 50 while maintaining the state in which the displacement of the frame body 3 is within the allowable range. This suppresses deformation of the frame 3 and at the same time prevents the mask body 2 from shifting from its correct position, which would otherwise be accompanied by deformation of the frame 3.

具体的な設置の工程は、まず、蒸着マスク1をなす枠体3及びマスク本体2の本来の状
態からの変位を測定し、変位が大きく生じた位置の外側となる枠体3の外周所定箇所に対
し、外部から引張り力を加えて、変位を許容範囲に収める一連の工程を、枠体3及びマス
ク本体2のいずれの位置でも変位が許容範囲に収まる状態となるまで繰り返し行う。そし
て、引張り力付加で変位が許容範囲に収まった枠体3及びマスク本体2の状態を維持した
まま、枠体3の保持枠部4をフレーム50に固定する。その後、枠体3に加えた引張り力
を解放する、といった手順となる。なお、枠体外周における引張り力を加える位置として
は、枠体内側の格子状部分の外側(延長線上)となる枠体外周位置を除いた位置を対象と
する。これは、枠体外周部のうち枠体内側の格子状部分の外側にあたる箇所は、格子状部
分との結合で剛性が高く、マスク本体の応力に基づく変形がそもそも生じにくいことと、
仮に変形が生じた場合に外部から引張り力を加えても、変形を相殺するような逆向きの変
形を与えにくいことによる。
The specific installation process is to first measure the displacement of the frame 3 and mask body 2 that make up the vapor deposition mask 1 from their original state, and then install a predetermined location on the outer periphery of the frame 3 that is outside the position where the large displacement occurred. A series of steps of applying a tensile force from the outside to keep the displacement within the allowable range is repeated until the displacement falls within the allowable range at any position of the frame 3 and the mask body 2. Then, the holding frame portion 4 of the frame body 3 is fixed to the frame 50 while maintaining the state of the frame body 3 and the mask body 2 in which the displacement is within an allowable range due to the application of the tensile force. After that, the procedure is to release the tensile force applied to the frame 3. Note that the positions on the outer periphery of the frame to which the tensile force is applied are the positions excluding the outer periphery of the frame that is outside (on an extension line) of the lattice-like portion inside the frame. This is because the parts of the outer periphery of the frame that are outside of the grid-like part inside the frame have high rigidity due to their connection with the grid-like part, and are less prone to deformation due to stress in the mask body.
This is because even if a tensile force is applied from the outside when deformation occurs, it is difficult to apply a deformation in the opposite direction to offset the deformation.

詳細には、第一の工程として、蒸着マスク1の枠体3とマスク本体2の各位置における
矩形状の枠体外周各辺と平行な二方向の変位を測定する。そして、第二の工程として、所
定箇所の内向きの変位があらかじめ設定された許容範囲に収まらない場合は、最大の変位
が生じた箇所の外側にあたる枠体3の外周部に、最大変位の向きと平行な外向きの所定の
引張り力を、前記箇所の変位が前記許容範囲に収まるような大きさの力として加える。
Specifically, as a first step, displacements in two directions parallel to each side of the rectangular frame outer periphery at each position of the frame 3 and mask body 2 of the vapor deposition mask 1 are measured. Then, as a second step, if the inward displacement at a predetermined location does not fall within the preset tolerance range, the outer periphery of the frame 3, which is outside the location where the maximum displacement occurred, is injected in the direction of the maximum displacement. A predetermined outward pulling force parallel to is applied with a magnitude such that the displacement of the location falls within the tolerance range.

続いて、第三の工程として、引張り力を加えた状態であらためて枠体及びマスク本体各
位置の前記二方向の変位を測定する。この測定後、第四の工程として、新たに内向きの変
位が前記許容範囲に収まらない箇所が生じた場合は、引張り力を加えている状態をそのま
ま維持しつつ、新たに最大の変位が生じた箇所の外側にあたる枠体外周部に、新たな最大
変位の向きと平行な外向きの所定の引張り力を、前記箇所の変位が前記許容範囲に収まる
ような大きさの力としてさらに加える。
Subsequently, as a third step, the displacements in the two directions at each position of the frame and the mask body are measured again with a tensile force applied. After this measurement, in the fourth step, if a new inward displacement does not fall within the above tolerance range, a new maximum displacement is generated while maintaining the state where the tensile force is applied. A predetermined outward tensile force parallel to the direction of the new maximum displacement is further applied to the outer periphery of the frame outside the location where the displacement is within the allowable range.

また、第五の工程として、既に引張り力を加えている枠体外周部の内側におけるいずれ
かの箇所で、後からの他の引張り力付加に伴って、外向きの変位があらかじめ設定された
許容範囲に収まらない状態を測定した場合は、前記箇所の変位が許容範囲に収まるように
、前記箇所の外側の枠体外周部に加える引張り力を小さくする調整を行う。
In addition, as a fifth step, at any point inside the outer periphery of the frame where a tensile force has already been applied, the outward displacement is adjusted to a preset tolerance when another tensile force is applied later. If a state outside the range is measured, an adjustment is made to reduce the tensile force applied to the outer periphery of the frame outside the location so that the displacement of the location falls within the allowable range.

そして、前記第三ないし第五の各工程を、枠体3及びマスク本体2各位置における測定
変位が許容範囲に収まるまで繰り返し行うこととなる。
Then, the third to fifth steps are repeated until the measured displacement at each position of the frame 3 and the mask body 2 falls within the allowable range.

具体例を用いて説明すると、製造完了後の蒸着マスクにおいて、マスク本体2の位置A
で最大変位として枠体3の縦方向(y軸方向)に-6.1μm、すなわち枠体内方に6.
1μmの変位が測定により確認されている(図17参照)。この変位は許容範囲(±1μ
m以内)に収まらないことから、最大変位が生じた位置Aのy軸方向の外側にあたる枠体
3の外周部(上辺中央と下辺中央)に、最大変位の向きと平行なy軸方向で枠体の外方と
なる各方向へ40Nの引張り力を加える(図18参照)。
To explain using a specific example, in the vapor deposition mask after manufacturing is completed, position A of the mask body 2
The maximum displacement is -6.1 μm in the vertical direction (y-axis direction) of the frame 3, that is, 6.1 μm inside the frame.
A displacement of 1 μm has been confirmed by measurement (see FIG. 17). This displacement is within the permissible range (±1μ
m), so we installed a frame in the y-axis direction parallel to the direction of the maximum displacement on the outer periphery of the frame 3 (the center of the upper side and the center of the lower side) which is outside in the y-axis direction of position A where the maximum displacement occurred. Apply a tensile force of 40 N in each direction outward from the body (see Figure 18).

ただし、この40Nの引張り力を付加した段階で枠体及びマスク本体各位置の変位の測
定を行うと、依然として、マスク本体2の位置Aで最大変位として枠体3のy軸方向に-
3.0μmの変位が確認されている(図18参照)。この変位は許容範囲に収まらないこ
とから、前記同様に位置Aのy軸方向の外側にあたる枠体3の外周部(上辺中央と下辺中
央)の計二箇所に、y軸方向で枠体の外方となる各方向へ、位置Aの変位が許容範囲に収
まるような大きさの力として、80Nの引張り力を加える(図19参照)。
However, when measuring the displacement at each position of the frame and mask body after applying this 40N tensile force, the maximum displacement is still - in the y-axis direction of the frame 3 at position A of the mask body 2.
A displacement of 3.0 μm was confirmed (see FIG. 18). Since this displacement does not fall within the allowable range, similarly to the above, two locations on the outer periphery of the frame 3 (the center of the upper side and the center of the lower side), which are outside of the position A in the y-axis direction, are placed on the outside of the frame in the y-axis direction. A tensile force of 80 N is applied in each direction as a force such that the displacement at position A falls within the permissible range (see FIG. 19).

このy軸方向に80Nの引張り力を付加した後、枠体各位置の変位の測定を行うと、新
たに、マスク本体2の位置Bで最大変位として枠体3の横方向(x軸方向)に-2.4μ
m、すなわち枠体内方に2.4μmの変位が確認された(図19参照)。この変位は許容
範囲に収まらないことから、先のy軸方向の引張り力(80N)もそのまま付加した状態
を維持したままで、最大変位が生じた位置Bのx軸方向の外側にあたる枠体3の外周部(
左辺中央付近の二箇所と右辺中央付近の二箇所)の計四箇所に、最大変位の向きと平行な
x軸方向で枠体の外方となる各方向へ、位置Bの変位が許容範囲に収まるような大きさの
力として、40Nの引張り力をそれぞれ加える(図20参照)。
After applying a tensile force of 80N in the y-axis direction, the displacement at each position of the frame body is measured, and the maximum displacement is newly determined in the lateral direction (x-axis direction) of the frame body 3 at position B of the mask body 2. -2.4μ
m, that is, a displacement of 2.4 μm inside the frame was confirmed (see FIG. 19). Since this displacement does not fall within the allowable range, the tensile force (80N) in the y-axis direction is still applied, and the frame 3 is placed outside the position B in the x-axis direction where the maximum displacement occurs. The outer periphery of (
The displacement at position B is within the allowable range in each direction outward of the frame in the x-axis direction parallel to the direction of maximum displacement. A tensile force of 40 N is applied to each case as a force that can be accommodated (see FIG. 20).

このx軸方向に40Nの引張り力を付加した後、枠体及びマスク本体各位置の変位の測
定を行うと、新たに、マスク本体2の位置Cで最大変位として枠体3のy軸方向に-1.
5μm、すなわち枠体内方に1.5μmの変位が確認された(図20参照)。この変位は
許容範囲に収まらないことから、先のy軸方向の引張り力(80N)やx軸方向の引張り
力(40N)もそのまま付加した状態を維持したままで、最大変位が生じた位置Cのy軸
方向の外側にあたる枠体3の外周部(上辺中央から少し離れた二箇所と下辺中央から少し
離れた二箇所)の計四箇所に、最大変位の向きと平行なy軸方向で枠体の外方となる各方
向へ、位置Cの変位が許容範囲に収まるような大きさの力として、20Nの引張り力をそ
れぞれ加える(図21参照)。
After applying a tensile force of 40N in the x-axis direction, the displacement of each position of the frame body and mask body is measured. As a result, the maximum displacement is newly determined at position C of the mask body 2 in the y-axis direction of the frame body 3. -1.
A displacement of 5 μm, that is, 1.5 μm inside the frame was confirmed (see FIG. 20). Since this displacement does not fall within the allowable range, the previous tensile force in the y-axis direction (80N) and the tensile force in the x-axis direction (40N) are maintained as they are, and the position C where the maximum displacement occurs is maintained. A frame is placed in the y-axis direction parallel to the direction of maximum displacement at a total of four locations on the outer periphery of the frame 3 (two locations slightly away from the center of the top side and two locations slightly away from the center of the bottom side) on the outside of the frame 3 in the y-axis direction. A tensile force of 20 N is applied in each direction outward from the body as a force such that the displacement at position C falls within the allowable range (see FIG. 21).

このy軸方向に20Nの引張り力を付加した後、枠体及びマスク本体各位置の変位の測
定を行うと、新たに、マスク本体2の位置Dで最大変位として枠体3のy軸方向に+1.
1μm、すなわち枠体外方に1.1μmの変位が確認された(図21参照)。この変位は
許容範囲に収まらないことから、先のx軸方向の引張り力(40N)をそのまま付加した
状態を維持したままで、最大変位が生じた位置Dのy軸方向の外側にあたる枠体3の外周
部(上辺中央と下辺中央)の二箇所で、先にy軸方向で枠体の外方となる各方向へ加えて
いた引張り力(80N)を60Nまで小さくすると共に、枠体3の外周部(上辺中央から
少し離れた二箇所と下辺中央から少し離れた二箇所)の計四箇所で、先にy軸方向で枠体
の外方となる各方向へそれぞれ加えていた引張り力(20N)を30Nまで大きくし(図
22参照)、位置Dの変位が許容範囲に収まるようにする。
After applying a tensile force of 20N in the y-axis direction, the displacement of each position of the frame body and mask body is measured, and the maximum displacement is newly determined at position D of the mask body 2 in the y-axis direction of the frame body 3. +1.
A displacement of 1 μm, that is, 1.1 μm outside the frame was confirmed (see FIG. 21). Since this displacement does not fall within the allowable range, while maintaining the state in which the previous tensile force (40N) in the x-axis direction was applied, the frame body 3, which is outside the position D in the y-axis direction where the maximum displacement occurred, At two points on the outer periphery (center of the upper side and center of the lower side), the tensile force (80N) that was previously applied in each direction outward of the frame in the y-axis direction was reduced to 60N, and the The tensile force that was previously applied in each direction toward the outside of the frame in the y-axis direction at a total of four locations on the outer periphery (two locations slightly away from the center of the top side and two locations slightly away from the center of the bottom side) 20N) to 30N (see FIG. 22) so that the displacement at position D falls within the allowable range.

こうしてy軸方向に付加していた引張り力を増減調整した後、枠体及びマスク本体各位
置の変位の測定を行うと、新たに、マスク本体2の位置Eで最大変位として枠体3のx軸
方向に-1.1μm、すなわち枠体内方に1.1μmの変位が確認された(図22参照)
。この変位は許容範囲に収まらないことから、先のy軸方向の引張り力(60N、30N
)やx軸方向の引張り力(40N)もそのまま付加した状態を維持したままで、最大変位
が生じた位置Eのx軸方向の外側にあたる枠体3の外周部(左辺中央から少し離れた二箇
所と右辺中央から少し離れた二箇所)の計四箇所に、最大変位の向きと平行なx軸方向で
枠体の外方となる各方向へ、20Nの引張り力をそれぞれ加える(図23参照)。
After adjusting the tensile force applied in the y-axis direction in this way and measuring the displacement at each position of the frame body and mask body, the maximum displacement at position E of the mask body 2 is newly determined as x of the frame body 3. A displacement of -1.1 μm in the axial direction, that is, a displacement of 1.1 μm inside the frame was confirmed (see Figure 22).
. Since this displacement is not within the allowable range, the tensile force in the y-axis direction (60N, 30N
) and the tensile force (40 N) in the x-axis direction are maintained as they are, and the outer periphery of the frame 3 (a little away from the center of the left side) is A tensile force of 20 N is applied to each of the external directions of the frame in the x-axis direction parallel to the direction of maximum displacement (see Figure 23). ).

このx軸方向に20Nの引張り力を付加した後、枠体及びマスク本体各位置の変位の測
定を行うと、新たに、マスク本体2の位置Fで最大変位として枠体3のy軸方向に-1.
2μm、すなわち枠体内方に1.2μmの変位が確認された(図23参照)。この変位は
許容範囲に収まらないことから、先のy軸方向の引張り力(80N)やx軸方向の引張り
力(40N、20N)をそのまま付加した状態を維持したままで、最大変位が生じた位置
Fのy軸方向の外側にあたる枠体3の外周部(上辺中央から少し離れた二箇所と下辺中央
から少し離れた二箇所)の計四箇所で、先にy軸方向で枠体の外方となる各方向へ加えて
いた引張り力(30N)を20Nまで小さくし(図24参照)、位置Fの変位が許容範囲
に収まるようにする。
After applying a tensile force of 20N in the x-axis direction, the displacement of each position of the frame body and mask body is measured, and the maximum displacement is newly determined at position F of the mask body 2 in the y-axis direction of the frame body 3. -1.
A displacement of 2 μm, that is, 1.2 μm inside the frame was confirmed (see FIG. 23). Since this displacement was not within the allowable range, the maximum displacement occurred while maintaining the tensile force in the y-axis direction (80N) and the tensile force in the x-axis direction (40N, 20N) as they were. At a total of four locations on the outer periphery of the frame 3 on the outside in the y-axis direction at position F (two locations slightly away from the center of the top side and two locations slightly away from the center of the bottom side), first move the outside of the frame in the y-axis direction. The tensile force (30N) applied in each direction is reduced to 20N (see FIG. 24) so that the displacement at position F falls within the allowable range.

こうしてy軸方向に付加していた引張り力を調整した後、枠体及びマスク本体各位置の
変位の測定を行うと、枠体3及びマスク本体2の最大変位としては位置Gにおいてx軸方
向に-0.8μm、すなわち枠体内方への0.8μmの変位が確認された(図24参照)
。この変位は許容範囲に収まることから、測定と引張り力の付加、調整の工程の繰り返し
は終了となる。
After adjusting the tensile force applied in the y-axis direction in this way and measuring the displacement at each position of the frame body and mask body, the maximum displacement of the frame body 3 and mask body 2 is in the x-axis direction at position G. -0.8 μm, that is, 0.8 μm displacement inward of the frame was confirmed (see Figure 24)
. Since this displacement falls within the permissible range, the repetition of the steps of measurement, application of tensile force, and adjustment is completed.

こうした前記各工程の繰り返しで、変位が許容範囲に収まったら、蒸着マスク1の枠体
3における保持枠部4を、枠体3に引張り力を付加したまま、蒸着装置内又は蒸着装置の
外に位置させたフレーム50に固定する。保持枠部4をフレーム50に固定して、枠体3
と共にマスク本体2がずれなく適正な位置に保持される状態が得られた後、枠体3に対す
る引張り力の付加を解除すると共に、前記第1の実施形態同様、枠体3の補強枠部5を、
保持枠部4との境界に設けられた切離し用加工部3bで切断し、保持枠部4から分離除去
する。フレーム50が蒸着装置内の場合はこの状態で、また、フレーム50が蒸着装置の
外の場合はフレーム50及び蒸着マスク1を蒸着装置内に据え付けると、蒸着マスク1の
設置工程完了となる。
When the displacement falls within the allowable range by repeating these steps, the holding frame 4 of the frame 3 of the vapor deposition mask 1 is moved into or outside the vapor deposition apparatus while applying a tensile force to the frame 3. It is fixed to the positioned frame 50. The holding frame portion 4 is fixed to the frame 50, and the frame body 3
After the mask main body 2 is held in an appropriate position without shifting, the tensile force applied to the frame 3 is released, and the reinforcing frame portion 5 of the frame 3 is removed as in the first embodiment. of,
It is cut at the separation processing part 3b provided at the boundary with the holding frame part 4, and is separated and removed from the holding frame part 4. When the frame 50 is inside the vapor deposition apparatus, the process of installing the vapor deposition mask 1 is completed when the frame 50 and the vapor deposition mask 1 are installed in this state, or when the frame 50 is outside the vapor deposition apparatus.

このように、本実施形態に係る蒸着マスクの設置方法は、蒸着マスク1におけるマスク
本体2の応力によって変形が大きく生じ得る枠体3の所定箇所に対し、外部から引張り力
を加えて、変位を許容範囲に収める工程を、枠体3のいずれの位置でも変位が許容範囲に
収まる状態となるまで繰り返し、変位が許容範囲に収まった枠体3の状態をそのままにし
て枠体3の保持枠部4をフレーム50に固定し、蒸発マスク1を蒸発装置に設置した状態
としてから、枠体3に加えた引張り力を解放することにより、蒸発マスク1における、枠
体3の変形を伴うマスク本体2の正しい位置からのずれを、外力の付加で枠体3ごと変形
を抑える手法で確実に防ぎながら、枠体3をフレーム50に固定して、蒸着マスク1の蒸
着装置への適切な設置状態を確保でき、蒸着に係る精度をさらに向上させられる。
As described above, the method for installing a vapor deposition mask according to the present embodiment applies external tensile force to a predetermined portion of the frame 3 that can be significantly deformed due to stress in the mask body 2 of the vapor deposition mask 1 to prevent displacement. The process of keeping the displacement within the allowable range is repeated until the displacement falls within the allowable range at any position of the frame 3, and the holding frame portion of the frame 3 is left in the state where the displacement falls within the allowable range. 4 is fixed to the frame 50 and the evaporation mask 1 is installed in the evaporation device, and then the tensile force applied to the frame 3 is released, thereby deforming the frame 3 of the evaporation mask 1. The frame body 3 is fixed to the frame 50 and the vapor deposition mask 1 is properly installed in the vapor deposition apparatus while reliably preventing the frame body 3 from shifting from its correct position by applying an external force to suppress the deformation of the frame body 3. The accuracy of vapor deposition can be further improved.

1 蒸着マスク
2 マスク本体
2a パターン形成領域
2b 外周縁
3 枠体
3a 開口
3b 切離し用加工部
3c 溝
3d 貫通孔
3e 切欠き部
4 保持枠部
5 補強枠部
7 金属層
8 蒸着通孔
9 蒸着パターン
10 母型
11 レジスト層
12 マスクフィルム
13 薄肉部
14 一次パターンレジスト
15 一次電着層
16 レジスト層
17 マスクフィルム
18 二次パターンレジスト
19 マスキング材
50 フレーム
51 バー
1 Vapor deposition mask 2 Mask main body 2a Pattern formation area 2b Outer periphery 3 Frame 3a Opening 3b Cutting section 3c Groove 3d Through hole 3e Notch 4 Holding frame 5 Reinforcing frame 7 Metal layer 8 Vapor deposition hole 9 Vapor deposition pattern 10 Master mold 11 Resist layer 12 Mask film 13 Thin part 14 Primary pattern resist 15 Primary electrodeposition layer 16 Resist layer 17 Mask film 18 Secondary pattern resist 19 Masking material 50 Frame 51 Bar

Claims (5)

独立した多数の蒸着通孔を所定パターンで設けられるマスク本体と、当該マスク本体と一体に配設される枠体とを備える蒸着マスクにおいて、
前記枠体には切離し用加工部が設けられており、
前記切離し用加工部は、複数線状に並んだ配置とされる貫通孔を有し、
前記貫通孔は、該貫通孔が複数線状に並んだ方向の端部に切欠き部が設けられており、
前記切離し用加工部は、前記枠体各部位の変形可能性に応じて除去部分を増減調整した形状であることを特徴とする蒸着マスク。
A vapor deposition mask comprising a mask body provided with a large number of independent vapor deposition holes in a predetermined pattern, and a frame body disposed integrally with the mask body,
The frame body is provided with a cutting part,
The cutting part has a plurality of through holes arranged in a line,
The through-hole is provided with a notch at an end in a direction in which the through-holes are lined up in a plurality of lines,
The vapor deposition mask is characterized in that the separation processing portion has a shape in which the removed portion is increased or decreased depending on the deformability of each portion of the frame.
前記切離し用加工部における除去部分は、前記マスク本体の応力に基づいて前記枠体に加わる力による前記枠体の変形量が大きくなる箇所では、除去されない残部に対する除去部分の割合を小さくする一方、前記枠体の変形量が小さくなる箇所では、除去されない残部に対する除去部分の割合を大きくするように設定されていることを特徴とする請求項1に記載の蒸着マスク。 The portion to be removed in the separation processing section is such that the ratio of the removed portion to the remaining portion that is not removed is made small at locations where the amount of deformation of the frame due to the force applied to the frame based on the stress of the mask body is large; 2. The vapor deposition mask according to claim 1, wherein the ratio of the removed portion to the remaining portion that is not removed is set to be increased at a portion where the amount of deformation of the frame is small. 前記枠体は、前記マスク本体と連結一体化される保持枠部と、当該保持枠部と一体に配設される補強枠部とを有し、前記マスク本体より肉厚の枠形状として形成されていることを特徴とする請求項1または2に記載の蒸着マスク。 The frame has a holding frame that is connected and integrated with the mask main body, and a reinforcing frame that is provided integrally with the holding frame, and is formed in a frame shape that is thicker than the mask main body. The vapor deposition mask according to claim 1 or 2, characterized in that: 前記保持枠部と前記補強枠部との境界部分に、切離し用加工部が設けられていることを特徴とする請求項3に記載の蒸着マスク。 4. The vapor deposition mask according to claim 3, wherein a separation processing section is provided at a boundary between the holding frame section and the reinforcing frame section. 前記補強枠部は、前記保持枠部から分離除去できることを特徴とする請求項3または4に記載の蒸着マスク。 5. The vapor deposition mask according to claim 3, wherein the reinforcing frame can be separated and removed from the holding frame.
JP2023171892A 2016-12-28 2023-10-03 vapor deposition mask Pending JP2023174734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023171892A JP2023174734A (en) 2016-12-28 2023-10-03 vapor deposition mask

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016257000A JP6851820B2 (en) 2016-12-28 2016-12-28 Thin-film deposition mask and its installation method and manufacturing method
JP2021037147A JP7113109B2 (en) 2016-12-28 2021-03-09 Evaporation mask
JP2022117350A JP7422818B2 (en) 2016-12-28 2022-07-22 vapor deposition mask
JP2023171892A JP2023174734A (en) 2016-12-28 2023-10-03 vapor deposition mask

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022117350A Division JP7422818B2 (en) 2016-12-28 2022-07-22 vapor deposition mask

Publications (1)

Publication Number Publication Date
JP2023174734A true JP2023174734A (en) 2023-12-08

Family

ID=62844205

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016257000A Active JP6851820B2 (en) 2016-12-28 2016-12-28 Thin-film deposition mask and its installation method and manufacturing method
JP2021037147A Active JP7113109B2 (en) 2016-12-28 2021-03-09 Evaporation mask
JP2022117350A Active JP7422818B2 (en) 2016-12-28 2022-07-22 vapor deposition mask
JP2023171892A Pending JP2023174734A (en) 2016-12-28 2023-10-03 vapor deposition mask

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2016257000A Active JP6851820B2 (en) 2016-12-28 2016-12-28 Thin-film deposition mask and its installation method and manufacturing method
JP2021037147A Active JP7113109B2 (en) 2016-12-28 2021-03-09 Evaporation mask
JP2022117350A Active JP7422818B2 (en) 2016-12-28 2022-07-22 vapor deposition mask

Country Status (3)

Country Link
JP (4) JP6851820B2 (en)
KR (1) KR102435856B1 (en)
TW (1) TWI804481B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7133383B2 (en) * 2018-07-31 2022-09-08 マクセル株式会社 Evaporation mask
TWI669567B (en) * 2018-08-22 2019-08-21 鋆洤科技股份有限公司 Fine metal mask and method for making the same
JP7449485B2 (en) * 2019-03-28 2024-03-14 大日本印刷株式会社 Vapor deposition mask and method for manufacturing a vapor deposition mask
JP2021042439A (en) * 2019-09-11 2021-03-18 株式会社ジャパンディスプレイ Vapor deposition mask and production method of vapor deposition mask
CN110592529A (en) * 2019-10-30 2019-12-20 昆山国显光电有限公司 Mask frame
JP7391719B2 (en) * 2020-03-05 2023-12-05 株式会社ジャパンディスプレイ How to make a vapor deposition mask unit
KR102209465B1 (en) * 2020-07-20 2021-01-29 풍원정밀(주) Metal mask for organic light emitting diode deposition minimizing protrusion of trim line
KR102228839B1 (en) * 2020-07-20 2021-03-17 풍원정밀(주) Metal mask for organic light emitting diode deposition removing protrusion of trim line to improve process yield
TWI757041B (en) * 2021-01-08 2022-03-01 達運精密工業股份有限公司 Mask
CN112981318A (en) * 2021-02-08 2021-06-18 合肥维信诺科技有限公司 Mask and mask precision detection method
JP2022127384A (en) * 2021-02-19 2022-08-31 株式会社ジャパンディスプレイ Production method of vapor deposition mask
KR102371486B1 (en) * 2021-10-08 2022-03-07 풍원정밀(주) Fine metal mask

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293822B2 (en) * 2003-04-10 2009-07-08 大日本印刷株式会社 Method and apparatus for laminating metal thin plate
JP2004323888A (en) * 2003-04-23 2004-11-18 Dainippon Printing Co Ltd Vapor deposition mask and vapor deposition method
JP4369199B2 (en) 2003-06-05 2009-11-18 九州日立マクセル株式会社 Vapor deposition mask and manufacturing method thereof
KR100626041B1 (en) * 2004-11-25 2006-09-20 삼성에스디아이 주식회사 Mask for depositing thin film of flat panel display and method for fabricating the same
JP4609187B2 (en) 2005-05-30 2011-01-12 凸版印刷株式会社 Manufacturing method of multi-faced metal mask
KR101837624B1 (en) 2011-05-06 2018-03-13 삼성디스플레이 주식회사 Mask frame assembly for thin film deposition and the manufacturing method thereof
JP5382257B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5382259B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate

Also Published As

Publication number Publication date
KR102435856B1 (en) 2022-08-23
TW201833388A (en) 2018-09-16
JP2021095641A (en) 2021-06-24
JP7422818B2 (en) 2024-01-26
JP2022140560A (en) 2022-09-26
TWI804481B (en) 2023-06-11
KR20180077075A (en) 2018-07-06
JP7113109B2 (en) 2022-08-04
JP6851820B2 (en) 2021-03-31
JP2018109211A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP7422818B2 (en) vapor deposition mask
JP4677363B2 (en) Vapor deposition mask and manufacturing method thereof
KR102654794B1 (en) Mask for deposition and method for manufacturing the same
JP5751810B2 (en) Metal mask manufacturing method, frame member, and manufacturing method thereof
JP2008255449A (en) Vapor deposition mask, and method for producing the same
JP4369199B2 (en) Vapor deposition mask and manufacturing method thereof
JP7470734B2 (en) Frame and deposition mask
JP4475496B2 (en) Vapor deposition mask for organic EL device and manufacturing method thereof
JP2021101046A (en) Mother die for galvanoplasty
JP2008263053A (en) Mask for arrangement, and its manufacturing method
JP7067889B2 (en) Vapor deposition mask
JP6599103B2 (en) Vapor deposition mask and manufacturing method thereof
JP7421617B2 (en) vapor deposition mask
JP2007138256A (en) Vapor deposition method
JP7450076B2 (en) vapor deposition mask
JP7449344B2 (en) Frame and vapor deposition mask
JP6456229B2 (en) Solder ball suction mask and method of manufacturing the same
JP2013201284A (en) Alignment mask and solder bump formation method
JP2023042234A (en) Metal mask
JP2019036754A (en) Solder ball alignment mask and manufacturing method thereof
JP2023006792A (en) Vapor deposition mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003