JP4451004B2 - 光再生装置 - Google Patents

光再生装置 Download PDF

Info

Publication number
JP4451004B2
JP4451004B2 JP2001055066A JP2001055066A JP4451004B2 JP 4451004 B2 JP4451004 B2 JP 4451004B2 JP 2001055066 A JP2001055066 A JP 2001055066A JP 2001055066 A JP2001055066 A JP 2001055066A JP 4451004 B2 JP4451004 B2 JP 4451004B2
Authority
JP
Japan
Prior art keywords
mark
reproduction
power control
length
reproduction power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001055066A
Other languages
English (en)
Other versions
JP2002260308A (ja
Inventor
哲也 奥村
茂己 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001055066A priority Critical patent/JP4451004B2/ja
Priority to US10/082,466 priority patent/US7474598B2/en
Publication of JP2002260308A publication Critical patent/JP2002260308A/ja
Application granted granted Critical
Publication of JP4451004B2 publication Critical patent/JP4451004B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1267Power calibration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10515Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10595Control of operating function
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ビームの照射により生じる熱によって記録マークを読み出す開口部分の大きさを制御することにより再生分解能を向上させる、いわゆる磁気的超解像媒体を用いた光記録媒体を再生するための例えば光ディスク装置等の光再生装置に関するものであり、特に、再生時における光ビームの照射強度を最適に制御するものに関する。
【0002】
【従来の技術】
光磁気ディスク装置においては、記録層と面内磁化とを有する再生層とを備えた磁気的超解像方式の光磁気ディスクに対して、再生層側から光ビームを照射して、光ビームのスポット径よりも小さい記録マークを再生する方式が提案されている。
【0003】
上記方式では、光ビームの照射領域内で所定の温度以上に温度が上昇した部分(以下、「アパーチャ」と記す)のみの再生層に、対応する記録層の磁性が転写されて面内磁化から垂直磁化に移行することにより、光ビームのスポット径よりも小さい記録マークの再生が可能となる。
【0004】
この方式においては、光ビームを発生させる駆動電流を一定に保っていても、再生時の環境温度の変化に応じて光ビームの最適な再生パワーが変動してしまうことがある。
【0005】
そして、再生パワーが強くなり過ぎるとアパーチャが大きくなり過ぎて、隣接するトラックからの再生信号の出力が増大し、再生されるデータに含まれる雑音信号の割合が多くなって、読み取りエラーの発生する確率が高くなる。また、再生パワーが弱くなり過ぎると、記録マークよりもアパーチャが小さくなるとともに、読み取ろうとしているトラックからの再生信号の出力も小さくなって、やはり読み取りエラーの発生確率が高くなる。
【0006】
そこで、この問題を解決するために、特開平8−63817号公報では、光磁気ディスク上に記録された異なる2種類の長さの再生パワー制御用マークを再生し、それらの再生信号振幅の比が所定値に近づくように再生パワーを制御することによって、再生パワーを常に最適値に保持し、読み取りエラーの発生確率を減少させている。
【0007】
すなわち、短マークはアパーチャ径よりも小さいため、再生パワーを大きくするつまりアパーチャ径を大きくすることに伴って、アパーチャに占める短マークの面積の割合は小さくなるので、短マークの振幅は小さくなる。ただし、再生パワーを大きくすると光量も多くなり、このことは短マークの振幅を大きくする方向に働く。一方、アパーチャ径よりも大きな長マークを再生すると、再生パワーによってアパーチャ径が変化しても、アパーチャに占める長マークの面積は、常に100%である。このため、再生パワー変化に対する長マークの振幅変化は、光量の変化分に対応すると考えられる。そこで、短マーク振幅を長マーク振幅で割った値つまり短マーク振幅を長マーク振幅で正規化した比は、アパーチャ径の変化分に対応する値となるので、この比を一定にすることは、アパーチャ径を一定とすることを意味する。したがって、長短マーク振幅比を一定にすることによって、環境温度やチルトに対して常に最適な再生パワーに制御することが可能となる。
【0008】
次に、この種の再生パワー最適化方法を具体的に説明する。
【0009】
先ず、光再生装置の構造を図5に示すとともに、図6には、この光再生装置によって再生される光磁気ディスク220の構造を模式的に示す。ここで、上記光磁気ディスク220における一単位の記録領域であるセクタ300は、セクタの位置を示すアドレス領域301と、再生パワー制御用マークを記録する再生パワー制御用領域302と、デジタル情報データを記録するデータ記録領域303とから構成されている。
【0010】
上記の再生パワー制御用マークは、図7(a)(b)に示すように、長さ2Tのマークが長さ2Tのスペース毎に設けられる短マークパターンと、長さ8Tのマークが長さ8Tのスペース毎に設けられる長マークパターンとから構成されている。すなわち、Tはチャネルビット長を示すものであり、図7(a)に示す短マークパターンでは、2Tマークとして示される長さ2×Tのビット長のマークと、2Tスペースとして示される長さ2×Tのビット長のスペースとが交互に繰り返されて構成されている。また、図7(b)に示す長マークパターンでは、8Tマークとして示される長さ8×Tのビット長のマークと、8Tスペースとして示される長さ8×Tのビット長のスペースとが交互に繰り返されて構成されている。したがって、例えば、チャネルビット長が1ビットであるとした場合には、2進数においては、具体的には、短マークパターンとは「1100」のビット配列が繰り返されたものをいい、長マークパターンとは「1111111100000000」が繰り返されたものをいう。そして、これら短マークパターン及び長マークパターンが再生パワー制御用領域302に記録されているものとなっている。
【0011】
上記の光再生装置では、図5に示すように、半導体レーザ202からの出射光は、光磁気ディスク220上の前記セクタ300のアドレス領域301に到達すると、図示しないアドレスデコーダにて目標セクタアドレスが認識される。続いて出射光が再生パワー制御用領域302に照射されると、その領域に記録された短マークパターン及び長マークパターンからの反射光がフォトダイオード203によって再生信号に変換され、A/D変換器205によってA/D変換された後、それぞれ短マーク振幅検出回路221と長マーク振幅検出回路222とに入力されて、短マークパターンにおける短マークの振幅値及び長マークパターンにおける長マークの振幅値がそれぞれ求められる。なお、ここでのA/D変換は、PLL(Phase Locked Loop)で構成される再生クロック抽出回路204により再生信号から抽出されたクロックのタイミングによって行われる。
【0012】
こうして求められた短マークパターンにおける短マークつまり2Tマークの振幅値、及び長マークパターンにおける長マークつまり8Tマークの振幅値はそれぞれ割り算回路210に入力されて振幅比=2Tマークの振幅値/8Tマークの振幅値として出力され、この振幅比と目標振幅比とが差動増幅器211によって比較され、その差が小さくなる方向にフィードバックがかかるようにレーザパワー制御回路212が半導体レーザ202の駆動電流を出力する。
【0013】
このようにして最適な再生パワーが与えられるようにレーザ光が制御された後、出射光は前記データ記録領域303に照射され、読み出された再生信号が二値化処理回路213に入力されて、エラーレートの低い再生情報データが出力される。そして、出射光が次のセクタ300に到達すると、同様の処理が繰り返されて、新たに最適な再生パワーに設定し直される。
【0014】
このように、再生パワー制御用マークの記録領域をセクタ300…毎に分散して設けて、セクタ300…毎に再生パワー制御のための再生信号量を検出することにより、短い時間間隔で再生パワー制御が応答し、最適再生パワーの短時間の変動に追従することができる。
【0015】
【発明が解決しようとする課題】
しかしながら、上記従来の光再生装置では、各セクタ300…毎に再生パワー制御用領域302を備える必要があるため、情報データを記録するための領域がその分だけ減ることになり、光記録媒体の利用率が低下するという欠点がある。
【0016】
そこで、セクタ300…毎に再生パワー制御用領域302を設けずに、データ記録領域303に記録された情報データのビット配列パターンから2Tマークと8Tマークとを検出し、これらに対応する再生信号から振幅値を求める方式が考えられる。しかし、この方式においては、次のような問題が発生する。
【0017】
先ず、図8(a)に示すように、「2T2T2T2T」にて示される2Tマーク及び2Tスペースのみにて構成される短マークパターンにおける再生波形は、同図8(a)に示す曲線にて表される。一方、図8(b)に示すように、2Tスペース及び2Tマークの前後に3Tマーク及び3Tスペースが連なったマークパターン「3T2T2T3T」の再生波形は、同図8(b)に示す曲線にて表されるように、3Tマーク及び3Tスペースでは振幅値が2Tスペース及び2Tマークの振幅値よりも大きくなる。また、図8(c)に示すように、2Tスペース及び2Tマークの前後に4Tマーク及び4Tスペースが連なったマークパターン「4T2T2T4T」の再生波形は、同図8(c)に示す曲線にて表されるように、4Tマーク及び4Tスペースでは振幅値が3Tスペース及び3Tマークの振幅値よりもさらに大きくなる。同様にして、図8(d)に示すように、2Tスペース及び2Tマークの前後に5Tマーク及び5Tスペースが連なったマークパターン「5T2T2T5T」の再生波形は、同図8(d)に示す曲線にて表されるように、5Tマーク及び5Tスペースでは振幅値が4Tスペース及び4Tマークの振幅値よりもさらに大きくなる。
【0018】
ここで、2Tマークは光ビームのアパーチャ径よりも小さいため、その再生波形は前後のマーク又はスペースからの波形干渉を受ける。この波形干渉を受ける度合いは、前後にあるマーク又はスペースの長さによって異なる。
【0019】
実際に光磁気ディスク220から読み出した再生信号を用いた測定によって確認した結果は、図9のように示される。同図に示す横軸は図8(a)〜(d)の各マークパターンであり、縦軸は各マークパターンの再生信号における2Tマークの振幅値を測定した結果である。この実測結果からも、前後のスペース長によって2Tマークの振幅値が変化することが確認できる。すなわち、前後のスペース長が3T、4Tと長くなるに伴って、その長いスペース長の影響を受けて2Tマーク振幅値が大きくなる。
【0020】
このように、個々の2Tマーク振幅値は、2Tマークの前後のスペース長によって変化するため、大きなばらつきを持っている。この結果、情報データのビット配列パターンに含まれる2Tマークの再生波形から2Tマーク振幅値を求めるためには、複数の2Tマークを検出して得られた個々の振幅値を平均化するのが好ましいことが分かる。例えば、再生パワーの制御単位をセクタ300とした場合、各セクタ300…に含まれる全ての情報データのビット配列パターンから2Tマークを検出して得られた振幅値を平均化することになる。しかし、このとき、2Tマークの前後の各スペース長の出現確率は各セクタによって異なっているため、平均化して得られた振幅値も各セクタ300…によって大きなばらつきを持つことになり、結果的にこの振幅値に基づいて制御した再生パワーに大きな誤差が発生してしまうことになる。
【0021】
本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、光記録媒体の利用率を低下することなく、再生パワーを最適値に保持し、読み取りエラーの発生確率を減少させ得る光再生装置を提供することにある。
【0022】
【課題を解決するための手段】
本発明の光再生装置は、上記課題を解決するために、光記録媒体に記録された情報データから長短2種類の長さの各再生パワー制御用マークの例えば振幅値等の再生信号特性をそれぞれ測定する所定長マーク信号測定手段を備え、それら各再生信号特性に基づいて光ビームの再生パワーを制御する光再生装置において、上記所定長マーク信号測定手段は、短い長さの再生パワー制御用マークを含む特定パターンを情報データのビット配列パターンから検出して、上記特定パターンに含まれる短い長さの再生パワー制御用マークにのみ対応する再生信号特性を測定することを特徴としている。
【0023】
上記の発明によれば、光ビームのスポット径よりも小さい記録マークを再生するに際して、再生時の環境温度の変化による光ビームの最適な再生パワーの変動を防止すべく、光記録媒体に記録された情報データから長短2種類の長さの各再生パワー制御用マークの再生信号特性を所定長マーク信号測定手段にてそれぞれ測定し、それら各再生信号特性に基づいて光ビームの再生パワーを制御する。
【0024】
ところで、従来では、光記録媒体の各セクタ毎に再生パワー制御用領域を備えていたので、情報データを記録するための領域がその分だけ減ることになり、光記録媒体の利用率が低下するという欠点があった。そこで、この問題を解決するために、情報データのビット配列パターンから再生パワー制御用マークを検出することが考えられるが、情報データのビット配列パターンには、各種の配列パターンが存在する。また、特に、例えば2Tマーク等のアパーチャ径よりも短い長さの再生パワー制御用マークについては、その前後に存在する長さの再生パワー制御用マークの波形干渉によって、その短い長さの再生パワー制御用マークの再生信号特性が影響を受ける。
【0025】
そこで、本発明では、所定長マーク信号測定手段は、短い長さの再生パワー制御用マークを含む特定パターンを情報データのビット配列パターンから検出して、上記特定パターンに含まれる短い長さの再生パワー制御用マークにのみ対応する再生信号特性を測定する。
【0026】
この結果、短い長さの再生パワー制御用マークにのみ対応する例えば振幅値等の再生信号特性を測定するので、短い長さの再生パワー制御用マークの振幅値の測定に際して、短い長さの再生パワー制御用マークの前後の影響を回避することができる。このため、短い長さの再生パワー制御用マークの振幅値の測定値がばらつくのを防止し、結果的にこの振幅値に基づいて制御した再生パワーに大きな誤差が発生してしまうのを防止することができる。
【0027】
したがって、光記録媒体の利用率を低下することなく、再生パワーを最適値に保持し、読み取りエラーの発生確率を減少させ得る光再生装置を提供することができる。
【0028】
また、本発明の光再生装置は、上記記載の光再生装置において、所定長マーク信号測定手段は、光記録媒体の再生信号から情報データビットを再生するデータ再生手段と、上記データ再生手段にて再生された情報データのビット配列パターンと特定パターンとを比較することにより一致を検出する比較手段と、上記比較手段により一致を検出した特定パターンに含まれる短い長さの再生パワー制御用マークに対応する情報データビットの再生信号特性を測定する信号測定手段とを備えていることを特徴としている。
【0029】
上記の発明によれば、データ再生手段にて、光記録媒体の再生信号から情報データビットを再生し、比較手段がこのデータ再生手段にて再生された情報データのビット配列パターンと特定パターンとを比較することにより一致を検出する。
【0030】
そして、信号測定手段は、比較手段により一致を検出した特定パターンに含まれる短い長さの再生パワー制御用マークに対応する情報データビットの再生信号特性を測定する。
【0031】
これによって、具体的な所定長マーク信号測定手段を構成することができる。
【0032】
また、本発明の光再生装置は、上記記載の光再生装置において、短い長さの再生パワー制御用マークは、長さ2T(Tはチャネルビット長)のマークであり、特定パターンはmT・2T・2T・nT(m、nは所定の正整数)の長さ配列のパターンからなっていることを特徴としている。
【0033】
上記の発明によれば、短い長さの再生パワー制御用マークは、長さ2T(Tはチャネルビット長)のマークである。また、特定パターンは、短い長さの再生パワー制御用マークを有する2T・2Tを有している。したがって、情報データのビット配列パターンから、再生信号特性の測定に必要な2T・2Tをパターンを検出して、上記特定パターンに含まれる短い長さの再生パワー制御用マークにのみ対応する再生信号特性を測定することができる。
【0034】
また、本発明の光再生装置は、上記記載の光再生装置において、m=n=2であることを特徴としている。
【0035】
上記の発明によれば、特定パターンはmT・2T2T・nT(m、nは所定の正整数である。また、説明を判り易くするために、中央の「2T・2T」を「2T2T」と表現する)の長さ配列のパターンからなっているとともに、m=n=2となっている。すなわち、特定パターンは2T・2T2T・2Tと表される。
【0036】
このことは、中央に2T2Tが構成され、その前後においても各2Tのパターンが配されることになる。したがって、この2T2Tの前後のパターンが2Tと異なる場合には、その前後に存在する長さのパターンの波形干渉によって、2Tマークの再生信号特性が影響を受けるが、本発明では、2T2Tの前後がいずれも2Tのパターンにて構成されるので、前後のパターンが2Tと異なることによる影響を防止することができる。
【0037】
また、2Tマークの前後のマーク長さを最も出現頻度の高い2Tマークとすることによって、より多くの2Tマークを検出することができるため、求めた2Tマークの再生信号特性について平均値を求めて測定値とする場合においても、平均化後の2Tマーク振幅値のばらつきを一層小さくすることができる。
【0038】
また、本発明の光再生装置は、上記記載の光再生装置において、測定された再生信号特性に基づいて再生条件を制御する再生条件制御手段がさらに備えられていることを特徴としている。
【0039】
上記の発明によれば、測定された再生信号特性に基づいて再生条件を制御する再生条件制御手段がさらに設けられているので、再生条件制御手段によって、確実に、それら各再生信号特性に基づいて光ビームの再生パワーを制御することができる。
【0040】
また、本発明の光再生装置は、上記記載の光再生装置において、所定長マーク信号測定手段は、長短2種類の長さの各再生パワー制御用マークの振幅値の比を測定する一方、再生条件制御手段は、測定された振幅比が目標値に近づくように光ビームの再生パワーを制御することを特徴としている。
【0041】
上記の発明によれば、所定長マーク信号測定手段にて、長短2種類の長さの各再生パワー制御用マークの振幅値の比を測定し、再生条件制御手段にて、測定された振幅比が目標値に近づくように光ビームの再生パワーを制御する。
【0042】
したがって、これによって、具体的かつ確実に光ビームの再生パワーを適正に制御することができる。
【0043】
【発明の実施の形態】
本発明の実施の一形態について図1ないし図4に基づいて説明すれば、以下の通りである。
【0044】
本実施の形態の光再生装置としての光磁気ディスク再生装置は、図1に示すように、半導体レーザ2、フォトダイオード3、再生クロック抽出回路4、A/D変換器5、割り算回路10、差動増幅器11、レーザパワー制御回路12及び二値化処理回路13を備えている。なお、上記の各手段は、前記図5に示す従来技術のものと同様である。また、上記半導体レーザ2、フォトダイオード3、A/D変換器5及び二値化処理回路13は、本発明のデータ再生手段としての機能を有しているとともに、上記差動増幅器11及びレーザパワー制御回路12は、本発明の再生条件制御手段としての機能を有している。
【0045】
本実施の形態では、上記各手段の他に、さらに、再生された情報データパターンから2Tマークを含む特定パターンを検出する短マークパターン検出回路6、同様に情報データパターンから8Tマークを含む特定パターンを検出する長マークパターン検出回路7、短マークパターン検出回路6が特定パターンを検出する毎に、そのパターンに対応する再生信号のA/D変換値から2Tマークの振幅値を取り出して平均化を行う短マーク振幅計算回路8、同様に長マークパターン検出回路7が特定パターンを検出する毎に、そのパターンに対応する再生信号のA/D変換値から8Tマークの振幅値を取り出して平均化を行う長マーク振幅計算回路9とを備えている。ただし、上記のTはチャネルビット長である。なお、上記の短マークパターン検出回路6及び長マークパターン検出回路7は、本発明の比較手段としての機能を有するとともに、短マーク振幅計算回路8及び長マーク振幅計算回路9は、本発明の信号測定手段としての機能を有している。
【0046】
また、光記録媒体としての光磁気ディスク1は、従来技術のものとは異なり、図2に示すように、セクタ100が再生パワー制御用領域を持たず、アドレス領域101及びデータ記録領域102のみの構成となっている。したがって、これによって、ディスク利用率が向上したものとなっている。
【0047】
上記構成の光磁気ディスク再生装置による再生動作を説明する。
【0048】
先ず、図1に示すように、半導体レーザ2からの出射光が光磁気ディスク1上の前記セクタ100のアドレス領域101に到達すると、その反射光がフォトダイオード3によって電気信号に変換され再生信号として出力される。こうして得られた前記アドレス領域101の再生信号から、図示しないアドレスデコーダにて目標セクタアドレスが認識される。
【0049】
続いて、出射光がデータ記録領域102に照射されると、その反射光はフォトダイオード3及びA/D変換器5を介して二値化処理回路13、短マーク振幅計算回路8及び長マーク振幅計算回路9に入力される。上記二値化処理回路13は、デジタル再生信号から前記データ記録領域102に記録された0、1の2進数で表される元の情報データパターンを復号する。この情報データパターンは、短マークパターン検出回路6にて、2Tを含む特定パターンとの一致判定が行われる。そして、その判定結果は、短マーク振幅計算回路8にて監視され、一致したと判定された場合には、その情報データパターンに対応する再生信号に含まれる2T再生信号から2T振幅値が求められる。
【0050】
これらの処理は、セクタ100のデータ記録領域102全体に対して行われ、求められた個々の2T振幅値は平均化されて、セクタ100の平均2T振幅値として出力される。ここで、一対の2Tマーク及び2Tスペース(以下、「2T2T」と表す)の前後に所定長のマークを備えたパターン、すなわちmT2T2TnT(m、nは所定の正整数)なるパターンを特定パターンとして設定しておけば、得られる個々の2T振幅値は全て、前後に同じマーク長を持った2Tパターンの再生信号から求められるので、これらを平均化した2T振幅値のばらつきは非常に小さなものとなる。
【0051】
また、2Tマークのように、アパーチャ径よりも小さなマークの場合においては波形干渉の影響を特に強く受けるため、この効果は顕著なものとなる。さらに、m=n=2、すなわち2T2T2T2Tなるパターンは他のm、nのパターンに比べて最も出現頻度が高いと考えられるので、これを特定パターンとして設定しておけば、より多くの2Tマークを検出でき、平均化後の2T振幅値のばらつきを一層小さくすることができる。
【0052】
同様に、上記長マークパターン検出回路7において、復号された情報データパターンが8Tを含む特定パターンと一致したと判定された場合には、長マーク振幅計算回路9にて8T振幅値が求められ、セクタ100全体で得られた個々の8T振幅値は平均化されて、平均8T振幅値として出力される。
【0053】
こうして得られた平均2T振幅値及び平均8T振幅値は、割り算回路10にて割り算されてセクタ100の振幅比が求められる。
【0054】
以降は、従来技術の場合と同様に、半導体レーザ2の再生パワーがこの振幅比に基づいて制御されるが、上記で説明したように、2T振幅値のばらつきが特に小さく抑えられているため、制御された再生パワーの誤差も非常に小さくなっており、エラーレートの極めて低いデータ再生を実現することが可能となっている。
【0055】
次に、上記構成における2T振幅値の検出から平均化までの構成及び動作について、さらに詳細に説明する。
【0056】
図3に示すように、短マークパターン検出回路6は、二値化処理回路13から出力される情報データビットを最新のものから10ビット分だけ順次記憶する10段1ビットシフトレジスタ61、特定パターンとしての2Tを含む特定パターンとして「1001100110」を記憶するレジスタ62、同様に特定パターンとしての2Tを含む他の特定パターン「0110011001」を記憶するレジスタ63、10段1ビットシフトレジスタ61とレジスタ62とをビット毎に比較して全ビットが一致するか否かを判定するコンパレータ64、同様に10段1ビットシフトレジスタ61とレジスタ63との一致を判定するコンパレータ65、及びコンパレータ64とコンパレータ65との論理和を求めるOR回路66から構成されている。
【0057】
一方、短マーク振幅計算回路8は、A/D変換器5から出力されるnビット(nはA/D変換器5の量子化ビット数)の再生信号データを最新のものから6個分だけ順次記憶する6段nビットシフトレジスタ81、入力された2つの例えば値Aと例えば値Bとの差の絶対値|A−B|を求める減算器82、入力データを順次加算して合計を求める合計回路83、カウンタ84、及び割り算回路85から構成されている。
【0058】
上記構成の短マークパターン検出回路6及び短マーク振幅計算回路8では、二値化処理回路13から出力されて10段1ビットシフトレジスタ61に記憶された情報データビット列「B0、B1、…、B9」は、レジスタ62に記憶された「1001100110」とコンパレータ64にて比較されると同時に、レジスタ63に記憶された「0110011001」ともコンパレータ65にて比較される。
【0059】
これらの比較結果は、OR回路66に入力され、両者の論理和が一致信号として短マーク振幅計算回路8内の合計回路83とカウンタ84とに送られる。すなわち、情報データビット列「B0、B1、…、B9」が「1001100110」又は「0110011001」のいずれかと一致した時に一致信号が送られる。
【0060】
一方、A/D変換器5から出力された再生信号のnビットデジタルデータ列「D4、D5、…、D9」は、10段1ビットシフトレジスタ61と同期して順次6段nビットシフトレジスタ81に記憶されている。なお、図4(a)(b)(c)に示すように、D4、D5、…、D9はそれぞれ情報データビットB4、B5、…、B9の再生信号波形に対応するサンプリング点のデジタルデータを表しているものとする。
【0061】
ここで、10段1ビットシフトレジスタ61の記憶データが古いものから順にB0、B1、…である時、6段nビットシフトレジスタ81の記憶データは古いものから順にD4、D5、…となっている。そして、データD4とデータD6との差の絶対値が減算器82にて求められている。
【0062】
ここで、OR回路66から一致信号が送られてくると、合計回路83はその時点において減算器82から出力されている値、すなわち|D4−D6|を加算すると同時に、カウンタ84をインクリメントする。
【0063】
以上の処理をセクタ100全体に渡って行うので、セクタ100の最後まで再生が終わった時点で、合計回路83にはセクタ100の情報データパターンに含まれる全ての特定パターン「1001100110」又は「0110011001」に対応する個々の再生波形の2T振幅値の総和が記憶されている。また、カウンタ84にはセクタ100に含まれていた特定パターンの総数が記憶されている。これらが割り算回路85にて割り算されて、セクタ100の平均2T振幅値として短マーク振幅計算回路8から出力される。なお、長マークパターン検出回路7と長マーク振幅計算回路9とによって実現される8T振幅値の検出から平均化までの構成及び動作については、上記短マークパターン検出回路6及び短マーク振幅計算回路8によって行われる2T振幅値の場合と原理的には全く同様であるので、詳細な説明は省略する。ただし、この場合において、長マークパターン検出回路7の各レジスタに記憶されているのは例えば一方が「011111111000000001」であり、他方は「100000000111111110」となる。
【0064】
このように、二値化処理後の再生情報データから特定パターンを検出して、その特定パターンに対応する再生信号から所定長マークの振幅値を確実に求めて平均化することができる。
【0065】
なお、本実施の形態においては、短マークとして2T、及び長マークとして8Tを用いたが、これらに限らないことは勿論であり、変調方式によって決まる最短マーク長を考慮して最も適切なマーク長を選べばよい。
【0066】
また、上記の説明においては、2Tマークの振幅値を再生波形のピーク位相でサンプリングして求める場合として説明したが、二値化処理方法として例えばPR(1,2,1)特性に基づくPRML(Partial Response Maximam Likelihood) 検出法を用いる場合、2Tマーク再生波形のサンプリング位相はピークから半クロックずれるため、特定パターンに含まれる一対の2Tマークに対応する波形から、上下各々2つずつの位相でサンプリングされた値を用いて振幅を計算する構成にしてもよい。
【0067】
また、本実施の形態では、光再生装置の例として光磁気ディスク再生装置について説明したが、本発明の光再生装置はこれに限られるものではなく、例えば本発明を相変化方式の光ディスク等の光再生装置に適用してもよい。
【0068】
このように、本実施の形態の光磁気ディスク再生装置では、光ビームのスポット径よりも小さい記録マークを再生するに際して、再生時の環境温度の変化による光ビームの最適な再生パワーの変動を防止すべく、光磁気ディスク1に記録された情報データから、例えば2Tマーク及び8Tマークの長短2種類の長さの各再生パワー制御用マークの振幅値を所定長マーク信号測定手段にてそれぞれ測定し、それら各振幅値に基づいて光ビームの再生パワーを制御する。
【0069】
ところで、従来では、光磁気ディスク1の各セクタ毎に再生パワー制御用領域を備えていたので、情報データを記録するための領域がその分だけ減ることになり、光磁気ディスク1の利用率が低下するという欠点があった。そこで、この問題を解決するために、情報データのビット配列パターンから再生パワー制御用マークを検出することが考えられるが、情報データのビット配列パターンには、各種の配列パターンが存在する。また、特に、例えば2Tマーク等のアパーチャ径よりも短い長さの再生パワー制御用マークについては、その前後に存在する長さの再生パワー制御用マークの波形干渉によって、その2Tマークの振幅値が影響を受ける。
【0070】
そこで、本実施の形態では、2Tマークを含む特定パターンとしての「1001100110」又は「0110011001」を情報データのビット配列パターンから検出して、上記特定パターンに含まれる、中央の「1100」又は「0011」にのみ対応する2Tマーク振幅値を測定する。
【0071】
この結果、2Tマークにのみ対応する振幅値を測定するので、2Tマークの振幅値の測定に際して、2Tマークの前後の影響を回避することができる。このため、短い長さの再生パワー制御用マークの振幅値の測定値がばらつくのを防止し、結果的にこの振幅値に基づいて制御した再生パワーに大きな誤差が発生してしまうのを防止することができる。
【0072】
したがって、光磁気ディスク1の利用率を低下することなく、再生パワーを最適値に保持し、読み取りエラーの発生確率を減少させ得る光磁気ディスク再生装置を提供することができる。
【0073】
また、本実施の形態の光磁気ディスク再生装置では、半導体レーザ2、フォトダイオード3、A/D変換器5及び二値化処理回路13にて、光磁気ディスク1の再生信号から情報データビットを再生し、短マークパターン検出回路6及び長マークパターン検出回路7が再生された情報データのビット配列パターンと、2Tを含む特定パターン「1001100110」及び2Tを含む他の特定パターン「0110011001」とを比較することにより一致を検出する。
【0074】
そして、短マーク振幅計算回路8及び長マーク振幅計算回路9は、短マークパターン検出回路6及び長マークパターン検出回路7により一致を検出した2Tを含む特定パターン「1001100110」及び2Tを含む他の特定パターン「0110011001」に含まれる2Tマークに対応する情報データビットの2Tマーク振幅値を測定する。
【0075】
これによって、具体的な所定長マーク信号測定手段を構成することができる。
【0076】
また、本実施の形態の光磁気ディスク再生装置では、2Tマークは、長さ2T(Tはチャネルビット長)のマークである。また、2Tを含む特定パターン「1001100110」及び2Tを含む他の特定パターン「0110011001」はmT・2T・2T・nT(m、nは所定の正整数)の長さ配列のパターンからなっている。
【0077】
すなわち、2Tを含む特定パターン「1001100110」及び2Tを含む他の特定パターン「0110011001」は、2Tマーク及び2Tスペースを対にした2T2Tつまり「1100」又は「0011」を有している。したがって、情報データのビット配列パターンから、2Tマーク振幅値の測定に必要な2T2Tつまり「1100」又は「0011」を検出して、上記特定パターンに含まれる2Tマークにのみ対応する2Tマーク振幅値を測定することができる。
【0078】
また、本実施の形態の光磁気ディスク再生装置では、m=n=2である。すなわち、特定パターンは、一般的にmT2T2TnT(m、nは所定の正整数である。)の長さ配列のパターンからなっているとともに、m=n=2となっている。したがって、特定パターンは2T・2T2T・2Tと表される。
【0079】
このことは、中央に2T2Tつまり「1100」又は「0011」が構成され、その前後においても各2Tのパターンつまり「00」又は「11」が配されることになる。
【0080】
したがって、この2T2Tの前後のパターンが2Tと異なる場合には、その前後に存在するパターンの波形干渉によって、2Tマーク振幅値が影響を受けるが、本実施の形態では、2T2Tの前後がいずれも2Tのパターンにて構成されるので、前後のパターンが2Tと異なることによる影響を防止することができる。
【0081】
また、2Tマークの前後のマーク長さを最も出現頻度の高い2Tマークとすることによって、より多くの2Tマークを検出することができるため、求めた2Tマークの再生信号特性について平均値を求めて測定値とする場合においても、平均化後の2Tマーク振幅値のばらつきを一層小さくすることができる。
【0082】
また、本実施の形態の光磁気ディスク再生装置では、測定された2Tマーク振幅値に基づいて再生条件を制御する差動増幅器11及びレーザパワー制御回路12がさらに設けられているので、差動増幅器11及びレーザパワー制御回路12によって、確実に、それら各2Tマーク振幅値及び8Tマーク振幅値に基づいて光ビームの再生パワーを制御することができる。
【0083】
また、本実施の形態の光磁気ディスク再生装置では、所定長マーク信号測定手段にて、長短2種類の長さの2Tマーク及び8Tマークの振幅値の比を測定し、差動増幅器11及びレーザパワー制御回路12にて、測定された振幅比が目標値に近づくように光ビームの再生パワーを制御する。
【0084】
したがって、これによって、具体的かつ確実に光ビームの再生パワーを適正に制御することができる。
【0085】
【発明の効果】
本発明の光再生装置は、以上のように、所定長マーク信号測定手段は、短い長さの再生パワー制御用マークを含む特定パターンを情報データのビット配列パターンから検出して、上記特定パターンに含まれる短い長さの再生パワー制御用マークにのみ対応する再生信号特性を測定するものである。
【0086】
それゆえ、所定長マーク信号測定手段は、短い長さの再生パワー制御用マークを含む特定パターンを情報データのビット配列パターンから検出して、上記特定パターンに含まれる短い長さの再生パワー制御用マークにのみ対応する再生信号特性を測定する。
【0087】
この結果、短い長さの再生パワー制御用マークにのみ対応する例えば振幅値等の再生信号特性を測定するので、短い長さの再生パワー制御用マークの振幅値の測定に際して、短い長さの再生パワー制御用マークの前後の影響を回避することができる。このため、短い長さの再生パワー制御用マークの振幅値の測定値がばらつくのを防止し、結果的にこの振幅値に基づいて制御した再生パワーに大きな誤差が発生してしまうのを防止することができる。
【0088】
したがって、光記録媒体の利用率を低下することなく、再生パワーを最適値に保持し、読み取りエラーの発生確率を減少させ得る光再生装置を提供することができるという効果を奏する。
【0089】
また、本発明の光再生装置は、上記記載の光再生装置において、所定長マーク信号測定手段は、光記録媒体の再生信号から情報データビットを再生するデータ再生手段と、上記データ再生手段にて再生された情報データのビット配列パターンと特定パターンとを比較することにより一致を検出する比較手段と、上記比較手段により一致を検出した特定パターンに含まれる短い長さの再生パワー制御用マークに対応する情報データビットの再生信号特性を測定する信号測定手段とを備えている。
【0090】
それゆえ、具体的な所定長マーク信号測定手段を構成することができるという効果を奏する。
【0091】
また、本発明の光再生装置は、上記記載の光再生装置において、短い長さの再生パワー制御用マークは、長さ2T(Tはチャネルビット長)のマークであり、特定パターンはmT・2T・2T・nT(m、nは所定の正整数)の長さ配列のパターンからなっているものである。
【0092】
それゆえ、短い長さの再生パワー制御用マークは、長さ2T(Tはチャネルビット長)のマークである。また、特定パターンは、短い長さの再生パワー制御用マークを有する2T・2Tを有している。したがって、情報データのビット配列パターンから、再生信号特性の測定に必要な2T・2Tをパターンを検出して、上記特定パターンに含まれる短い長さの再生パワー制御用マークにのみ対応する再生信号特性を測定することができるという効果を奏する。
【0093】
また、本発明の光再生装置は、上記記載の光再生装置において、m=n=2であるものである。
【0094】
それゆえ、特定パターンは2T・2T2T・2Tと表される。このことは、中央に2T2Tが構成され、その前後においても各2Tのパターンが配されることになる。したがって、この2T2Tの前後のパターンが2Tと異なる場合には、その前後に存在する長さのパターンの波形干渉によって、2Tマークの再生信号特性が影響を受けるが、本発明では、2T2Tの前後がいずれも2Tのパターンにて構成されるので、前後のパターンが2Tと異なることによる影響を防止することができる。
【0095】
また、2Tマークの前後のマーク長さを最も出現頻度の高い2Tマークとすることによって、より多くの2Tマークを検出することができるため、求めた2Tマークの再生信号特性について平均値を求めて測定値とする場合においても、平均化後の2Tマーク振幅値のばらつきを一層小さくすることができるという効果を奏する。
【0096】
また、本発明の光再生装置は、上記記載の光再生装置において、測定された再生信号特性に基づいて再生条件を制御する再生条件制御手段がさらに備えられているものである。
【0097】
それゆえ、測定された再生信号特性に基づいて再生条件を制御する再生条件制御手段がさらに設けられているので、再生条件制御手段によって、確実に、それら各再生信号特性に基づいて光ビームの再生パワーを制御することができるという効果を奏する。
【0098】
また、本発明の光再生装置は、上記記載の光再生装置において、所定長マーク信号測定手段は、長短2種類の長さの各再生パワー制御用マークの振幅値の比を測定する一方、再生条件制御手段は、測定された振幅比が目標値に近づくように光ビームの再生パワーを制御するものである。
【0099】
それゆえ、具体的かつ確実に光ビームの再生パワーを適正に制御することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明における光再生装置の実施の一形態を示す構成図である。
【図2】上記の光再生装置にて再生される光磁気ディスクの構成を示す模式図である。
【図3】上記光再生装置の短マークパターン検出回路及び短マーク振幅計算回路の詳細を示す構成図である。
【図4】(a)(b)(c)は上記短マークパターン検出回路及び短マーク振幅計算回路にて扱われる情報データビット列と再生波形のサンプルデジタルデータとの対応関係を説明する模式図である。
【図5】従来の光再生装置を示す構成図である。
【図6】上記の光再生装置にて再生される光磁気ディスクの構成を示す模式図である。
【図7】(a)(b)は上記光磁気ディスクの再生パワー制御用領域に記録されている短マークパターンと長マークパターンとを示す模式図である。
【図8】(a)〜(d)は、2Tマークの前後のマーク長による再生波形の違いを説明するための模式図である。
【図9】2Tマークの前後のマーク長による2T振幅値の違いを、実際の再生信号を用いた測定によって確認した結果のグラフである。
【符号の説明】
1 光磁気ディスク(光記録媒体)
2 半導体レーザ(データ再生手段、所定長マーク信号測定手段)
3 フォトダイオード(データ再生手段、所定長マーク信号測定手段)
4 再生クロック抽出回路
5 A/D変換器(データ再生手段、所定長マーク信号測定手段)
6 短マークパターン検出回路(比較手段、所定長マーク信号測定手段)
7 長マークパターン検出回路(比較手段、所定長マーク信号測定手段)
8 短マーク振幅計算回路(信号測定手段、所定長マーク信号測定手段)
9 長マーク振幅計算回路(信号測定手段、所定長マーク信号測定手段)
10 割り算回路
11 差動増幅器(再生条件制御手段)
12 レーザパワー制御回路(再生条件制御手段)
13 二値化処理回路(データ再生手段、所定長マーク信号測定手段)
61 10段1ビットシフトレジスタ
62 レジスタ(特定パターン)
63 レジスタ(特定パターン)
64 コンパレータ
65 コンパレータ
66 OR回路
81 6段nビットシフトレジスタ
82 減算器
83 合計回路
84 カウンタ

Claims (4)

  1. 光記録媒体に記録された情報データから光ビームのスポット径よりも長い長さと該光ビームのスポット径よりも短い長さとの長短2種類の長さの、各再生パワー制御用マーク又は再生パワー制御用スペースの再生信号特性をそれぞれ測定する所定長マーク信号測定手段を備え、それら各再生パワー制御用マーク又は再生パワー制御用スペースを再生し、それらの再生信号振幅の比が所定値に近づくように光ビームの再生パワーを制御する光再生装置において、
    上記所定長マーク信号測定手段は、
    情報データから短い長さの再生パワー制御用マーク又は再生パワー制御用スペースの再生信号特性を測定するときには、短い長さの再生パワー制御用マーク又は再生パワー制御用スペースの前後に所定長のスペース又はマークを備えた一定形状のビット配列からなる短マーク用特定パターンのみを情報データのビット配列パターンから検出して、上記短マーク用特定パターンに含まれる短い長さの再生パワー制御用マーク又は再生パワー制御用スペースの再生信号特性を測定する一方、
    情報データから長い長さの再生パワー制御用マーク又は再生パワー制御用スペースの再生信号特性を測定するときには、長い長さの再生パワー制御用マーク又は再生パワー制御用スペースを備えた一定形状のビット配列からなる長マーク用特定パターンのみを情報データのビット配列パターンから検出して、上記長マーク用特定パターンに含まれる長い長さの再生パワー制御用マーク又は再生パワー制御用スペースの再生信号特性を測定することを特徴とする光再生装置。
  2. 所定長マーク信号測定手段は、光記録媒体の再生信号から情報データビットを再生するデータ再生手段と、
    上記データ再生手段にて再生された情報データのビット配列パターンと短マーク用特定パターン又は長マーク用特定パターンとを比較することにより一致を検出する比較手段と、
    上記比較手段により一致を検出した短マーク用特定パターンに含まれる短い長さの再生パワー制御用マーク若しくは再生パワー制御用スペース、又は長マーク用特定パターンに含まれる長い長さの再生パワー制御用マーク若しくは再生パワー制御用スペースに対応する情報データビットの再生信号特性を測定する信号測定手段とを備えていることを特徴とする請求項1記載の光再生装置。
  3. 短い長さの再生パワー制御用マーク又は再生パワー制御用スペースは、長さ2T(Tはチャネルビット長)のマーク又はスペースであり、特定パターンはmTスペース・2Tマーク・2Tスペース・nTマーク(m、nは所定の正整数)の長さ配列のパターンからなっていることを特徴とする請求項1又は2記載の光再生装置。
  4. m=n=2であることを特徴とする請求項3記載の光再生装置。
JP2001055066A 2001-02-28 2001-02-28 光再生装置 Expired - Fee Related JP4451004B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001055066A JP4451004B2 (ja) 2001-02-28 2001-02-28 光再生装置
US10/082,466 US7474598B2 (en) 2001-02-28 2002-02-25 Optical reproducing device that controls the strength of the light beam during reproduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001055066A JP4451004B2 (ja) 2001-02-28 2001-02-28 光再生装置

Publications (2)

Publication Number Publication Date
JP2002260308A JP2002260308A (ja) 2002-09-13
JP4451004B2 true JP4451004B2 (ja) 2010-04-14

Family

ID=18915306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001055066A Expired - Fee Related JP4451004B2 (ja) 2001-02-28 2001-02-28 光再生装置

Country Status (2)

Country Link
US (1) US7474598B2 (ja)
JP (1) JP4451004B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134018A (ja) * 2002-10-11 2004-04-30 Hitachi Ltd 情報記録方法及び再生方法
JP4256241B2 (ja) * 2003-10-06 2009-04-22 富士通株式会社 光学的記憶装置、光記憶媒体の再生方法及び光記憶媒体の記録方法
WO2005069282A2 (en) * 2004-01-12 2005-07-28 Koninklijke Philips Electronics N.V. Method and apparatus for controlling a readout parameter during reading
KR100667780B1 (ko) * 2004-11-22 2007-01-11 삼성전자주식회사 검정 방법, 기록/재생 장치 및 정보 저장 매체
US7903511B2 (en) 2005-09-05 2011-03-08 Nec Corporation Optical information reproducing method, optical information reproducing device, and optical information recording medium for performing reproduction of information by using laser beams
JP4523583B2 (ja) * 2006-12-27 2010-08-11 太陽誘電株式会社 データ記録評価方法及び光ディスク記録再生装置
JP5005419B2 (ja) * 2007-04-26 2012-08-22 シャープ株式会社 再生信号評価装置、再生信号評価方法、制御プログラム、およびコンピュータ読み取り可能な記録媒体
JP5210658B2 (ja) * 2008-02-26 2013-06-12 太陽誘電株式会社 光情報記録媒体の再生のためのターゲットレベル設定方法、光情報記録媒体処理装置、ターゲットレベル設定プログラム
JP4657338B2 (ja) * 2008-10-09 2011-03-23 シャープ株式会社 光情報記録媒体再生装置、光情報記録媒体再生プログラム、およびコンピュータ読み取り可能な記録媒体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9403025D0 (en) * 1994-02-17 1994-04-06 Hewlett Packard Ltd Methods and apparatus for storing data and auxilli ary information
JP3355043B2 (ja) * 1994-08-29 2002-12-09 シャープ株式会社 光磁気記録媒体の記録再生装置
JP3366973B2 (ja) * 1996-10-18 2003-01-14 富士通株式会社 光記録媒体の情報記録方法
EP0887790B1 (en) * 1997-06-24 2011-05-04 Sharp Kabushiki Kaisha Optical reproducing device and optical memory system comprising the device and a medium
JP3640776B2 (ja) * 1997-10-03 2005-04-20 シャープ株式会社 光再生装置及び光記録媒体、並びに光記録媒体の再生方法
JP3660114B2 (ja) * 1997-11-14 2005-06-15 シャープ株式会社 光記憶装置における記録条件制御方法
JP3832956B2 (ja) * 1998-01-29 2006-10-11 富士通株式会社 光学記憶装置及び光学記憶装置のセクターマーク検出方法
JP3545219B2 (ja) * 1998-09-21 2004-07-21 シャープ株式会社 光記憶装置における再生光量制御装置
JP3701503B2 (ja) * 1999-04-26 2005-09-28 シャープ株式会社 光磁気記録媒体、光磁気記録再生装置及び光磁気記録方法
JP2000331397A (ja) * 1999-05-19 2000-11-30 Sony Corp 光出力調整装置及び光出力調整方法
JP3775564B2 (ja) * 2000-04-14 2006-05-17 シャープ株式会社 光再生装置
JP2002092994A (ja) * 2000-09-20 2002-03-29 Sharp Corp 光再生装置

Also Published As

Publication number Publication date
JP2002260308A (ja) 2002-09-13
US7474598B2 (en) 2009-01-06
US20020145956A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
US6661594B2 (en) Signal processing circuit and information recording/reproducing apparatus using the same, and method for optimizing coefficients of equalizer circuit
US5363352A (en) Magneto-optic disk apparatus
KR100527153B1 (ko) 신호평가장치, 신호평가방법, 신호품질평가방법 및재생장치, 기록장치
US6288992B1 (en) Optical reproducing device and optical memory medium
JP4451004B2 (ja) 光再生装置
JP3218368B2 (ja) データ再生装置
JP2877109B2 (ja) 情報検出装置および情報検出方法
JPH10134519A (ja) 変調装置および復調装置とそれらの方法
JP3836313B2 (ja) 光記録方法及び光記録装置
JP3432003B2 (ja) 情報再生装置及び情報記録再生装置
KR100357641B1 (ko) 오프셋 제어 회로 및 오프셋 제어 방법
WO1999053489A1 (fr) Procede et dispositif de reproduction d'informations
JP2003196838A (ja) 光ディスク装置と情報再生装置及びこれらの再生方法
KR20030000349A (ko) 워블 신호를 이용한 시스템 클록 생성 장치 및 그를이용한 데이터 재생 장치
KR100556004B1 (ko) 재생 신호 처리 장치 및 광 디스크 장치
KR100323175B1 (ko) 광재생장치및광기록매체
US7120102B2 (en) Jitter detection apparatus and jitter detection method
JP3640776B2 (ja) 光再生装置及び光記録媒体、並びに光記録媒体の再生方法
JPH01102739A (ja) 光ディスク装置
US7330422B2 (en) Optical storage medium having test pattern for measuring a modulation degree during recording process
JP2007207283A (ja) 周波数検出装置と周波数検出方法及び光ディスク装置
US7561642B2 (en) Recording condition setting device, recording/reproducing device, recording condition setting method, control program, and recording medium
US20060210243A1 (en) Information recording medium and apparatus for recording information to or reproducing information from the same
JPH08124137A (ja) ヘッドずれ測定方法及び装置並びにデータ記録再生方法及び装置
JP2870060B2 (ja) 符号化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees