JP4160365B2 - 高周波電力増幅用電子部品および無線通信システム - Google Patents

高周波電力増幅用電子部品および無線通信システム Download PDF

Info

Publication number
JP4160365B2
JP4160365B2 JP2002323333A JP2002323333A JP4160365B2 JP 4160365 B2 JP4160365 B2 JP 4160365B2 JP 2002323333 A JP2002323333 A JP 2002323333A JP 2002323333 A JP2002323333 A JP 2002323333A JP 4160365 B2 JP4160365 B2 JP 4160365B2
Authority
JP
Japan
Prior art keywords
transistor
circuit
current
bias
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002323333A
Other languages
English (en)
Other versions
JP2004159123A (ja
Inventor
啓之 永森
孝幸 筒井
孔一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002323333A priority Critical patent/JP4160365B2/ja
Priority to US10/682,193 priority patent/US20040090267A1/en
Publication of JP2004159123A publication Critical patent/JP2004159123A/ja
Priority to US11/097,271 priority patent/US6958649B2/en
Application granted granted Critical
Publication of JP4160365B2 publication Critical patent/JP4160365B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話機等の無線通信システムに使用され高周波信号を増幅して出力する高周波電力増幅回路および高周波電力増幅回路を組み込んだ電子部品に適用して有効な技術に関し、特に高周波電力増幅回路の入力電力を変化させて出力電力を制御する無線通信システムにおいて温度変化に対して高周波電力増幅回路の利得を一定に保ちつつ出力電力を制御する場合に利用して有効な技術に関する。
【0002】
【従来の技術】
従来、携帯電話機等の無線通信装置(移動体通信装置)の方式の一つに880〜915MHz帯の周波数を使用するGSM(Global System for Mobile Communication)と呼ばれる方式がある。このGSM方式は、変調方式として搬送波の位相を送信データに応じてシフトするGMSK(Gaussian Minimum Shift Keying )と呼ばれる位相変調方式が用いられている。また、近年においては、音声通信はGMSK変調で行ないデータ通信はGMSK変調の位相シフトにさらに振幅シフトを加えたEDGE(Enhanced Data Rates for GMS Evolution)変調方式で行なう2以上のモードで動作可能な携帯電話機が提案されている。
【0003】
ところで、携帯電話機等の無線通信装置(移動体通信装置)における送信出力部には、変調後の信号を増幅する高周波電力増幅回路(以下、パワーアンプと称する)が組み込まれており、従来の無線通信装置には、ベースバンド回路もしくはマイクロプロセッサ等の制御回路からの送信要求レベルに応じてパワーアンプの増幅率を制御するため、パワーアンプもしくはアンテナの出力レベルを検知して帰還をかけ、パワーアンプのバイアス電圧もしくはバイアス電流を変化させて利得を変化させることが行なわれている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−151310号公報
【0005】
【発明が解決しようとする課題】
GMSK変調モードで動作する通信システムでは、上記のようなパワーアンプの利得制御が一般的であるが、上記EDGEモードを有する通信システムでは、パワーアンプの利得を固定し入力電力を変化させて出力電力を制御する方式が採用されることがある。
【0006】
かかる制御方式においては、温度変化によってパワーアンプの利得が変化すると温度が高い領域でノイズが大きくなるおそれがある。また、かかるノイズを抑えるため利得を下げると温度が低い領域での利得が低くなりすぎてパワー不足を招くおそれがある。そのため、特にパワーアンプの入力電力を変化させて出力電力を制御する方式では、温度変化に対してパワーアンプの利得を一定に保つための温度補償回路が必要とされる。
【0007】
温度補償回路の具体的な例としては、例えば図11に示すようなパワーアンプの等価回路において、温度が高くなっても同一入力Pinに対して電力増幅用トランジスタTRのドレイン電流Idが不変であるとパワーアンプPAの利得が低下するので、図12のように温度が高くなるにつれてドレイン電流Idが直線的に増加するようにゲートバイアス電圧Vggを与える方式が考えられる。
【0008】
ところで、かかる温度補償を実現するには温度変化を検知する温度検知回路が必要である。従来の温度検知回路としては、例えばダイオードの順方向電圧が温度によって変化する特性を利用した回路がある。しかしながら、ダイオードの温度特性を利用した温度検知回路は、ダイオードの製造ばらつきによって検知出力が変化するため温度補償回路による利得制御の度合いも変化し、安定かつ精度の高い温度補償を達成することができないという課題がある。
【0009】
この発明の目的は、入力電力の変化に応じて出力電力が制御されるパワーアンプに対してバイアスを与えるバイアス制御回路であって、素子の製造ばらつきの影響を受けずしかも温度変化に対してパワーアンプの利得を一定に保つことができる温度補償機能を有するバイアス制御回路を備えた高周波電力増幅回路用電子部品およびそれを用いた無線通信システムを提供することにある。
【0010】
この発明の他の目的は、温度補償機能機能を有し低電圧動作が可能なバイアス制御回路を備えた高周波電力増幅回路用電子部品およびそれを用いた無線通信システムを提供することにある。
【0011】
この発明のさらに他の目的は、温度補償機能機能を有し多段構成されたパワーアンプや多バンド用のパワーアンプの各増幅段に適した複数のバイアス電流もしくはバイアス電圧を生成可能なバイアス制御回路を備えた高周波電力増幅回路用電子部品およびそれを用いた無線通信システムを提供することにある。
【0012】
この発明の前記ならびにそのほかの目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。
【0013】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を説明すれば、下記のとおりである。
【0014】
すなわち、バイアスにより利得が固定された状態で入力電力が変化されることに応じて出力電力が制御されるパワーアンプに対するバイアス電流もしくはバイアス電圧を生成するバイアス制御回路において、2以上のダイオード特性素子にそれぞれ所定の電流を流して互いに異なる一次関数(y=ax+b)で表わされるような温度特性を示す2つの電圧を発生させ、これらの電圧を用いて温度に対して各々所望の変化率ないしは傾き(上記一次関数の係数a)を有するバイアス電流もしくはバイアス電圧を生成してパワーアンプのそれぞれの増幅段に与えるように構成したものである。また、望ましくは、温度依存性のない基準となる電圧を用いて、上記バイアス電流もしくはバイアス電圧の上記一次関数の定数bに相当する電圧もしくは電流を調整するようにする。
【0015】
上記した手段によれば、パワーアンプを構成する各増幅段の電力増幅用トランジスタの特性に応じてそれぞれ所望の温度特性を有するバイアス電流もしくはバイアス電圧を生成して与えることができ、これにより温度が変化してもパワーアンプの利得を一定に保つことができるようになる。
【0016】
【発明の実施の形態】
以下、本発明の好適な実施例を図面に基づいて説明する。
【0017】
図1は、本発明を適用して好適な無線通信システムの高周波電力増幅部の概略構成を示す。特に制限されるものでないが、この実施例はGSMとDCSのデュアルバンド通信システムとして構成されており、図1にはシステムを構成する2つのパワーアンプとそれらのパワーアンプにバイアスを与えるバイアス制御回路が示されている。
【0018】
図1において、符号210aはGSMの周波数帯である900MHzの送信信号を増幅するパワーアンプ、210bはDCSの周波数帯である1800MHzの送信信号を増幅するパワーアンプ、240はこれらのパワーアンプ210a,210bに対するバイアス電流を生成するバイアス制御回路である。
【0019】
パワーアンプ210aと210bは、それぞれFET(電界効果トランジスタ)などからなる3つの増幅段PA11〜PA13,PA21〜PA23が縦続接続された3段構成のアンプが使用されている。バイアス制御回路240は温度検知回路241とバイアス生成回路242とからなり各増幅段PA11〜PA3,PA21〜PA23に対して温度補償されたバイアス電流を生成するように構成されている。
【0020】
図2には、上記温度検知回路241の具体的な回路の一例が示されている。この実施例の温度検知回路241は、温度検知部TDTと、バッファ部BFFと、誤差増幅回路ERAとから構成されている。温度検知部TDTは、ゲート共通接続された一対のMOSFET Qc1,Qc2からなり定電流源CCSから供給される基準電流Irefを転写する第1のカレントミラー回路CMR1と、該第1カレントミラー回路CMR1により転写された電流をさらに転写する第2のカレントミラー回路CMR2と、第2のカレントミラー回路を構成する転写先のMOSFET Q1,Q2と直列に接続されたMOSFET Qd1,Qd2とからなる。バッファ部BFFは、MOSFET Qd1,Qd2のドレイン電圧Vf1,Vf2をインピーダンス変換して伝達するバッファBFF1,BFF2からなり、バッファBFF1,BFF2の出力電圧は誤差増幅回路ERAに入力され、誤差増幅回路ERAは前記MOSFET Qd1,Qd2のドレイン電圧Vf1,Vf2の電位差に比例した電圧を出力する。
【0021】
第2のカレントミラー回路CMR2を構成する転写元のMOSFET Q0と転写先のMOSFET Q1とはゲート幅が例えば1:N(N>1)に、またQ0とQ2とはゲート幅が1:1のような比に設定される。ただし、Q0〜Q2のゲート長は同一である。これにより、Q1にはQ2の電流Id2のN倍の電流Id1が流されるように形成されている。また、MOSFET Qd1とQd2は、それぞれ同一サイズ、同一特性とされるとともにダイオードとして動作するようにゲートとドレインが結合されている。
【0022】
これによって、MOSFET Qd1,Qd2にドレイン電流が流れるような電源電圧Vddが供給されると、MOSFETの飽和領域でのドレイン電流特性から、Qd1,Qd2に流れる電流Idとドレイン・ソース間に発生する電圧Vf(=ゲート・ソース間電圧)との間には、次式(1)
Id=(β/2)・(Vf−Vth)2 ……(1)
で表わされるような関係が成り立つ。
【0023】
なお、上式においてβは負の温度特性を有する係数、VthはMOSFETのしきい値電圧であり負の温度特性を有する。従って、温度T1,T2(T2>T1)におけるMOSFETのドレイン・ソース間電圧Vfと電流Idとの関係をグラフで表わすと、図3のようになる。また、図4には、温度Tに対するMOSFET Qd1,Qd2のドレイン・ソース間電圧Vf1,Vf2の変化の様子が示されている。図4から分かるように、大きな電流Id1が流されるMOSFET Qd1のドレイン・ソース間電圧Vf1の変化の方が、小さな電流Id2が流されるQd2のドレイン・ソース間電圧Vf2の変化よりも大きい。
【0024】
一方、図2の回路は、温度が変化してもカレントミラー回路CMR2によりMOSFET Qd1,Qd2に流される電流は一定であるため、例えばQd1に流される電流Id1が2.5mA、Qd2に流される電流Id2が1.5mAである場合を考えると、図3に示すように、温度がT1からT2に変化するとQd1のドレイン・ソース間電圧Vf1はΔVf1だけ、またQd2のドレイン・ソース間電圧Vf2はΔVf2だけ変化する。
【0025】
ここで、それぞれの電圧の変化量は、図3によりΔVf1よりもΔVf2の方が小さいことが分かる。かかるMOSFET Qd1,Qd2のドレイン・ソース間電圧Vf1とVf2が、バッファBFF1,BFF2を介して誤差増幅回路ERAに供給されるため、Vf1とVf2の電位差を増幅した電圧Voutが出力され、その出力電圧Voutは温度が低いほど小さく温度が高いほど大きくなる。
【0026】
しかも、図2の回路においては、MOSFET Qd1とQd2は互いにその素子サイズと特性が同じであるため、Qd1の特性が製造ばらつきでずれるとQd2の特性も同じようにずれる。例えば、Qd1のしきい値電圧がばらついてドレイン・ソース間電圧Vf1の温度特性Aが図4の破線A1のようにΔVだけずれると、Qd2のしきい値電圧も同じだけばらついているため、Qd2のドレイン・ソース間電圧Vf2の温度特性Bが破線B1のようにA1と同じ量ΔVだけずれる。図2の温度検知回路では、製造ばらつきでずれた電圧が、誤差増幅回路ERAに同相成分として入力されるため、そのばらつきが相殺されて図5のようにばらつきのない電圧として出力することができる。
【0027】
このことは、式によって説明することができる。すなわち、MOSFET Qd1,Qd2のドレイン・ソース間電圧Vf1,Vf2は、前記式(1)より、次式のようになる。
Vf1=√(2・Id1/β)+Vth
Vf2=√(2・Id2/β)+Vth
【0028】
これより、Vf1−Vf2=√2・(Id1−Id2)/βとなり、Vf1−Vf2はしきい値電圧Vthに依存しないことが分かる。また、Id1,Id2はカレントミラー回路CMR2から供給される温度依存性のない電流であり、βは負の温度特性を有する。よって、Vf1−Vf2は図5のように右上がりの直線となる。
【0029】
また、図2の温度検知回路は、電源電圧端子Vddと接地点GNDとの間にカレントミラー回路を構成するMOSFET Q1,Q2とダイオード接続のMOSFET Qd1,Qd2とが直列に接続されたMOSFETの2段積みの回路であるため、3段積みの回路に比べて低電圧動作が可能である。携帯電話機のような無線通信システムは、低消費電力化に対する要求が非常に高いため、システムを構成する回路の電源電圧も低電圧化が進められている。そのため、実施例のような低電圧動作が可能な温度検知回路はかかるシステムにとって極めて有効である。
【0030】
なお、温度が変化しても電流が一定である定電流源CCSとしては、正の温度特性を有する素子と負の温度特性を有する素子を組み合わせることで温度補償をした公知の定電流回路があるので、そのような温度依存性のない定電流回路を利用することで容易に実施例の温度検知回路241に適した基準電流Irefを生成して与えることができる。また、このような温度依存性のない定電流回路を実施例の温度検知回路と同一半導体チップ上に形成するようにしても良い。
【0031】
さらに、この実施例は、MOSFET Qd1,Qd2として同一サイズ、同一特性の素子を使用し、後段のアンプでばらつきを相殺する方式である。よって、MOSFET Qd1,Qd2の代わりにPN接合ダイオードあるいはベースとコレクタが結合されたバイポーラ・トランジスタを用いるようにしても同様の効果が得られる。本明細書では、PN接合ダイオード並びにゲートとドレインが結合されたMOSFETおよびベースとコレクタが結合されたバイポーラ・トランジスタをダイオード特性素子と称する。
【0032】
次に、図1のパワーアンプ210a,210bのうちGSM用のパワーアンプ210aとバイアス生成回路242の具体的な回路の例を、図6を用いて説明する。
【0033】
図6に示されているパワーアンプ210aは、インピーダンス整合回路MN1および直流遮断用の容量素子CDC1を介して入力される高周波信号Pinを増幅するMOSFETなどからなる1段目の電力増幅用トランジスタTR1と、インピーダンス整合回路MN2および容量素子CDC2を介してトランジスタTR1の出力を受けて増幅する2段目の電力増幅用トランジスタTR2と、インピーダンス整合回路MN3および容量素子CDC3を介してトランジスタTR2の出力を受けて増幅する3段目の電力増幅用トランジスタTR3と、該トランジスタTR3のドレイン端子と出力端子OUTとの間に接続されたインピーダンス整合回路MN4と、各電力増幅用トランジスタTR1〜TR3のゲート端子と接地点との間に直列に接続された抵抗R1i(i=1,2,3)およびバイアス用トランジスタTR1iなどからなる。
【0034】
そとて、このバイアス用トランジスタTR1i(i=1,2,3)はゲートとドレインが結合され、ドレイン端子にバイアス生成回路242からのバイアス電流Ibias1,Ibias2とチップ外部からのバイアス電流Icont2が供給される。図示しないが、パワーアンプ210bも同様の構成である。
【0035】
なお、電力増幅用トランジスタTR1〜TR3は、図2の実施例ではMOSFETが使用されているが、バイポーラ・トランジスタやGaAsMESFET、ヘテロ接合バイポーラ・トランジスタ(HBT)、HEMT(High Electron Mobility Transistor)等他のトランジスタを用いることもある。
【0036】
バイアス生成回路242は、温度検知回路241の出力電圧を受けてそれに比例した電流を出力する電圧−電流変換用アンプAMP1と、基準電圧Vrefを受けてそれに比例した電流を出力する電圧−電流変換用アンプAMP2と、上記アンプAMP1の出力MOSFETとカレントミラー接続されるMOSFET Q11〜Q14と、上記アンプAMP2の出力MOSFETとカレントミラー接続されるMOSFET Q21〜Q24と、上記アンプAMP1の出力MOSFETのゲート端子とMOSFET Q11〜Q14のゲート端子との間に設けられた切替えスイッチSW1と、上記アンプAMP2の出力MOSFETのゲート端子とMOSFET Q21〜Q24のゲート端子との間に設けられた切替えスイッチSW2などから構成されている。そして、カレントミラーを構成するMOSFET Q11はQ21と、またQ12はQ22と、Q13はQ23と、さらにQ14はQ24と、それぞれ直列に接続されている。
【0037】
切替えスイッチSW1とSW2は図外の回路から供給されるバンド選択信号BSCにより、GSM送信モードの際にはアンプAMP1の出力MOSFETのゲート入力をカレントミラーMOSFET Q11,Q12のゲート端子に、またアンプAMP2の出力MOSFETのゲート入力をカレントミラーMOSFETQ21,Q22のゲート端子に伝え、DCS送信モードの際にはアンプAMP1の出力MOSFETのゲート入力をカレントミラーMOSFET Q13,Q14のゲート端子に、またアンプAMP2の出力MOSFETのゲート入力をカレントミラーMOSFET Q23,Q24のゲート端子に伝えるように、切替えが行なわれる。
【0038】
これにより、GSM送信モードでは、MOSFET Q11,Q12のドレイン電流からMOSFET Q21,Q22のドレイン電流を差し引いた電流が、バイアス電流Ibias1,Ibias2としてパワーアンプ210aのバイアス用トランジスタTR11,TR12に供給されて、電力増幅用トランジスタTR1,TR2のゲートに所定のバイアスが与えられるようにされる。また、DCS送信モードではMOSFET Q13,Q14のドレイン電流からMOSFET Q23,Q24のドレイン電流を差し引いた電流が、バイアス電流Ibias3,Ibias4としてパワーアンプ210bに供給されて所定のバイアスが与えられるようにされる。
【0039】
パワーアンプ210a,210bの各増幅段のトランジスタTR1〜TR3のドレイン端子に印加される電圧Vdd1〜Vdd3は、バイアス制御回路240で生成して与えるように構成することも可能であるが、本実施例では、バッテリ電圧が直接各電力増幅用トランジスタTR1〜TR3のドレイン端子に印加されるように構成されている。
【0040】
図6のバイアス生成回路242は、電圧−電流変換用アンプAMP1の出力MOSFETと直列に接続された抵抗R1の抵抗値および該アンプAMP1の出力MOSFETとカレントミラーMOSFET Q11〜Q14とのサイズ比(ゲート幅の比、以下同様)を、パワーアンプ210a,210bに応じて適宜設定することにより、図7に示すようにバイアス電流Ibias1〜Ibias4の温度特性の傾きΔI/ΔT(一次関数y=ax+bの係数aに相当)をそれぞれ変えることができる。より具体的には、抵抗R1の抵抗値を変えることによりバイアス電流Ibias1〜Ibias4のすべての温度特性の傾きΔI/ΔTを同じように変化させ、アンプAMP1の出力MOSFETとカレントミラーMOSFET Q11〜Q14とのサイズ比をそれぞれ異ならせることで、各バイアス電流Ibias1〜Ibias4の温度特性の傾きΔI/ΔTを互いに相違させることができる。
【0041】
また、基準電圧Vrefを電流に変換するアンプAMP2の出力MOSFETと直列に接続された抵抗R2の抵抗値および該アンプAMP2の出力MOSFETとカレントミラーMOSFET Q21〜Q24とのサイズ比を、パワーアンプ210a,210bに応じて適宜設定することにより、図7に示すバイアス電流Ibias1〜Ibias4の基準温度T0での電流値(この明細書ではこれをオフセット電流と称する)Iofs1〜Iofs4を任意に設定することができる。より具体的には、抵抗R2の抵抗値を変えることによりバイアス電流Ibias1〜Ibias4のすべてのオフセット電流Iofs1〜Iofs4を同じだけ変化させ、アンプAMP2の出力MOSFETとカレントミラーMOSFET Q21〜Q24とのサイズ比をそれぞれ異ならせることで、各バイアス電流Ibias1〜Ibias4のオフセット電流Iofs1〜Iofs4を互いに相違させることができる。
【0042】
これにより、図7に示すように、互いに温度特性の傾きΔI/ΔTとオフセット電流の異なる4つのバイアス電流Ibias1〜Ibias4を生成することが可能であり、パワーアンプ210aと210bのバイアス条件、さらにそれぞれのパワーアンプにおける1段目と2段目の増幅用トランジスタTR1,TR2の利得の温度特性が異なる場合にも、各段の増幅用トランジスタTR1,TR2に最適なバイアス電流Ibias1〜Ibias4を生成して供給することができる。そして、このように所望の温度特性に設定したバイアス電流Ibias1〜Ibias4を1段目と2段目のバイアス用トランジスタTR11,TR12に流してドレインに発生した電圧を増幅用トランジスタTR1,TR2のゲート端子に供給することにより、入力電力を変化させて出力電力を制御する無線通信システムにおいて温度変化に対してパワーアンプ210aと210bの利得を一定に保ちつつ出力電力を制御することが可能となる。
【0043】
しかも、図6の実施例のバイアス生成回路242は、アンプAMP1,AMP2の出力MOSFETとカレントミラー接続されるMOSFETの数を増やすだけで生成されるバイアス電流の数を増加させることができるため、実施例のような多段構成のパワーアンプやマルチバンドのシステムに必要な複数種類のバイアス電流を生成することができ、必要なバイアス電流の数が多くなってもシステム全体としての回路規模の増大を小規模に抑えることが可能である。
【0044】
なお、図6の実施例においては、パワーアンプ210aと210bの最終段の増幅用トランジスタTR3のゲートバイアス電圧は、ベースバンド回路など他の回路から供給される温度補償していない電流Icont2に基づいてバイアス用トランジスタTR13と抵抗R13で生成されるようにされている。
【0045】
これは、この実施例のパワーアンプ210aと210bは、必要な利得の大部分を1段目と2段目の増幅用トランジスタTR1,TR2で達成し、最終段のトランジスタTR3は利得がほぼ「1」の状態で大きな電流を流して所望の出力電力となるように動作するように設計されており、このように低い利得のトランジスタはゲート電圧に多少温度依存性があっても出力電力にはほとんど影響が出ないためである。また、最終段のトランジスタTR3は入力電圧の振幅が大きいため、ゲート端子に温度補償したバイアス電圧を供給しても効果が小さいので、わざわざ温度補償する必要がないことも理由の一つである。
【0046】
一方、本実施例のような入力電力を変化させて出力電力を制御するシステムでは、パワーアンプのバイアスを一定にして入力電力を変化させるので、仮に3段目のトランジスタTR3にもバイアス生成回路242からバイアス電流を供給するように構成すると、出力電力が小さい時に最終段のトランジスタTR3に無駄なドレイン電流が比較的多く流されてしまう。これに対し、上記実施例のように最終段のトランジスタTR3のゲートバイアス電圧は他の回路から供給するように構成しておけば、出力電力が小さい時に最終段のトランジスタTR3のドレイン電流を減らしてシステム全体の消費電流を減らすことができる。
【0047】
ただし、本発明は、パワーアンプ210aと210bの最終段のトランジスタTR3のゲートバイアス電流を、図6の実施例のようなバイアス生成回路242で生成しないで他の回路から与えるのを強要するものではない。つまり、図6のカレントミラー用MOSFET Q11〜Q14と並列に、またQ21〜Q24と並列に、さらに2つずつアンプAMP1,AMP2の出力MOSFETとゲートが共通に接続されたMOSFETを設けて、最終段のトランジスタTR3のゲートバイアス電流を生成して与えるように構成しても良い。
【0048】
また、図6の実施例においては、バイアス生成回路242でゲートバイアス電流を生成してパワーアンプ210aと210bに与えるようにしているが、トランジスタTR11〜TR13と抵抗R11〜R13を省略し、電流−電圧変換用の抵抗をバイアス制御回路240側に設けて、この抵抗にバイアス生成回路242で生成されたゲートバイアス電流を流して電圧に変換し、電流の代わりに電圧として各増幅用トランジスタTR1〜TR3のゲートに与えるようにしても良い。ただし、バイアス生成回路242とパワーアンプ210aと210bを構成する増幅用トランジスタTR1〜TR3が別個の半導体チップ上に形成される場合には、各増幅用トランジスタTR1〜TR3と同一チップ上にTR1〜TR3とカレントミラー接続されたバイアス用トランジスタTR11〜TR13を形成して、別チップ上のバイアス生成回路242からゲートバイアス電流を与えて抵抗R11〜R13でバイアス電圧に変換して増幅用トランジスタTR1〜TR3のゲートをバイアスするように構成する方が精度の高い制御が可能となる。
【0049】
これは、増幅用トランジスタTR1〜TR3とバイアス用トランジスタTR11〜TR13を同一チップ上に形成すれば、製造工程で増幅用トランジスタTR1〜TR3がばらついた場合、バイアス用トランジスタTR11〜TR13も同じようにばらついて互いに特性が同じ方向にずれるため、増幅用トランジスタTR1〜TR3とバイアス用トランジスタTR11〜TR13がカレントミラー回路を構成するように接続されていると、これらのトランジスタの特性がばらついても、増幅用トランジスタTR1〜TR3のゲートバイアス電圧のばらつきを小さくすることができるからである。
【0050】
図8には、上記温度検知回路241の他の実施例が示されている。この実施例では、図2の実施例の温度検知回路のカレントミラー回路CRM2を構成するMOSFET Q1,Q2がそれぞれ定電流源CCS1,CCS2で表わされている。この定電流源CCS1,CCS2は、図6と同様に、基準電流Irefを流す定電流源CCSと、MOSFET Qc1,Qc2からなる第1カレントミラー回路CRM1と、MOSFET Q0,Q1,Q2からなる第2カレントミラー回路CRM2とにより構成することができる。
【0051】
この実施例の温度検知回路は、定電流源CCS1,CCS2が流す電流Iref1,Iref2が同一の大きさつまりIref1=Iref2となるように設定されるとともに、図2の実施例の温度検知回路のMOSFET Qd2の代わりに、MOSFETQd1と同一サイズ、同一特性のMOSFETが2個(Qd21,Qd22)接続されている。また、MOSFET Qd21とQd22は、各々ゲートとドレインが結合されたダイオード接続とされるとともに、互いのドレイン端子が結合されて共通の定電流源CCS2に接続されている。この実施例では、MOSFET Qd21,Qd22のそれぞれに流れる電流は、定電流源CCS2が流す電流Iref2の1/2となる。これは、図2の実施例の温度検知回路において、カレントミラー回路CRM2を構成するMOSFET Q1のゲート幅をQ2のゲート幅の2倍にしてId1=2・Id2としたのと同じことである。
【0052】
しかも、MOSFET Qd21,Qd22とQd1は同一サイズ、同一特性のMOSFETであり、製造ばらつきでQd1のしきい値電圧等の特性がずれるとQd21,Qd22の特性も同じようにずれるため、製造ばらつきによるQd21,Qd22のドレイン電圧Vf1とQd1のドレイン電圧Vf2のずれは同一となる。従って、定電流Iref1,Iref2が温度にかかわらず一定であれば、図2の実施例の温度検知回路で説明したのと同じ理由から、誤差増幅回路ERAからは図5に示すような所望の温度特性を有する電圧Voutが出力される。
【0053】
なお、図8の実施例においては、図2のMOSFET Qd2の代わりに、MOSFET Qd1と同一サイズ、同一特性のMOSFETを2個接続した例を示したが、並列MOSFETの数は2個に限定されるものでなく、3個以上とすることも可能である。この個数が多いほど図5に示す直線の傾きが大きくなる。また、定電流源CCS1からの電流Iref1が流されるMOSFET Qd1も1個でなく、2個以上の並列MOSFETとしても良い。ただし、Qd1の数をn、Qd2の数をmとおくとn≠mである。これにより、Qd1とQd2の電流の比はm:nとなる。
【0054】
また、図8の実施例においては、図2に示されているバッファBFF1,BFF2がなく、MOSFET Qd1のドレイン電圧Vf1とQd21,Qd22のドレイン電圧Vf2が直接誤差増幅回路ERAに入力されているが、図2と同様にバッファBFF1,BFF2を介して入力させるようにしても良い。バッファBFF1,BFF2を設けることにより、定電流源CCS1,CCS2が流す電流Iref1,Iref2の一部が誤差増幅回路ERAの入力端子に流れ込んでドレイン電圧Vf1,Vf2が所望の値からずれるのを防止して、より精度の高いバイアス電流を生成してパワーアンプに供給することができる。
【0055】
図9には、上記バイアス生成回路242の他の実施例が示されている。
【0056】
この実施例のバイアス生成回路242は、図6の基準電圧Vrefを電流に変換するアンプAMP2を省略し、代わりに温度検知回路241内のカレントミラー回路CMR2を構成するMOSFET Q0とゲート共通接続されたPチャネルMOSFET Q3と、該Q3と直列接続されたNチャネルMOSFET Q4とからなるバイアス回路を設け、該MOSFET Q4と電流減算側のMOSFET Q21〜Q24とをカレントミラー接続して電流を引き込むようにしたものである。つまり、基準電圧Vrefを内部で発生するようにした実施例である。
【0057】
なお、基準電圧のレベルが異なるので、図6の実施例では電流減算側のMOSFET Q21〜Q24はPチャネルMOSFETで構成されているのに対し、この実施例では電流減算側のMOSFET Q21〜Q24はNチャネルMOSFETで構成される。
【0058】
この実施例においても、MOSFET Q4とMOSFET Q21〜Q24のサイズを適宜設定することにより出力バイアス電流Ibias1〜Ibias4に任意のオフセットを与えることができる。しかも、基準電圧Vrefを電流に変換するアンプAMP2が不用になるため、チップサイズを小さくすることができるという利点がある。ただし、図6の実施例では、アンプAMP2の出力MOSFETと直列に接続される抵抗R2をICの外付け素子とすることにより、適用システムや製品に応じてバイアス電流Ibias1〜Ibias4に所望のオフセットを与えることができるため、図6の実施例の方が調整を行ない易いとともに精度も高くすることができるという利点がある。
【0059】
図10は、本発明を適用して有効な無線通信システムの一例として、GSMとDCSの2つの通信方式の無線通信が可能なシステムの概略の構成を示す。
【0060】
図10において、ANTは信号電波の送受信用アンテナ、100はGSMやDCSのシステムにおけるGMSK変調や復調を行なうことができる変復調回路や送信データ(ベースバンド信号)に基づいてI,Q信号を生成したり受信信号から抽出されたI,Q信号を処理する回路を有する高周波信号処理回路(ベースバンド回路)110や受信信号を増幅するロウノイズアンプLNA1,LNA2が1つの半導体チップ上に形成されてなる高周波信号処理用半導体集積回路(ベースバンドIC)と送信信号から高調波成分を除去するバンドパスフィルタBPF1,BPF2、受信信号から不要波を除去するバンドパスフィルタBPF3,BPF4などが1つのパッケージに実装されてなる電子デバイス(以下、RFデバイスと称する)である。Tx‐MIX1,Tx-MIX2は送信信号をアップンコンバートするミキサ、Rx‐MIX1,Rx-MIX2は受信信号をダウンコンバートするミキサである。
【0061】
また、図10において、200はベースバンドIC100から供給される高周波信号を増幅する前記実施例の高周波電力増幅回路(パワーアンプ)210a,210bとバイアス制御回路240などが1つのセラミック基板上に実装されてなる高周波電力増幅用モジュール(以下、パワーモジュールと称する)、300はパワーモジュール200から出力される送信信号の出力レベルを検出するカプラなどからなる出力検出回路PDT1,PDT2や該検出回路の検出信号とベースバンドIC110からのパワー制御信号PCSとに基づいてベースバンドIC110内の利得制御アンプGCA1,GCA2に対する出力制御信号Vapcを生成する自動パワー制御回路APC、送信信号に含まれる高調波などのノイズを除去するフィルタLPF1,LPF2、GSMの信号とDCSの信号を合成したり分離したりする分波器DPX1,DPX2、送受信の切替えスイッチT/R−SWなどを含むフロントエンド・モジュールである。
【0062】
図10に示されているように、この実施例では、パワーモジュール200内のGSM用パワーアンプ210aとDCS用パワーアンプ210bの最終段のバイアス電流Icont2H,Icont2LはRFデバイス100のベースバンドIC110から供給される。また、図2に示されているバイアス制御回路240の温度検出回路241に入力される基準電流Irefに相当する定電流もRFデバイス100のベースバンドIC110からIcont1H,Icont1Lとして供給される。このうちIcont1HはGSM送信モードの際に供給される電流、Icont1LはDCS送信モードの際に供給される電流である。ベースバンドIC110から供給される電流Icont1H,Icont1Lによって、パワーアンプ210aと210bの利得が決定される。電流Icont1H,Icont1Lはどちらか一方がパワーモジュールに供給され、同時に供給されることはない。
【0063】
図2には示されていないが、この実施例のバイアス制御回路240には、RFデバイス100からいずれの電流Icont1H,Icont1Lが供給されているか判定し、それに応じて図6に示されているバイアス制御回路240内の切替えスイッチSW1,SW2を制御する切替え制御信号BSCを生成する回路が設けられている。ただし、ベースバンドIC110からバイアス制御回路240に供給されるモード選択信号Vmodeに基づいて切替え制御信号BSCを生成するようにしても良い。また、切替えスイッチSW1,SW2を制御する切替え制御信号BSCは、ベースバンドIC110等で生成して与えるようにしても良い。
【0064】
図10から分かるように、この実施例では、ベースバンドIC110から供給される電流Icont1H,Icont1Lによってパワーアンプ210aと210bの利得が一定に保持された状態で、自動パワー制御回路120から出力される出力制御信号VapcがベースバンドIC110内の利得制御アンプGCA1,GCA2に供給され、利得制御アンプGCA1,GCA2のゲインが出力制御信号Vapcによって制御されることにより、パワーアンプ210a,210bの入力電力が変化され、これに応じてパワーアンプ210a,210bの出力電力が変化するように制御される。そして、パワーアンプ210a,210bにバイアスを与えるバイアス制御回路240が前述したような温度補償機能を有するため、素子の製造ばらつきの影響を受けずしかも温度変化に対してパワーアンプ210a,210bの利得を一定に保つことができる。
【0065】
なお、この実施例では、バンドパスフィルタBPF1〜BPF4はベースバンドICに対して外付けされた容量素子や抵抗素子で構成されているが、バンドパスフィルタBPF1〜BPF4を構成する素子をベースバンド回路110と同一の半導体チップ上に形成することも可能である。また、図10には示されていないが、上記デバイスやモジュール以外に、RFデバイス100に対する制御信号やパワー制御信号PCSの基になる出力レベル指示信号を生成してシステム全体を制御するマイクロプロセッサ(CPU)を設けるようにしても良い。
【0066】
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、図6の実施例のバイアス生成回路242では、MOSFET Q11〜Q14,Q21〜Q24がアンプAMP1,AMP2の出力トランジスタとカレントミラーを構成するように接続がなされた回路が示されているが、通常の差動アンプおよびその出力を受けるMOSFETと該MOSFETのドレイン端子に接続された抵抗とを設け、このMOSFETと上記MOSFET Q11〜Q14,Q21〜Q24がカレントミラーを構成するように接続がなされた回路としても良い。
【0067】
また、前記実施例の高周波電力増幅回路では、電力増幅FETを3段接続しているが、2段構成としたり、4段以上の構成としても良い。また、2段目や3段目のFETを、それぞれ並列形態の2個のFETで構成するようにしてもよい。さらに、前記実施例では、高周波電力増幅部とフロントエンド部をそれぞれ別個のモジュール200と300として構成したが、これらを1つのモジュールとして構成するようにしても良い。
【0068】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野であるGSMとDCSの2つの通信方式による送受信が可能なデュアルモードの無線通信システムを構成するパワーモジュールに適用した場合を説明したが、本発明はそれに限定されるものでなく、GSMK変調とEDGE変調が可能なGSMまたはDCS方式のいずれか一方の方式の携帯電話機や、CDMA(Code Division Multiple Access)方式の携帯電話機、GMSとDCSとPCS(Personal Communications System)など3以上の通信方式による送受信が可能なマルチモードの携帯電話機や移動電話機などの無線通信システムを構成するパワーモジュールに利用することができる。
【0069】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
【0070】
すなわち、本発明に従うと、バイアスにより利得が固定された状態で入力電力が変化されることに応じて出力電力が制御されるパワーアンプに対するバイアス電流もしくはバイアス電圧を生成するバイアス制御回路において、パワーアンプを構成する各増幅段の電力増幅用トランジスタの特性に応じてそれぞれ所望の温度特性を有するバイアス電流もしくはバイアス電圧を生成して与えることができ、これにより温度が変化してもパワーアンプの利得を一定に保つことができる。その結果、温度が高い領域でパワーアンプから出るノイズが大きくなったり、温度が低い領域でパワーアンプの利得が低くなりすぎてパワー不足を招いたりする不具合が解消されるという効果がある。
【図面の簡単な説明】
【図1】本発明を適用して好適な無線通信システムの高周波電力増幅部の概略構成を示すブロック図である。
【図2】温度検知回路の具体的な回路例を示す回路構成図である。
【図3】実施例の温度検知回路におけるダイオード接続のMOSFETの電圧−電流特性を示すグラフである。
【図4】実施例の温度検知回路の出力電圧の温度特性を示すグラフである。
【図5】実施例の誤差増幅回路から出力される電圧の温度特性を示すグラフである。
【図6】パワーアンプとバイアス生成回路の具体的な回路例を示す回路構成図である。
【図7】実施例のバイアス生成回路から出力されるバイアス電流の温度特性を示すグラフである。
【図8】温度検知回路の他の回路例を示す回路構成図である。
【図9】バイアス生成回路の他の回路例を示す回路構成図である。
【図10】本発明を適用した無線通信システムの一例としてのGSMとDCSの2つの通信方式の無線通信が可能なシステムの概略の構成を示すブロック図である。
【図11】本発明を適用して好適なパワーアンプの等価回路を示す等価回路図である。
【図12】図11のパワーアンプの電流Idに要求される温度特性を示すグラフである。
【符号の説明】
110 ベースバンド回路
200 高周波電力増幅用モジュール(パワーモジュール)
210a,210 高周波電力増幅回路(パワーアンプ)
240 バイアス制御回路
241 温度検出回路
242 バイアス生成回路
TR1〜TR3 電力増幅用FET
TDT 温度検知部
ERA 誤差増幅回路
BFF バッファ回路

Claims (6)

  1. 複数の増幅段を有し入力された高周波信号を増幅する電力増幅回路と、
    該電力増幅回路にバイアスを与えるバイアス制御回路とを含み、
    前記電力増幅回路は前記バイアス制御回路から供給されるバイアス電流もしくはバイアス電圧により利得が固定された状態で入力電力が変化されることに応じて出力電力が制御される動作が可能に構成された高周波電力増幅用電子部品であって、
    前記バイアス制御回路は、2以上のダイオード特性素子にそれぞれ所定の電流を流して互いに異なる温度特性を示す2以上の電圧を発生させ、これらの電圧を用いて温度に対して各々所望の変化率を有する複数のバイアス電流もしくは複数のバイアス電圧を生成して前記電力増幅回路の複数の増幅段のそれぞれに与えるように構成されてなり、
    前記2以上のダイオード特性素子は、同一サイズ、同一特性を有するように形成され、流される電流の大きさが異なることで互いに異なる温度特性を示す2つの電圧を発生するように構成され、
    前記バイアス制御回路は、前記2以上のダイオード特性素子により発生された前記2つの電圧の電位差を増幅する誤差増幅回路と、該誤差増幅回路の出力電圧を電流に変換する第1増幅回路と、該第1増幅回路の出力トランジスタまたは該第1増幅回路の出力を受けるトランジスタとカレントミラー接続された複数の第1トランジスタ群と、基準となる電圧を入力として該電圧を電流に変換する第2増幅回路と、該第2増幅回路の出力トランジスタまたは該第2増幅回路の出力を受けるトランジスタとカレントミラー接続された複数の第2トランジスタ群とを備え、
    前記複数の第1トランジスタ群の各トランジスタの電流から前記複数の第2トランジスタ群の対応するトランジスタの電流を差し引いた電流、もしくは該電流を変換した電圧が前記複数のバイアス電流もしくは前記複数のバイアス電圧として前記電力増幅回路に供給されるように構成されてなることを特徴とする高周波電力増幅用電子部品。
  2. 複数の増幅段を有し入力された高周波信号を増幅する電力増幅回路と、
    該電力増幅回路にバイアスを与えるバイアス制御回路とを含み、
    前記電力増幅回路は前記バイアス制御回路から供給されるバイアス電流もしくはバイアス電圧により利得が固定された状態で入力電力が変化されることに応じて出力電力が制御される動作が可能に構成された高周波電力増幅用電子部品であって、
    前記バイアス制御回路は、2以上のダイオード特性素子にそれぞれ所定の電流を流して互いに異なる温度特性を示す2以上の電圧を発生させ、これらの電圧を用いて温度に対して各々所望の変化率を有する複数のバイアス電流もしくは複数のバイアス電圧を生成して前記電力増幅回路の複数の増幅段のそれぞれに与えるように構成されてなり、
    前記ダイオード特性素子に流される電流は、外部から供給される基準電流を入力とするカレントミラー回路により生成されるように構成されてなり、
    前記バイアス制御回路は、前記2以上のダイオード特性素子により発生された2つの電圧の電位差を増幅する誤差増幅回路と、該誤差増幅回路の出力電圧を電流に変換する第1増幅回路と、該第1増幅回路の出力トランジスタまたは該第1増幅回路の出力を受けるトランジスタとカレントミラー接続された複数の第1トランジスタ群と、前記カレントミラー回路の転写電流が流されるトランジスタとカレントミラー接続された複数の第2トランジスタ群とを備え、
    前記複数の第1トランジスタ群の各トランジスタの電流から前記複数の第2トランジスタ群の対応するトランジスタの電流を差し引いた電流、もしくは該電流を変換した電圧が前記複数のバイアス電流もしくは前記複数のバイアス電圧として前記電力増幅回路に供給されるように構成されてなることを特徴とする高周波電力増幅用電子部品。
  3. 前記第1増幅回路の出力トランジスタまたは前記第1増幅回路の出力を受けるトランジスタと前記複数の第1トランジスタ群の前記各トランジスタとの間には、前記第1増幅回路の出力トランジスタまたは前記第1増幅回路の出力を受けるトランジスタの入力を伝達または遮断する第1のスイッチ手段が設けられ、
    また前記第2増幅回路の出力トランジスタまたは前記第2増幅回路の出力を受けるトランジスタと前記複数の第2トランジスタ群の各トランジスタとの間には、前記第2増幅回路の出力トランジスタまたは前記第2増幅回路の出力を受けるトランジスタの入力を伝達または遮断する第2のスイッチ手段が設けられていることを特徴とする請求項1に記載の高周波電力増幅用電子部品。
  4. 前記第1増幅回路の出力トランジスタまたは前記第1増幅回路の出力を受けるトランジスタと前記複数の第1トランジスタ群の前記各トランジスタとの間には、前記第1増幅回路の出力トランジスタまたは前記第1増幅回路の出力を受けるトランジスタの入力を伝達または遮断する第1のスイッチ手段が設けられ、
    また前記カレントミラー回路の前記転写電流が流される前記トランジスタとカレントミラー接続された前記複数の第2トランジスタ群の各トランジスタとの間には、前記カレントミラー回路の前記転写電流が流される前記トランジスタの入力を伝達または遮断する第2のスイッチ手段が設けられていることを特徴とする請求項2に記載の高周波電力増幅用電子部品。
  5. 前記誤差増幅回路の前段には、前記2以上のダイオード特性素子により発生された前記2つの電圧をそれぞれインピーダンス変換して前記誤差増幅回路に入力するバッファ回路が設けられている請求項3に記載の高周波電力増幅用電子部品。
  6. 前記誤差増幅回路の前段には、前記2以上のダイオード特性素子により発生された前記2つの電圧をそれぞれインピーダンス変換して前記誤差増幅回路に入力するバッファ回路が設けられている請求項4に記載の高周波電力増幅用電子部品。
JP2002323333A 2002-11-07 2002-11-07 高周波電力増幅用電子部品および無線通信システム Expired - Fee Related JP4160365B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002323333A JP4160365B2 (ja) 2002-11-07 2002-11-07 高周波電力増幅用電子部品および無線通信システム
US10/682,193 US20040090267A1 (en) 2002-11-07 2003-10-10 High-frequency power amplification electronic part and wireless communication system
US11/097,271 US6958649B2 (en) 2002-11-07 2005-04-04 High-frequency power amplification electronic part and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323333A JP4160365B2 (ja) 2002-11-07 2002-11-07 高周波電力増幅用電子部品および無線通信システム

Publications (2)

Publication Number Publication Date
JP2004159123A JP2004159123A (ja) 2004-06-03
JP4160365B2 true JP4160365B2 (ja) 2008-10-01

Family

ID=32211904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323333A Expired - Fee Related JP4160365B2 (ja) 2002-11-07 2002-11-07 高周波電力増幅用電子部品および無線通信システム

Country Status (2)

Country Link
US (2) US20040090267A1 (ja)
JP (1) JP4160365B2 (ja)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287193B2 (ja) * 2003-05-15 2009-07-01 株式会社ルネサステクノロジ 高周波電力増幅用電子部品および無線通信システム
TW200518345A (en) * 2003-08-08 2005-06-01 Renesas Tech Corp Semiconductor device
JP2005167805A (ja) * 2003-12-04 2005-06-23 Matsushita Electric Ind Co Ltd 送信機
JP2005217887A (ja) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd 可変利得回路
WO2005117274A1 (ja) * 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. 送信出力制御回路およびそれを用いた無線機器
JP2006013566A (ja) * 2004-06-22 2006-01-12 Renesas Technology Corp 高周波電力増幅用電子部品
JP2006242894A (ja) * 2005-03-07 2006-09-14 Ricoh Co Ltd 温度検出回路
JP4750463B2 (ja) 2005-05-11 2011-08-17 ルネサスエレクトロニクス株式会社 高周波電力増幅器およびそれを用いた送信器および移動体通信端末
US20070064833A1 (en) 2005-09-12 2007-03-22 Sahota Gurkanwal S Multi-band radio frequency modulator
JP2007116651A (ja) * 2005-09-22 2007-05-10 Renesas Technology Corp 高周波電力増幅用電子部品および無線通信装置
US20070256029A1 (en) * 2006-05-01 2007-11-01 Rpo Pty Llimited Systems And Methods For Interfacing A User With A Touch-Screen
US7697903B2 (en) * 2006-12-06 2010-04-13 Broadcom Corporation Method and system for level detector calibration for accurate transmit power control
KR100984481B1 (ko) * 2007-02-01 2010-09-30 삼성전자주식회사 무선통신 시스템에서 고출력 증폭기 장치
JP5035341B2 (ja) 2007-07-30 2012-09-26 富士通株式会社 増幅回路
JP5001822B2 (ja) * 2007-12-26 2012-08-15 旭化成エレクトロニクス株式会社 バイアス回路、差動増幅器
JP5204499B2 (ja) * 2008-01-31 2013-06-05 京セラ株式会社 増幅器
US8854019B1 (en) 2008-09-25 2014-10-07 Rf Micro Devices, Inc. Hybrid DC/DC power converter with charge-pump and buck converter
US8451634B2 (en) * 2008-12-22 2013-05-28 Texas Instruments Incorporated Circuit and method of output power detection for a converter circuit
US9166471B1 (en) 2009-03-13 2015-10-20 Rf Micro Devices, Inc. 3D frequency dithering for DC-to-DC converters used in multi-mode cellular transmitters
US8315576B2 (en) 2009-05-05 2012-11-20 Rf Micro Devices, Inc. Capacitive compensation of cascaded directional couplers
US8688060B2 (en) * 2009-06-18 2014-04-01 Qualcomm Incorporated Detection circuit for overdrive conditions in a wireless device
US8219145B2 (en) * 2009-09-03 2012-07-10 Micro Mobio Corporation Universal radio card for wireless devices
US8519796B2 (en) 2009-09-30 2013-08-27 Murata Manufacturing Co., Ltd. Bias generation circuit, power amplifier module, and semiconductor device
US8548398B2 (en) 2010-02-01 2013-10-01 Rf Micro Devices, Inc. Envelope power supply calibration of a multi-mode radio frequency power amplifier
US7994862B1 (en) * 2010-02-11 2011-08-09 Sige Semiconductor Inc. Circuit and method of temperature dependent power amplifier biasing
JP2011176592A (ja) * 2010-02-24 2011-09-08 Tdk Corp 温度補償回路及び電力増幅器
US8538355B2 (en) 2010-04-19 2013-09-17 Rf Micro Devices, Inc. Quadrature power amplifier architecture
US8913967B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Feedback based buck timing of a direct current (DC)-DC converter
US9214900B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Interference reduction between RF communications bands
US9184701B2 (en) 2010-04-20 2015-11-10 Rf Micro Devices, Inc. Snubber for a direct current (DC)-DC converter
US9900204B2 (en) 2010-04-20 2018-02-20 Qorvo Us, Inc. Multiple functional equivalence digital communications interface
US8913971B2 (en) 2010-04-20 2014-12-16 Rf Micro Devices, Inc. Selecting PA bias levels of RF PA circuitry during a multislot burst
US8515361B2 (en) 2010-04-20 2013-08-20 Rf Micro Devices, Inc. Frequency correction of a programmable frequency oscillator by propagation delay compensation
US9030256B2 (en) 2010-04-20 2015-05-12 Rf Micro Devices, Inc. Overlay class F choke
US9077405B2 (en) 2010-04-20 2015-07-07 Rf Micro Devices, Inc. High efficiency path based power amplifier circuitry
US8706063B2 (en) 2010-04-20 2014-04-22 Rf Micro Devices, Inc. PA envelope power supply undershoot compensation
US8942651B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. Cascaded converged power amplifier
US8947157B2 (en) 2010-04-20 2015-02-03 Rf Micro Devices, Inc. Voltage multiplier charge pump buck
US8571492B2 (en) 2010-04-20 2013-10-29 Rf Micro Devices, Inc. DC-DC converter current sensing
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US8831544B2 (en) 2010-04-20 2014-09-09 Rf Micro Devices, Inc. Dynamic device switching (DDS) of an in-phase RF PA stage and a quadrature-phase RF PA stage
US8958763B2 (en) 2010-04-20 2015-02-17 Rf Micro Devices, Inc. PA bias power supply undershoot compensation
US9214865B2 (en) 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Voltage compatible charge pump buck and buck power supplies
US8811920B2 (en) 2010-04-20 2014-08-19 Rf Micro Devices, Inc. DC-DC converter semiconductor die structure
US8559898B2 (en) 2010-04-20 2013-10-15 Rf Micro Devices, Inc. Embedded RF PA temperature compensating bias transistor
US8699973B2 (en) 2010-04-20 2014-04-15 Rf Micro Devices, Inc. PA bias power supply efficiency optimization
US8731498B2 (en) 2010-04-20 2014-05-20 Rf Micro Devices, Inc. Temperature correcting an envelope power supply signal for RF PA circuitry
US8842399B2 (en) 2010-04-20 2014-09-23 Rf Micro Devices, Inc. ESD protection of an RF PA semiconductor die using a PA controller semiconductor die
US9008597B2 (en) 2010-04-20 2015-04-14 Rf Micro Devices, Inc. Direct current (DC)-DC converter having a multi-stage output filter
US8983410B2 (en) 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Configurable 2-wire/3-wire serial communications interface
US8983407B2 (en) * 2010-04-20 2015-03-17 Rf Micro Devices, Inc. Selectable PA bias temperature compensation circuitry
US9577590B2 (en) 2010-04-20 2017-02-21 Qorvo Us, Inc. Dual inductive element charge pump buck and buck power supplies
US9553550B2 (en) 2010-04-20 2017-01-24 Qorvo Us, Inc. Multiband RF switch ground isolation
US8942650B2 (en) 2010-04-20 2015-01-27 Rf Micro Devices, Inc. RF PA linearity requirements based converter operating mode selection
US8565694B2 (en) 2010-04-20 2013-10-22 Rf Micro Devices, Inc. Split current current digital-to-analog converter (IDAC) for dynamic device switching (DDS) of an RF PA stage
US8811921B2 (en) 2010-04-20 2014-08-19 Rf Micro Devices, Inc. Independent PA biasing of a driver stage and a final stage
US8892063B2 (en) 2010-04-20 2014-11-18 Rf Micro Devices, Inc. Linear mode and non-linear mode quadrature PA circuitry
US9362825B2 (en) 2010-04-20 2016-06-07 Rf Micro Devices, Inc. Look-up table based configuration of a DC-DC converter
US8712349B2 (en) 2010-04-20 2014-04-29 Rf Micro Devices, Inc. Selecting a converter operating mode of a PA envelope power supply
US9048787B2 (en) 2010-04-20 2015-06-02 Rf Micro Devices, Inc. Combined RF detector and RF attenuator with concurrent outputs
US8989685B2 (en) 2010-04-20 2015-03-24 Rf Micro Devices, Inc. Look-up table based configuration of multi-mode multi-band radio frequency power amplifier circuitry
KR101101545B1 (ko) 2010-06-11 2012-01-02 삼성전기주식회사 씨모스 전력 증폭장치 및 그 온도 보상 회로
US8629673B1 (en) * 2010-12-22 2014-01-14 Rockwell Collins, Inc. Power detection for high power amplifier applications
JP5765203B2 (ja) * 2011-11-29 2015-08-19 三菱電機株式会社 高周波増幅回路
US9065505B2 (en) 2012-01-31 2015-06-23 Rf Micro Devices, Inc. Optimal switching frequency for envelope tracking power supply
US8989683B2 (en) * 2012-03-27 2015-03-24 Bae Systems Information And Electronic Systems Integration Inc. Ultra-wideband high power amplifier architecture
JP5900756B2 (ja) * 2014-02-28 2016-04-06 株式会社村田製作所 電力増幅モジュール
KR101653903B1 (ko) * 2015-01-12 2016-09-02 숭실대학교산학협력단 비선형 증폭단을 이용한 선형 증폭기
US10164580B2 (en) * 2015-10-13 2018-12-25 James Wang Multiplexed multi-stage low noise amplifier uses gallium arsenide and CMOS dies
US10270399B2 (en) * 2015-10-13 2019-04-23 Tubis Technology Inc Multiplexed multi-stage low noise amplifier uses gallium arsenide and CMOS dice
JP2022039806A (ja) * 2020-08-28 2022-03-10 株式会社村田製作所 増幅装置
TWI770969B (zh) 2021-04-28 2022-07-11 立積電子股份有限公司 放大器偏壓補償電路
US11522508B1 (en) * 2021-08-13 2022-12-06 Raytheon Company Dual-band monolithic microwave IC (MMIC) power amplifier

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160898A (en) * 1991-06-03 1992-11-03 Motorola, Inc. Power amplifier
US5204637A (en) * 1992-04-17 1993-04-20 Hughes Aircraft Company Power detection technique for automatic amplifier power control
US5774017A (en) * 1996-06-03 1998-06-30 Anadigics, Inc. Multiple-band amplifier
US6008698A (en) * 1998-05-18 1999-12-28 Omnipoint Corporation Amplifier with dynamically adaptable supply current
JP3766239B2 (ja) 1998-08-31 2006-04-12 株式会社ルネサステクノロジ 半導体増幅回路および無線通信装置
US6172567B1 (en) * 1998-08-31 2001-01-09 Hitachi, Ltd. Radio communication apparatus and radio frequency power amplifier
US6329879B1 (en) * 1998-11-12 2001-12-11 Hitachi, Ltd. High frequency power amplifier system and wireless communication system
US6194968B1 (en) * 1999-05-10 2001-02-27 Tyco Electronics Logistics Ag Temperature and process compensating circuit and controller for an RF power amplifier
JP3631060B2 (ja) * 1999-09-30 2005-03-23 株式会社東芝 線形増幅器及びこれを用いた無線通信装置
JP3866006B2 (ja) 2000-05-08 2007-01-10 三菱電機株式会社 増幅器
US6825725B1 (en) * 2003-06-27 2004-11-30 Sige Semiconductor Inc. Integrated power amplifier circuit

Also Published As

Publication number Publication date
US20050168281A1 (en) 2005-08-04
US6958649B2 (en) 2005-10-25
JP2004159123A (ja) 2004-06-03
US20040090267A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4160365B2 (ja) 高周波電力増幅用電子部品および無線通信システム
US7629851B2 (en) High frequency power amplifier circuit and electronic component for high frequency power amplifier
KR101451455B1 (ko) 선형 및 포화 모드에서의 동작을 위한 멀티모드 증폭기
US6236266B1 (en) Bias circuit and bias supply method for a multistage power amplifier
US6967535B2 (en) High frequency power amplifier circuit
EP1411632A2 (en) High frequency power amplifier and wireless communication system
JP4488309B2 (ja) 高周波電力増幅用電子部品
US7333564B2 (en) High frequency power amplifier circuit
KR100937308B1 (ko) 전력 증폭기 출력 전력의 정밀 제어를 위한 전력 제어 회로
US6605999B2 (en) High-frequency power amplifier, wireless communication apparatus and wireless communication system
KR100821197B1 (ko) 고효율 혼합모드 전력 증폭기
CN1838530B (zh) 高频功率放大器电路
JP2005229268A (ja) 高周波電力増幅回路および無線通信システム
KR20080021828A (ko) 선형 전력 증폭기용 자동 바이어스 제어 회로
US20040108902A1 (en) High frequency power amplifier electric parts and radio telecommunication system
JP2006270670A (ja) 高周波電力増幅回路および高周波電力増幅用電子部品
JP4632882B2 (ja) 高周波電力増幅器および無線通信装置
JP2005027130A (ja) 高周波電力増幅回路のバイアス制御回路および高周波電力増幅用電子部品
JP2005020383A (ja) 高周波電力増幅回路および無線通信システム
JP2005123860A (ja) 高周波電力増幅回路および高周波電力増幅用電子部品
JP2005217557A (ja) 高周波電力増幅回路
JP2005217562A (ja) 高周波電力増幅回路
JP2006094075A (ja) 高周波電力増幅用半導体集積回路およびこれを搭載した電子部品
JP2005197860A (ja) 高周波電力増幅回路
JP2006191332A (ja) 高周波電力増幅回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees