JP4406453B2 - シフト切替装置 - Google Patents

シフト切替装置 Download PDF

Info

Publication number
JP4406453B2
JP4406453B2 JP2007260048A JP2007260048A JP4406453B2 JP 4406453 B2 JP4406453 B2 JP 4406453B2 JP 2007260048 A JP2007260048 A JP 2007260048A JP 2007260048 A JP2007260048 A JP 2007260048A JP 4406453 B2 JP4406453 B2 JP 4406453B2
Authority
JP
Japan
Prior art keywords
phase
motor
failure
shift
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007260048A
Other languages
English (en)
Other versions
JP2009092081A (ja
Inventor
雄二 井上
英治 磯邉
神尾  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2007260048A priority Critical patent/JP4406453B2/ja
Priority to US12/241,381 priority patent/US8035934B2/en
Priority to DE102008042589.3A priority patent/DE102008042589B4/de
Publication of JP2009092081A publication Critical patent/JP2009092081A/ja
Application granted granted Critical
Publication of JP4406453B2 publication Critical patent/JP4406453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1224Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1288Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、自動変速機のシフトレンジを電動モータによって切り替えるシフトバイワイヤ方式のシフト切替装置に関する。
エンジン(内燃機関)を搭載した車両において、エンジンが発生するトルク及び回転速度を車両の走行状態に応じて適切に駆動輪に伝達する変速機として、エンジンと駆動輪との間の変速比を自動的に最適設定する自動変速機が知られている。
車両に搭載される自動変速機としては、例えば、クラッチ及びブレーキと遊星歯車装置とを用いてギヤ段を設定する遊星歯車式変速機や、変速比を無段階に調整するベルト式無段変速機(CVT:Continuously Variable Transmission)がある。
遊星歯車式の自動変速機が搭載された車両においては、車速とスロットル開度(またはアクセル開度)に応じた最適なギヤ段を得るための変速線(ギヤ段の切り替えライン)を有する変速マップがECU(Electronic Control Unit)等に記憶されており、車速及びスロットル開度に基づいて変速マップを参照して目標ギヤ段を算出し、その目標ギヤ段に基づいて、摩擦係合要素であるクラッチ、ブレーキ及びワンウェイクラッチなどを、所定の状態に係合または解放することによってギヤ段(変速段)を自動的に設定している。
また、ベルト式無段変速機は、プーリ溝(V溝)を備えたプライマリプーリ(入力側プーリ)とセカンダリプーリ(出力側プーリ)とにベルトを巻き掛け、一方のプーリのプーリ溝の溝幅を拡大すると同時に、他方のプーリのプーリ溝の溝幅を狭くすることにより、それぞれのプーリに対するベルトの巻き掛け半径(有効径)を連続的に変化させて変速比を無段階に設定するように構成されている。
このような自動変速機を制御する制御装置として、自動変速機のシフトレンジの位置をセンサによって電気的に検出し、この検出信号に基づいてシフト切替用の電動モータを駆動して自動変速機のマニュアルバルブを切り替えることにより、例えば、P(パーキング)、R(リバース)、N(ニュートラル)、D(ドライブ)などのシフトポジションを切り替える、いわゆるシフトバイワイヤ方式のシフト切替装置がある。
そして、このようなシフトバイワイヤ方式のシフト切替装置によれば、一般的なシフト切替装置つまり自動変速機のシフトレンジを運転者によるシフトレバー操作によって直接切り替える方式のシフト切替装置のように、シフトレバーとシフトレンジ切替機構とを機械的に接続する必要がないので、これらの各部を車両に搭載する際のレイアウト上に制限がなく、設計の自由度を高めることができる。また、車両への組み付け作業も簡単に行うことができるという利点がある。
シフト切替装置に適用される電動モータとして、構造が簡単で安価なスイッチトリアクタンスモータ(SRモータ)等のブラシレス型のモータがある。また、シフト切替装置に適用されるモータには、ロータの回転に同期してパルス信号を出力するエンコーダが搭載され、このエンコーダのパルス信号をカウントし、そのカウント値に基づいてロータの回転位置を検出して通電相を順次切り替えていくことでロータを回転駆動するタイプのものがある。このようなエンコーダ付きのモータは、起動後のエンコーダカウント値に基づいてロータの回転位置を検出することができるので、フィードバック制御系(F/B制御系)によりロータを目標位置まで回転させることが可能である。
ところで、シフトバイワイヤ方式のシフト切替装置において、シフト切替用の電動モータが故障した場合、シフトレンジの切り替えができなくなることが懸念されるため、フェールセーフを実施する必要がある。モータ故障に関する技術として下記の特許文献1及び2に記載の技術がある。
特許文献1に記載の技術では、シフト切替装置の駆動源である電動モータの各相の巻線に流れる電流から断線・短絡故障を判定し、故障判定時には、その故障の旨を警告ランプの点灯等により乗員に報知している。特許文献2に記載の技術では、2つの抵抗からなる断線検出回路を、電動モータの各相の巻線の通電ラインに設けることで、各相の巻線の断線を相毎に検出している。
特開2000−170905号公報 特開2004−129450号公報 特開2006−336710号公報
ところで、シフトバイワイヤ方式のシフト切替装置において、電動モータ(例えば3相交流モータ)の1相がグランド短絡した場合、故障相が常に通電状態となり、その故障相が他の2相を引き摺るため、電動モータのロータの回転を立ち上げることはできない。これに対し、断線故障である場合、ロータの回転を立ち上げることが可能な場合がある。すなわち、3相のうち1相の巻線が断線した場合、その断線した1相の巻線に電流を流せなくなるが、他の2相の巻線に電流を流すことでロータを回転させることができる。このように断線故障の場合、電動モータを回転させてシフトレンジの切り替えを継続することが可能になる場合があり、その実現が望まれている。
しかし、従来の故障検出手段(上記した特許文献1及び2に記載の技術も含む)では、断線故障と短絡故障とを区別することができないため、断線故障時であってもモータ駆動によるシフトレンジの切り替えを実施していないのが現状である。すなわち、断線故障と短絡故障とを区別できない状況で、電動モータの駆動コイルに通電を行うと、モータ故障が短絡故障である場合、故障相の通電ラインに過電流が流れるおそれがあるので、これを回避するために、断線・短絡故障が発生したときには、断線故障または短絡故障に関わらず駆動コイルへの通電を停止している。
なお、短絡検出用のセンサを設けて、断線・短絡を判別することが考えられるが、この場合、部品点数が多くなり、コストアップを招くという問題がある。また、センサを用いてグラント短絡を検出するシステムを実現することは容易ではない。
本発明はそのような実情を考慮してなされたもので、自動変速機のシフトレンジを電動モータによって切り替えるシフトバイワイヤ方式のシフト切替装置において、センサ等の部品を追加することなく、電動モータの故障時に断線・短絡を判定することが可能な技術の提供を目的とする。
−課題の解決原理−
上記の目的を達成するために講じられた本発明の解決原理は、シフトバイワイヤ方式のシフト切替装置において、電動モータが断線・短絡故障したときに故障相を判定し、その故障相以外の正常相を用いて電動モータの作動を試み、電動モータが作動したときには断線故障と判定し、電動モータが作動しないときには短絡故障と判定する。このような判定処理により、短絡検出用のセンサなどの部品を追加することなく、電動モータの故障時に断線・短絡を判定することができる。
−解決手段−
具体的に、本発明は、自動変速機のシフトレンジを電動モータによって切り替えるシフトバイワイヤ方式のシフト切替装置を前提としている。そして、このようなシフト切替装置において、前記電動モータの各相の通電ラインの故障を相毎に判定する故障相判定手段と、前記故障相判定手段にて「故障」と判定された相を使用せずに正常相のみで電動モータのオープンループ制御を実施する故障時モータ制御手段とを備え、前記電動モータのオープンループ制御を実施した際に、当該電動モータが作動しないときには通電ラインの故障を「短絡故障」と判定することを特徴としている。
以上の特定事項により、電動モータに故障が発生した際にはその故障相を判定することができる。ただし、この故障相判定では、断線・短絡故障を特定することができない。そこで、本発明では、電動モータの故障した際には、故障相を使用せずに正常相のみを用いて当該電動モータのオープンループ制御を実施して、断線故障と短絡故障とを判定する。
具体的には、例えば電動モータが3相交流モータであり、その3相のうちの1相の通電ラインの断線・短絡を検出した場合、故障相(例えばU相)への通電は行わずに、他の2相(例えばV相、W相)の巻線への通電を行って、電動モータのオープンループ制御を実施する。ここで、電動モータの各相のうちの1相が短絡(グランド短絡)している場合、上記した電動モータのオープンループ制御を実施すると、故障相が他の2相を引き摺るので電動モータは作動(回転)しない。これに対し、電動モータの各相のうちの1相の巻線が断線している場合、他の2相への通電により発生するトルクによって電動モータが作動(回転)する。
従って、上記した電動モータのオープンループ制御を実施した際に、電動モータが作動するか否かを判定し、電動モータが作動したときには断線故障と判定し、電動モータが作動しないときには短絡故障と判定することができる。このように、本発明では、短絡検出用のセンサ等の部品を追加することなく、電動モータの故障が短絡故障または断線故障のいずれの故障であるのかを判定することができる。
電動モータの作動を検出する具体的な方法として、電動モータの回転角度を検出する角度検出手段(エンコーダ)を設け、その角度検出手段の検出値が変化したときには「断線故障」であると判定し、角度検出手段の検出値が変化しないときに「短絡故障」であると判定するという方法を挙げることができる。また、自動変速機のシフトレンジ位置を検出するシフトレンジ位置検出手段(NSWセンサ)を設け、そのシフトレンジ位置検出手段の検出値が変化したときには「断線故障」であると判定し、シフトレンジ位置検出手段の検出値が変化しないときに「短絡故障」であると判定するという方法を挙げることができる。
そして、電動モータの故障が断線故障である場合、上記した故障時のオープンループ制御(例えば正常相(2相)の通電制御)の実施により電動モータを回転させることが可能であるので、シフトレンジの切り替えを継続することができる。一方、電動モータの故障が断線故障である場合、例えばモータリレーOFF等によって電動モータへの電力供給を遮断することで、故障相に過電流が流れることを防止することができる。
本発明において、電動モータとして3相交流モータを用いる場合、その3相交流モータの1相の巻線が「故障」と判定したときに、他の2相で3相交流モータのオープンループ制御を実施する。
また、電動モータとしては、スイッチトリアクタンスモータ(SRモータ)を挙げることができる。SRモータは、ステータとロータが共に突極構造を持つモータで、永久磁石が不要で構造が簡単であるという利点がある。さらに、電動モータとして、2系統の駆動コイルを有するコイル2重系のモータ(図6参照)を用いてもよい。
本発明によれば、短絡検出用のセンサ等の部品を追加することなく、電動モータの故障が短絡故障または断線故障のいずれの故障であるのかを判定することができる。そして、その判定結果が断線故障(1相の断線故障)である場合、故障相以外の正常な相(2相)の巻線への通電により電動モータを回転駆動することが可能になるので、電動モータの故障時においてシフトレンジの切り替えを継続することができる。一方、短絡故障である場合、電動モータと電源(車載バッテリ)との接続を遮断することで、電動モータの故障相に過電流が流れることを防止することができる。
以下、本発明の実施形態を図面に基づいて説明する。
図1はシフト切替装置の一例を示すブロック図である。
この例のシフト切替装置1は、車両に搭載された自動変速機2のシフトレンジを切り替える装置であって、車両電源スイッチ11、Pスイッチ12、シフトスイッチ13、表示部14、メータ15、シフトレンジ切替機構100、このシフトレンジ切替機構100を駆動するモータ101、エンコーダ103、NSW(非接触ニュートラルスイッチ)センサ104、及び、SBW_ECU(Shift by Wire_ECU)200などを備えている。シフト切替装置1は、電気制御により自動変速機2のシフトレンジを切り替えるシフトバイワイヤ装置として機能する。
車両電源スイッチ11は車両電源のON/OFFを切り替えるためのスイッチである。車両電源スイッチ11は、特に限定されるものではないが、例えばイグニッションスイッチである。車両電源スイッチ11が運転者などのユーザから受け付けた指示はSBW_ECU200に伝達される。そして、車両電源スイッチ11がONに操作されると、車両に搭載されたバッテリ(図示せず)から電力が供給されてシフト切替装置1が起動する。
Pスイッチ12は、シフトレンジをパーキング以外のレンジ(非Pレンジ)からパーキングレンジ(Pレンジ)へ切り替えるためのスイッチであって、スイッチの状態を運転者に示すためのインジケータ12a、及び、運転者からの指示を受け付ける入力部12bなどを備えており、運転者による入力部12bの操作(ON操作)により、シフトレンジをPレンジに入れる指示を入力することができる。この入力部12bの操作による指示(Pレンジに入れる指示)はSBW_ECU200に入力される。なお、入力部12bとしては、例えばモーメンタリスイッチを挙げることができる。
シフトスイッチ13は、運転者によって操作されるスイッチであって、このシフトスイッチ13の操作により、自動変速機2のシフトレンジを、リバースレンジ(Rレンジ)、ニュートラルレンジ(Nレンジ)、ドライブレンジ(Dレンジ)に切り替えことができる。また、シフトレンジがPレンジに入っているときには、そのPレンジの解除を行うことができる。シフトスイッチ13が運転者によって操作されたときには、その操作情報がSBW_ECU200に入力される。
表示部14は運転者に対する指示や警告などを表示する。メータ15は車両の機器の状態やシフトレンジの状態などを表示する。これら表示部14及びメータ15の各表示はSBW_ECU200によって制御される。
NSWセンサ104は、後述するシフトレンジ切替機構100の出力軸121(図2参照)の回転角度に応じて出力信号(出力電圧)がリニアに変化する回転角度センサ(例えばポテンショメータ)によって構成されており、その出力電圧によって現在の出力軸121の回転角度(後述するディテントレバー122の回転角度)検出することができる。また、NSWセンサ104の出力信号からシフトレンジ位置を検出することができる。NSWセンサ104にて検出された回転角度はSBW_ECU200に入力される。なお、モータ101及びエンコーダ103については後述する。
そして、SBW_ECU200は、シフト切替装置1の動作を統括的に管理する。例えば、SBW_ECU200は、シフトレンジをPレンジと非Pレンジとの間で切り替えるために、シフトレンジ切替機構100(図2)のモータ101を駆動制御するとともに、現在のシフトレンジの状態をインジケータ12aに表示する。具体的には、例えば、シフトレンジが非Pレンジであるときに、運転者が入力部12bを操作(スイッチON)すると、SBW_ECU200は、シフトレンジをPレンジに切り替えるとともに、インジケータ12aに現在のシフトレンジがPレンジである旨を表示する。
また、SBW_ECU200は、運転者によるシフトスイッチ13の操作にて指示されたシフトレンジに応じて、自動変速機2のシフトレンジを切り替える制御(モータ101の駆動制御)を行なうとともに、現在のシフトレンジの状態をメータ15に表示する。さらに、SBW_ECU200は運転者に対する指示や警告などを表示部14に表示する。
以上のシフト切替装置1において、自動変速機2は、CVTなどの無段変速機または遊星歯車式変速機などの有段変速機のいずれであってもよい。
−シフトレンジ切替機構−
次に、シフトレンジ切替機構100について図2を参照して説明する。
この例のシフトレンジ切替機構100は、自動変速機2のシフトレンジを、Pレンジ、Rレンジ、Nレンジ、Dレンジに切り替える機構である。このシフトレンジ切替機構100の駆動源となるモータ101は、例えばスイッチトリラクタンスモータ(SRモータ)等の同期モータであって、減速機構102が設けられている。減速機構102の回転軸には出力軸121が嵌合連結されており、この出力軸121の回転角度を検出するNSWセンサ104が設けられている。
出力軸121には、自動変速機2の油圧制御回路のマニュアルバルブ21を切り替えるためのディテントレバー122が固定されている。
ディテントレバー122には、マニュアルバルブ21のスプール弁22が連結されており、モータ101によって出力軸121と一体にディテントレバー122を回動させることで、マニュアルバルブ21の操作量(スプール弁22の位置)を切り替えて、自動変速機2のレンジを、Pレンジ、Rレンジ、Nレンジ、Dレンジのいずれかに切り替える。
ディテントレバー122には、マニュアルバルブ21のスプール弁22を、Pレンジ、Rレンジ、Nレンジ、Dレンジの各レンジに対応する位置に保持するための4個の凹部122aが形成されている。
ディテントレバー122の上方にディテントスプリング(板ばね)123が配置されている。ディテントスプリング123はマニュアルバルブ21に片持ち支持で固定されている。ディテントスプリング123の先端部にはローラ124が取り付けられている。ローラ124はディテントスプリング123の弾性力によってディテントレバー122に押圧されている。そして、ローラ124がディテントレバー122の目標シフトレンジの凹部122aに嵌まり込むことで、ディテントレバー122が目標シフトレンジの回転角度で保持されて、マニュアルバルブ21のスプール弁22の位置が目標シフトレンジの位置で保持されるようになっている。
一方、ディテントレバー122には、L字形のパーキングロッド125が固定されている。パーキングロッド125の先端部には円錐テーパ状のカム126が設けられており、このカム126の外周面(カム面)にロックレバー127が当接している。ロックレバー127はカム126の位置に応じて回転軸128を中心にして上下動し、その上下動によってロックレバー127のロック爪127aがパーキングギヤ129に係合し、または、パーキングギヤ129からロック爪127aが外れることにより、パーキングギヤ129の回転をロック/ロック解除するように構成されている。そして、パーキングギヤ129は、自動変速機2の出力軸に設けられており、このパーキングギヤ129がロックレバー127によってロックされると、車両の駆動輪が回り止めされた状態(パーキング状態)に保持される。
以上のシフトレンジ切替機構100において、Pレンジでは、パーキングロッド125がロックレバー127に接近する方向に移動して、カム126の大径部分がロックレバー127を押し上げてロックレバー127のロック爪127aがパーキングギヤ129に嵌まり込んでパーキングギヤ129をロックした状態となり、これによって自動変速機2の出力軸(駆動輪)がロックされた状態(パーキング状態)に保持される。
一方、Pレンジ以外のシフトレンジでは、パーキングロッド125がロックレバー127から離れる方向に移動し、この移動に伴って、ロックレバー127のカム126への接触部分が大径部分から小径部分に移動してロックレバー127が下降する。これによってロックレバー127のロック爪127aがパーキングギヤ129から外れてパーキングギヤ129のロックが解除され、自動変速機2の出力軸が回転可能な状態(走行可能な状態)に保持される。
−モータ−
次に、シフトレンジ切替機構100の駆動源であるモータ101について図3及び図4を参照して説明する。
この例のモータ(SRモータ)101は、ステータ111とロータ112が共に突極構造を持つモータで、永久磁石が不要で構造が簡単であるという利点がある。
円筒状のステータ111の内周部には、例えば12個の突極111aが等間隔に形成されている。一方、ロータ112の外周部には、例えば8個の突極112aが等間隔に形成されており、このロータ112の回転に伴い、ロータ112の各突極112aがステータ111の各突極111aと微小ギャップを介して順番に対向するようになっている。ステータ111の12個の突極111aには、U相、V相、W相の合計12個の巻線113が順番に巻回されている。なお、ステータ111の突極111a及びロータ112の突極112aの数は特に限定されず、適宜変更してもよい。
図3に示すように、U相、V相、W相の合計12個の巻線113の巻回順序は、ステータ111の12個の突極111aに対して、例えば、V相→W相→U相→V相→W相→U相→V相→W相→U相→V相→W相→U相の順序で巻回されている。
また、図4に示すように、U相、V相、W相の合計12個の巻線113がY結線され(各相U,V,Wの4個の巻線113はそれぞれ直列に接続され)、1系統の駆動コイル110が構成されている。この駆動コイル110は、車両に搭載されたバッテリ(図示せず)を電源としてモータドライバ210によって駆動される。なお、図4に示すモータドライバ210の回路構成例では、各相U,V,W毎にスイッチングトランジスタ211を1個ずつ設けたユニポーラ駆動方式の回路構成としているが、各相U,V,W毎にスイッチングトランジスタを2個ずつ設けたバイポーラ駆動方式の回路構成を採用してもよい。
そして、この例では、駆動コイル110の中性点を、バッテリの正極(電圧Vb)側に接続し、駆動コイル110の各相U,V,Wの巻線113の一端をモータドライバ210の各スイッチングトランジスタ211に接続した構成となっている。モータドライバ210の各スイッチングトランジスタ211のON/OFFは、SBW_ECU200のCPU201によって制御される。また、駆動コイル110の中性点とバッテリの正極(電圧Vb)との間にモータリレー230が接続されている。このモータリレー230は、常時ONであって、SBW_ECU200のCPU201からの指令信号によってOFFに設定される。具体的には、SBW_ECU200が後述する「短絡故障」を判定したときにOFFに設定される。
<断線・短絡検出>
次に、モータ101の断線・短絡検出について説明する。
この例においては、各相U,V,Wの巻線113の故障(断線・短絡)を検出するために、各相U,V,Wの巻線113の通電ラインにそれぞれ故障検出回路220を設けている。
故障検出回路220は、直流電源電圧Vcc(例えば5V)側とグラウンド側との間に直列接続された2つの抵抗221,222を有し、それら2つの抵抗221,222の中間接続点を各相U,V,Wの通電ラインに接続するとともに、2つの抵抗221,222の中間接続点を信号線を介してCPU201の各入力ポートに接続し、2つの抵抗221,222の中間接続点の電圧レベル(各相U,V,Wの通電ラインの電圧レベル)を各入力ポートを介して検出信号としてCPU201に読み込むようになっている。なお、直流電源電圧Vcc側の抵抗221の抵抗値R1と、グラウンド側の抵抗222の抵抗値R2とは、R1>R2の関係を満たすように設定されている。
以上の構造の故障検出回路220において、巻線113の通電ラインが正常(断線・短絡なし)である場合、スイッチングトランジスタ211をOFFにすると、故障検出回路220の2つの抵抗221,222の中間接続点の電圧レベルが巻線113を介して印加されるバッテリ電圧Vbによって上昇して、故障検出回路220の検出信号がハイレベルとなる。また、スイッチングトランジスタ211をONにすると、故障検出回路220の2つの抵抗221,222の中間接続点がスイッチングトランジスタ211を介してグラウンド側に導通した状態となり、検出信号がローレベルとなる。
これに対し、巻線113の通電ラインが故障している場合、例えば図4に示す箇所(U相)で故障が生じている場合、スイッチングトランジスタ211をOFFにしても、故障検出回路220の2つの抵抗221,222の中間接続点にはバッテリ電圧Vbが印加されないため、U相の故障検出回路220の検出信号がローレベルに維持され、ハイレベルには反転しない。なお、他のV相、W相についても、同様な箇所で故障が生じている場合、スイッチングトランジスタ211をOFFにしても、故障検出回路220の検出信号がローレベルに維持される。
このような関係から、SBW_ECU200(CPU201)は、各相U,V,Wのスイッチングトランジスタ211をOFFにしたときに、各相U,V,Wの故障検出回路220の検出信号がハイレベルになれば、各相U,V,Wの巻線113の通電ラインが正常(断線なし)と判定する。一方、各相U,V,Wのスイッチングトランジスタ211をOFFにしたときに、各相U,V,Wの故障検出回路220の検出信号がローレベルのまま変化しなければ、各相U,V,Wの巻線113の通電ラインが故障(断線・短絡)していると判定する。
ただし、図4に示す回路構成では、モータ101の故障相を特定することができるが、断線と短絡とを区別することができない。すなわち、例えば図4に示す箇所(U相)の故障が断線である場合、及び、その箇所の故障がグランド短絡である場合のいずれの場合でも、故障検出回路220の2つの抵抗221,222の中間接続点にはバッテリ電圧Vbが印加されないので、スイッチングトランジスタ211をOFFにしても、故障検出回路220の検出信号がローレベルとなる。このため、巻線113の通電ラインに故障が発生した場合に、その故障が断線または短絡のいずれの故障であるのかを判別することができない。
なお、図4に示す回路構成では、SBW_ECU200の回路基板に、モータドライバ210及び各相U,V,Wの故障検出回路220を搭載しているが、これに限定されることなく、モータドライバ210及び故障検出回路220のいずれか一方または双方をSBW_ECU200の外部に設けてもよい。
−モータの駆動制御−
この例のモータ101には、ロータ112の回転角度を検出するエンコーダ103(図1及び図2参照)が設けられている。エンコーダ103は、例えば磁気式のロータリエンコーダであって、モータ101のロータ112の回転に同期してA相、B相、Z相のパルス信号をSBW_ECU200に出力するように構成されている。
SBW_ECU200は、エンコーダ103から出力されるA相信号とB相信号の立ち上がり/立ち下がりの両方のエッジをカウントして、そのエンコーダカウント値に応じてモータドライバ210によってモータ101の通電相を所定の順序で切り替えることでモータ101を回転駆動する。この際、A相信号とB相信号の発生順序によってロータ112の回転方向を判定し、正回転(Pレンジ→Dレンジの回転方向)ではエンコーダカウント値をカウントアップし、逆回転(Dレンジ→Pレンジの回転方向)ではエンコーダカウント値をカウントダウンする。これによって、モータ101が正回転/逆回転のいずれの方向に回転しても、エンコーダカウント値とモータ101の回転角度との対応関係が維持されるので、正回転/逆回転のいずれの回転方向でも、エンコーダカウント値によってモータ101の回転角度を検出して、その回転角度に対応した相の巻線113に通電してモータ101を回転駆動する。なお、エンコーダ103のZ相信号は、ロータ112の基準回転角度を検出するのに用いられる。
そして、以上の構成のシフト切替装置1において、運転者がシフトスイッチ13を操作すると、SBW_ECU200は、シフトスイッチ13ので選択されたシフトレンジに対応する目標回転角度(エンコーダカウント値の目標値)を設定して、モータ101への通電を開始し、モータ101の検出回転角度(エンコーダカウント値)が目標回転角度と一致する位置で停止するようにモータ101をフィードバック制御(F/B制御)する。さらに、SBW_ECU200は、NSWセンサ104の出力信号を読み込んで、その出力信号に基づいて、現在の出力軸121の回転角度(マニュアルバルブ21の操作量)、つまり、現在のシフトレンジがPレンジ、Rレンジ、Nレンジ、Dレンジのいずれであるかを判定して、シフトレンジの切り替えが正常に行われたか否かを確認する。
−フェールセーフ制御等−
まず、シフト切替装置1の駆動源であるモータ101において、例えば図4に示す箇所(U相の巻線113とスイッチングトランジスタ211との間の通電ライン)で故障が発生し、その故障がグランド短絡である場合、U相が常に通電状態となり、このU相が他の2相(V相、W相)を引き摺るため、モータ101のロータ112の回転を立ち上げることはできない。
これに対し、断線故障である場合、1つの相の巻線113の通電ラインが断線していても、それ以外の相の巻線113を用いてロータ112の回転を立ち上げることができる。すなわち、断線した相(U相)の巻線113に電流を流せなくなっても、他の正常な相(V相、W相)の巻線113に電流を流すことにより、モータ101のロータ112を回転させることができ、シフトレンジ切替機構100を動作させることができる。こうした故障時のモータ駆動を実現するには、モータ101の故障時に断線故障であることを特定する必要があるが、上記したように図4に示す故障検出回路220では断線・短絡を判別することはできない。なお、短絡を判定する方法としては、短絡検出用のセンサを設けて、断線・短絡を判別することが考えられるが、この場合、部品点数が多くなり、コストアップを招くという問題がある。
このような点を考慮し、この例では、短絡検出用のセンサなどの部品を追加することなく、モータ101の故障時に断線・短絡を判定することができ、その判定結果に対応した処置を実行することが可能なフェールセーフ制御を実行する点に特徴がある。
その具体的な制御の一例を図5のフローチャート、及び、図1〜図4を参照して説明する。図5の制御ルーチンはSBW_ECU200において所定時間毎に繰り返して実行される。
ステップST1において、シフトスイッチ13やPスイッチ12からの信号に基づいてシフトレンジの切替要求があるか否かを判定し、その判定結果が否定判定である場合(シフトレンジ切替要求がない場合)はこのルーチンを一旦抜ける。ステップST1の判定結果が肯定判定である場合(シフトレンジ切替要求がある場合)はステップST2に進む。
ステップST2では、シフトレンジの切り替えが可能であるか否かを判定する。具体的には、現在のシフトレンジと切替要求のシフトレンジ(目標シフトレンジ)とを比較し、現在のシフトレンジと目標シフトレンジとが異なる場合はシフトレンジの切り替えが可能であると判定してステップST3に進む。一方、現在のシフトレンジと目標シフトレンジとが同じである場合はシフトレンジの切り替えが不可であると判定してこのルーチンを一旦抜ける。
なお、ステップST2の判定処理において、車速が速い場合、フットブレーキON、あるいは、シフトバイワイヤ装置が異常である場合、上記の判定に関わらず、シフトレンジの切り替えが不可であると判定する。
ステップST3では、シフトレンジ切替機構100のモータ101の回転角度の検出値(実際のエンコーダカウント値)が、上記目標シフトレンジに対応する目標回転角度(エンコーダカウント値の目標値)に一致するように、モータ101をフィードバック制御(F/B制御)する。次に、ステップST4においてモータ101が停止したか否かを判定する。具体的には、モータ101のフィードバック制御を開始した後、エンコーダ103のカウント値、または、NSWセンサ104のセンサ値が変化していないときには、モータ101が停止していると判定してステップST11に進む。
ステップST4の判定結果が否定判定である場合、モータ101のフィードバック制御を継続し、目標シフトレンジ位置までの切り替えが完了した時点(ステップST5の判定結果が肯定判定となった時点)で、モータ101のフィードバック制御を終了して、このルーチンを一旦抜ける。なお、目標シフトレンジ位置への切替完了は、NSWセンサ104の出力信号に基づいて判定する。
ステップST4の判定結果が肯定判定である場合つまりモータ101が何らかの理由により停止した場合、モータ101の駆動制御をフィードバック制御からオープンループ制御に切り替える(ステップST11)。すなわち、この例のモータ101はエンコーダ付きSRモータであるので、フィードバック制御を実施したときにモータ101が停止すると、モータ101の励磁相とエンコーダ103のカウント値との間の位置関係がずれてしまい、フィードバック制御を実行できなくなるのでモータ101の駆動制御をオープンループ制御に切り替える。
次に、ステップST12においてモータ101が作動(回転)したか否かを判定する。具体的には、モータ101のオープンループ制御を開始した後、エンコーダ103のカウント値、または、NSWセンサ104のセンサ値が変化しているときには、モータ101が作動していると判定する。
このステップST12の判定結果が肯定判定である場合、シフトレンジの切り替えが可能であるので、モータ101のオープンループ制御を継続し、目標シフトレンジ位置までの切り替えが完了した時点(ステップST13の判定結果が肯定判定となった時点)で、このルーチンを一旦抜ける。なお、目標シフトレンジ位置への切替完了は、NSWセンサ104の出力信号に基づいて判定する。
一方、ステップST12の判定結果が否定判定である場合(オープンループ制御の実施でモータ101が作動しなかった場合)、モータ101のオープンループ制御を停止し(ステップST21)、ステップST22において、モータ101の断線・短絡検出を実施して故障が発生している故障相を判定する。
具体的には、図4に示す各相U,V,Wのスイッチングトランジスタ211をOFFにしたときの各故障検出回路220の検出信号を監視し、その故障検出回路220の検出信号がローレベルである相を故障相と判定する。例えば、図4に示す箇所で故障が発生している場合、U相の通電ラインに設けた故障検出回路220の検出信号がローレベルとなるので、U相に断線・短絡故障が発生していると判定する。
以上の故障判定後、ステップST23において、故障相(U相)への通電は行わずに、他の正常な2相(V相、W相)への通電を行って、モータ101のオープンループ制御を実施する。ここで、モータ101の各相U,V,Wのうちの1相がグランド短絡している場合、正常相を用いたモータ101のオープンループ制御を実施しても、短絡が生じている故障相が他の2相を引き摺るためモータ101のは作動(回転)しない。これに対し、モータ101の各相U,V,Wのうちの1相の巻線113が断線している場合、正常相(2相)への通電により発生するトルクによってモータ101が作動(回転)する。従って、上記したモータ101のオープンループ制御(ステップST23)を実施した際に、モータ101の作動・非作動を判定することにより、断線故障と短絡故障とを区別することができる。
そこで、この例では、故障時のオープンループ制御によってモータ101が作動(回転)したか否かを判定する(ステップST24)。具体的には、エンコーダ103のカウント値、または、NSWセンサ104のセンサ値が変化しているときにはモータ101が作動していると判定する。
そして、モータ101が作動している場合(ステップST24の判定結果が肯定判定である場合)、シフトレンジの切り替えが可能であるので、モータ101のオープンループ制御(正常相(2相)への通電制御)を継続し、目標シフトレンジ位置までの切り替えが完了した時点(ステップST25の判定結果が肯定判定となった時点)で、このルーチンを一旦抜ける。なお、目標シフトレンジ位置への切替完了は、NSWセンサ104の出力信号に基づいて判定する。
一方、故障時のオープンループ制御によってモータ101が作動(回転)しなかった場合(ステップST24の判定結果が否定判定である場合)モータ101の故障が短絡であると判断し、図4に示すモータリレー230をOFFにして、駆動コイル110とバッテリとを遮断する(ステップST26)。
以上のように、この例のシフト切替制御によれば、短絡検出用のセンサ等の部品を追加することなく、モータ101の故障が短絡故障または断線故障のいずれの故障であるのかを判定することができる。そして、モータ101の故障が断線故障(1相の断線故障)である場合、故障相以外の正常な相(2相)の巻線113への通電を行ってロータ112を回転駆動しているので、モータ101の故障時においてもシフトレンジの切り替えを継続することができる。一方、モータ101の故障が短絡故障である場合、モータリレー230をOFFにして駆動コイル110とバッテリ電圧Vbとの接続を遮断するので、モータ101の故障相に過電流が流れることを防止することができる。
−他の実施形態−
以上の例では、P,R,N,Dの各シフトレンジに切り替えるシフトレンジ切替機構に本発明を適用した例を示したが、本発明はこれに限られることなく、例えばP,R,N,Dに、セカンドレンジ(2)やローレンジ(L)が付加されたシフトレンジ切替機構などの他の任意のシフトレンジ切替機構にも適用可能である。また、ディテントレバー122の回動動作に連動してPレンジと非Pレンジの2つのレンジを選択的に切り替えるシフトレンジ切替機構にも本発明は適用可能である。
以上の例では、出力軸の回転角度(ディテントレバー122の回転角度)をNSWセンサ104で検出しているが、これに替えて、例えばマニュアルバルブ21のスプール弁22の操作量など、出力軸121と一体的に駆動される部品の操作量(回転角度、移動量等)を検出するようにしてもよい。
以上の例では、電動モータとしてSRモータを用いているが、これに限定されず、エンコーダの出力信号のカウント値に基づいてロータの回転位置を検出してモータの通電相を順次切り替える他のブラシレス型のモータを用いてもよい。
また、電動モータとして、例えば図6に示すように、巻線311U,311V,311Wからなる駆動コイル(巻線部)310aと、巻線311U′,311V′,311W′からなる駆動コイル(巻線部)310bの2系統の駆動コイルを有するコイル2重系のモータ301を用いてもよい。そして、このようなコイル2重系のモータ301を使用する場合であっても、図4に示した故障検出回路220あるいは電流検出回路を各相U,V,W,U′,V′,W′の通電ラインに設けて故障(断線・短絡)を検出するようにしてもよい。
なお、図6に示すモータ301の各駆動コイル310a,310bは、車両に搭載されたバッテリ500を電源としてモータドライバ410a,410bによって駆動される。また、図6に示すモータドライバ410a,410bの回路構成は、コレクタがバッテリ500の正極側に接続されたトランジスタ411と、そのトランジスタ411のエミッタにコレクタが接続され、エミッタがバッテリ500の負極側に接続されたトランジスタ412とが、各相U,V,W,U′,V′,W′毎に設けられたバイポーラ駆動方式の回路構成となっている。
以上の例では、磁気式のエンコーダを用いているが、これに限定されず、例えば光学式のエンコーダやブラシ式のエンコーダを用いてもよい。
以上の例では、電動モータ(SRモータ)の各相の通電ラインの電圧レベルを検出して故障(断線・短絡)を判定しているが、これに限定されず、電動モータの各相の通電ラインに電流検出回路を設け、その電流検出値に基づいて巻線故障(断線・短絡)を判定するようにしてもよい。
本発明のシフト切替装置の制御系の構成を示すブロック図である。 シフトレンジ切替機構の概略構成を示す斜視図である。 シフトレンジ切替機構の駆動源に用いるモータの構成を模式的に示す図である。 シフトレンジ切替機構の駆動源に用いるモータを駆動する駆動回路の回路構成図である。 シフト切替制御の制御ルーチンを示すフローチャートである。 コイル2重系のモータの構成を模式的に示す図である。
符号の説明
1 シフト切替装置
11 車両電源スイッチ
12 Pスイッチ
13 シフトスイッチ
100 シフトレンジ切替機構
101 モータ(SRモータ)
111 ステータ
112 ロータ
113 巻線
102 減速機構
103 エンコーダ(角度検出手段)
104 NSWセンサ(シフトレンジ位置検出手段)
121 出力軸
122 ディテントレバー
123 ディテントスプリング
124 ローラ
200 SBW_ECU
201 CPU
210 モータドライバ
211 スイッチングトランジスタ
220 故障検出回路
230 モータリレー
2 自動変速機
21 マニュアルバルブ

Claims (7)

  1. 自動変速機のシフトレンジを電動モータによって切り替えるシフトバイワイヤ方式のシフト切替装置であって、
    前記電動モータの各相の通電ラインの故障を相毎に判定する故障相判定手段と、前記故障相判定手段にて「故障」と判定された相を使用せずに正常相のみで電動モータのオープンループ制御を実施する故障時モータ制御手段とを備え、前記電動モータのオープンループ制御を実施した際に、当該電動モータが作動しないときには通電ラインの故障を「短絡故障」と判定することを特徴とするシフト切替装置。
  2. 請求項1記載のシフト切替装置において、
    前記通電ラインの故障を「短絡故障」と判定したときには、当該電動モータへの電力供給を遮断することを特徴とするシフト切替装置。
  3. 請求項1記載のシフト切替装置において、
    前記電動モータのオープンループ制御を実施した際に、当該電動モータが作動したときには、前記電動モータのオープンループ制御を継続して前記自動変速機シフトレンジの切り替えを行うことを特徴とするシフト切替装置。
  4. 請求項1〜3のいずれか一つに記載のシフト切替装置において、
    前記電動モータの回転角度を検出する角度検出手段、または、前記自動変速機のシフトレンジ位置を検出するシフトレンジ位置検出手段の少なくとも一方の検出手段を備え、前記電動モータのオープンループ制御を実施した際に、前記角度検出手段またはシフトレンジ位置検出手段の検出値が変化しないときには「短絡故障」と判定し、前記角度検出手段またはシフトレンジ位置検出手段の検出値が変化したときには「断線故障」と判定することを特徴とするシフト切替装置。
  5. 請求項1〜4のいずれか一つに記載のシフト切替装置において、
    前記電動モータが3相交流モータであり、その3相交流モータの1相の通電ラインを「故障」と判定したときに、他の2相で3相交流モータのオープンループ制御を実施することを特徴とするシフト切替装置。
  6. 請求項1〜5のいずれか一つに記載のシフト切替装置において、
    前記電動モータが、スイッチトリアクタンスモータであることを特徴とするシフト切替装置。
  7. 請求項1〜6のいずれか一つに記載のシフト切替装置において、
    前記電動モータが、コイル2重系のモータであることを特徴とするシフト切替装置。
JP2007260048A 2007-10-03 2007-10-03 シフト切替装置 Active JP4406453B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007260048A JP4406453B2 (ja) 2007-10-03 2007-10-03 シフト切替装置
US12/241,381 US8035934B2 (en) 2007-10-03 2008-09-30 Shift switching device and shift switching method
DE102008042589.3A DE102008042589B4 (de) 2007-10-03 2008-10-02 Gangschaltungsvorrichtung und Gangschaltungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260048A JP4406453B2 (ja) 2007-10-03 2007-10-03 シフト切替装置

Publications (2)

Publication Number Publication Date
JP2009092081A JP2009092081A (ja) 2009-04-30
JP4406453B2 true JP4406453B2 (ja) 2010-01-27

Family

ID=40490431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260048A Active JP4406453B2 (ja) 2007-10-03 2007-10-03 シフト切替装置

Country Status (3)

Country Link
US (1) US8035934B2 (ja)
JP (1) JP4406453B2 (ja)
DE (1) DE102008042589B4 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001195T5 (de) * 2007-09-28 2010-03-11 Aisin Aw Co., Ltd. Steuereinheit für ein Automatikgetriebe
JP2010223355A (ja) * 2009-03-24 2010-10-07 Aisin Aw Co Ltd シフトバイワイヤ装置
JP5035475B2 (ja) 2009-10-30 2012-09-26 トヨタ自動車株式会社 車両のシフト切替制御装置
KR101199070B1 (ko) * 2009-12-03 2012-11-07 현대자동차주식회사 변속레인지 검출장치
DE102011003940A1 (de) * 2011-02-10 2012-08-16 Robert Bosch Gmbh System mit einer elektrisch erregten Maschine
JP5828678B2 (ja) * 2011-05-27 2015-12-09 キヤノン株式会社 モータ制御装置およびモータ駆動装置
JP5397443B2 (ja) 2011-09-28 2014-01-22 株式会社デンソー 位置検出装置、回転式アクチュエータ、および、それを用いたシフトバイワイヤシステム
JP5454962B2 (ja) * 2011-12-05 2014-03-26 株式会社デンソー モータ制御装置
JP5933316B2 (ja) * 2012-04-04 2016-06-08 三菱電機株式会社 モータ制御装置、モータ制御方法および電動パワーステアリング装置
JP5653386B2 (ja) * 2012-05-09 2015-01-14 三菱電機株式会社 モータ制御装置およびそれを用いた電動パワーステアリング装置
JP5950017B2 (ja) * 2013-02-19 2016-07-13 トヨタ自動車株式会社 車両用電動機の制御装置
JP6330301B2 (ja) * 2013-12-03 2018-05-30 株式会社デンソー レンジ切換制御装置
US9442468B2 (en) * 2013-12-06 2016-09-13 Denso Corporation Control apparatus and shift-by-wire system having the same
JP5862648B2 (ja) * 2013-12-06 2016-02-16 株式会社デンソー 制御装置、および、これを用いたシフトバイワイヤシステム
JP5862649B2 (ja) * 2013-12-06 2016-02-16 株式会社デンソー 制御装置、および、これを用いたシフトバイワイヤシステム
JP6137090B2 (ja) 2014-09-02 2017-05-31 株式会社デンソー モータ制御装置
JP6462503B2 (ja) * 2015-06-17 2019-01-30 株式会社ミツバ エンジンスタータシステム
DE102015211255A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Steuerschaltung und Verfahren zum Qualifizieren eines Fehlers für eine Synchronmaschine
WO2018092210A1 (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 回転電機の制御装置、およびその回転電機の制御装置を備えた電動パワーステアリング装置
JP6844492B2 (ja) * 2017-10-10 2021-03-17 株式会社デンソー シフトレンジ制御装置
US10756665B2 (en) 2018-07-27 2020-08-25 Hamilton Sunstrand Corporation Fault isolation for pulse width modulated three phase motor systems
CN109905068A (zh) * 2019-03-13 2019-06-18 阳光电源股份有限公司 电机控制器及其主动短路电路和方法
JP7285715B2 (ja) * 2019-07-19 2023-06-02 株式会社ミツバ モータ制御装置およびモータ制御方法
JP7294102B2 (ja) * 2019-12-11 2023-06-20 株式会社デンソー モータシステム
KR102238146B1 (ko) * 2019-12-13 2021-04-08 주식회사 현대케피코 전동식 변속 레버 시스템의 제어 장치 및 그 제어 방법
KR102503988B1 (ko) * 2021-02-22 2023-02-27 주식회사 현대케피코 전동식 시프트 바이 와이어 시스템의 모터 제어 방법 및 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584505A (en) * 1984-06-14 1986-04-22 Yeongchoon Chung Torque-speed control system for asynchronous D.C. brushless motor
US4896089A (en) * 1989-01-31 1990-01-23 General Electric Company Fault management system for a switched reluctance motor
JP2000170905A (ja) 1998-09-28 2000-06-23 Denso Corp 自動変速機のシフトレンジ切換装置
JP3701207B2 (ja) * 2001-02-27 2005-09-28 株式会社日立製作所 モータ制御装置及びそれを用いた電動車両
JP2004012299A (ja) * 2002-06-06 2004-01-15 Nippon Soken Inc 同期回転機用回転角度検出装置
JP3849629B2 (ja) 2002-10-07 2006-11-22 株式会社デンソー モータ制御装置
JP2006191709A (ja) * 2004-12-28 2006-07-20 Denso Corp 基準位置認識装置
JP4397352B2 (ja) 2005-05-31 2010-01-13 株式会社デンソー 車両制御システム
JP4320648B2 (ja) 2005-06-06 2009-08-26 株式会社デンソー シフトレンジ切替装置
JP4098803B2 (ja) * 2005-11-18 2008-06-11 三菱電機株式会社 車載駆動制御装置
JP4999395B2 (ja) * 2006-07-31 2012-08-15 株式会社デンソー レンジ切換機構の制御装置

Also Published As

Publication number Publication date
US20090091866A1 (en) 2009-04-09
US8035934B2 (en) 2011-10-11
JP2009092081A (ja) 2009-04-30
DE102008042589B4 (de) 2022-02-03
DE102008042589A1 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4406453B2 (ja) シフト切替装置
US7572203B2 (en) Automatic transmission system and method for controlling automatic transmission apparatus
JP4999395B2 (ja) レンジ切換機構の制御装置
JP4397352B2 (ja) 車両制御システム
JP6492778B2 (ja) レンジ切換制御装置
US6230576B1 (en) Electrically-driven position changing apparatus
US11085531B2 (en) Shift range control device
JP4968178B2 (ja) レンジ切換機構の制御装置
JP5958519B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
JP5831766B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
US9122252B2 (en) Motor control apparatus
JP6097056B2 (ja) モータ制御装置
JP4319324B2 (ja) 自動変速機のシフトレンジ切換装置
JP5136918B2 (ja) シフトバイワイヤシステム
JP2013096436A (ja) シフトバイワイヤシステム
JP5929878B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
JP5170215B2 (ja) シフトバイワイヤシステム
JP3947922B2 (ja) モータ制御装置
JP6436048B2 (ja) モータ制御装置
JP6098401B2 (ja) 車両の制御装置
JP5229643B2 (ja) シフトバイワイヤシステム
JP5862648B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
JP3849629B2 (ja) モータ制御装置
JP5862649B2 (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
JP2024057264A (ja) モータ制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4406453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250