JP4501580B2 - 凸型電極およびその製造方法 - Google Patents

凸型電極およびその製造方法 Download PDF

Info

Publication number
JP4501580B2
JP4501580B2 JP2004226006A JP2004226006A JP4501580B2 JP 4501580 B2 JP4501580 B2 JP 4501580B2 JP 2004226006 A JP2004226006 A JP 2004226006A JP 2004226006 A JP2004226006 A JP 2004226006A JP 4501580 B2 JP4501580 B2 JP 4501580B2
Authority
JP
Japan
Prior art keywords
film
electrode
original
convex
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004226006A
Other languages
English (en)
Other versions
JP2006005321A (ja
Inventor
浅見  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004226006A priority Critical patent/JP4501580B2/ja
Publication of JP2006005321A publication Critical patent/JP2006005321A/ja
Application granted granted Critical
Publication of JP4501580B2 publication Critical patent/JP4501580B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は凸型電極およびその製造方法に関するものであり、更に詳しくは、インターポーザ基板、配線基板や配線回路を含む部品において配線回路の検査を容易化させ、更には配線密度を高めることの可能な凸型電極とその製造方法に関するものである。
従来、部品をLGA(ランド・グリッド・アレイ)として絶縁基板に実装する場合、絶縁基板の導電性ランドは周縁にソルダーレジスト膜が形成されており、導電性ランドの面のレベルはソルダーレジストの面よりも低い位置とされている(例えば特許文献1を参照。)。このことはインターポーザ基板を配線基板に実装する場合も同様であり、インターポーザ基板の電極としての実装ランドの周縁部では絶縁膜であるソルダーレジスト膜が重なって形成されており、実装ランドの面はソルダーレジスト膜の面よりも低い位置とされている。図21はその様なインターポーザ基板を製造するプロセスを示す断面図である。
特開平06−152114号公報
すなわち、図21−Aは配線112、実装ランド113、接合ランド114からなる配線回路を備えたインターポーザ基板111が実装ランド113と接合ランド114を除く部分を外層絶縁膜であるソルダーレジスト膜115で被覆されている状態を示す断面図である。なお、特許請求の範囲および本明細書においては、この実装ランド113、接合ランド114を原電極としている。これは本発明の凸型電極と区別するためである。また、上記の原電極のうち、ソルダーレジスト膜115で被覆されていない部分を原電極の有効部分としている。なお、上記実装ランド113と接合ランド114は、接続図からも明らかなように電気的に接続されているが、上側の導電部(これには後述するように半導体チップが接合される)を「接合ランド」と称し、下側の導電部(これによって配線基板に実装する)を「実装ランド」と称する。
図21−Bは実装ランド113と接合ランド114に吸着型パラジウム(Pd)触媒126を塗布した状態、図21−Cは吸着型Pd触媒126の存在下に、実装ランド113と接合ランド114に無電解ニッケル(Ni)メッキ膜127、続いて無電解金(Au)メッキ膜128を重ねて形成した状態を示す。なお、吸着型Pd触媒126および無電解Niメッキ膜127、無電解Auメッキ膜128は実際よりも厚く示されている。また全体の寸法も比例関係には示されていない。このことは以降の図面においても同様である。そして図21−Dは接合ランド114に半導体チップ31を接合した半導体パッケージ110を示す。 図21−Cおよび図21−Dに見られるように、実装ランド113の周縁部ではソルダーレジスト膜115が重なって形成されており、実装ランド113の有効部分、すなわちソルダーレジスト膜115で覆われていない部分は狭くなっている。また実装ランド113は凹部の底面にあって、実装ランド113の面に無電解Niメッキ膜127、無電解Auメッキ膜128が形成された後においても、最下の無電解Auメッキ膜128の面はソルダーレジスト膜115の面よりも低くなっている。
図22はインターポーザ基板111とパッケージ110とについてプローブ51の先端を実装ランド113に電気的に接触させて配線回路の検査をせんとする状態を示す図であり、 図22−Aは図20−Cのインターポーザ基板111についての図、図22−Bは図21−Dのパッケージ110についての図である。また、図22−Cは図22−Aのインターポーザ基板111および図22−Bのパッケージ110に共通するインターポーザ基板111のメッキされている実装ランド113の回りを部分拡大して示す図である。後述の図23に示すように、実装ランド113は0.5mmピッチで形成されており、実装ランド113のソルダーレジスト膜115が重なっていない部分、すなわち凹部となっている部分の径は275μmと小さい。それに応じてプローブ51も先端部の径が50μmで先端を尖らせた高価なものが使用されている。検査にはメッキされている実装ランド113へプローブ51の先端を正確に接触させることを要するが、インターポーザ基板111には実装ランド113が多数に設けられているので接触ミスを生じ易く、検査は慎重さが求められ時間を要する作業となっている。
上記は実装ランド113のピッチが0.5mmのインターポーザ基板111についての検査であるが、近い将来、実装ランド113のピッチは0.3mmとなることが予想されており、その時点における検査は極めて困難になることが考えられる。そのほか、実装ランド113のソルダーレジスト膜115が重なっていない有効な部分の面積が小さいので、インターポーザ基板111を配線基板に実装する場合の実装強度の確保も困難になっている。
図23はインターポーザ基板111における配線112と実装ランド113の関係を示す図である。すなわち、図23−Aは図21−Cの再掲であり、図23−Bは、図22−Aの中央部の配線112とその両側の実装ランド113を示す部分拡大図である。図23−Bに見られるように、実装ランド113の有効な部分の径275μmを確保するために実装ランド113は径350μmとされている。また実装ランド113は0.5mmピッチで形成されているので、隣り合う実装ランド113の間隔は150μmとなっている。そして配線112の幅は50μmである。従ってライン・アンド・スペースを(50/50)とすると、隣り合う実装ランド113の間には配線112が1本しか布設し得ないことになる。
そのほか、インターポーザ基板111のアルミニウム(Al)からなる実装ランド113に半田バンプを形成する場合、実装ランド113に直接に半田バンプを設けると半田の鉛(Pb)成分が実装ランド113内へ侵入しAlを溶損するので、実装ランド113のAlを亜鉛(Zn)で置換するZn置換が行われるが、Znの置換度は内部配線の線種、容量によって変化するので、全ての実装ランド113においてZn置換度を一定にすることは困難である。従って別な方法として、実装ランド113の面にバリアーとしてチタン(Ti)薄膜および銅(Cu)薄膜を形成してから半田バンプを設けると言う方法も可能であるが、この方法は真空下における薄膜形成(例えばスパッタリング)を必要とするので製造コストを増大させる。
本発明は上述の問題に鑑みてなされ、部品検査用のプローブを原電極に接触させる操作が容易で検査コストを大幅に軽減することができ、かつ部品内の配線密度も増大させることが可能な電極およびその製造方法を提供することを課題とする。
上記の課題は請求項1、請求項5、請求項6、請求項8、請求項12、または請求項13の構成によって解決されるが、その解決手段を説明すれば次に示す如くである。
請求項1の凸型電極は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストが塗布され硬化されて形成された導電性膜と、前記導電性膜に対し吸着型パラジウム触媒の存在下に形成された無電解ニッケルメッキ膜および重ねて形成された無電解金メッキ膜とからなり、前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされているものである。
このような凸型電極は、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出されており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、プローブを使用する配線回路の検査を極めて容易化させる。また凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に布設し得る配線本数を増やすことができる。
請求項1に従属する請求項2の凸型電極は、前記原電極の有効部分と前記導電性膜との間に、真空下の薄膜形成法によるチタン薄膜および銅薄膜が重ねて形成されているものである。
このような凸型電極は、チタン薄膜および銅薄膜が存在することによって、原電極の有効部分と導電性膜との間の導通抵抗が低い。
請求項1に従属する請求項3の凸型電極は、前記原電極の有効部分と前記導電性膜との間に、プライマーとして二酸化マンガン膜が形成されているものである。
このような凸型電極は、二酸化マンガン膜が存在することによって原電極の有効部分と導電性膜との接着性が大である。
請求項2または請求項3に従属する請求項4の凸型電極は、前記原電極の有効部分と前記導電性膜との間に、前記チタン薄膜および前記銅薄膜と、前記二酸化マンガン膜とが重ねて形成されているものである。
このような凸型電極は、チタン薄膜および銅薄膜が存在することによって原電極の有効部分と二酸化マンガン膜との間の導通抵抗が低く、二酸化マンガン膜が存在することによって銅薄膜と導電性膜との接着性が大である。
請求項5の凸型電極は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、前記部品の前記原電極側の面に真空下の薄膜形成法によって形成されたチタン薄膜および重ねて形成された銅薄膜と、 前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して形成された銅メッキ膜と、前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去して露出された前記銅メッキ膜の全面および該銅メッキ膜の下の前記チタン薄膜と前記銅薄膜の端面に対し吸着型パラジウム触媒の存在下に形成された無電解ニッケルメッキ膜および重ねて形成された無電解金メッキ膜とからなり、前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされているものである。
このような凸型電極は、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出されており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線の本数を増やすことができる。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成されていることから、凸型電極は極めて優れた耐食性を持つ。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。
請求項6の凸型電極は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、前記部品の前記原電極側の面に真空下の薄膜形成法によって形成されたチタン薄膜および重ねて形成された銅薄膜と、 前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して形成された銅メッキ膜と、前記メッキレジスト膜の存在下に前記銅メッキ膜の上面に形成された電解ニッケルメッキ膜および重ねて形成された電解金メッキ膜と、前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜が除去されて露出された前記銅メッキ膜の側面および前記チタン薄膜と前記銅薄膜の端面を備えており、前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされているものである。
このような凸型電極は、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出しており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線の本数を増やすことができる。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜が形成されていることから、製造プロセスは簡易化されるが凸型電極の耐食性においてやや劣る。
請求項1、請求項5、または請求項6に従属する請求項7の凸型電極は、前記凸型電極の突出高さが前記原電極の面から3〜20μmの範囲にあるものである。
このような凸型電極は、原電極面が露出している凹部に埋め不足を発生させず、また部品を配線基板に実装した場合における部品と配線基板とのギャップを過大にすることもない。
請求項8の凸型電極の製造方法は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストを塗付し加熱硬化させて導電性膜を形成する工程と、前記導電性膜に対し吸着型パラジウム触媒を塗付して無電解ニッケルメッキ膜を形成させ重ねて無電解金メッキ膜を形成させる工程とからなり、形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする方法である。
このような凸型電極の製造方法は、部品の原電極と接続された凸型電極の表面レベルを外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、部品の主平面への凸型電極の投影面積を原電極の有効部分の面積より大にすることから、プローブを使用する配線回路の検査を極めて容易化させ、かつ凸型電極の面積が大であることから原電極の径を小として原電極間の間隔を大にし原電極間に布設し得る配線本数を増大させる。
請求項8に従属する請求項9の凸型電極の製造方法は、前記導電性膜を形成する工程の前に、前記原電極の有効部分に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程を挿入する方法である。
このような凸型電極の製造方法は、原電極の有効部分に対しチタン薄膜と銅薄膜を形成させてから導電性膜を形成させることにより、原電極の有効部分と導電性膜との間の導通抵抗を低下させる。
請求項8に従属する請求項10の凸型電極の製造方法は、前記導電性膜を形成する工程の前に、前記原電極の有効部分にプライマーとして二酸化マンガン膜を形成する工程を挿入する方法である。
このような凸型電極の製造方法は、二酸化マンガン膜が原電極の有効部分と導電性膜との接着性を向上させる。
請求項9または請求項10に従属する請求項11の凸型電極の製造方法は、前記導電性膜を形成する工程の前に、前記原電極の有効部分に前記チタン薄膜および前記銅薄膜を形成する工程と、重ねて前記二酸化マンガン膜を形成する工程とを挿入する方法である。
このような凸型電極の製造方法は、チタン薄膜および銅薄膜が原電極の有効部分と二酸化マンガン膜との間の導通抵抗を低下させ、二酸化マンガン膜が銅薄膜に対する導電性膜の接着性を向上させる。
請求項12の凸型電極の製造方法は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、前記部品の前記原電極側の面に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程と、前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して銅メッキ膜を形成する工程と、前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去する工程と、露出された前記銅メッキ膜の全面および該銅メッキ膜の下の前記チタン薄膜と前記銅薄膜の端面に吸着型パラジウム触媒を塗付して無電解ニッケルメッキ膜を形成し重ねて無電解金メッキ膜を形成する工程とからなり、形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする方法である。
このような凸型電極の製造方法は、部品の原電極と接続された凸型電極の表面のレベルを外層絶縁膜の面のレベルと同等または外層絶縁膜の面よりも突出させ、部品の主平面への凸型電極の投影面積を原電極の有効部分の面積より大にすることから、プローブを使用する配線回路の検査を極めて容易化させる。また凸型電極の面積が大であることから原電極の径を小として原電極間の間隔を大にして原電極間に存在させる配線の本数を増大させることが可能である。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成されていることから凸型電極は極めて優れた耐食性を有する。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。
請求項13の凸型電極の製造方法は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、前記部品の前記原電極側の面に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程と、前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して銅メッキ膜を形成する工程と、前記メッキレジスト膜の存在下に前記銅メッキ膜の上面に電解ニッケルメッキ膜を形成し重ねて電解金メッキ膜を形成する工程と、前記メッキレジスト膜と該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去する工程とからなり、形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする方法である。
このような凸型電極の製造方法は、部品の原電極と接続された凸型電極の表面のレベルを外層絶縁膜の面のレベルと同等または外層絶縁膜の面よりも突出させ、部品の主平面への凸型電極の投影面積を原電極の有効部分の面積より大にすることから、プローブを使用する配線回路の検査を極めて容易化させる。また凸型電極の面積が大であることから原電極の径を小として原電極間の間隔を大にして原電極間に存在させる配線の本数を増大させることが可能である。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜を形成させるので製造プロセスは簡易化されるが凸型電極の耐食性はやや劣るものとなる。
請求項8、請求項12、または請求項13に従属する請求項14の凸型電極の製造方法は、形成される前記凸型電極の突出高さを、前記原電極の面から3〜20μmの範囲とする方法である。
このような凸型電極の製造方法は、原電極面が露出している凹部に埋め不足を発生させず、また部品を配線基板に実装した場合における部品と配線基板とのギャップを過大にすることもない。
請求項1の凸型電極によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出されており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径の太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また、凸型電極の面積を大にするので原電極の径を小にすることができ、そのことによって原電極間の間隔を大にして原電極間に布設する配線の本数を増大させて配線密度を高めることができる。従って、部品の小型化に大きく寄与するほか、部品の大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。
請求項2の凸型電極によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜が存在するので、原電極の有効部分と導電性膜と間の導通抵抗が一層低い凸型電極を備えた部品が得られる。
請求項3の凸型電極によれば、原電極の有効部分と導電性膜との間に二酸化マンガン(MnO2 )膜が存在するので、原電極の有効部分に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。
請求項4の凸型電極によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜とMnO2 膜とが存在するので、原電極の有効部分とMnO2 膜との間の導通抵抗が低く、Cu薄膜と導電性膜との間にMnO2 膜が存在するのでCu薄膜に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。
請求項5の凸型電極によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出しており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされているので、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線本数を線本数を増大させて配線密度を高めることができ、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成されていることから、凸型電極は極めて優れた耐食性を持ち信頼性の高い部品を与える。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。
請求項6の凸型電極によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出しており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされているので、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線本数を線本数を増大させて配線密度を高めることができ、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また、メッキレジスト膜を除去することなくCuメッキ膜の上面のみに電解(Ni/Au)メッキ膜が形成されているので、この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜を形成させるので(Ni/Au)メッキ膜が全面に形成されているものと比較して製造プロセスは簡易化されるが凸型電極の耐食性はやや劣るものとなる。
請求項7の凸型電極によれば、凸型電極の突出高さが原電極の面から3〜20μmの範囲にあるので、原電極の有効部分が存在する凹部に埋め不足を発生させず、また部品を配線基板に実装した場合における部品と配線基板とのギャップを過大にすることもない。
請求項8の凸型電極の製造方法によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大にするので、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径も太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また凸型電極の面積を大にするので原電極の径を小とすることができ、原電極の間隔を大にして原電極間に布設する配線本数を増大させることにより配線密度を高めることができることから、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。
請求項9の凸型電極の製造方法によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜が形成させるので、原電極の有効部分と導電性膜と間の導通抵抗の低い凸型電極を有する部品が得られる。
請求項10の凸型電極の製造方法によれば、原電極の有効部分と導電性膜との間にプライマーとしてMnO2 膜を形成させるので、原電極の有効部分に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。
請求項11の凸型電極の製造方法によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜を形成し、かつその上にMnO2 膜を形成させるるので、原電極の有効部分とMnO2 膜との間はTi薄膜およびCu薄膜によって導通抵抗が低く、Cu薄膜と導電性膜との間はMnO2 膜が存在するのでCu薄膜に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。
請求項12の凸型電極の製造方法によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大にするので、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径も太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また凸型電極の面積を大にするので原電極の径を小とすることができ、原電極の間隔を大にして原電極間に布設する配線本数を増大させることにより配線密度を高めることができることから、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。そして、凸型電極は主としてCuメッキ膜で形成しているので、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗布膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成させるので、凸型電極は極めて優れた耐食性を持ち信頼性の高い部品を与える。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。
請求項13の凸型電極の製造方法によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大にするので、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径も太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また凸型電極の面積を大にするので原電極の径を小とすることができ、原電極の間隔を大にして原電極間に布設する配線本数を増大させることにより配線密度を高めることができることから、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。そして、凸型電極は主としてCuメッキ膜で形成しているのでその製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗布膜で形成された凸型電極と比較し低コストである。また、メッキレジスト膜を除去することなくCuメッキ膜の上面のみに電解(Ni/Au)メッキ膜が形成されているので、この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜を形成させるので(Ni/Au)メッキ膜が全面に形成されているものと比較して製造プロセスを簡易化させるが凸型電極の耐食性はやや劣るものとなる。
請求項14の凸型電極の製造方法によれば、形成させる凸型電極の突出高さを、原電極の面から3〜20μmの範囲とするので、原電極の有効部分が露出している凹部の埋め込みが不足することはなく、また、凸型電極を備えた部品を配線基板に実装した時に、部品と配線基板とのギャップが過大になることもない。
本発明の凸型電極は、上述したように、部品の原電極がその周縁部で重なっている外層絶縁膜によって囲われて有効部分すなわち露出部分が凹所の底面となり、有効部分の面積が原電極の面積より狭められている場合に、原電極の有効部分および原電極の周縁部で重なっている外層絶縁膜に処理加工して凸状電極としたものである。なお、ここに言う部品とはインターポーザ基板や配線基板のほか、内部配線回路に接続された外部電極を有する部品を含む。
部品の原電極は、その周縁部で重なっている外層絶縁膜によって有効部分の面積が狭められると共に凹部の底面となっているので、その凹部を埋めるように、原電極の有効部分と原電極の周縁部で重なっている外層絶縁膜とに、Agまたは銅の超微粒子を分散させたペーストを印刷、転写、噴射、その他の方法によって適用する。そして、加熱硬化させて形成される導電性膜には耐食性を与えるために、吸着型Pd触媒を塗布して無電解Niメッキ膜、続いて無電解Auメッキ膜を形成させる。
その一例を図によって概念的に示すと、図1−Aは原電極13がその周縁部で重なっている外層絶縁膜15によって囲われて有効部分13eすなわち露出部分が凹所の底面となり、有効部分13eの面積が原電極13の面積より狭められている部品11を示す。図1−Bは原電極13の有効部分13eと原電極13の周縁部で重なっている外層絶縁膜15との上にAgまたはCuの超微粒子を分散させたペーストを塗布し硬化させて形成させた導電性膜25を示す。そして図1−Cはその導電性膜25に吸着型Pd触媒を塗付して無電解Niメッキ膜27および無電解Auメッキ膜28を形成させたものである。このようにして得られる凸型電極29の表面のレベルは原電極13の周縁部で重なっている外層絶縁膜15の面と同等または外層絶縁膜15の面よりも突出しており、かつ部品11の主平面への凸型電極29の投影面積は原電極13の有効部分13eの面積よりも拡げられている。
上記のAgまたはCuの超微粒子を分散させたペーストとは、その一例を挙げれば、導電性が大きいAgまたはCuの粒子径が5〜10nmである超微粒子を、バインダーとなる熱硬化性樹脂と硬化剤とを有機溶媒に溶解させた溶液に分散させてペースト状としたものである(例えば特開2002−324966号公報を参照。)。このようにAgまたはCuの超微粒子を分散させたペーストを凹所となっている原電極の有効部分およびその周縁部で重なっている外層絶縁膜に適用することにより、原電極上の凹所に空隙を残すことなくペーストが充填される。そして、そのペーストを熱硬化させることにより導電性膜が原電極上の凹所を埋め、凹所の外周部の外層絶縁膜上まで拡がった状態で形成される。上記においてバインダーとなる熱硬化性樹脂には、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、その他の公知の熱硬化性樹脂を使用することができる。
AgまたはCuの超微粒子を分散させたペーストは印刷、転写、吹き付け、その他の公知の技術によって部品の電極面に適用することができる。そして適用後は加熱し熱硬化性樹脂を熱硬化させて導電性膜を形成させる。この時の塗付厚さは、ペースト状態で7〜10μm、硬化後の厚さは3〜5μmとすることが望ましい。すなわち、硬化後の厚さを3μm未満とすると、電極の凹所を埋めることが困難になり、硬化後の厚さが5μmを超えるほど、部品を配線基板に実装した場合の部品と配線基板とのギャップを拡大させるようになるからである。勿論、厚さを3〜5μmに限定するものではなく、ギャップを大きくしてもよい場合には硬化後の導電性膜の厚さを例えば20μm程度にしてもよい。
また上記において、導電性膜の面に無電解Niメッキ膜と無電解Auメッキ膜を形成するのは、形成した導電性膜の酸化を防ぐためである。インターポーザ基板の電極は一般にはAlありPd触媒によって溶損するので、無電解Niメッキ、無電解Auメッキを施す場合には、あらかじめAl電極をZnで置換しておくことを要するが、本発明においては、AgまたはCuの超微粒子を分散させたペーストによる導電性膜に形成させるので、Zn置換不要である。
上記においては原電極の露出部分である有効部分に直接にAgまたはCuの超微粒子を分散させたペーストを適用して導電性膜を形成する場合を説明したが、原電極の有効部分と形成させる導電性膜との間の導通抵抗を下げたい場合には、導電性膜を形成させる前に、真空下の薄膜形成法によって原電極の有効部分の面にTi薄膜を形成し、重ねてCu薄膜を形成させてもよい。真空下の薄膜形成法としてはスパッタリング法、真空蒸着法、化学的気相析出(CVD)法など、一般に知られている方法が採用される。
そのほか、原電極の有効部分と導電性膜との接着性を向上させるために、原電極の有効部分の面にあらかじめプライマーとしてMnO2 膜を形成しておいてから導電性膜を形成するようにしてもよい。MnO2 膜はMnO2 の微粒子を有機溶媒に分散させたペースト状の分散液を塗布し、MnO2 を焼結して得られる膜が使用される。
更には、原電極の有効部分にTi薄膜およびCu薄膜を形成し、そのCu薄膜の上に二酸化マンガン膜を形成させてから導電性膜を形成するようにしてもよい。このような構成とすることにより、原電極の有効部分とMnO2 膜との間の導通抵抗を低下させ、かつCu薄膜と導電性膜との間の接着性を向上させることが可能である。
上記においては、凹所の底面となっている原電極の露出部分である有効部分に導性膜を形成して凸型電極を製造する場合を説明したが、凹所の底面となっている原電極の有効部分に電解(電気)メッキ法によってCuメッキ膜を形成して凸型電極とすることもできる。すなわち図2、 図3はCuメッキ膜によって凸型電極を形成する方法を概念的に示す図である。 図2−Aは図1−Aと同様 であり、部品11の原電極13がその周縁部で重なっている外層絶縁膜15によって囲われて原電極の露出部分である有効部分13eが凹所の底面となり、有効部分13eの面積が原電極13の面積より狭められているものである。図2−Bは原電極13の有効部分13e、およびその外側の外層絶縁膜15の全面に、真空下の薄膜形成方法によってTi薄膜53を形成した状態、図2−CはTi薄膜53上に重ねてCu薄膜54を形成した状態、図2−DはCu薄膜54上の原電極13にほぼ対応する部分を開口部55hとして残し、それ以外の部分にメッキレジスト膜55を形成させた状態を示す。
そして図3−Eはメッキレジスト膜55の開口部55hにCuメッキ膜56を形成した状態、図3−Fはメッキレジスト膜55を除去した状態、図3−Gはメッキレジスト膜55の下に存在したTi薄膜53およびCu薄膜54を除去した状態、図3−Hは形成される凸型電極59の酸化を防ぐために、下のTi薄膜53およびCu薄膜54の端面と共にCuメッキ膜56の全面に、吸着型Pd触媒を塗付して無電解Niメッキ膜57、 重ねて無電解Auメッキ膜58を形成させて得られる凸型電極59を示す。
上記のNiメッキ膜57、Auメッキ膜58はメッキレジスト膜55の存在下にCuメッキ膜56の形成に続いて電解メッキ法によって形成させることもできる。すなわち、 図4−Aは図2−Dの再掲であり、 形成されたメッキレジスト膜55を示すが、図4−Bに示すように、電解メッキ(電気メッキ)法によってCuメッキ膜56を形成し、更に図4−Cに示すように、Cuメッキ膜56上に電解メッキ法によってNiメッキ膜57’を形成し、続いて図5−Dに示すように、電解メッキ法によってAuメッキ膜58’を重ねて形成させる。その後、図5−Fに示すように、メッキレジスト膜55を除去し、更にその下にあったTiのスパッタ膜53とCuのスパッタ膜54を除去して凸型電極69とする方法である。
以下、本発明の凸型電極およびその製造方法を実施例により図面を参照して具体的に説明する。
図6と図7はインターポーザ基板11に、本発明の凸型電極29を製造するプロセスをステップ的に示す図である。すなわち、 図6−Aは配線12、実装ランド13、接合ランド14が形成されたインターポーザ基板11を示す図であり、実装ランド13と接合ランド14を除いて、それ以外の部分はソルダーレジスト膜15で被覆されており、実装ランド13の有効部分13eは凹部の底面となっている。図6−Bはインターポーザ基板11の実装ランド13の有効部分13eの上、および実装ランド13の周縁部で重なっているソルダーレジスト膜15の上に(図では下側に)、Agの超微粒子が分散されたペースト、すなわちバインダーとなるエポキシ樹脂と硬化剤とを有機溶剤に溶解した溶液に、Agの超微粒子を分散させてペースト状としたものを印刷法によってウエット厚さ7〜10μmに塗布し、熱硬化させて厚さ3〜5μmで径300μmの導電性膜25を形成させた状態を示す。勿論、凹所にあった有効部分13eが導電性膜25によって実装ランド13の周縁部で重なっているソルダーレジスト膜15のレベルと同一のレベルとすることを妨げるものではない。
図6−Cは形成された導電性膜25と接合ランド14に吸着型Pd触媒26を塗布し、続いて図7−Dに示すように厚さ3〜5μmの無電解Niメッキ膜27、その上へ厚さ0.05μmの無電解Auメッキ膜28を形成して凸型電極29とした。この時点で凸型電極29の径は310μmとなった。図7−Eはインターポーザ基板11の接合ランド14に半田ボールを介して半導体チップ31を接合し樹脂封止してパッケージ10とした状態を示す。
図8は、図7−Dのインターポーザ基板11、および図7−Eのパッケージ10の配線回路を検査せんとする状態を示すが、これらのインターポーザ基板11、パッケージ10では本来の電極である実装ランド13を処理加工して凸型電極29が形成されており、その凸型電極29は実装ランド13の周縁部のソルダーレジスト膜15に重ねて形成されているので、当然のことながら、凸型電極29の表面のレベルは周縁の外層絶縁膜15の面よりも突出しており、凸型電極29の露出面は実装ランド13の有効部分13eの面積より大幅に拡大された面積となっている。従って従来の実装ランド13には図22に示した先端部の径50μmで先端を尖らせたプローブ51を要したに対し、本実施例の凸型電極29では先端部の径が150μmで先端側をクラウン型としたプローブ52を採用することができる。そしてプローブ52自体が廉価になるほか、凸型電極29に対するプローブ52の位置の許容範囲が大であるために接触ミスは発生せず、検査に要する機器コスト、労務コストを含めてコストを30%軽減することができた。
また図9は、インターポーザ基板11における実装ランド13と配線12との関係を示す図である。すなわち、図9−Aは図7−Dの再掲であり、図9−Bは、図9−Aの中央部の配線12とその両側の実装ランド13を示す部分拡大図である。図9−Bに見られるように、インターポーザ基板11の凸型電極29は径310μmとすることができるので、実装ランド13の原電極の径を150μmとしても充分に機能する。従って実装ランド13の形成ピッチを図23−Bの従来例と同様の0.5mmとしても、隣り合う実装ランド13の間隔として350μmを確保することができ、隣り合う実装ランド13の間には、ライン・アンド・スペースを(50/50)として、線幅50μmの配線12を3本布設することができる。このことによってインターポーザ基板の必要枚数を削減することができ、従来のインターポーザ基板111の実装には4層の積層基板を必要とした場合でも本実施例のインターポーザ基板11の実装には2層の積層基板で目的を達し得るなど、コストダウンの効果は極めて大きい。
図10と図11は、凸型電極29を実施例1とは異なる方法によって製造する例を示す。すなわち、図10−Aは図6−Aに示したインターポーザ基板11である。図10−Bは図10−Aのインターポーザ基板11の実装ランド13側の全面にスパッタリングによってTi薄膜23を形成した状態、図10−Cは同じくスパッタリングによってCu薄膜24を重ねて形成した状態を示す。そして、図11−DはTi薄膜23、Cu薄膜24に重ねてCuの超微粒子を分散させたペーストを塗布して導電性膜25を形成した状態を示す。更に、図11−Eは実装ランド13に対応する部分を残して、それ以外の部分の導電性膜25、Cu薄膜24、Ti薄膜23を除去した状態を示す。
続く図11−Fは残した導電性膜25と接合ランド14の表面に吸着型Pd触媒26を塗布し、図11−Gに示すように無電解Niメッキ膜27を形成し、重ねて無電解Auメッキ膜28を形成して導電性膜25を凸型電極39としたものである。実施例1と実施例2との違いは、実施例2において、導電性膜25を形成する前の実装ランド13にTi薄膜23とCu薄膜24とを形成させたので、実装ランド13と導電性膜25との間にTi薄膜23とCu薄膜24が存在していることにある。上述したように、このような構成とすることにより、実装ランド13と導電性膜25と導通抵抗を低下させることができる。
図12と図13はインターポーザ基板11における実装ランド13の凹所に露出している有効部分13eにあらかじめプライマーとしてのMnO2 膜を形成しておき、導電性膜の接着性を向上させた凸型電極29cを製造するプロセスを示す。すなわち、図12−Aは図6−Aに示したインターポーザ基板11と同様な配線12、実装ランド13、接合ランド14が形成されたインターポーザ基板11を示す図であり、図12−Bはインターポーザ基板11の凹所に露出している実装ランド13の有効部分13eに、MnO2 の微粒子を有機溶媒に分散させたペースト状の分散液を印刷法によって塗布して加熱し、有機溶剤を蒸発させると共にMnO2 の微粒子を焼結させた膜をプライマー31として形成した状態を示す図である。
そして図12−Cは、そのMnO2 膜からなるプライマー31の上に実施例1で使用したAgの超微粒子が分散されたペーストを印刷法によって塗布し、熱硬化させて厚さ3〜5μmで径300μmの導電性膜32を形成させた状態を示す。続く図13−Dは形成された導電性膜32、および反対面の接合ランド14に吸着型Pd触媒36を塗布し、更に図13−Eに示すように、厚さ3〜5μmの無電解Niメッキ膜37、その上へ厚さ0.05μmの無電解Auメッキ膜38を形成して導電性膜32を凸型電極49とした状態を示す。この時点で凸型電極49の径は310μであった。
図14と図15は、インターポーザ基板11の実装ランド13側の全面に、先ず導通抵抗を低下させる金属膜を形成し、続いてプライマーを形成させる場合を示す図である。すなわち、図14−Aは実施例1の図6−Aと同様な配線12、実装ランド13、接合ランド14が形成されたインターポーザ基板11を示す図である。図14−Bは図14−Aのインターポーザ基板11の実装ランド13側の全面にスパッタリングによってTi薄膜を形成し、続いてCu薄膜を重ねて(Ti/Cu)薄膜43を形成し、その上へMnO2 の微粒子を有機溶剤に分散させたペースト状の分散液を塗布し加熱して得られるMnO2 の膜をプライマー44として形成させた状態を示す。そして、図14−Cはプライマー44の上へ重ねてCuの超微粒子を分散させたペーストを塗布し硬化させて導電性膜45を形成した状態を示す。
続いて図15−Dは実装ランド13部分において、実装ランド13の有効部分13eと、実装ランド13の周縁部で重なっているソルダーレジスト膜15とにほぼ対応する部分を残して、それ以外の部分の導電性膜45、プライマー44、および(Ti/Cu)薄膜43をカットし除去した状態を示す。続く図15−Eは残した導電性膜45、および反対面の接合ランド14の表面に吸着型Pd触媒46を塗布して、図15−Fに示すように、無電解Niメッキ膜47を形成し、重ねて無電解Auメッキ膜48を形成して導電性膜45を凸型電極59としたものである。実施例1と実施例4との違いは、実施例4においては、導電性膜45を形成する前の実装ランド13の有効部分13eに(Ti/Cu)薄膜43を形成し、更にプライマー44としてのMnO2 膜を形成させたので、実装ランド13の有効部分13eとプライマー44との間の導通抵抗が低く、(Ti/Cu)薄膜43と導電性膜45とはプライマー44によって接着性が大である。
図16、図17、 図18はインターポーザ基板11の実装ランド13の有効部分13eに対し、Cuメッキすることによって凸型電極69を形成させる場合を示す図である。すなわち、図16−Aは実施例1の図6−Aに示したインターポーザ基板11と同様なインターポーザ基板11である。図16−Bは図16−Aのインターポーザ基板11における実装ランド13側の全面にスパッタリング法によってTi薄膜53を形成した状態、図16−Cは同じくスパッタリング法によってCu薄膜54を重ねて形成した状態を示す。
図17−D以降は図16−Cに示したインターポーザ基板11の上下を反転させて示している。すなわち、図17−Dは、図13−FのCu薄膜54上において、実装ランド13の上方となる部分に、実装ランド13と同程度の面積に相当する部分を開口部55hとして残し、それ以外の部分にメッキレジスト膜55を形成した状態を示す。図17−Eはメッキレジスト膜55が形成されていない実装ランド13上にCuメッキ膜56を3〜20μmの厚さに形成させた状態を示す。そして、図17−FはCuメッキ膜56を形成した後にメッキレジスト膜55を除去した状態を示す。
続いて図18−GはCuメッキ膜56の下のTi薄膜53、Cu薄膜54は残し、メッキレジスト膜55の下にあったTi薄膜53、Cu薄膜54を除去した状態を示す。そして図18−Hは、Cuメッキ膜56、およびTi薄膜53、Cu薄膜54の端面、更に裏面側の接合ランド14に対して、図示せずとも吸着型Pd触媒を塗布してから、無電解メッキ法によって形成した厚さ3〜5μmのNiメッキ膜と、その上へ重ねた厚さ0.05μmのAuメッキ膜とからなる防錆のための無電解(Ni/Au)メッキ膜57を形成してCuメッキ膜56を凸型電極69としたものである。実施例5の製造方法によれば、仮にソルダーレジスト膜15上にTi薄膜53、Cu薄膜54の除去が不完全で残存している場合には、その残存部分にも無電解(Ni/Au)メッキ膜57が形成されるので、Ti薄膜53、Cu薄膜54の除去の確認が容易である。また後述する実施例6の場合と比較して、形成される無電解(Ni/Au)メッキ膜57は厚さが均等である。
実施例5では、メッキレジスト膜55を除去した後のCuメッキ膜56に耐食性付与のための無電解(Ni/Au)メッキ膜57を形成させたが、メッキレジスト膜55を除去する前に、Cuメッキ膜56の形成に続いて電解メッキ法によって(Ni/Au)メッキ膜58を形成することもできる。すなわち、図19−Aは実施例5の図17−Dの再掲であり、実装ランド13に対応する部分に開口部55hを有するメッキレジスト膜55が形成された状態である。そして図19−Bは、メッキレジスト膜55の開口部55hにおいて電解メッキ(電気メッキ)法によってCuメッキ膜56を形成した状態、続いて図19−CはCuメッキ膜56および接合ランド14に電解メッキ法によってNiメッキし、重ねてAuメッキして、(Ni/Au)メッキ膜58”を形成させた状態を示す。そして図20−Dは図19−Cの状態からメッキレジスト膜55を除去した状態を示し、図20−Eはメッキレジスト膜55の下に存在していたTi薄膜53とCu薄膜54を除去してCuメッキ膜56を凸型電極79とした状態を示す。実施例6の方法によれば、図20−Eに見られるように、Cuメッキ膜56の側壁面には(Ni/Au)メッキ膜58”が形成されない。また、この(Ni/Au)メッキ膜58”はメッキレジスト膜55の開口部55h内で形成されるためか、実施例5の場合と比較して厚さの均一性に劣る。
以上、本発明の凸型電極およびその製造方法を実施例によって説明したが、勿論、本発明はこれらによって限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
例えば実施例1〜5においては、従来例の実装ランド113が周縁部のソルダーレジスト膜115の面よりも低い位置にあり凹部が形成されているインターポーザ基板111に換わるものとして、実装ランド13に接続された凸型電極29、39、49、59、69、または79を持つインターポーザ基板11を例示したが、インターポーザ基板以外で凹部となっている電極を有する部品にも本発明を適用することができる。
原電極の周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となっている原電極の有効部分に、AgまたはCuの超微粒子を分散させたペーストを塗布し硬化させた導電性膜によって凸型電極とする方法を概念的に示す図である。 図3と共に、接合パッドの有効部分にCuメッキ膜を形成させて凸型電極を製造するプロセスを概念的に示す図である。 図2と共に、Cuメッキ膜によって凸型電極を製造するプロセスを概念的に示す図である。 図2、図3と同様にCuメッキ膜によって凸型電極を製造する方法であるが、図5と共に、耐食性付与のNiメッキ膜、Auメッキ膜の形成させ方が異なる方法を示す図である。 図4と共に、Cuメッキ膜によって凸型電極を製造する別な方法を示す図である。 図7と共に、実施例1による凸型電極を備えたインターポーザ基板の製造するプロセスをステップ的に示す図である。 図6と共に、実施例1による凸型電極を備えたインターポーザ基板の製造するプロセスをステップ的に示す図である。 実施例1のインターポーザ基板と半導体チップのパッケージにおける凸型電極と使用される検査用プローブとの関係を示す図である。 実施例1のインターポーザ基板における実装ランドと配線との関係を示す図である。 図11と共に、実施例2による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図10と共に、実施例2による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図13と共に、実施例3による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図12と共に、実施例3による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図15と共に、実施例4による凸型電極を備えたインターポーザ基板の製造方法をステップ的に示す図である。 図14と共に、実施例4による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図17、図18と共に、実施例5による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図16、図18と共に、実施例5による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図16、図17と共に、実施例5による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図20と共に、実施例6による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 図19と共に、実施例6による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 従来例の実装ランドを備えたインターポーザ基板の製造プロセスをステップ的に示す図である。 従来例によるインターポーザ基板の実装ランドと検査用プローブとの関係を示す図である。 従来例のインターポーザ基板における実装ランドと配線との関係を示す図である。
符号の説明
11 ・ インターポーザ基板、 12 ・ 配線、 13 ・ 実装ランド、
15 ・ ソルダーレジスト膜、 23 ・ Ti薄膜、 24 ・ Cu薄膜、
25 ・ AgまたはCuの超微粒子を分散させたペーストによる導電性膜、
26 ・ 吸着型Pd触媒、 27 ・ 無電解Niメッキ膜、
28 ・ 無電解Auメッキ膜、
29、39、49、59、69、79・ 凸型電極、
51 ・ 従来のプローバ、 52 ・ 凸型電極に使用し得るプローバ、
56 ・ Cuメッキ膜

Claims (4)

  1. 周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、
    前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストが塗布され加熱硬化されて形成された導電性膜と、
    前記導電性膜に対し吸着型パラジウム触媒の存在下に形成された無電解ニッケルメッキ膜および重ねて形成された無電解金メッキ膜と、
    前記原電極の有効部分と前記導電性膜との間に形成されたプライマーとしての二酸化マンガン膜とを具備し、
    前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされている
    凸型電極。
  2. 前記原電極の有効部分と前記導電性膜との間に形成されたチタン薄膜および銅薄膜の積層膜をさらに具備し、
    前記二酸化マンガン膜は、前記銅薄膜の上に形成されている
    請求項1に記載の凸型電極。
  3. 周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、
    前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストを塗布し加熱硬化させて導電性膜を形成する工程と、
    前記導電性膜に対し吸着型パラジウム触媒を塗布して無電解ニッケルメッキ膜を形成させ重ねて無電解金メッキ膜を形成させる工程と、
    前記導電性膜を形成する工程の前に、前記原電極の有効部分にプライマーとして二酸化マンガン膜を形成する工程とを具備し、
    形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする
    凸型電極の製造方法。
  4. 前記二酸化マンガン膜を形成する工程の前に、前記原電極の有効部分にチタン薄膜および銅薄膜の積層膜を形成する工程をさらに具備し、
    前記二酸化マンガン膜は、前記銅薄膜の上に形成される
    請求項3に記載の凸型電極の製造方法。
JP2004226006A 2004-05-18 2004-08-02 凸型電極およびその製造方法 Expired - Fee Related JP4501580B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226006A JP4501580B2 (ja) 2004-05-18 2004-08-02 凸型電極およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004147896 2004-05-18
JP2004226006A JP4501580B2 (ja) 2004-05-18 2004-08-02 凸型電極およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006005321A JP2006005321A (ja) 2006-01-05
JP4501580B2 true JP4501580B2 (ja) 2010-07-14

Family

ID=35773398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226006A Expired - Fee Related JP4501580B2 (ja) 2004-05-18 2004-08-02 凸型電極およびその製造方法

Country Status (1)

Country Link
JP (1) JP4501580B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070987A (ko) * 2008-10-21 2011-06-27 아토테크더치랜드게엠베하 기판 상에 땜납 용착물을 형성하는 방법
JP2014150101A (ja) * 2013-01-31 2014-08-21 Toyota Central R&D Labs Inc 電子素子基板とその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299339A (ja) * 1999-04-14 2000-10-24 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JP2002170840A (ja) * 2000-09-25 2002-06-14 Ibiden Co Ltd 半導体素子及び半導体素子を内蔵する多層プリント配線板の製造方法
JP2002231860A (ja) * 2001-01-31 2002-08-16 Kyocera Corp 電子部品装置
JP2002299341A (ja) * 2001-03-29 2002-10-11 Seiko Epson Corp 配線パターンの形成方法、半導体装置及びその製造方法、回路基板並びに電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188343A (ja) * 1986-02-14 1987-08-17 Nec Corp 半導体装置の製造方法
JPH08264541A (ja) * 1995-03-23 1996-10-11 Citizen Watch Co Ltd 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299339A (ja) * 1999-04-14 2000-10-24 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JP2002170840A (ja) * 2000-09-25 2002-06-14 Ibiden Co Ltd 半導体素子及び半導体素子を内蔵する多層プリント配線板の製造方法
JP2002231860A (ja) * 2001-01-31 2002-08-16 Kyocera Corp 電子部品装置
JP2002299341A (ja) * 2001-03-29 2002-10-11 Seiko Epson Corp 配線パターンの形成方法、半導体装置及びその製造方法、回路基板並びに電子機器

Also Published As

Publication number Publication date
JP2006005321A (ja) 2006-01-05

Similar Documents

Publication Publication Date Title
KR101168263B1 (ko) 반도체 패키지 및 그 제조 방법
JP5693977B2 (ja) 配線基板及びその製造方法
US8810040B2 (en) Wiring substrate including projecting part having electrode pad formed thereon
JP4813255B2 (ja) 配線基板及びその製造方法ならびに半導体装置
US20090302463A1 (en) Semiconductor device having substrate with differentially plated copper and selective solder
US9433109B2 (en) Wiring substrate and semiconductor package
US8067698B2 (en) Wiring substrate for use in semiconductor apparatus, method for fabricating the same, and semiconductor apparatus using the same
JP4803993B2 (ja) 半導体装置の製造方法
JP4054269B2 (ja) 電子部品の製造方法および電子部品
JP6282425B2 (ja) 配線基板の製造方法
JP4501580B2 (ja) 凸型電極およびその製造方法
JP2007158069A (ja) 半導体パッケージの外部接続構造及びその製造方法
US9530725B2 (en) Wiring substrate and semiconductor package
JPH0727789A (ja) 回路配線板およびその製造方法
JP6220799B2 (ja) 配線基板及びその製造方法
JP7382170B2 (ja) 半導体装置
JP5501940B2 (ja) 回路板の製造方法
CN100369242C (zh) 半导体封装基板的预焊锡结构及其制法
WO2003002786A1 (fr) Procede d'electrodeposition et procede de fabrication de carte imprimee
JP6467797B2 (ja) 配線基板、配線基板を用いた半導体装置およびこれらの製造方法
JP2013140902A (ja) 半導体パッケージ及びその製造方法
JP5653144B2 (ja) 半導体パッケージの製造方法
CN107611036A (zh) 封装基板及其制作方法、封装结构
CN105308732A (zh) 包括通过平面化减少焊接垫拓扑差异的制造电子结构的方法和对应的电子结构
JP2012204732A (ja) 配線基板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees