JP4128156B2 - 部品実装方法及び装置 - Google Patents

部品実装方法及び装置 Download PDF

Info

Publication number
JP4128156B2
JP4128156B2 JP2004165976A JP2004165976A JP4128156B2 JP 4128156 B2 JP4128156 B2 JP 4128156B2 JP 2004165976 A JP2004165976 A JP 2004165976A JP 2004165976 A JP2004165976 A JP 2004165976A JP 4128156 B2 JP4128156 B2 JP 4128156B2
Authority
JP
Japan
Prior art keywords
component mounting
substrate
component
board
reference mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165976A
Other languages
English (en)
Other versions
JP2005347555A (ja
Inventor
修 奥田
健之 川瀬
和之 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004165976A priority Critical patent/JP4128156B2/ja
Priority to US10/571,853 priority patent/US20080250636A1/en
Priority to EP05750066A priority patent/EP1671525B1/en
Priority to PCT/JP2005/010530 priority patent/WO2005120147A1/en
Priority to CN200580001123A priority patent/CN100589688C/zh
Priority to DE602005000512T priority patent/DE602005000512T2/de
Publication of JP2005347555A publication Critical patent/JP2005347555A/ja
Application granted granted Critical
Publication of JP4128156B2 publication Critical patent/JP4128156B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/041Incorporating a pick-up tool having multiple pick-up tools
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/089Calibration, teaching or correction of mechanical systems, e.g. of the mounting head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49133Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53087Means to assemble or disassemble with signal, scale, illuminator, or optical viewer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53178Chip component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53183Multilead component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53187Multiple station assembly apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、基板に部品を高精度で装着する部品実装方法及び装置に関する。
XYロボットの駆動により部品吸着ヘッドをXY方向に移動させて、ヘッドのノズルによる部品吸着、吸着部品のカメラによる認識、基板への装着といった部品実装を行っているが、部品認識精度をいくら上げても、部品実装装置自体のゆがみにより、高い装着精度を達成することができなかった。この部品実装装置自体のゆがみは、部品実装装置のXYロボットの加工精度が悪いか、又は組立て精度が悪いことに原因がある。
このような加工精度などの原因によるXYロボットのゆがみにより、基板への装着時に高精度での部品装着ができないことを、より具体的に分析すると、XYロボットのガイド部材のヨーイング(XYロボット上で移動するヘッドの進行方向に対する直交方向への横揺れ)、ピッチング(ヘッドの移動経路におけるリニアリティの悪さ)、ローリング(上記横揺れとは90度異なる方向への縦揺れ)などにより、XY方向の位置ズレが発生することになる。
よって、従来、カメラキャリブレーションを行うとともに、XYロボットに固定された基板認識カメラで基準基板の基準マークを見て、基準マークが本来あるはずの目標位置と基準マークの実際の位置との位置ズレ量を算出し、算出された位置ズレ量を装着位置オフセット値としてそれぞれの位置に加えて補正を行うことにより部品実装を精度良く行えるようにしている(例えば、特許文献1参照。)。
ここで、基板認識カメラにおけるカメラキャリブレーションとは、基板認識カメラの取付け誤差を検出するために、予め位置座標がわかっている治具を基板認識カメラで認識させ、認識結果に基づき算出した位置座標と、予めわかっていた位置座標との差から基板認識カメラの取付け誤差を算出して、位置補正を行わせることである。なお、上記カメラキャリブレーションの際、基板認識カメラの位置補正だけでなく、部品認識カメラとノズルの位置補正も併せて行う。
特開平6−126671号公報
しかしながら、上記それぞれの位置に補正を行う方法では、例えば、基準基板の1回目の位置決めと次の2回目の位置決めとでは1mm近く基準基板の位置が変位する可能性があること、さらに、基準基板は非常に高い精度が要求されるため非常に高価なものであり、破損防止の観点から基板ストッパーを使わずに大凡のX方向位置で基準基板を停止させて位置決めするため、及び、基板搬送コンベアには搬送のためにY方向にも1mm弱の隙間があるため、部品実装装置における基準基板の基板保持部における位置決めの再現性は無く、実装精度が低下する要因になる。
このように大凡の位置に基準基板を位置決めしたのち、その基準基板の基準マークを認識することで、ロボットの各位置間の相対的な変位量を求め、その変位量を実装する際に実装基板の装着する位置データに反映させるようにしているため、実装精度が低下する要因になっている。
一方、マトリックス状にグリッドを設けたガラスの基準基板を認識して補正する方法の場合、基準基板が正確に位置決めされることを前提にして、基準基板のグリッドを測定し、測定されたデータをそのまま補正値とすることが考えられる。
しかしながら、上記したように基準基板を基板保持部にミクロン単位で正確に保持することは非常に難しく、部品実装装置の基板保持部に正確に保持するための特別な位置決め装置が必要となることから、結局、測定したデータを直接補正値とすると、基準基板が正確に再現性良く位置決めされない限り、XYロボットの正確な補正はできないことになる。
ところで、部品実装装置の部品装着領域全体で考えたときに、XYロボットのゆがみによるヘッド動作の歪みが、位置決めしている位置によって変化しているということが原因で、従来のカメラキャリブレーション及び装着位置オフセット値のみでは、補正が不十分であるため、装着精度が確保できないという問題があった。
これは、等間隔に格子状に多数の基準マークが配置された基準基板自体を精密に製造したとしても、XYロボットと基準基板との絶対的な平行を出すことはできず、また、XYロボット自身も絶対的な直角度が保証されていない結果、基準が存在しないことになり、部品実装装置の部品装着領域に配置された上記基準基板を認識する基板認識カメラを有するヘッドが支持されたXYロボットがゆがんでいるため、基準基板から得られた位置を基準として使用することができず、装着精度を高める(例えば、ロボット精度を±2μm程度まで高めたり、実装機としての総合精度を±20μm程度まで高める)ことができなかった。
従って、本発明の目的は、上記問題を解決することにあって、基板の大きさに応じた最適のオフセット値を得ることで、装着精度を高めることができる部品実装方法及び装置を提供することにある。
上記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、基板保持装置に保持された部品実装用基板の部品装着位置に、上記基板保持装置に対して移動可能な部品装着ヘッドが備える部品保持部材に保持された部品を装着する部品実装方法において、
基準マーク認識用基板を上記基板保持装置に保持して部品装着領域に位置決めした状態で、当該基準基板の所定間隔毎に配置された基準マークを、上記部品装着ヘッドに備えられた第1の基板認識装置により認識するとともに、当該それぞれの基準マークの認識の際に、上記部品装着ヘッドにおいて上記第1の基板認識装置とは異なる位置に備えられた第2の基板認識装置により、当該第2の基板認識装置の視野に位置された別の上記基準マークを認識して、上記それぞれの基準マーク及び別の基準マークの位置座標を求め、
上記第1の基板認識装置により認識された上記それぞれの基準マークの位置座標と、上記第2の基板認識装置により認識された上記それぞれの別の基準マークの位置座標により、当該それぞれの認識の位置における上記部品装着ヘッドの上記移動方向に対する当該部品装着ヘッドの傾きを算出し、
上記部品装着ヘッドの傾きより当該部品装着ヘッドが備える上記部品保持部材の位置補正値を求め、当該位置補正値を用いて上記部品装着位置への上記部品保持部材の移動位置の補正を行い、上記部品の装着を行うことを特徴とする部品実装方法を提供する。
本発明の第2態様によれば、上記基準マーク認識用基準基板の上記基板保持装置への位置決めの後、上記基準基板の少なくとも2つの上記基準マークを上記第1の基板認識装置により認識して、当該2つの基準マークの位置座標を求め、
上記2つの基準マークのNC座標と上記位置座標とにより、上記基準基板の位置決め姿勢の傾きを算出し、
上記第1の基板認識装置により認識された上記それぞれの基準マークの位置座標と、上記第2の基板認識装置により認識された上記それぞれの別の基準マークの位置座標と、上記基準基板の位置決め姿勢の傾きとにより、上記それぞれの認識の位置における上記部品装着ヘッドの傾きの算出を行う第1態様に記載の部品実装方法を提供する。
本発明の第3態様によれば、上記第1の基板認識装置により認識された上記それぞれの基準マークの位置座標と、上記それぞれのNC座標との差を補正値としてそれぞれ求め、
上記部品実装用基板の少なくとも2つの基板基準位置算出用マークの位置座標のNC座標をそれぞれ取得し、
上記認識された基準マークの中から、上記2つの基板基準位置算出用マークにそれぞれ近い基準マークをそれぞれ選択し、
当該選択されたそれぞれの基準マークの上記補正値がゼロ又は実質的にゼロとなるように、上記選択された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求め、
上記基準マーク認識用基準基板に代えて上記部品実装用基板を上記基板保持装置に保持して上記部品装着領域に位置決めした状態で、当該部品実装用基板の上記少なくとも2つの基板基準位置算出用マークを上記第1の基板認識装置によりそれぞれ認識して、当該2つの基板基準位置算出用マークの位置座標をそれぞれ求め、
上記2つの基板基準位置算出用マークの位置座標に基づき、当該2つの基板基準位置算出用マークの上記NC座標をそれぞれ補正し、
上記部品実装用基板の各部品装着位置の上方に上記部品保持ヘッドの上記部品保持部材により保持された上記部品が位置したときに、上記第1の部品認識装置に最も近い上記基準マークのオフセット値と、当該基準マークの位置における上記部品装着ヘッドの傾きによる当該部品保持部材の位置補正値とに基づいて、上記部品装着位置の位置座標の補正を行った後、上記補正された部品装着位置の位置座標を基に上記部品の上記部品装着位置への装着を行う第1態様又は第2態様に記載の部品実装方法を提供する。
本発明の第4態様によれば、上記2つの基板基準位置算出用マークにそれぞれ近い上記選択された基準マークの補正値がゼロ又は実質的にゼロとなるように、上記選択された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求めるとき、
上記2つの基板基準位置算出用マークにそれぞれ近い上記選択された基準マークの補正値がゼロ又は実質的にゼロとなるように、上記選択された基準マークを結ぶグラフを回転及び移動させて座標変換させることにより、上記選択された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求めるようにした第3態様に記載の部品実装方法を提供する。
本発明の第5態様によれば、上記2つの基板基準位置算出用マークにそれぞれ近い上記選択された基準マークの補正値がゼロ又は実質的にゼロとなるように、上記選択された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求めるとき、
上記選択された基準マークから、上記基板保持装置のX方向と該X方向と直交するY方向とのうち少なくとも1つの方向における補正値を算出するとともに、上記基準基板の傾きを求め、上記選択された基準マークの補正値がゼロ又は実質的にゼロとなるように、上記選択された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求めるようにした第3態様又は第4態様に記載の部品実装方法を提供する。
本発明の第6態様によれば、上記基準マーク認識用基準基板の上記基板保持装置への上記位置決めの後、上記基準基板の少なくとも2つの上記基準マークを上記第1の基板認識装置により認識して、当該2つの基準マークの位置座標を求め、
上記2つの基準マークのNC座標と上記位置座標との差をそれぞれ求め、上記それぞれの差がゼロ又は実質的にゼロとなるように、上記2つの基準マークを結ぶグラフを回転又は移動させて座標変換させることにより、上記基準基板におけるそれぞれの上記基準マークのNC座標の座標変換を行い、
その後、当該座標変換されたそれぞれの基準マークのNC座標に基づいて、上記第1の基板認識装置と上記それぞれの基準マークとの位置合わせを行い、上記それぞれの基準マーク及び別の基準マークの認識を行って上記それぞれの位置座標を求め、
上記それぞれの基準マークの位置座標と上記それぞれの別の基準マークの位置座標との差を求めることで、当該それぞれの認識の位置における上記部品装着ヘッドの上記移動方向に対する当該部品装着ヘッドの傾きの算出を行う第1態様から第5態様のいずれか1つに記載の部品実装方法を提供する。
本発明の第7態様によれば、基板保持装置に保持された部品実装用基板の部品装着位置に、上記基板保持装置に対して移動可能な部品装着ヘッドが備える部品保持部材に保持された部品を装着する部品実装装置において、
上記部品装着ヘッドに備えられ、かつ、基準マーク認識用基準基板を上記基板保持装置に保持して上記部品装着領域に位置決めした状態で、上記基板保持装置に保持された上記基準基板の所定間隔毎に配置された基準マークの位置座標を認識する第1の基板認識装置及び第2の基板認識装置と、
上記第1の基板認識装置により認識した上記基準マークの認識結果より上記基準マークの位置座標を求めるとともに、上記第1の基板認識装置による当該基準マークの認識が行われる上記部品装着ヘッドの位置において、上記第2の基板認識装置により認識された別の上記基準マークの認識結果より当該別の基準マークの位置座標を求めて、上記第1の基板認識装置により認識された上記それぞれの基準マークの位置座標と、上記第2の基板認識装置により認識された上記それぞれの別の基準マークの位置座標により、当該それぞれの認識の位置における上記部品装着ヘッドの上記移動方向に対する当該部品装着ヘッドの傾きを算出し、上記部品装着ヘッドの傾きより当該部品装着ヘッドが備える上記部品保持部材の位置補正値を求め、当該位置補正値を用いて上記部品装着位置への上記部品保持部材の移動位置の補正を行い、上記部品の装着を行う制御装置とを備えることを特徴とする部品実装装置を提供する。
本発明の第8態様によれば、上記部品装着ヘッドは、上記第1の基板認識装置と上記第2の基板認識装置との間に複数の上記部品保持部材を配置して備える第7態様に記載の部品実装装置を提供する。
本発明の第9態様によれば、上記第1の基板認識装置及び上記第2の基板認識装置は、上記基準マークの位置座標を認識可能に、各々の光軸に沿って上記基準基板上の当該基準マークの画像を取得が可能であって、
上記部品装着ヘッドにおいて、上記第1の基板認識装置の上記光軸、上記第2の基板認識装置の上記光軸、及び上記それぞれの部品保持部材の昇降動作軸は、略同一直線上に配列されている第8態様に記載の部品実装装置を提供する。
本発明の第10態様によれば、上記部品保持装置に保持された上記部品実装用基板の大略表面沿いの方向であって、互いに略直交する方向であるX軸方向又はY軸方向に、上記部品装着ヘッドを進退移動させるXYロボットを備え、
上記部品装着ヘッドの傾きは、上記XYロボットによる上記X軸方向又は上記Y軸方向への上記部品装着ヘッドの移動により生じる当該X軸方向又はY軸方向に対する上記部品装着ヘッドの姿勢の傾きを含む第7態様から第9態様のいずれか1つに記載の部品実装装置を提供する。
本発明の第11態様によれば、上記制御装置は、上記基準マーク認識用基準基板の上記基板保持装置への位置決めの後、上記基準基板の少なくとも2つの上記基準マークを上記第1の基板認識装置により認識して、当該2つの基準マークの位置座標を求め、上記2つの基準マークのNC座標と上記位置座標とにより、上記基準基板の位置決め姿勢の傾きを算出し、上記第1の基板認識装置により認識された上記それぞれの基準マークの位置座標と、上記第2の基板認識装置により認識された上記それぞれの別の基準マークの位置座標と、上記基準基板の位置決め姿勢の傾きとにより、上記それぞれの認識の位置における上記部品装着ヘッドの傾きの算出を行う第7態様から第10態様のいずれか1つに記載の部品実装装置を提供する。
本発明の第12態様によれば、上記制御装置は、上記第1の基板認識装置により認識された上記それぞれの基準マークの位置座標と、上記それぞれのNC座標との差を補正値としてそれぞれ求め、上記部品実装用基板の少なくとも2つの基板基準位置算出用マークの位置座標のNC座標をそれぞれ取得し、上記認識された基準マークの中から、上記2つの基板基準位置算出用マークにそれぞれ近い基準マークをそれぞれ選択し、当該選択されたそれぞれの基準マークの上記補正値がゼロ又は実質的にゼロとなるように、上記選択された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求め、上記基準マーク認識用基準基板に代えて上記部品実装用基板を上記基板保持装置に保持して上記部品装着領域に位置決めした状態で、当該部品実装用基板の上記少なくとも2つの基板基準位置算出用マークを上記第1の基板認識装置によりそれぞれ認識して、当該2つの基板基準位置算出用マークの位置座標をそれぞれ求め、上記2つの基板基準位置算出用マークの位置座標に基づき、当該2つの基板基準位置算出用マークの上記NC座標をそれぞれ補正し、上記部品実装用基板の各部品装着位置の上方に上記部品保持ヘッドの上記部品保持部材により保持された上記部品が位置したときに、上記第1の部品認識装置に最も近い上記基準マークのオフセット値と、当該基準マークの位置における上記部品装着ヘッドの傾きによる当該部品保持部材の位置補正値とに基づいて、上記部品装着位置の位置座標の補正を行った後、上記補正された部品装着位置の位置座標を基に上記部品の上記部品装着位置への装着を行う第7態様から第11態様のいずれか1つに記載の部品実装装置を提供する。
本発明の第13態様によれば、上記制御装置は、上記基準マーク認識用基準基板の上記基板保持装置への上記位置決めの後、上記基準基板の少なくとも2つの上記基準マークを上記第1の基板認識装置により認識して、当該2つの基準マークの位置座標を求め、上記2つの基準マークのNC座標と上記位置座標との差をそれぞれ求め、上記それぞれの差がゼロ又は実質的にゼロとなるように、上記2つの基準マークを結ぶグラフを回転又は移動させて座標変換させることにより、上記基準基板におけるそれぞれの上記基準マークのNC座標の座標変換を行い、その後、当該座標変換されたそれぞれの基準マークのNC座標に基づいて、上記第1の基板認識装置と上記それぞれの基準マークとの位置合わせを行い、上記それぞれの基準マーク及び別の基準マークの認識を行って上記それぞれの位置座標を求め、上記それぞれの基準マークの位置座標と上記それぞれの別の基準マークの位置座標との差を求めることで、当該それぞれの認識の位置における上記部品装着ヘッドの上記移動方向に対する当該部品装着ヘッドの傾きの算出を行う第7態様から第12態様のいずれか1つに記載の部品実装装置を提供する。
本発明によれば、部品装着ヘッド自体の傾きによる部品保持部材の位置ズレを、第1の基板認識装置と第2の基板認識装置との2台の認識装置を用いて、基準マーク認識用基板における基準マークとこの基準マークとは別の基準マークのそれぞれの位置座標の認識を行うことで、上記部品装着ヘッドの傾き量を算出して、当該算出された傾き量を用いて当該位置ズレを補正することができる。従って、上記部品装着ヘッドの傾きに起因して生じる位置ズレの補正動作を行うことができ、高精度な部品実装を実現することができる。
また、このような上記部品装着ヘッドの傾き、例えば、上記部品装着ヘッドを移動させるヘッド移動装置(XYロボット)の支持案内部材(例えば、リニアガイド)の加工精度に起因するような傾きによる位置ズレの補正が可能となることにより、このような支持案内部材の加工精度を高めることなく、部品実装において高い実装位置精度を得ることができる。従って、高い実装位置精度を得ることができる部品実装装置の製作コストを低減化することができ、低コストと高精度とを両立することが可能となる。
また、このような上記第1の基板認識装置と上記第2の基板認識装置とにより略同時的な上記基準マーク及び上記別の基準マークの位置座標の認識結果より、上記部品装着ヘッドの傾きを算出する際に、上記それぞれの基準マークが形成されている上記基準マーク認識用基板の位置決め位置の位置ズレ(平行位置ズレ及び傾き)が考慮されることにより、上記基準マーク認識用基板に位置ズレ量が含まれることなく、実際の上記部品装着ヘッドの傾きを確実に算出することができる。
また、このような上記部品装着ヘッドの傾きに起因する位置ズレ量の補正に加えて、XYロボットの動作の歪みによる位置ズレ量の補正を併せて行うことで、さらに高精度な位置決めを行うことができる。すなわち、基準マーク認識用基準基板を上記基板保持装置に保持して部品装着領域に位置決めした状態で、上記基板保持装置に保持された上記基準基板の所定間隔毎に配置された基準マークの位置座標を認識して、上記認識されたそれぞれの基準マークの位置座標を求め、上記それぞれの基準マークのNC座標と上記位置座標との差を補正値としてそれぞれ求め、上記部品実装用基板の少なくとも2つの基板基準位置算出用マークの位置座標のNC座標をそれぞれ取得し、上記認識された基準マークの中から、上記2つの基板基準位置算出用マークにそれぞれ近い基準マークをそれぞれ抽出し、それらの抽出された基準マークの補正値がゼロ又は実質的にゼロとなるように、上記抽出された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求めるようにしている。その後、基準マーク認識用基準基板に代えて上記部品実装用基板を上記基板保持装置に保持して上記部品装着領域に位置決めした状態で、上記基板保持装置に保持された上記部品実装用基板の上記少なくとも2つの基板基準位置算出用マークをそれぞれ認識して、上記認識された2つの基板基準位置算出用マークの位置座標をそれぞれ求め、求められた上記2つの基板基準位置算出用マークの位置座標に基づき、上記2つの基板基準位置算出用マークの上記NC座標をそれぞれ補正し、上記部品実装用基板の各部品装着位置の上方に上記部品保持ヘッドに保持された上記部品が位置したときに、上記部品保持ヘッドに備えられた認識装置に最も近い上記基準マークのオフセット値を基に、上記部品装着位置の位置座標の補正を行ったのち、上記補正された部品装着位置の位置座標を基に上記部品の上記部品装着位置への装着を行うようにしている。この結果、基準マーク認識用基準基板上の所定間隔毎に配置された基準マークを認識し、その認識結果から、基板サイズに応じた各エリア毎の位置座標の補正用の数値をオフセット値として決定し、装着位置補正時、マーク認識補正時、及び装着位置オフセット値測定動作時又はそれらの動作のいずれかに、それぞれ、部品装着ヘッドのそれぞれの移動位置の該当するオフセット値をそれぞれ使用することになり、これにより、XYロボット動作の歪みによるズレ要因を吸収し、基板の大きさに応じた最適のオフセット値を得ることで、高精度な装着(例えば、実装時に、±0.005mmレベルの位置決め精度の条件下での装着)が行える。
また、基準マーク認識時にも、部品装着ヘッドのそれぞれの移動位置の該当するオフセット値を、補正用の数値としてそれぞれ反映させることにより、XYロボット動作の歪みによるズレ要因を吸収し、基板の大きさに応じた最適のオフセット値を得ることで、より高い精度の装着を行うことができる。
(第1実施形態)
以下に、本発明にかかる第1の実施形態を図面に基づいて詳細に説明する。
図1〜図4に示すように、本発明の第1実施形態にかかる部品実装方法を実施可能な部品実装装置100は、基本的構成部分として、架台110と、XYロボット120と、基板認識カメラ140と、部品認識カメラ150と、制御装置170とを備え、さらに部品供給装置180と、基板搬送装置190とを備えることができる。
上記架台110は、上記XYロボット120、上記部品認識カメラ150、上記制御装置170、上記部品供給装置180、及び上記基板搬送装置190を設置するための台盤であり、直方体形状のベース部111と、Y軸ロボット用脚部112とから構成され、ベース部111及びY軸ロボット用脚部112、即ち架台110は、鋳造にて一体構造にて成形している。上記Y軸ロボット用脚部112は、X軸方向51においてベース部111の両端部にてベース部111よりそれぞれ突設し、かつX軸方向51に直交するY軸方向52に沿って延在する。それぞれのY軸ロボット用脚部112には、XYロボット120を構成する、詳細後述のY軸ロボット121におけるリニアガイド123等が設置される。図4のナット部126の案内支持部材としての各リニアガイド123は、それぞれのY軸ロボット用脚部112にY軸方向52に沿って形成したリニアガイド設置面123aに沿わせてY軸ロボット用脚部112に設置されるが、上述のように、各Y軸ロボット用脚部112は、ベース部111と鋳造にて一体構造にて構成している。
上記XYロボット120は、それぞれの上記Y軸ロボット用脚部112つまり鋳造にて一体構造にて成形された架台110に、Y軸方向52に沿って互いに平行に設置される2つのY軸ロボット121と、該2つのY軸ロボット121上にY軸方向52に直交するX軸方向51に沿って配置される一つのX軸ロボット131とを有する。
それぞれのY軸ロボット121は、Y軸ボールネジ構造122と、上記リニアガイド123とを有する。Y軸ボールネジ構造122は、一端122aを固定端とし他端122bを支持端として、熱によりY軸方向52にのみ直線的に伸縮し、かつ上記X軸ロボット131をY軸方向52に移動させる。詳しく説明すると、図1及び図4に示されるように、Y軸ボールネジ構造122における上記一端122aには、Y軸ロボット用脚部112に固定され、ボールネジ125の駆動源としてのモータ124が設けられ、ボールネジ125に連結される。上記他端122bは、ボールネジ125をその周方向に回転自在に、かつその軸方向つまりY軸方向52へ伸縮可能に支持して、上記Y軸ロボット用脚部112に取り付けられる。
このように構成されるY軸ロボット121を連続的に運転したとき、発熱する箇所は、ボールネジ125及びモータ124であり、他端122bは、熱によるボールネジ125のY軸方向52への伸縮を許容する。又、モータ124は、上述のように一体構造の架台110に固定していることから、熱による各Y軸ロボット121の伸縮つまり熱伸縮は、Y軸方向52のみに直線状とすることができる。又、2台のY軸ロボット121の動作は、同じであることから、各Y軸ロボット121におけるY軸方向52への熱伸縮量は等しくなる。
又、各Y軸ロボット121のボールネジ125には、図4に示すように、ナット部126が取り付けられており、各ボールネジ125の回転によりナット部126は、Y軸方向52に移動する。XYロボット120を構成するX軸ロボット131が各ナット部126間にX軸方向51に沿って設置される。上述のように各Y軸ロボット121におけるY軸方向52への伸縮量は等しいことから、各ナット部126間に設置されたX軸ロボット131は、X軸に平行な状態でY軸方向52へ移動することができる。
尚、図4は、架台110及びXYロボット120の構造を概念的に示した図であり、後述の部品装着ヘッドは図示を省略している。又、図2〜図4において、部品供給装置180の図示は省略している。
X軸ロボット131は、X軸フレーム132と、X軸ボールネジ構造133とを有する。X軸フレーム132は、上述のようにそれぞれのY軸ロボット121におけるボールネジ構造122のナット部126に両端が固定され、X軸方向51に延在する。X軸ボールネジ構造133は、X軸フレーム132に形成され、一端133aを固定端とし他端133bを支持端として熱により上記X軸方向51にのみ直線的に伸縮し、さらに、部品保持ヘッドの一例としての部品装着ヘッド136が取り付けられて該部品装着ヘッド136を上記X軸方向51へ移動させる。
上記X軸フレーム132は、ほぼ角柱形状のアルミニウムにてなる部材であり、上述のようにその両端が上記ナット部126に固定されている。該X軸フレーム132の側面に形成されるX軸ボールネジ構造133における上記一端133aには、図4等に示すように、X軸フレーム132に固定され、ボールネジ134の駆動源としてのモータ135が設けられ、ボールネジ134に連結される。上記他端133bは、ボールネジ134をその周方向に回転自在に、かつその軸方向つまりX軸方向51へ伸縮可能に支持して、上記X軸フレーム132に取り付けられる。X軸ロボット131を連続的に運転したとき、発熱する箇所は、ボールネジ134及びモータ135であり、他端133bは、熱によるボールネジ134のX軸方向51への伸縮を許容する。
又、上記ボールネジ134には、図1に示すように、上記部品装着ヘッド136を取り付けるためのナット部134aが取り付けられており、ボールネジ134の回転によりナット部134a、即ち部品装着ヘッド136は、X軸方向51に移動する。
上記部品装着ヘッド136は、電子部品62を保持する部品保持部材としての機能を果たす一例としての部品吸着ノズル1361と、本実施形態では、搬入され設置された回路基板61の位置のズレを確認するため回路基板61に存在する基板基準位置算出用マーク202−1,202−2を撮像するとともに、後述する基準マーク認識用基準基板200の所定間隔毎に配置された基準マーク201を撮像するための基板認識カメラ140とを有する。上記部品吸着ノズル1361について、詳しくは図5に示すように、本実施形態ではX軸方向51に沿って一直線上に8本の部品吸着ノズル1361を設けている。尚、電子部品62は、チップ部品等の小型部品や、QFP等の大型部品、等である。よって、部品吸着ノズル1361も、吸着する各種の部品に対応して最適なサイズ及び形状のものが取り付けられている。上述のようにX軸方向51に沿って配列される各部品吸着ノズル1361の中心を通る直線と同軸上に、基板認識カメラ140の撮像中心が位置するように、基板認識カメラ140は配置されている。又、上記部品装着ヘッド136には、各部品吸着ノズル1361をその軸周り方向へ回転させるための回転用モータ1363も備わる。
各部品吸着ノズル1361は、上記部品供給装置180からの電子部品62の吸着、及び吸着した電子部品62を、部品実装用基板の一例としての回路基板61へ実装するため、部品吸着ノズル1361の軸方向つまり上記Z軸方向53に沿って移動する必要がある。本実施形態では、上記部品装着ヘッド136には、部品保持部材の一例としての部品吸着ノズル1361の移動用として、各部品吸着ノズル1361に、部品保持部材移動用駆動源として機能する一例である移動用モータ1362を設けている。よって、従来、複数の部品吸着ノズルの全てを一つの大出力モータにて駆動させていた場合に比べて、低出力のモータを使用することができ、モータからの発熱量を抑えることができる。一実施例として、移動用モータ1362の出力は20Wであり、移動用モータ1362からの発熱はほとんどない。さらに、従来、発熱量の大きい上記大出力モータを一つ設けた場合には、従来の部品装着ヘッドにおいて上記大出力モータからの遠近に従い温度勾配が生じ、配列方向において各部品吸着ノズル間の距離が熱伸縮の相違に起因して異なってしまう。これに対し、本実施形態では、それぞれの部品吸着ノズル1361に移動用モータ1362を設けたことで、各移動用モータ1362からの発熱がほとんどなく、又、仮に発熱があったとしても部品装着ヘッド136において、部品実装精度に影響を与える程度の温度勾配は生じない。よって、連続して部品装着ヘッド136を運転しても、X軸方向51において各部品吸着ノズル1361間の距離は、等しい又はほぼ等しい状態を維持することができる。尚、上記ほぼ等しい状態とは、部品実装精度に影響を与えない程度という意味である。
又、上述のように部品装着ヘッド136において部品実装精度に影響を与えるような温度勾配は生じないことから、各部品吸着ノズル1361と基板認識カメラ140との相対位置、つまり各部品吸着ノズル1361と基板認識カメラ140との間の距離を不動とすることができる。ここで上記不動とは、各部品吸着ノズル1361と基板認識カメラ140との間の距離について、熱により、部品実装精度に影響を与える程度の伸縮が生じないことを意味する。
上記部品供給装置180は、本実施形態の部品実装装置100では、電子部品62を収納したテープを巻回したリールを複数有する、いわゆるカセットタイプの部品供給装置であり、当該部品実装装置100のフロント側100a及びリア側100bとにそれぞれ2セットずつ設けられている。
上記基板搬送装置190は、当該部品実装装置100における部品装着領域の回路基板61の装着位置に対して、回路基板61の搬入、吸着保持、及び搬出を行う装置であり、図1等に示すように、当該部品実装装置100の略中央部分にてX軸方向51に沿って配置されている。上記基板搬送装置190は、上記装着位置に基板保持装置の一例としての搬送テーブル165を有して、搬入されてきた回路基板61を吸着保持可能とする一方、吸着保持解除して、回路基板61を搬出可能としている。
上記制御装置170は、図6に示すように、上述した各構成部分であるXYロボット120、基板認識カメラ140、部品認識カメラ150、部品供給装置180、及び基板搬送装置190と接続され、これらの動作制御を行い、回路基板61への電子部品62の実装動作を制御する。該制御装置170は、上記実装動作等に必要なプログラムや実装データ(例えば、実装動作中での部品装着ヘッド136のそれぞれの移動位置座標データと、それぞれの部品の装着位置座標データと、部品装着ヘッド136のそれぞれの移動位置とそれぞれの部品の装着位置との関係情報などのデータ、基準マーク認識用基準基板の大きさや基準マークの位置座標データ、実装すべき基板の大きさや基板基準位置算出用マークの位置座標データ、それぞれの部品データ、ノズルの大きさなどのデータ、部品供給装置180の部品供給データなど)などの実装情報や、基板認識カメラ140による認識情報や、後述する演算部171での演算結果などを記憶する記憶部173を有し、さらに、各種の演算を行う、例えば、基板認識カメラ140による認識情報(例えば、基板認識カメラ140による基準マーク201A,201Bの認識情報及び基板認識カメラ140による基準マーク201の認識情報と基板認識カメラ140による基板基準位置算出用マーク202−1,202−2の認識情報など)に基づいて平行ズレ及び傾き及び伸縮率などを演算するとともに、上記認識情報と記憶部173に記憶された実装情報のうちの各装着位置のデータとに基づいて各装着位置での誤差を演算して求める演算部171とを有している。制御装置170は、記憶部173に記憶されたデータや情報に基づき部品実装動作を行わせるようにしている。このように構成される制御装置170の部品実装動作、特に、補正動作については、以下に詳しく説明する。
以上説明したように構成される部品実装装置100における動作、即ち該部品実装装置100にて実行される部品実装方法について、さらに詳しく説明する。尚、回路基板搬送装置190による回路基板61の搬送動作、並びに、部品装着ヘッド136を含めてXYロボット120による、部品供給装置180からの部品吸着から回路基板61への部品実装までの動作については、従来の部品実装装置にて行われている動作と基本的に類似することから、これらの動作に関しては以下に簡単に説明する。
すなわち、XYロボット120により部品装着ヘッド136が部品供給装置180に移動する。次いで、部品供給装置180から1個又は複数個の電子部品62を部品装着ヘッド136の1個又は複数個のノズル1361で吸着保持する。次いで、XYロボット120により、部品装着ヘッド136が部品認識カメラ150の上方を通過して、部品認識カメラ150によりノズル1361に吸着保持した電子部品62の姿勢などを認識したのち、回路基板61の装着位置に向かう。XYロボット120により、部品装着ヘッド136のうちの1つのノズル1361に吸着保持した電子部品62を、対応する装着位置の上方に位置させたのち、ノズル1361を下降させて電子部品62を装着位置に装着する。このとき、部品認識カメラ150での部品姿勢認識結果に基づきノズル1361をその軸周りに回転などさせるとともに、後述するオフセット値を考慮して部品装着ヘッド136の位置補正を行ったのち、上記装着動作を行うことにより、実装動作を行う。その一連の実装動作を、上記基板61に実装すべきすべての部品62について行う。
本実施形態にかかる部品実装方法は、オフセット値を考慮しての上記実装動作中の部品装着ヘッド136の位置補正動作に特徴があり、図11を参照しながら以下に詳述する。
すなわち、本実施形態にかかる部品実装方法は、基準マーク認識用基準基板の一例としてのガラス基板200上の所定間隔毎に配置された基準マーク201を認識して、上記認識されたそれぞれの基準マークの位置座標(基準マークの位置を示すためのガラス基板200の平面内のX方向のX座標値とX方向と直交するY方向のY座標値より構成される座標)を求め、上記それぞれの基準マークのNC座標(設計上、予め決められた基準マークの数値的な位置座標)と上記位置座標との差を補正値としてそれぞれ求め、上記部品実装用基板の少なくとも2つの基板基準位置算出用マークの位置座標のNC座標をそれぞれ取得し、上記認識された基準マークの中から、上記2つの基板基準位置算出用マークにそれぞれ近い基準マークをそれぞれ抽出し、それらの抽出された基準マークの補正値がゼロ又は実質的にゼロとなるように、上記抽出された基準マークの位置座標をそれぞれ座標変換して、それぞれの基準マークでのオフセット値を求める。そして、基準マーク認識用基準基板に代えて上記部品実装用基板を上記基板保持装置に保持して上記部品装着領域に位置決めした状態で、上記基板保持装置に保持された上記部品実装用基板の上記少なくとも2つの基板基準位置算出用マークをそれぞれ認識して、上記認識された2つの基板基準位置算出用マークの位置座標をそれぞれ求め、求められた上記2つの基板基準位置算出用マークの位置座標に基づき、上記2つの基板基準位置算出用マークの上記NC座標をそれぞれ補正し、装着位置補正時、マーク認識補正時、及び装着位置オフセット測定動作時、又は、それらの動作のいずれかに、それぞれ、部品装着ヘッド136のそれぞれの移動位置に位置したときに、上記部品保持ヘッドに備えられた認識装置に最も近い上記基準マークのオフセット値を基に、上記移動位置の位置座標の補正を行うことにより、高精度な装着が行えるようにしたものである。
ここで、上記オフセット値とは、後述するように、部品実装用基板の2つの基板基準位置算出用マークにそれぞれ近い基準マークとして抽出された基準マークの補正値がゼロ又は実質的にゼロとなるように、上記抽出された基準マークの位置座標をそれぞれ座標変換して求められた基準マークの位置座標の補正用の数値を意味する。
また、上記補正値とは、上記基準基板の所定間隔毎に配置された基準マークのそれぞれのNC座標と上記それぞれ認識された位置座標との差を意味する。
まず、オフセット値の求め方の概略について説明する。
部品装着ヘッド136の位置決め精度は、XYロボット120の歪みにより大きく影響を受け(図7、図8参照)、位置決め誤差が発生する。例えば、図7はX軸ロボットの歪と部品装着ヘッド136との関係を示す図であり、図8はY軸ロボットの歪と部品装着ヘッド136との関係を示す図である。この位置決め誤差は、部品装着ヘッド136が移動する位置によって変化し、装着精度に影響を与えている。そこで、図9に示されるように、XYロボット120がヘッド136を任意のNC座標位置へ移動させたときに生じるXYロボット120の位置決めなどの誤差を除去するための補正用の数値として、そのNC座標位置に最も近い基準マーク位置のオフセット値(言い換えれば、そのNC座標位置が存在するエリアの補正用オフセット値)を使用する。すなわち、この位置決めなどの誤差を補正するための補正用の数値として使用するオフセット値を、最大の部品装着領域(生産すべき基板、例えば、XLサイズ:510mm×460mmの基板、Mサイズ:330mm×250mm基板を含む領域)内で基準マーク認識用基準基板を使用して求める。
具体的には、まず、図11のステップS1において、基準マーク認識用基準基板の一例としてのガラス基板200を基板保持装置の一例としての搬送テーブル165に保持して部品装着領域に位置決めする。
次いで、図11のステップS2において、部品装着ヘッド136の基板認識カメラ140で、上記搬送テーブル165に保持された上記ガラス基板200の所定間隔毎に配置されたすべての基準マーク201の位置座標を認識する。ここで補正値の測定のための基準マークのより具体的な認識は以下のようにして行われる。この補正値の測定では、上記測定用基板である基準マーク認識用基準基板の一例として、XLサイズ:510mm×460mm(Mサイズ:330mm×250mm)のガラス基板200に、基準マーク(直径1mmの円)201がグリッド状(格子状)に印刷などで形成された専用ガラス基板(以下、ガラス基板)を用いる。すなわち、ガラス基板200の一例として、図10に示されるように、XLサイズ用としては、510mmX460mmのガラス板上に、10mmピッチにY方向:44行、X方向:49列の円形の基準マーク(直径1mm)201が印刷されているものを使用する。よって、測定で使用する基準マーク個数は、2156点である。Mサイズ用としては、410mmX240mmのガラス板上に、10mmピッチに円形の基準マーク(直径1mm)201が、Y方向:22行、X方向:39列の基準マーク201を測定用として使用する。よって、測定で使用する基準マーク個数は、858点である。
上記基準マーク認識用基準基板の大きさは、原則として、部品実装装置の最大の部品装着領域以上であれば、どのような大きさでもよいが、後述するように、最大の部品装着領域より小さい場合には合成法を使用して仮想的に最大の部品装着領域以上の大きさを持つようにしてもよい。基準マークの間隔を細かくとれば精度が上がるが、データ取得時間が長くなるとともに、データ記憶量が多くなる。そこで、XYロボットのボールネジ構造のボールネジのリードの1/4〜1/5程度で経済的には十分である。具体例としては、リード40mmに対して基準マークピッチを10mmとすることができる。
次いで、図11のステップS3において、認識結果に基づき演算部171により、上記認識されたそれぞれの基準マーク201の位置座標を求めて記憶部173に記憶させる。すなわち、全ての基準マーク201を、例えば、図13に示されるように、位置ズレを少なくするため基板搬送装置190の基板搬送方向と平行に、最下行の左端の基準マーク201から同じ行の右端の基準マーク201までヘッド136の基板認識カメラ140を移動させて、その行のすべての基準マーク201を順に認識させて、認識結果に基づき演算部171により位置座標を求めて記憶部173に記憶させる。次いで、斜め左に逆に移動したのち、最下行の1つ上の行の左端の基準マーク201から同じ行の右端の基準マーク201までヘッド136の基板認識カメラ140が移動させて、その行のすべての基準マーク201を順に認識させて、認識結果に基づき演算部171により位置座標を求めて記憶部173に記憶させる。次いで、斜め左に逆に移動したのち、最下行の2つ上の行の左端の基準マーク201から同じ行の右端の基準マーク201までヘッド136の基板認識カメラ140が移動させて、その行のすべての基準マーク201を順に認識させて、認識結果に基づき演算部171により位置座標を求めて記憶部173に記憶させる。このような順に従って、すべての行のすべての基準マーク201を認識させて、認識結果に基づき演算部171により位置座標を求めて記憶部173に記憶させる。なお、図13のガラス基板200の下側は、部品実装装置の前側すなわち作業者の手前側に相当する。
それぞれの基準マーク201の認識精度を向上させる為、各基準マーク201の認識処理は、複数回繰り返して行うようにしてもよい。その場合、回数分の認識結果により求められた位置座標の平均値を演算部171で演算して、それぞれの基準マーク201の位置座標として記憶部173に記憶させる。その回数は、部品実装装置の操作画面から任意に変更できることが好ましい。
このようにして、すべての基準マーク201の位置座標を記憶部173に記憶させる。
次いで、図11のステップS4において、上記それぞれの基準マーク201のNC座標と上記位置座標との差を演算部171により補正値としてそれぞれ求めて、記憶部173に記憶させる。この補正値は、搬送テーブル165によるガラス基板200の吸着保持時のガラス基板200の保持ズレと、認識ズレと、XYロボットの位置決め誤差などを補正するための数値である。
次いで、図11のステップS5において、上記部品実装用基板61の少なくとも2つの基板基準位置算出用マーク202−1,202−2の位置座標のNC座標をそれぞれ、演算部171により取得する。
次いで、図11のステップS6において、上記2つの基板基準位置算出用マーク202−1,202−2の位置座標のNC座標を元に、上記ガラス基板200の上記認識された基準マーク201の中から、上記部品実装用基板61の上記2つの基板基準位置算出用マーク202−1,202−2にそれぞれ近い基準マーク201をそれぞれ演算部171により抽出する。具体的には、図12において、上記2つの基板基準位置算出用マーク202−1,202−2にそれぞれ近い、ガラス基板200上の例えば右上と左下の対角にある2点の基準マーク201A,201Bの認識を、ヘッド136をXYロボット120で移動させつつ、基板認識カメラ140により行う。すなわち、ガラス基板200は、基板搬送装置190の基板搬送方向に対して完全に平行に搬送テーブル165に保持されることは困難であり、位置ズレが生じている。このガラス基板保持時の位置ズレを補正する為に、まず、ガラス基板200の左下角及び右上角の基準マーク201を基準マーク201A,201Bとして認識する。
次いで、図11のステップS7において、それらの抽出された基準マーク201A,201Bの補正値がゼロ又は実質的にゼロとなるように、上記抽出された基準マーク201A,201Bの位置座標をそれぞれ座標変換(平行ズレ、傾き、及び、伸縮率を考慮して座標変換)して、それぞれの基準マーク201A,201Bでのオフセット値を求める。すなわち、上記図11のステップS3で得られた2点の基準マーク201A,201Bの認識結果の位置座標から、演算部171により、ガラス基板200の平行ズレ及び傾きを求める。平行ズレ及び傾きを求める式は後述する。平行ズレは、X方向及び/又はY方向の位置ズレを意味する。傾きは基板が基板ストッパーにより搬送テーブル165の装着位置で停止させられるとき、X方向及びその直交方向であるY方向に対して回転することによる回転ズレを意味する。このとき、熱による基板の伸縮を考慮する必要があるためにその伸縮率も求める。ここで、伸縮率は基板自体の熱による伸縮の割合を意味する。
次いで、演算部171により、求められた補正値(平行ズレ及び傾き)を元に、当該2点の基準マーク201A,201Bの補正値がゼロとなるように(言い換えれば、2点の基準マーク201A,201BのNC座標のデータと一致させるように)又は実質的にゼロとなるように(例えば±5μmの範囲内になるように)、2点の基準マーク201A,201Bを結ぶグラフを回転及び移動させて座標変換させて、すべての基準マーク201の位置座標におけるオフセット値をそれぞれ求めて、記憶部173に記憶させる。この結果、基準マーク認識用基準基板の大きさに応じた各エリア(基準マークを基にした(例えば4点の基準マークで囲まれた)単位面積毎に基準基板を分割した矩形のエリア)毎のオフセット値を決定することができ、そのエリア毎のオフセット値を、各エリア内に存在する部品装着ヘッドの移動位置の補正用の数値として、基準マーク認識用基準基板の各基準マークの認識動作時及び実装すべき基板に対しての部品装着動作時などにそれぞれ使用して位置補正することにより、装着精度の向上を図ることができるようにしている。
上記工程中の図11のステップS1〜S7により求められたオフセット値により、XYロボット120の固有の位置決めなどの誤差などを、各装着位置間の相対的変位として把握することができる。また、このようにして得られたオフセット値は、基準マーク認識動作、部品装着動作、及び装着オフセット値測定動作時又はそれらの動作のいずれかのそれぞれのヘッド位置決め位置算出の際に、補正用の数値として位置座標の補正に使用することにより、XYロボット動作の歪みによるズレ要因を吸収し、装着精度を向上させることができる。
ここで、すべての基準マーク201の位置座標に基準マーク認識用基準基板のズレに基づく補正を加味させる理由は、上記補正値を測定する際、基準マーク認識時に、XYロボット120の位置決め誤差が含まれてしまっているからである。そもそも、全てのXYロボット120の位置決め動作には誤差が含まれており、ガラス基板200が所望の高い精度で製造できたとしても、部品実装装置の装着位置に正確に位置決めできず、絶対的な基準が存在しなくなる為、XYロボット120の位置決め誤差を正確に測定することは不可能である。
ここで、基板認識カメラ140の視野中心位置O,Oから位置ズレした位置に基準マーク201A,201Bが認識されたことを示す図14を、基準マーク認識時の各基準マーク201A,201Bの認識結果とすると、1点目の基準マーク201Aの認識結果から求められた位置座標ズレ(ΔX,ΔY)、2点目の基準マーク201Bの認識結果から求められた位置座標ズレ(ΔX,ΔY)が基準マーク認識結果から求められた位置座標ズレとして得られる。
この各認識結果から求められた位置座標ズレに含まれるズレ成分としては、本来、ガラス基板200を搬送テーブル165に保持した際の平行ズレ量のみとなるのが理想であるが、実際には、認識処理の誤差と、XYロボット120の位置決め誤差とが含まれる。従って、上記基準マーク201A,201Bの認識結果から求められた位置座標ズレは、
(認識結果の位置座標ズレ)=(基板の保持ズレ)+(認識ズレ)+(XYロボット位置決め誤差)
となり、それぞれ基準マーク201A,201Bの基板平行ズレ量を(Xpcb1,Ypcb1)、(Xpcb2,Ypcb2)、基準マーク201A,201Bの認識誤差を(Xrec1,Yrec1)、(Xrec2,Yrec2)、基準マーク201A,201BでのXYロボット120の位置決め誤差量を(Xe1,Ye1)、(Xe2,Ye2)とすると、上記認識結果から求められた位置座標ズレ(ΔX,ΔY)、(ΔX,ΔY)は、
[数1]
ΔX=Xpcb1+Xrec1+Xe1
ΔY=Ypcb1+Yrec1+Ye1
ΔX=Xpcb2+Xrec2+Xe2
ΔY=Ypcb2+Yrec2+Ye2
となる。
つまり、上記認識結果を使用して、各基準マーク201の位置座標に対してガラス基板200の位置座標ズレ分を補正した基準マークの位置座標は、実際に基準マーク201が存在する座標にはならない。それは、補正した基準マークの位置座標には、XYロボット120の位置決め誤差によるズレ分が含まれてしまっているためである。
仮に、基準マーク201A,201Bの認識誤差(Xrec1,Yrec1)、(Xrec2,Yrec2)をゼロとした場合、補正して求められる基準マークの位置座標(X,Y)は、その基準マーク201のNC座標を(Xmnc,Ymnc)、各基準マーク201A,201BのNC座標を(Xnc1,Ync1)、(Xnc2,Ync2)とすると、
[数2]
=(Xmnc−Xnc1)cosΔθ−(Ymnc−Ync1)sinΔθ+ΔX
=(Xmnc−Xnc1)cosΔθ−(Ymnc−Ync1)sinΔθ+Xpcb1+Xe1 ・・・[1]
[数3]
=(Xmnc−Xnc1)sinΔθ+(Ymnc−Ync1)cosθ+ΔY
=(Xmnc−Xnc1)sinΔθ+(Ymnc−Ync1)cosθ+Ypcb1+Ye1 ・・・[2]
となる。
これに対して、実際の基準マーク201が存在する位置座標を(X、Y)とすると、
[数4]
=(Xmnc−Xnc1)cosΔθ−(Ymnc−Ync1)sinΔθ+Xpcb1 ・・・[1]´
=(Xmnc−Xnc1)sinΔθ+(Ymnc−Ync1)cosθ+Ypcb1 ・・・[2]´
となる。
ここで、本来、補正した結果のNC座標が、実際の基準マークの位置座標と一致しなければならない([1]=[1]´、[2]=[2]´)。しかし、上記の各式を比べると、
[数5]
−X=Xe1≠0
−Y=Ye1≠0
となり、補正した結果のNC座標が、実際の基準マークの位置座標と一致しない。実際の基準マークの位置座標にヘッド136を位置決めできないということは、そこで得られた認識結果から求められた位置座標ズレは、位置決め誤差を含んだ補正値となってしまい、位置補正のためには使用できない。
前述した通り、部品実装装置のXYロボット動作には常に位置決め誤差が含まれており、ガラス基板200を基準にして補正値を測定しても、それが真の値とはならず、絶対的な基準がない。
そこで、この誤差を限りなくゼロにする(言い換えれば、当該基準マーク201の位置座標のデータをNC座標のデータと一致させる)為に、上記で得られた補正値に以下のような処理を施す。
上記部品実装装置での実際の部品実装動作において、上記部品実装装置は生産基板(実装すべき基板)の搬送テーブル165での保持ズレを補正するために、上記したようにすべての基準マークを認識し、その結果で各装着位置を補正する。この時の2つの基板基準位置算出用マーク202−1,202−2の認識時の結果は、図15のようになる。ここで、2つの基板基準位置算出用マーク202−1,202−2の認識結果から求められた位置座標ズレには、保持ズレ分に加え、2つの基板基準位置算出用マーク202−1,202−2の位置での位置決め誤差が含まれている。
実際に部品62を、実装すべき基板61の装着位置205に装着する際には、この基板基準位置算出用マーク認識結果から、平行ズレ、傾き、及び伸縮率を求め、各装着位置205を補正して使用している。具体的には、2つの基板基準位置算出用マーク202−1,202−2に近い基準マークの位置でのズレ量(保持ズレ+位置決め誤差)がゼロになるように(言い換えれば、当該2つの基板基準位置算出用マーク202−1,202−2の位置座標データをNC座標のデータと一致させるように)全ての装着位置205を再配置することにより行っている。
具体的には、図16に示されるように、補正値の元データである基準マークの位置は、図17に示されるように本来の位置(図17では矩形の視野領域の中央の位置)からX方向及びY方向に位置ズレしているため、ゼロではない。なお、図16では、縦軸は位置ズレ量、横軸はX方向の位置を示し、上側のグラフがΔXすなわちX方向の位置ズレを示し、下側のグラフがΔYすなわちY方向の位置ズレを示す。
そこで、図18及び図19に示されるように、比較的小型の、実装すべき基板61Sの2つの基板基準位置算出用マーク202−1,202−2の近傍の基準マーク201a,201bの補正値が、ゼロ又は実質的にゼロとなるように(例えば±5μmの範囲内になるように)、2点の基準マーク201a,201bを結ぶグラフを回転及び移動させて座標変換させて、すべての装着位置を再配置するようにしている。なお、図18のグラフにおいて、基準マーク202−1と202−1(対角線上にある)が同一グラフ上にプロットされているが、データそのものは、Y座標を一定にしてX座標を10mm間隔で測定したものである。従って、グラフ上で「202−2」と表示されているデータは、基準マーク202−1のY座標データを同一とし、基準マーク202−2とX座標データが同一の基準マークのデータとなっている。これは、図20でも同様である。
また、図20及び図21に示されるように、比較的大型の、実装すべき基板61Lの2つの基板基準位置算出用マーク202−1,202−2の近傍の基準マーク201の補正値が、ゼロ又は実質的にゼロとなるように(例えば±5μmの範囲内になるように)グラフを回転及び移動させて座標変換させて、すべての装着位置を再配置するようにしている。このように、補正値の実使用データは実装すべき基板によって大きく異なることになる。
XYロボット位置決め誤差を求める過程において絶対的な基準が無いので、測定された各エリアのXYロボット位置決め誤差量と生産時の実装すべき基板61と合致するのは、実装すべき基板61の2つの基板基準位置算出用マーク202−1,202−2の位置のみである。そこで、生産基板61の2つの基板基準位置算出用マーク202−1,202−2の位置に近い基準マークの補正値を用いて、その2点の補正値がゼロ又は実質的にゼロになるように(例えば±5μmの範囲内になるように)座標変換して再配置する。このときの処理としては、2つの基板基準位置算出用マーク202−1,202−2の補正処理と同様に、平行ズレ、傾き、及び、伸縮率を求め、その結果により全装着位置205を再配置する。
図22では、生産基板61の基板基準位置算出用マーク201−1,202−2に、最も近いガラス基板200上の基準マーク201a,201bのXYロボット位置決め誤差量を元に、全基準マーク位置のXYロボット位置決め誤差量を演算部171で座標変換(平行ズレ、傾き、及び、伸縮率を考慮して座標変換)して、記憶部173に記憶させる。
上記座標変換を基板品種選択時に行い、変換されて得られたオフセット値を、マーク認識動作、部品装着動作、及び、装着オフセット測定動作のそれぞれのときに補正用の数値としてそれぞれの移動位置に、それぞれ、制御装置170によって加味するようにしている。このようにオフセット値を使用することにより、ロボット固有の誤差を各位置間の相対的変位として把握することができる。
次に、以下の工程、すなわち、図11のステップS8〜S12は、実装する際、部品実装用基板61の位置、傾き、収縮を補正するための工程である。すなわち、実装する際、部品実装用基板61の位置、傾き、収縮を補正するために以下の工程を行う。
具体的には、図11のステップS8において、上記部品実装用基板61を上記搬送テーブル165に保持して上記部品装着領域に位置決めする。
次いで、図11のステップS9において、上記搬送テーブル165に保持された上記部品実装用基板61の上記少なくとも2つの基板基準位置算出用マーク202−1,202−2をそれぞれ認識して、上記認識された2つの基板基準位置算出用マーク202−1,202−2の位置座標をそれぞれ求める。
次いで、図11のステップS10において、求められた上記2つの基板基準位置算出用マーク202−1,202−2の位置座標に基づき、上記2つの基板基準位置算出用マーク202−1,202−2の上記NC座標をそれぞれ補正する。すなわち、上記2つの基板基準位置算出用マーク202−1,202−2の位置座標と上記2つの基板基準位置算出用マーク202−1,202−2の上記NC座標との差に基づき、上記2つの基板基準位置算出用マーク202−1,202−2の上記NC座標を上記2つの基板基準位置算出用マーク202−1,202−2の位置座標に補正する。
次いで、図11のステップS11において、上記部品実装用基板61の各部品装着位置205の上方に上記部品保持ヘッド136に保持された上記部品62が位置したときに、上記部品保持ヘッド136に備えられた認識装置の一例としての基板認識カメラ140に最も近い上記基準マーク201のオフセット値(言い換えれば、基板認識カメラ140に最も近い上記基準マーク201を含むエリアのオフセット値)を基に、上記部品装着位置205の補正を行う。具体的には、基準マーク認識用基準基板の一例としてのガラス基板200上の各基準マーク201のNC座標に、ヘッド136の複数のノズル1361のうちの基準となるノズル(例えば図5の左端のノズル)1361を位置決めして、ヘッド136に固定された基板認識カメラ140でそのカメラ140に最も近い基準マーク201のオフセット値を記憶部173から読み出して、それを基に、上記部品装着位置205の補正を行う。
次いで、図11のステップS12において、上記部品62の上記補正された部品装着位置205への装着を行う。
なお、上記説明ではステップS11においてオフセット値を利用したが、ステップS9においてオフセット値を基板基準位置算出用マークのNC座標データに加味して基板認識カメラを移動させ、基板認識カメラの視野中心からの位置を求めてもよい。
以上は、エリアのオフセット値を求めるための補正値の測定及び測定結果に基づく装着位置補正動作の概要である。
以下に、本実施形態にかかる部品実装方法のより具体的な例について図24〜図26を参照しながら説明する。
(1) まず、例えば、部品実装装置製造工場から部品実装装置をユーザーに出荷する前に、基準マーク認識動作を行う。なお、ユーザーに引き渡したのち、オーバーホールなどした場合にも、同様に以下の基準マーク認識動作を行う。
すなわち、図24に示されるように、図24のステップS13Aとして、各エリアのオフセット値を求めるための補正値測定用の基準マーク認識用基準基板品種プログラムを選択するように、部品実装装置の操作画面で操作者に促す。この基準マーク認識用基準基板品種プログラムには、基準マーク認識用基準基板の一例としてのガラス基板200の種類と大きさと、そのガラス基板200上の基準マーク201の各位置のNC座標のデータとが関連付けられており、基板品種を選択することにより、ガラス基板200が特定され、かつ、ガラス基板200上の基準マーク201の各位置のNC座標のデータが記憶部173から制御装置170に送られる。
1つのより具体的な例として、410mm×240mmのガラス基板において、縦22行×横39列の858個の基準マークが縦横に10mm間隔で配置されているとき、第1基準マークの座標は(10,10)、第2基準マークの座標は(20,10)、.....、第858基準マークの座標は(390,220)となる。また、別の具体的な例として、510mm×460mmのガラス基板において、縦44行×横49列の2156個の基準マークが縦横に10mm間隔で配置されているとき、第1基準マークの座標は(10,10)、第2基準マークの座標は(20,10)、.....、第2156基準マークの座標は(490,440)となる。これらが上記NC座標のデータの一例である。
次いで、上記NC座標のデータが記憶部173から制御装置170に送られる間又は送られた後、図24のステップS13Bとして、図10に示されるような、等間隔に格子状に基準マーク201が配置されたガラス基板200を、基板搬送装置190の搬送テーブル165で部品装着領域に位置決めする(図11のステップS1参照)。
次いで、ガラス基板200が部品装着領域に位置決めされた後、図24のステップS13Cとして、記憶部173から送られた基準マーク201の各位置のNC座標のデータに基づき、XYロボット120を駆動してヘッド136を移動させて基板認識カメラ140を基準マーク201の各位置に移動させて、ガラス基板200上のすべての基準マーク201を認識し(図11のステップS2参照)、すべての基準マーク201のそれぞれの認識結果から求められた位置座標ズレ(ΔX,ΔY)又はそのズレを含んだ位置座標(X+ΔX,Y+ΔY)を記憶部173に記憶させる(図11のステップS3参照)。このとき、各基準マーク201の位置座標を複数回認識処理して、より精度良く、各基準マーク201の位置の座標を取得するようにしてもよい。
各基準マーク201の位置は、部品装着ヘッド136のそれぞれの移動位置として記憶部173に記憶されて管理される。従って、部品実装生産における基準マーク認識動作、部品装着動作、及び装着オフセット値測定動作(特に、チップ部品又はQFP部品装着時での装着オフセット値測定動作)又はそれらの動作のいずれかの部品装着ヘッド136の位置決め位置により、どのエリアのオフセット値を反映させるかを、制御装置170により、判断する。具体的には、例えば、4点の基準マーク201で囲まれた領域を、1つのエリアとして割り当て、そのエリア内で実装される部品62の装着位置に対してのエリアオフセット値として、上記4点の基準マーク201のうちのいずれかの基準マーク201の位置のオフセット値を採用して、このオフセット値を当該エリアにおけるエリアオフセット値として上記装着位置の位置座標に加算して補正を行う。
上記具体的な例の上記410mm×240mmのガラス基板においては、第1基準マークの認識結果から求められた位置座標ズレ(−0.132,−0.051)又はそのズレを含んだ位置座標(10−0.132,10−0.051)を記憶部173に記憶させる。また、第2基準マークの認識結果から求められた位置座標ズレ(−0.132,−0.051)又はそのズレを含んだ位置座標(20−0.132,10−0.051)を記憶部173に記憶させる。また、第3基準マークの認識結果から求められた位置座標ズレ(−0.139,−0.050)又はそのズレを含んだ位置座標(20−0.139,20−0.050)を記憶部173に記憶させる。また、第4基準マークの認識結果から求められた位置座標ズレ(−0.139,−0.049)又はそのズレを含んだ位置座標(10−0.139,20−0.050)を記憶部173に記憶させる。エリアオフセット値として第1基準マークの位置座標ズレ(−0.132,−0.051)を採用する。また、他の例として、第51基準マークの認識結果から求められた位置座標ズレ(−0.132,−0.051)又はそのズレを含んだ位置座標(210−0.132,100−0.051)を記憶部173に記憶させる。また、第52基準マークの認識結果から求められた位置座標ズレ(−0.130,−0.067)又はそのズレを含んだ位置座標(220−0.130,100−0.067)を記憶部173に記憶させる。また、第53基準マークの認識結果から求められた位置座標ズレ(−0.139,−0.050)又はそのズレを含んだ位置座標(220−0.139,110−0.050)を記憶部173に記憶させる。また、第54基準マークの認識結果から求められた位置座標ズレ(−0.139,−0.049)又はそのズレを含んだ位置座標(210−0.139,110−0.050)を記憶部173に記憶させる。エリアオフセット値として第51基準マークの位置座標ズレ(−0.132,−0.051)を採用する。これを同様に他の基準マークについても行う。
(2) 次に、生産基板品種選択を行う。
まず、図25に示されるように、ステップS21において、基板品種選択プログラムを記憶部173から制御装置170に転送して、生産すべき(実装すべき)基板61の基板品種選択を部品実装装置の操作画面で操作者に促す。操作者により基板品種が選択されると、選択された基板の大きさと基準マーク201の位置座標のNC座標のデータとが制御装置170により記憶部173から読み出される。
次いで、ステップS22において、制御装置170により、上記選択された基板品種に従い読み出されたNC座標のデータ中から上記選択された基板品種の基板61の2つの基板基準位置算出用マーク202−1,202−2の位置座標をそれぞれ抽出する。
上記具体的な例の上記410mm×240mmのガラス基板においては、基板基準位置算出用マーク202−1,202−2の位置座標として(15,18)と(215,111)とを抽出する。
次いで、ステップS23において、記憶部173に記憶されたデータを元に演算部171による演算で、2つの基板基準位置算出用マーク202−1,202−2の位置に最も近い、ガラス基板200上の基準マーク201をそれぞれ1つずつ抽出する。例えば、図22では、第1基板基準位置算出用マーク202−1では左下の第1基準マーク201aを抽出するとともに、第2基板基準位置算出用マーク202−2では右下の第52基準マーク201bを抽出する。
上記具体的な例の上記410mm×240mmのガラス基板においては、第1基板基準位置算出用マーク202−1の位置座標(15,18)では左下の第1基準マーク201aの位置座標(10,10)を抽出するとともに、第2基板基準位置算出用マーク202−2の位置座標(215,111)では右下の第52基準マーク201bの位置座標(210,110)を抽出する。
次いで、ステップS24において、抽出された2点の第1基準マーク201aと第52基準マーク201bのそれぞれの認識結果より、演算部171による演算で、平行ズレ及び傾き及び伸縮率を求める。
具体的には、上記2点の第1基準マーク201aと第52基準マーク201bのうち、平行ズレについては、第1基準マーク201aを基準として考える。
よって、第1基準マーク201aのオフセット値を(ΔX,ΔY)とすると、平行ズレ量(ΔXab,ΔYab)は、以下の式で記述できる。
[数6]
ΔXab=ΔX
ΔYab=ΔY
上記具体的な例の上記410mm×240mmのガラス基板においては、第1基準マーク201aのエリアオフセット値を(−0.132,−0.051)とすると、平行ズレ量は上記数6の式より、(−0.132,−0.051)となる。
一方、ガラス基板200の傾きは、第1基準マーク201aと第52基準マーク201bのNC座標を結ぶ直線と、第1基準マーク201aと第52基準マーク201bのNC座標にそれぞれのオフセット値を加算した座標を結ぶ直線のなす角となる。
第1基準マーク201aと第52基準マーク201bのNC座標を(X,Y)、(X,Y)とし、第1基準マーク201aと第52基準マーク201bのオフセット値を、それぞれ、(ΔX,ΔY)と(ΔX,ΔY)とすると、第1基準マーク201aと第52基準マーク201bとの傾きΔθabは、以下の式で記述できる。
[数7]
Δθab=tan−1{(Y−Y)/(X−X)}−tan−1[{(Y+ΔY)−(Y+ΔY)}/{(X+ΔX)−(X+ΔX)}]
上記具体的な例の上記410mm×240mmのガラス基板においては、第1基準マーク201aと第52基準マーク201bのNC座標を(10,10)、(210,110)とし、第1基準マーク201aと第52基準マーク201bのオフセット値を、それぞれ、(−0.132,−0.051)と(−0.130,−0.067)とすると、第1基準マーク201aと第52基準マーク201bとの傾きΔθabは、上記数7の式より、
[数8]
Δθab=tan−1{(110−10)/(210−10)}−tan−1[{(110−0.067)−(10−0.051)}/{(210−0.130)−(10−0.132)}]
=−0.004125°
となる。
次いで、ステップS25において、図11のステップS3で記憶させかつ実装すべき基板61の領域に対応したすべての基準マーク201の位置の位置座標を上記平行ズレ及び傾き(及び伸縮率)で演算部171により演算して補正し、補正後の基準マーク201の位置座標を記憶部173に記憶させる。具体的には、各基準マーク201の補正値は、第1基準マーク201aと第52基準マーク201bの平行ズレ、傾き、及び伸縮率を考慮して補正した後、オフセット値として記憶部173に記憶することになる。ここで、上記平行ズレを(ΔXab,ΔYab)、傾きをΔθab、伸縮率をE、第1基準マーク201aのNC座標を(X,Y)とし、補正対象の任意の基準マーク201のNC座標を(Xnc,Ync)、オフセット値を(ΔX,ΔY)とすると、各基準マーク201の補正後のオフセット値(ΔXoff,ΔYoff)は、以下の式で記述できる。
[数9]
off=E{((Xnc+ΔX)−X)}cosΔθab−((Ync+ΔY)−Y)sinΔθab}−(Xnc−X)+ΔXab
off=E{((Xnc+ΔX)−X)}sinΔθab+((Ync+ΔY)−Y)cosΔθab}−(Ync−Y)+ΔYab
となる。
上記具体的な例の上記410mm×240mmのガラス基板においては、上記平行ズレを(−0.132,−0.050)、傾きをΔθab=0.004125°、伸縮率をE=1.000026、第1基準マーク201aのNC座標を(10,10)とし、オフセット値を(−0.132,−0.050)とすると、第1基準マーク201の補正後のオフセット値(ΔXoff,ΔYoff)は、(0,0)となる。同様に、補正対象の15行8列の基準マーク201のNC座標を(150,80)、オフセット値を(−0.132,−0.060)とすると、その基準マーク201の補正後のオフセット値(ΔXoff,ΔYoff)は、(−0.001,−0.015)となる。
(3) 次に、基準マーク認識、及び、部品装着動作を行う。
まず、図26に示されるように、ステップS31において、基準マーク認識動作又は部品装着動作又は装着オフセット値測定動作のためにヘッド136が移動すべき移動位置を制御装置170が記憶部173の実装データから読み出し、認識位置又は装着位置を求める。
このとき、例えば、部品装着動作時には、XYロボット120によりヘッド136が移動して、ある移動位置で停止し、基板61のある部品62の補正後の装着位置上に、ヘッド136のあるノズル1361に吸着保持された部品62が位置して装着準備状態となるとき、そのときのヘッド136の基板認識カメラ140の視野中心に対して最も近い基準マーク201を、上記部品62に対する基準マーク201と考える。
同様に、基準マーク認識動作時には、XYロボット120によりヘッド136が移動して、ある移動位置で停止し、基準マーク認識用基準基板200の補正後のある基準マーク201の位置上に、ヘッド136のあるノズル1361が位置するとき、そのときのヘッド136の基板認識カメラ140の視野中心に対して最も近い基準マーク201を、上記ある基準マーク201に対する基準マーク201と考える。
また、同様に、装着オフセット値測定動作時には、XYロボット120によりヘッド136が移動して、ある移動位置で停止し、基準マーク認識用基準基板200の補正後のある基板基準位置算出用マーク202−1又は202−2の位置上に、ヘッド136のあるノズル1361が位置するとき、そのときのヘッド136の基板認識カメラ140の視野中心に対して最も近い基準マーク201を、上記基板基準位置算出用マーク202−1又は202−2に対する基準マーク201と考える。
次いで、ステップS32において、ステップS31でのヘッド136の移動位置に応じたエリアのオフセット値を、ヘッド136の移動位置の位置座標に演算部171により加算する。具体的には、図23に示されるように、実装すべき基板61の縦方向にM行、横方向にN列の基準マーク201(従って、合計M×N個の基準マーク201)があるとき、4点の基準マーク201で囲まれた領域(図23ではPで示される領域)を、1つのエリアとして割り当てる。そのエリア内で実装される部品62の装着位置の位置座標(又は装着位置の目安となる個別マークの位置座標)に対してのエリアオフセット値として、上記4点の基準マーク201のうちのいずれか、例えば、左下の基準マーク201cの位置のオフセット値を採用して、このオフセット値をエリアオフセット値として上記装着位置の位置座標(又は装着位置の目安となる個別マークの位置座標)に加算して補正を行う。
次いで、補正された位置座標にヘッド136が移動することにより、高い精度での位置決めが確保できて、高精度での基準マーク認識動作又は部品装着動作又は装着オフセット値測定動作を行うことができる。特に、部品装着動作においては、高い装着精度(例えば、XYロボット位置決め精度が±2μm程度、実装機としての総合精度が±20μm程度)が要求されるIC部品(BGA部品等)などの個別部品対応の個別マークの補正用の数値としてエリアオフセット値を使用することができる。
なお、上記図11のステップS3において、認識された基準マーク201の位置座標(位置座標)を記憶部173に記憶させるとき、以下のような補正をさらに加味するようにしてもよい。すなわち、各基準マーク201の位置座標は、図12に示されたように、ガラス基板200の左下と右上の2点の基準マーク201A,201Bを認識し、搬送テーブル165に対するガラス基板200の平行ズレ及び傾きを求め、その補正値を考慮し、測定する全基準マーク201の認識位置を演算部171で演算して算出する。また、このようなガラス基板200の平行ズレ及び傾きを考慮したそれぞれの基準マーク201の認識位置の算出にあたっては、ガラス基板200の伸縮率Eを1として行う。
上記ガラス基板200の平行ズレについては、基準マーク201A,201Bの2点のうち、基準マーク201Aを基準として考える。また、基準マーク201A,201Bの認識時には、基板認識カメラ140の中心を、NC座標中の基準マーク201の位置に移動させているので、平行ズレ量(ΔX,ΔY)は、基準マーク認識時の認識結果から求められた位置座標ズレ(基板認識カメラ140の認識視野の中心からのズレ量)となる。
よって、基準マーク201Aの認識結果から求められた位置座標ズレを(ΔX,ΔY)とすると(図34参照)、ガラス基板200の平行ズレ量(ΔX,ΔY)は、以下の式で記述できる。
[数10]
ΔX=ΔX
ΔY=ΔY
なお、位置座標系からNC座標系に座標変換している。
また、ガラス基板200の傾きは、NC座標上の基準マーク201Aと基準マーク201Bとを結ぶ直線と、認識した基準マーク201A´と基準マーク201B´を結ぶ直線とのなす角Δθとする。
すなわち、基準マーク201A,201BのNC座標を(X,Y)、(X,Y)とし、基準マーク201A,201Bの認識時の認識結果から求められた位置座標ズレ(視野中心からのズレ量)を、(ΔX,ΔY)、(ΔX,ΔY)とすると、基板傾きΔθは、以下の式で記述できる。
[数11]
Δθ=tan−1{(Y−Y)/(X−X)}−tan−1[{(Y+(−ΔY))−(Y+(−ΔY))}/{(X+ΔX)−(X+ΔX)}]
=tan−1{(Y−Y)/(X−X)}−tan−1[{(Y−ΔY)−(Y−ΔY)}/{(X+ΔX)−(X+ΔX)}]
なお、位置座標系からNC座標系に座標変換している。
よって、認識された各基準マーク201の位置座標は、上述のガラス基板200の平行ズレ及び傾きを考慮して、演算部171により算出する。ここで、上記平行ズレを(ΔX,ΔY)、傾きをΔθ、基準マーク201AのNC座標を(X,Y)、ガラス基板200上の任意の位置の基準マークNのNC座標を(X,Y)とした場合の、任意の位置の基準マークNの認識位置(XRN,YRN)は、
[数12]
RN=(X−X)cosθ−(Y−Y)sinθ+ΔX
RN=(X−X)sinθ+(Y−Y)cosθ+ΔY
となる。
従って、このようにして求められた、基準マークNの認識位置を、上記図11のステップS3において、認識された基準マーク201の位置座標(位置座標)として記憶部173に記憶させるようにしてもよい。このようにガラス基板200の平行ズレや傾きを考慮してそれぞれの基準マークの認識位置を求めるような処理、すなわち座標変換処理を行うことにより、基板認識カメラ140の視野内に確実にそれぞれの基準マークを位置させることができ、認識エラーの発生を未然に防止することができる。
上記実施形態によれば、基準マーク認識用基準基板の一例としてのガラス基板200上の所定間隔毎に配置された基準マーク201を認識し、その認識結果から、基板サイズに応じた各エリア毎のオフセット値をエリアオフセット値として決定し、装着位置補正時、マーク認識補正時、及び装着位置オフセット値測定動作時又はそれらの動作のいずれかに、それぞれ、部品装着ヘッド136のそれぞれの移動位置の該当するエリアオフセット値を、補正用の数値としてそれぞれ反映させることにより、XYロボット動作の歪みによるズレ要因を吸収し、基板の大きさに応じた最適のオフセット値を得ることで、高精度な装着が行える。
また、基準マーク認識時にも、部品装着ヘッド136のそれぞれの移動位置の該当するエリアオフセット値を、補正用の数値としてそれぞれ反映させることにより、XYロボット動作の歪みによるズレ要因を吸収し、基板の大きさに応じた最適のオフセット値を得ることで、より高い精度の装着を行うことができる。
なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施できる。
例えば、2つの第1及び第52基準マーク201a,201b又は201A,201B又は202−1,202−2は、基準マーク認識用基準基板又は実装すべき基板のいずれかの対角の異なる位置か、又は、XY方向いずれかの方向沿いの異なる位置、言い換えれば、同一点以外の任意の2つの異なる点ならばよい。
また、実装すべき基板61より基準マーク認識用基準基板200が小さい場合には、実装すべき基板61の部品装着領域のいずれか一方の端に基準マーク認識用基準基板200を位置決めした状態で基準マーク201の位置座標を認識取得したのち、実装すべき基板61の部品装着領域のいずれか他方の端まで基準マーク認識用基準基板200を移動させて、再度、基準マーク201の位置座標を認識取得し、共通部分を重ね合わせて1枚の大きな仮想の基準マーク認識用基準基板200で基準マーク201の位置座標を認識取得したようにデータを取扱えばよい。例えば、具体的には、図27に示されるように、基板の通常位置で測定した基準マーク201の位置座標のデータ[1]と、左へ350mm移動した位置で測定した基準マーク201の位置座標のデータ[2]とを合成する。データ[1]とデータ[2]とは共通部分が一致するように回転、移動補正のみを掛ける。伸縮率を加えると共通部分が一致しなくなるため、掛けない。
(実施例)
上記第1の実施形態にかかる各エリアのオフセット値を適用しない場合と適用する場合との間でのズレ量の変化及び部品装着精度の変化についての実例を示す。
図27に示す428mm×250mmの大きさの基板の基準マーク201を使用して各エリアのオフセット値を測定した。
図27において、基準マーク201の認識動作のとき、ヘッド136の配置構成として、右端のノズル1361の中心から基板認識カメラ140の視野中心がX方向に(すなわち、図27の右方向に)60mm離れた位置にあるため、左端のノズル1361から右端のノズル1361のすべてのノズル1361が基板61上のすべての領域に位置決め可能とするためには、基板認識カメラ140は、基板61の左端に当接して基板61を搬送テーブル165の装着位置に位置決めする基板ストッパーの位置からX方向に(すなわち、図27の右方向に)720.5mm(XL=基板幅510mm+60mm+両端ノズル間150.5mm)移動する必要がある。
しかしながら、基準マーク201を認識するときに使用する基準マーク認識用基準基板が、基板ストッパーの位置からX方向に410mmの範囲しかない場合には、基準マーク認識用基準基板をX方向にずらして、2度、基準マーク201を認識することにより、基板61の全領域(0mm〜720.5mm)の範囲をカバーできるようにしている。
図28及び図29に示すグラフは、各エリアのオフセット値を使用する時の認識結果から求められた位置座標ズレの出力データをプロットしたものである。図28の2つのグラフは、X方向に10mmピッチでヘッド136が移動しているときのX方向の位置とX方向のズレ量との関係を示し、グラフ[1]は各エリアのオフセット値を使用する前であり、グラフ[2]は各エリアのオフセット値を使用した後である。図29の2つのグラフは、Y方向に10mmピッチでヘッド136が移動しているときのY方向の位置とY方向のズレ量との関係を示し、グラフ[1]は各エリアのオフセット値を使用する前であり、グラフ[2]は各エリアのオフセット値を使用した後である。
図28の各エリアのオフセット値を使用する前のグラフ[1]は、X方向において、各エリアのオフセット値を使用する前は、基板ストッパーより200mm移動した位置で誤差が最大20μm発生し、上向きに凸形状をしている。これに対して、補正後のグラフ[2]は、ほぼゼロ付近を遷移している。
図29のグラフより、Y方向において、各エリアのオフセット値を使用する前のグラフ[1]はやや傾きをもって遷移しているが、各エリアのオフセット値を使用する後のグラフ[2]はX方向と同様にほぼゼロ付近を遷移している。
図28及び図29における各エリアのオフセット値を使用した後のグラフ[2]は、X方向及びY方向ともに、誤差は±5μm以内に収まっている。
次に、部品装着精度の変化について、上記428mm×250mmの大きさの基板に対して、400点の1.6mm×0.8mmのチップ部品であるセラミックコンデンサを基板に装着したとき、上記実施形態にかかる各エリアのオフセット値を使用しない場合の装着精度を図30に、上記実施形態にかかる各エリアのオフセット値を適用する場合の装着精度を図31に、それぞれ示す。また、多数個のQFPを基板に装着したとき、上記実施形態にかかる各エリアのオフセット値を適用しない場合の装着精度を図32に、上記実施形態にかかる各エリアのオフセット値を適用する場合の装着精度を図33に、それぞれ示す。各図での寸法値はmmオーダーである。
上記の結果より、図31、図33に示すように、X方向及びY方向の装着精度に改善傾向が見られる。すなわち、補正された装置位置データと、真の装着位置データとのズレ量が、上記実施形態にかかる各エリアのオフセット値を適用しない場合と比較して、数値上でも小さくなっていることがわかる。
なお、一例としての具体的な数値として、上記補正値は10μm〜30μm程度である。小型の基板の一例として400mm×250mmの基板で座標変換するとき、伸縮率は1.000025である。大型の基板の一例として600mm×250mmの基板で座標変換するとき、伸縮率は1.00005程度である。このほか、100×100mmのような小型の基板でも有効である。
本発明は、装着する部品は殆ど全ての電子部品の実装に適用可能であり、例えば、角チップコンデンサ、角チップ抵抗、トランジスタなどの小型部品、又は、QFP若しくはBGAなどのファインピッチ実装対象のICなどに適用可能である。
なお、基準マーク認識用基準基板をカメラで測定する代わりに、レーザー測長器で基板カメラ部の移動位置を測定することで達成することもできる(この場合には、基準マーク認識用基準基板が不要となる。)。
なお、上記のエリアオフセット値による補正に加えて、マーク認識動作(基板マーク認識、IC部品等に対応した個別マーク認識、多面取り基板の個々の基板に表示されたパターンマーク認識、部品グループ毎に表示されたグループマーク認識、不良表示を示すバッドマーク認識)、部品装着動作、装着オフセット値測定動作、基準マーク認識の各動作時のヘッド移動位置算出に使用されている「基板カメラオフセット値」及び「ノズル間ピッチ」に、カメラキャリブレーション時の「基板カメラオフセット値」及び「ノズル間ピッチ」の測定位置におけるエリアオフセット値を反映させることで、より精度を良くすることができる。
上記したカメラキャリブレーションにおいて基板カメラ140のオフセット値及びノズル間ピッチ(複数ノズルの各ノズル間の距離)を求めているが、その求める過程においては、XYロボットの歪みを補正する為のエリア毎の補正値は反映されていない。その為、マーク認識、部品装着動作、及び/又は、装着オフセット値測定動作時に、ヘッド移動位置を算出する時に用いられる基板カメラ140のオフセット値及びノズル間ピッチに反映させることにより、より高い精度の装着を行うことができる。基板カメラ140のオフセット値及びノズル間ピッチは、第1ノズル1361−1からの距離で与えられる。よって、マーク認識、部品装着動作、又は装着オフセット値測定動作時に、ヘッド移動位置を算出する時に用いられる基板カメラ140のオフセット値及びノズル間ピッチに反映させる場合、基板カメラオフセット値又はノズル間ピッチ測定時のエリアオフセット値と、第1ノズル1361−1の位置測定時のエリアオフセット値との差分を各動作時に反映させる。
以下、測定時のノズルと部品認識カメラ150と基板認識カメラとの位置関係を示す図37により説明する。
図37(a)に示すように第1ノズル(基準ノズルとする)1361−1の位置を測定する際、第1ノズル1361−1を部品認識カメラ150上に位置させ、第1ノズル1361−1の位置計測をする。この状態の計測で得られた第1ノズル1361−1の位置の値をエリアオフセット値(X1,Y1)とする。
続いて、図37(b)に示すようにn番目のノズル1361−nのノズル間ピッチを測定する際、n番目のノズル1361−nを部品認識カメラ150上に位置させ、n番目のノズル1361−nの位置計測をする。この状態の計測で得られたn番目のノズル1361−nの位置の値をエリアオフセット値(Xn,Yn)とする。図37に示すヘッドの場合はノズル数は合計8個あるので、nは2から8まで順次計測し、それぞれの第1ノズル1361−1のエリアオフセット値とする。
続いて、図37(c)に示すように基板カメラ140を測定する際、基板カメラ140を部品認識カメラ150上に位置させ、基板カメラ140の位置計測をする。この状態の計測で得られた基板カメラ140の位置の値をエリアオフセット値(Xp,Yp)とする。
図38に示す通り、基板カメラのオフセット値及びノズル間ピッチは、第1ノズル1361−1からの距離で与えられる。よって、エリアオフセット値を反映させる場合には、基板カメラオフセット値又は、ノズル間ピッチ測定時のエリアオフセット値と、第1ノズル1361−1の位置測定時のエリアオフセット値との差分を各動作時に反映させる。
例えば、図38を基に説明すると、カメラキャリブレーション時の第1ノズル1361−1の位置測定時のエリアオフセット値を(X1,Y1)、カメラキャリブレーション時のn番目のノズル1361−nのノズル間ピッチ測定時のエリアオフセット値を(Xn,Yn)、カメラキャリブレーション時の基板カメラオフセット値測定時のエリアオフセット値を(Xp,Yp)とすると、上記の各動作時に、「基板カメラオフセット値」に反映させるエリアオフセット値は、(Xp−X1,Yp−Y1)となる。さらに、部品装着動作に、n番目のノズル1361−nの「ノズル間ピッチ」に反映させるエリアオフセット値は、(Xn−X1,Yn−Y1)となる。
図35のフローチャートに示すように、基準マーク認識動作時に、ステップS51でカメラキャリブレーション時の第1ノズル1361−1の位置測定位置に応じたエリアオフセット値を求める。
さらに、ステップS52でカメラキャリブレーション時の基板カメラオフセット値測定位置に応じたエリアオフセット値を求める。
次いで、ステップS53にて、基板カメラオフセット値にエリアオフセット値を反映させる場合、ヘッド136の移動位置を求め、ステップS22(図25)でヘッド136の移動位置に応じたエリアオフセット値を求める。さらに、ステップS23(図25)で、第1ノズル(ノズル間ピッチ及び基板カメラオフセット値の基準位置となるノズル)1361−1が認識カメラ上にある位置に応じたエリアオフセット値を求め、ステップS24(図25)で基板カメラ140が認識カメラ上にある位置に応じたエリアオフセット値を求める。ステップS25で基準マーク認識動作時にステップS22で求めたエリアオフセット値を反映し、さらに、ステップS54にて、ステップS23で求めたエリアオフセット値とステップS24で求めたエリアオフセット値の差分(ステップS24で求めたエリアオフセット値−ステップS23で求めたエリアオフセット値)を反映させる。具体的には、ステップS54にて、ステップS52とステップS53とで求めたエリアオフセット値の差分(ステップS53のエリアオフセット値−ステップS52のエリアオフセット値)を基板カメラオフセット値に加算する。次いで、ステップS55にて、ステップS54での基板カメラオフセット値を用いて、基板マーク認識移動位置を求める。次いで、ステップS56にて、ステップS55で求めた移動位置に応じたエリアオフセット値を求める。次いで、ステップS57にて、ステップS56で求めた移動位置に応じたエリアオフセット値を加算する。次いで、ステップS58にて、ステップS57で求めた移動位置に基板カメラを移動させる。
このような構成にすることにより、ノズル間ピッチ、基板カメラオフセット値に含まれているXYロボット動作の歪みによるエリアオフセット値を反映させることができ、より高い精度の装着を行うことができる。
図36のフローチャートに、ノズル間ピッチの測定位置にエリアオフセット値を反映させて部品装着動作を行う手順を示す。
まず、ステップS62,S63で上記したようにカメラキャリブレーション時の第1ノズル、第n番目のノズルのエリアオフセット値を求める。すなわち、ステップS62にて、カメラキャリブレーション時の第1ノズルの位置測定位置に応じたエリアのエリアオフセット値を求める。次いで、ステップS63にて、カメラキャリブレーション時の第n番目のノズル間のピッチ測定位置のエリアに応じたエリアオフセット値を求める。
次いで、ステップS64で、ステップS62とS63で求めたエリアオフセット値の差分(ステップS63のエリアオフセット値−ステップS62のエリアオフセット値)を第n番目のノズル間ピッチに加算する。
次いで、ステップS65で、ステップS64でのノズル間ピッチを用いて、部品装着位置を求める。
次いで、ステップS66で、ステップS65で求めた移動位置に応じたエリアオフセット値を求める。
次いで、ステップS67で、ステップS66で求めた移動位置に応じたエリアのエリアオフセット値を加算する。
次いで、ステップS68で、ステップS67で求めた移動位置にノズルを移動させる。
(第2実施形態)
なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施できる。本発明の第2の実施形態にかかる部品実装方法及び装置について以下に説明する。
上記第1実施形態にて説明した部品実装のための部品装着位置の補正方法においては、XYロボット120による移動の際に部品装着ヘッド136の姿勢が変化しないものと仮定している。具体的には、図39の部品実装装置100の模式平面図に示すように、例えば、X軸ロボット131により支持された部品装着ヘッド136が、このX軸ロボット131により位置Aから位置Bに向けて図示X軸方向に沿って移動されるような場合に、部品装着ヘッド136は常にその姿勢がX軸ロボット131のX軸フレーム132と略平行な状態に保たれた状態にて当該移動が行われることを前提としている。
しかしながら、現実的には、X軸フレーム132、より詳細にはX軸フレーム132に取り付けられ、部品装着ヘッド136の図示X軸方向沿いの進退移動を案内する案内部材であるリニアガイド(図示しない)は、直線的な移動を可能とすべく、高精度に製作されているものの、完全に直線状に形成することは困難である。特に、X軸フレーム132のように、その両端部がY軸ロボット121による移動端となるような場合にあっては、上記リニアガイドを直線状に保持することはより困難なものとなる。従って、図39に示すように、X軸フレーム132の上記リニアガイドにより案内される部品装着ヘッド136の図示X軸方向の移動軌跡は、直線的ではなく、上記リニアガイドに沿った曲線状の軌跡となる。このような状況を考慮すれば、上記第1実施形態の補正方法においては、このように曲線的な軌跡を描いて部品装着ヘッド136が移動されるような場合であっても、それぞれの移動位置において、部品装着ヘッド136の姿勢が図示X軸方向と平行に保たれていることを前提としていることとなる。
しかしながら、図40の部品実装装置の模式図に示すように、部品装着ヘッド136の移動軌跡が曲線状とされることで、個々の移動位置において、部品装着ヘッド136の姿勢も変化することとなる。すなわち、部品装着ヘッド136の任意の移動位置である移動位置Cと移動位置Dとにおいて、部品装着ヘッド136の姿勢(X軸方向に対する傾き)が変化しており、X軸ロボット131により、部品装着ヘッド136はその傾きを変化させながら図示X軸方向に進退移動されることとなる。このように部品装着ヘッド136の傾きがその移動位置によって変化すれば、それぞれの移動位置において各部品吸着ノズル1361の位置にも位置ズレが生じることとなる。このような位置ズレを解消することを目的とするのが、本第2実施形態の部品実装方法である。以下に具体的に説明する。なお、本第2実施形態の部品実装方法は、上記第1実施形態の部品実装方法を基本とするものであり、その処理動作や構成の説明において重複する説明箇所は省略し、上記第1実施形態の説明を参照して理解されるものとする。また、以下に説明する部品実装装置の構成において、上記第1実施形態の部品実装装置100と同じ構成を有する部品等には、その説明の理解を容易なものとするために、同じ参照番号を付している。
まず、本第2実施形態の部品実装装置500の模式的な構成を示す模式平面図を図41に示す。図41に示すように、部品実装装置500は、上記第1実施形態の部品実装装置100と略同様な構成を有しているものの、部品装着ヘッド236が2つのカメラを備えている点において異なる構成となっている。具体的には、部品装着ヘッド236は、基板上における認識対象物を認識するための第1の基板認識装置の一例である基板認識カメラ240と、同じく基板上における認識対象物を認識するための第2の基板認識装置の一例である補正カメラ241とを備えている。
ここで、部品装着ヘッド236の側面図を図42に示す。図42に示すように、部品装着ヘッド236は、補正カメラ241が追加して装備されている点を除いては、上記第1実施形態の部品装着ヘッド136と略同様な構成を有している。部品装着ヘッド236は、部品保持部材の一例である部品吸着ノズル2361を例えば8本備えており、それぞれの部品吸着ノズル2361は、各々の昇降動作軸が一列に配列されて装備されている。
また、部品装着ヘッド236において、基板認識カメラ240は図示右端に備えられており、補正カメラ241は図示左端に配置されている。また、基板認識カメラ240の認識のための撮像の光軸と、補正カメラ241の認識のための撮像の光軸とは、それぞれの部品吸着ノズル1361の上記一列の配列における同一直線上に配置されている。
また、部品実装装置500は、それぞれの構成部分の動作制御を行う制御装置270を備えており、制御装置270は、図43に示すように、XYロボット12,基板認識カメラ240、補正カメラ241、部品認識カメラ150、部品供給装置180、及び基板搬送装置190と接続され、これらの動作制御を行い、回路基板61への電子部品62の実装動作を制御する。この制御装置270は、上記実装動作等に必要なプログラムや実装データ等の実装情報や、基板認識カメラ240及び補正カメラ241による認識情報や、後述する演算部271での演算結果等を記憶する記憶部273と、上記実装情報や上記認識情報に基づいて、部品装着位置の補正量の演算等を行う演算部271とを備えている。このような制御装置270により行われる部品装着位置の補正動作について以下に詳述する。
本第2実施形態の補正方法は、上記第1実施形態における補正方法における動作内容に加えて、新たに部品装着ヘッド236に設けられた補正カメラ241による認識動作及びその認識結果を用いた演算動作が追加されたものとなっている。まず、このような補正方法において用いられる基準マーク認識用基準基板の一例であるガラス基板300の模式平面図を図44に示す。
図44に示すように、ガラス基板300は、上記第1実施形態において用いられるガラス基板200と同様に所定間隔毎、例えば10mmピッチにてグリッド状に複数の基準マーク301が形成されている。ただし、上記第1実施形態のガラス基板200と異なるのは、ガラス基板300は図示左右方向(すなわち、X方向)においてガラス基板200よりも長く形成されている点である。このようにガラス基板300がX方向に長く形成されているのは、ガラス基板300上における部品装着領域に相当する領域内に配置されたそれぞれの基準マーク301を基板認識カメラ240により認識する際に、もう1つのカメラである補正カメラ241によりその視野内に位置されたそれぞれの基準マーク301の認識を行うためである。
すなわち、本第2実施形態の補正方法においては、基板認識カメラ240による基準マーク301の認識によりオフセット値(エリアオフセット値)を算出する(すなわち、上記第1実施形態の補正方法である)ことに加えて、基板認識カメラ240による基準マーク301の認識の際に、当該認識における部品装着ヘッド236の配置において補正カメラ241により別の基準マーク301の認識を行うことで、この同時に認識された2つの基準マーク301の位置座標により、部品装着ヘッド236の傾き(すなわち、X方向に対する傾き)の度合いを算出し、当該算出結果と上記オフセット値とを用いて、部品装着位置の補正を行うというものである。そのため、図44に示すように、ガラス基板300は、部品装着領域R内にそれぞれの部品吸着ノズル2361が位置されるような部品装着ヘッド236の配置において、このガラス基板300上に配置されたそれぞれの基準マーク301が基板認識カメラ240により認識される際に、同時的に補正カメラ241によっても別の基準マーク301を認識することができるように形成されている。なお、この部品装着領域Rは、部品装着ヘッド236が備えるそれぞれの部品吸着ノズル2361を位置させることができるような領域であって、かつ、基板認識カメラ240を位置させることができるような領域となっている。従って、例えば、部品装着領域Rの図示左端に位置されている基準マーク301を基板認識カメラ240にて認識する際に、補正カメラ241にてガラス基板300の図示左端に位置されている基準マーク301を認識することができるような大きさであって、かつ、部品装着領域Rの図示右端に部品装着ヘッド236の図示左端に配置されている部品吸着ノズル2361を位置させたときに、基板認識カメラ240によりガラス基板300の図示右端に位置されている基準マーク301を認識することができるような大きさにて、ガラス基板300が形成されている。
なお、基準マーク認識用基板の大きさは、原則として、上述のような大きさ以上の大きさであることが好ましいが、上記第1実施形態においても説明したように、上述した大きさが確保できないような場合にあっては、合成法を使用して仮想的に上記大きさが確保できるようにしてもよい。
次に、本第2実施形態の補正方向について、図45に示すそれぞれのカメラ240、241と基準マーク301との関係により部品装着ヘッド236の傾きを説明するための模式説明図と、図46から図48に示す動作手順のフローチャートとを用いて以下に詳述する。なお、図46のフローチャートに示す手順が上記補正動作の手順におけるキャリブレーション工程となっており、図47のフローチャートに示す手順が生産準備工程となっており、さらに図48のフローチャートに示す手順が生産工程となっている。また、以下のそれぞれのフローチャートのそれぞれの手順における動作制御は、部品実装装置500が備える制御装置270にて行われ、さらにそれぞれの演算は制御装置270の演算部271により行われ、その演算結果や当該演算に用いられるNC座標データなどの情報は記憶部273にて読み出し可能に記憶される。
(キャリブレーション工程)
まず、キャリブレーション工程について、図46のフローチャートを参照しながら説明する。
図46のステップS71において、ガラス基板300を搬送テーブル165にて保持して部品装着領域に位置決めする。なお、この位置決めの際には、図44に示すようにガラス基板300における部品装着領域Rに相当する部分が上記部品装着領域と略合致するように行われる。
次に、図46のステップS72において、部品装着ヘッド236の基板認識カメラ240により、搬送テーブル165に保持されたガラス基板300が備える所定間隔毎にグリッド状に配置されたそれぞれの基準マーク301の中から、少なくとも2点、例えば代表2点の基準マーク301の位置座標を認識する。
このように認識された上記2点の基準マーク301の位置座標と、予め制御装置270において取り込まれている上記2点の基準マーク301のNC座標とを比較し、その結果よりガラス基板300全体の傾き量θ(すなわち、ガラス基板300の位置決め姿勢の傾き量)を算出する(ステップS73)。なお、このような傾き量θの算出は、上記認識された2点の基準マークの位置座標とそれぞれのNC座標とのそれぞれの差を求めて、上記それぞれの差がゼロ又は実質的にゼロとするのに必要な上記2つの基準マーク301を結ぶグラフ(上記2つの基準マーク301をそれぞれの端点として有する直線状の線分)の回転量(回転角度)を求めることにより行われる。
次に、図46のステップS74において、それぞれの基準マーク301のNC座標に基づいて、部品装着ヘッド236の基板認識カメラがそれぞれの基準マーク301の上方に位置されるように移動され、それぞれの上方に位置された際にそれぞれの基準マーク301の位置座標の認識を行う。この基板認識カメラ240によるそれぞれの基準マーク301の位置座標の認識の際に、補正カメラ241の視野内に位置されるそれぞれの基準マーク301の位置座標も当該補正カメラ241により同時的に認識する。具体的には、図44に示すように、ガラス基板300における部品装着領域R内に配置されたそれぞれの基準マーク301の位置座標を基板認識カメラ240により順次認識を行い、このそれぞれの認識の際に、補正カメラ241の下方(すなわち視野内)に位置されるそれぞれの基準マーク301の位置座標を補正カメラ241により順次認識を行う。なお、基板認識カメラ240により認識された基準マーク301の位置座標と、補正カメラ241により認識された別の基準マーク301の位置座標とは、略同時的に認識されて、それぞれの認識結果のデータが互いに関連付けられた状態にて取得保持される。
次に、ステップS75において、基板認識カメラ240によるそれぞれの基準マーク301の位置座標の認識結果と、それぞれの基準マーク301のNC座標との差を補正値として求め、当該補正値をオフセット値とて記憶保持する。なお、このようなオフセット値は、上記第1実施形態にて求めたエリアオフセット値として記憶保持することができる。このようなエリアオフセット値を決定する手順については、上記第1実施形態において用いた手順をそのまま適用することができる。
さらに、このステップS75においては、基板認識カメラ240により認識された基準マーク301の位置座標と、補正カメラ241により認識された別の基準マーク301の位置座標とを用いることで、部品装着ヘッド236の傾き、すなわち、部品装着ヘッド236のX軸方向に対する姿勢の角度ズレ量(ヨーイング)が求められる。具体的には、図45の模式説明図に示すように、基板認識カメラ240により認識された基準マーク301−1の位置座標と、当該認識と同時的に補正カメラ241により認識された別の基準マーク301−2の位置座標との差を算出することにより、両位置間のX軸方向に対する傾き角度θを算出し、この傾き角度θと上記算出されたガラス基板300の傾き量θとの差を求めることで、X軸方向に対する部品装着ヘッド236の傾き、すなわちヨーイング値Δθとして求めることができる。すなわち、ヨーイング値Δθは、数13にて算出される。
[数13]
Δθ=θ−θ
なお、算出されたそれぞれのヨーイング値Δθは、その対応する基準マーク301のオフセット値と関連付けられて記憶されるが、本第2実施形態においては、それぞれのエリアオフセット値と関連付けられて記憶される。これによりキャリブレーション工程が完了する。
(生産準備工程)
次に、部品実装装置500における生産準備工程について、図47のフローチャートを参照しながら説明する。
図47のステップS81にて、制御装置270において、部品実装装置500において用いられる部品実装用基板61の少なくとも2つの基板基準位置算出用マーク202−1、202−2のNC座標を取得する。
その後、ステップS82において、この2つ(少なくとも2つ)の基板基準位置算出用マーク202−1、202−2のNC座標が配置されるガラス基板300上のそれぞれのエリアを選択するとともに、当該それぞれのエリアにおけるエリアオフセット値を取得する。
さらに、ステップS83において、この取得されたそれぞれのエリアオフセット値がゼロ又は実質的にゼロとなるように、これらのエリアオフセット値の座標変換を行う。なお、ステップS81〜S83までのそれぞれの手順は、上記第1実施形態における手順と同様な手順である。これにより生産準備工程が完了する。
(生産工程)
次に、生産工程(本生産工程)について、図48のフローチャートを用いて説明する。
まず、ステップS91において、部品実装用基板61を基板搬送装置190の部品装着領域に位置決めして保持させる。その後、この基板61の上記2つの基板基準位置算出用マーク202−1、202−2の上方に基板認識カメラ240を移動させて、それぞれの基板基準位置算出用マーク202−1、202−2の位置座標を認識する(ステップS92)。
さらにその後、上記認識された2つの基板基準位置算出用マーク202−1、202−2の位置座標に基づいて、部品実装用基板61のNC座標の座標変換を行う(ステップS93)。
次に、部品が装着される部品装着位置のNC座標として、上記変換されたNC座標を取得するとともに、ガラス基板300のそれぞれのエリアの中で、この部品装着位置が位置されるエリアを選択して、当該エリアに関連づけられた上記座標変換されたエリアオフセット値とヨーイング値とを取得する(ステップS94)。
その後、取得されたエリアオフセット値を用いて、上記部品装着位置の位置座標の補正を行う(ステップS95)。それとともに、この補正の際に取得されたヨーイング値Δθに基づいて、部品装着ヘッド236が備えるそれぞれの部品吸着ノズル2361の中から、当該部品装着位置への部品の装着動作を行う部品吸着ノズル2361の移動位置の補正、すなわち、部品装着ヘッド236の傾きに起因する移動位置の位置ズレ量の補正を行う。
具体的には、図45に示すように、部品装着ヘッド236が備えるそれぞれの部品吸着ノズル2361の中で、上記部品の装着を行う部品吸着ノズル2361−1の軸心位置(ノズル中心位置)と基板認識カメラ240の光軸V1との間の距離寸法L1と、基板認識カメラ240の光軸V1と補正カメラ241の光軸V2との間の距離寸法L2と、ヨーイング値Δθとを用いて、この移動位置の位置ズレ量の補正量ΔMを、数14にて算出することができる。
[数14]
ΔM=Δθ×L1/L2
なお、上記距離寸法L1やL2は、予め制御装置270において設定されて取り出し可能に記憶されている。
このような補正動作は、それぞれの部品装着位置毎に繰り返して行われ、上記補正されたそれぞれの部品装着位置に部品が装着される。
なお、部品装着ヘッド236に備えられている基板認識カメラ240と補正カメラ241との配置関係、すなわち、両者の光軸V1とV2との間の距離寸法L2は、ガラス基板300のそれぞれの基準マーク301の配置ピッチの整数倍の寸法であることが好ましい。このような寸法とすることで、基板認識カメラ240の光軸V1を一の基準マーク301の上方には配置させた場合に、補正カメラ241の光軸V2の近傍に別の基準マーク301を配置させることができ、上記別の基準マーク301が補正カメラ241の視野外に配置される可能性をより低減することができるからである。なお、補正カメラ241の視野内に上記別の基準マーク301が位置されていないと判断されるような場合には、ガラス基板300の位置決め異常等の警報を出力し、ガラス基板300を再度位置決め配置させて上記補正動作が行われる。
また、部品装着ヘッド236において、上記一連の補正動作の中で、キャリブレーション工程においては基板認識カメラ240及び補正カメラ241が共に備えられている必要があるが、それ以降に行われる生産準備工程及び生産工程においては、補正カメラ241は使用されないため、キャリブレーション工程が完了後、部品装着ヘッド236から補正カメラ241が取り外されるような場合であってもよい。なお、部品実装装置500のメンテナンス時等、再び、上記キャリブレーション工程を実施するような場合にあっては、部品装着ヘッド236に取り外された補正カメラ241を再び装備して当該工程を行い、部品装着ヘッド236の傾きを求めることができる。また、このような補正カメラ241の装備箇所には、補正カメラ241に代えて、視野又は解像度が異なる別の種類の基板認識カメラを装備させて、部品実装を行うこともできる。
また、上述のキャリブレーション工程においては、ガラス基板300の設置位置ズレ(平行ズレや角度ズレ)を考慮することなく、それぞれのオフセット値の算出を行う場合について説明したが、このような設置位置ズレを考慮するような場合であってもよい。このような考慮を行うことで、ガラス基板300の設置位置ズレが大きいような場合であっても、基板認識カメラ240の視野内に確実にそれぞれの基準マーク301を位置させることができ、認識エラーの発生を未然に防止することができる。このような場合における具体的な手順を、本第2実施形態の変形例として図49のフローチャートに示す。
次に、図49に示すように、ステップS101において、ガラス基板300の位置決めを行った後、ステップS102において、部品装着ヘッド236の基板認識カメラ240により、搬送テーブル165に保持されたガラス基板300が備える所定間隔毎にグリッド状に配置されたそれぞれの基準マーク301の中から、少なくとも2点、例えば代表2点の基準マーク301の位置座標を認識する。
このように認識された上記2点の基準マーク301の位置座標と、予め制御装置270において取り込まれている上記2点の基準マーク301のNC座標とを比較し、その結果よりガラス基板300の位置決め位置の位置ズレ量(平行位置ズレ量と傾き量θ)を算出する(ステップS103)。なお、このような位置ズレ量の算出は、上記認識された2点の基準マークの位置座標とそれぞれのNC座標とのそれぞれの差を求めることにより行う。さらに、上記それぞれの差がゼロ又は実質的にゼロとなるように、上記2つの基準マーク301を結ぶグラフ(上記2つの基準マーク301をそれぞれの端点として有する直線上の線分)を回転あるいは移動させることにより、ガラス基板300におけるそれぞれの基準マーク301のNC座標の座標変換を行う(ステップS104)。この場合、ガラス基板300を全ての基準としているため、伸縮率Eを1とする。なお、このような座標変換の手法は、上記第1実施形態において詳述したものと同様な手法である。
次に、図49のステップS105において、上記座標変換が行われたそれぞれの基準マーク301のNC座標に基づいて、部品装着ヘッド236の基板認識カメラがそれぞれの基準マーク301の上方に位置されるように移動され、それぞれの上方に位置された際にそれぞれの基準マーク301の位置座標の認識を行うとともに、補正カメラ241によりそれぞれの別の基準マーク301の位置座標の認識を行う。その後、ステップS106において、エリアオフセット値とヨーイング値Δθの算出を行う。なお、このヨーイング値Δθの算出方法は、上述した図46のステップS75の手順と同様である。これにより、キャリブレーション工程が完了する。その後、上述の生産準備工程及び生産工程を行うことができる。
上記第2実施形態によれば、上記第1実施形態によるエリアオフセット値を用いた部品装着位置の補正動作に加えて、部品装着ヘッド236自体の傾きによるそれぞれの部品吸着ノズル2361の先端部の位置ズレを、基板認識カメラ240と補正カメラ241との2台のカメラを用いて、同時的な基準マーク301の位置座標の認識を行うことで、ヨーイング値を算出して、当該算出されたヨーイング値を用いて補正することができる。従って、より高精度な補正動作を行うことができ、高精度な部品実装を実現することができる。
また、このような部品装着ヘッド236の傾き、例えば、X軸フレーム132の上記リニアガイドの加工精度に起因するような傾きによる位置ズレの補正が可能となることにより、リニアガイドの加工精度を高めることなく、高い実装位置精度を得ることができる。従って、高い実装位置精度を得ることができる部品実装装置の製作コストを低減化することができ、低コストと高精度とを両立することが可能となる。
なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明にかかる部品実装方法及び装置は、ガラス基板200上の所定間隔毎に配置された基準マーク201を認識し、その認識結果から、基板サイズに応じた各エリア毎のオフセット値を補正用の数値として決定し、装着位置補正時、マーク認識補正時、又は装着位置オフセット値測定時に、それぞれ、部品装着ヘッド136のそれぞれの移動位置の該当するオフセット値を、補正用の数値としてそれぞれ反映させることにより、装着精度を高めることができて有用である。
本発明の第1実施形態にかかる部品実装方法を実施可能な部品実装装置の平面図である。 図1に示す上記部品実装装置の正面図である。 図1に示す上記部品実装装置の右側面図である。 図1に示す上記部品実装装置に備わる架台及びXYロボットの概念図である。 図1に示す上記部品実装装置に備わるX軸ロボットの部品装着ヘッドの正面図である。 図1に示す上記部品実装装置の各構成部分と制御装置との関係を示すブロック図である。 部品装着ヘッドの位置決め精度がXYロボットの歪みにより大きく影響を受けることを説明するためのX軸ロボットの歪と部品装着ヘッドとの関係を示す説明図である。 部品装着ヘッドの位置決め精度がXYロボットの歪みにより大きく影響を受けることを説明するためのY軸ロボットの歪と部品装着ヘッドとの関係を示す説明図である。 本発明の上記実施形態にかかる上記部品実装方法のオフセット値の考え方を説明するための説明図である。 本発明の上記実施形態にかかる上記部品実装方法において使用するガラス基板の具体例を示す平面図である。 本発明の上記実施形態にかかる上記部品実装方法のオフセット値を求めて使用する手順を示すフローチャートである。 本発明の上記実施形態にかかる上記部品実装方法において使用するガラス基板の基準マークを示す平面図である。 本発明の上記実施形態にかかる上記部品実装方法において使用するガラス基板の基準マークの認識の仕方を説明するための説明図である。 本発明の上記実施形態にかかる上記部品実装方法において、基板認識カメラの視野中心位置O,Oから位置ズレした位置に基準マークが認識されたことを示す説明図である。 本発明の上記実施形態にかかる上記部品実装方法において、2つの基板基準位置算出用マークの認識時の結果を示す説明図である。 縦軸は位置ズレ量、横軸はX方向の位置を示し、上側の折れ線グラフがΔXすなわちX方向の位置ズレを示し、下側の折れ線グラフがΔYすなわちY方向の位置ズレを示すグラフである。 基準マーク位置が本来の位置である矩形の視野領域の中央の位置からX方向及びY方向に位置ズレしている状態を示す説明図である。 比較的小型の、実装すべき基板の2つの基板基準位置算出用マークの近傍の基準マークの補正値が、ゼロ又は実質的にゼロとなるようにグラフを回転及び移動させて座標変換させて、装着位置を再配置する状態を示すグラフである。 図18における比較的小型の、実装すべき基板の2つの基板基準位置算出用マークを示す平面図である。 比較的大型の、実装すべき基板の2つの基板基準位置算出用マークの近傍の基準マークの補正値が、ゼロ又は実質的にゼロとなるようにグラフを回転及び移動させて座標変換させて、装着位置を再配置する状態を示すグラフである。 図20における比較的大型の、実装すべき基板の2つの基板基準位置算出用マークを示す平面図である。 生産基板の基板基準位置算出用マークに最も近いガラス基板上の基準マークを示す説明図である。 実装すべき基板の縦方向にM行、横方向にN列の基準マークがあるとき、4点の基準マークで囲まれた領域Pを、1つのエリアとして割り当てる状態を示す説明図である。 上記実施形態にかかる部品実装方法のより具体的な例における基準マーク認識動作のフローチャートである。 上記実施形態にかかる部品実装方法のより具体的な例における品種選択動作のフローチャートである。 上記実施形態にかかる部品実装方法のより具体的な例における基準マーク認識動作及び部品装着動作のフローチャートである。 基板の通常位置で測定した基準マークの位置座標のデータ[1]と、左へ350mm移動した位置で測定した基準マークの位置座標のデータ[2]とを合成する場合の説明図である。 図27の基板において、X方向に10mmピッチでヘッドが移動しているときのX方向の位置とX方向のズレ量との関係を示すグラフである。 図27の基板において、Y方向に10mmピッチでヘッドが移動しているときのY方向の位置とY方向のズレ量との関係を示すグラフである。 428mm×250mmの大きさの基板に対して、400点の1.6mm×0.8mmのチップ部品であるセラミックコンデンサを基板に装着したとき、上記実施形態にかかるオフセット値を適用しない場合の装着精度を示すグラフであって、Y方向の装着ズレ量を縦軸に、X方向の装着ズレ量を横軸にそれぞれ示すグラフである。 428mm×250mmの大きさの基板に対して、400点の1.6mm×0.8mmのチップ部品であるセラミックコンデンサを基板に装着したとき、上記実施形態にかかるオフセット値を適用する場合の装着精度を示すグラフであって、Y方向の装着ズレ量を縦軸に、X方向の装着ズレ量を横軸にそれぞれ示すグラフである。 428mm×250mmの大きさの基板に対して、多数個のQFPを基板に装着したとき、上記実施形態にかかるオフセット値を適用しない場合の装着精度を示すグラフであって、Y方向の装着ズレ量を縦軸に、X方向の装着ズレ量を横軸にそれぞれ示すグラフである。 428mm×250mmの大きさの基板に対して、多数個のQFPを基板に装着したとき、上記実施形態にかかるオフセット値を適用する場合の装着精度を示すグラフであって、Y方向の装着ズレ量を縦軸に、X方向の装着ズレ量を横軸にそれぞれ示すグラフである。 基板認識カメラの視野中心からの基準マークのX方向及びY方向への位置ズレ量を示す説明図である。 上記実施形態の応用例として、ノズル間ピッチ及び基板カメラオフセット値に、それらに含まれているXYロボット動作の歪みによるエリアオフセット値を反映させる動作を示すフローチャートである。 ノズル間ピッチの測定位置にエリアオフセット値を反映させて部品装着動作を行う手順を示すフローチャートである。 (a),(b),(c)は、測定時のノズルと部品認識カメラと基板認識カメラとの位置関係を示す図である。 基板カメラのオフセット値及びノズル間ピッチを説明するための図である。 上記第1実施形態の部品実装装置における部品装着ヘッドの移動姿勢を示す模式説明図であり、部品装着ヘッドに傾きが生じていないと仮定したものである。 部品装着ヘッドの移動姿勢を示す模式説明図であり、部品装着ヘッドに傾きが生じている状態を示す。 本発明の第2実施形態にかかる部品実装装置の構成を示す模式図である。 図41の部品実装装置が備える部品装着ヘッドの側面図である。 図41の部品実装装置が備える制御装置の構成を示す制御ブロック図である。 上記第2実施形態の補正方法にて用いられるガラス基板の模式平面図である。 上記第2実施形態の補正方法の中で、部品装着ヘッドの傾きに起因する位置ズレ量を補正する動作を説明するための模式説明図である。 キャリブレーション工程の手順を示すフローチャートである。 生産準備工程の手順を示すフローチャートである。 生産工程の手順を示すフローチャートである。 上記第2実施形態の変形例にかかるキャリブレーション工程の手順を示すフローチャートである。
符号の説明
51…X軸方向、52…Y軸方向、53…Z軸方向、61…回路基板、62…電子部品、100…部品実装装置、110…架台、120…XYロボット、121…Y軸ロボット、122…Y軸ボールネジ構造、122a…一端、122b…他端、131…X軸ロボット、132…X軸フレーム、133…X軸ボールネジ構造、133a…一端、133b…他端、136、236…部品装着ヘッド、140…基板認識カメラ、150…部品認識カメラ、160…基準マーク、165…搬送テーブル、170、270…制御装置、171、271…演算部、173、273…記憶部、180…部品供給装置、190…基板搬送装置、200…ガラス基板、201,201a,201b,201A,201B…基準マーク、202,202−1,202−2…基板基準位置算出用マーク、240…基板認識カメラ、241…補正カメラ、500…部品実装装置、1361、2361…部品吸着ノズル、1362…モータ。

Claims (4)

  1. 基板保持装置に保持された部品実装用基板の部品装着位置に、上記基板保持装置に対して少なくともX軸方向に移動可能な部品装着ヘッドが備える部品保持部材に保持された部品を装着する部品実装方法において、
    基準マーク認識用基準基板を上記基板保持装置に保持して部品装着領域に位置決めした状態で、当該基準マーク認識用基準基板の所定間隔毎に配置された基準マークを、上記部品装着ヘッドに固定された第1の基板認識装置により順次認識するとともに、当該それぞれの基準マークの認識の際に、上記部品装着ヘッドにおいて上記第1の基板認識装置とは異なる位置に固定された第2の基板認識装置により、当該第2の基板認識装置の視野に位置された基準マークを別の基準マークとして順次認識して、上記部品装着ヘッドのそれぞれの移動位置における記基準マーク及び別の基準マークの位置座標を求め、
    上記第1の基板認識装置により認識された上記基準マークの位置座標と、上記第2の基板認識装置により認識された上記別の基準マークの位置座標により、上記それぞれの移動位置における上記部品装着ヘッドの上記X軸方向に対する当該部品装着ヘッドの傾きを順次算出し、
    上記部品装着ヘッドの上記それぞれの移動位置の中から上記部品実装用基板の上記部品装着位置に近い上記移動位置を選択し、選択された上記移動位置における上記部品装着ヘッドの傾きと、上記第1の基板認識装置と上記第2の基板認識装置との配置関係と、上記部品保持部材と上記第1の基板認識装置との配置関係とを用いて、上記部品装着位置における当該部品装着ヘッドが備える上記部品保持部材の位置補正値を求め、当該位置補正値を用いて上記部品装着位置への上記部品保持部材の移動位置の補正を行い、上記基板保持装置に保持された上記部品実装用基板の上記部品装着位置に上記部品を装着することを特徴とする部品実装方法。
  2. 基板保持装置に保持された部品実装用基板の部品装着位置に、上記基板保持装置に対して少なくともX軸方向に移動可能な部品装着ヘッドが備える部品保持部材に保持された部品を装着する部品実装装置において、
    上記部品装着ヘッドに固定され、かつ、基準マーク認識用基準基板を上記基板保持装置に保持して上記部品装着領域に位置決めした状態で、上記基板保持装置に保持された上記基準マーク認識用基準基板の所定間隔毎に配置された基準マークの位置座標を認識する第1の基板認識装置及び第2の基板認識装置と、
    上記第1の基板認識装置によりそれぞれの上記基準マークが順次認識されるそれぞれの移動位置に上記部品装着ヘッドの移動を行って、上記第1および第2の基板認識装置による上記基準マークおよび別の上記基準マークの認識を順次行い、上記第1の基板認識装置により認識した上記基準マークの認識結果より上記基準マークの位置座標を求めるとともに、上記第1の基板認識装置による当該基準マークの認識が行われる上記部品装着ヘッドの上記それぞれの移動位置において、上記第2の基板認識装置により認識された別の上記基準マークの認識結果より当該別の基準マークの位置座標を求めて、上記第1の基板認識装置により認識された上記基準マークの位置座標と、上記第2の基板認識装置により認識された上記別の基準マークの位置座標により、上記それぞれの移動位置における上記部品装着ヘッドの上記X軸方向に対する当該部品装着ヘッドの傾きを順次算出し、上記部品装着ヘッドの上記それぞれの移動位置の中から上記部品実装用基板の上記部品装着位置に近い上記移動位置を選択し、選択された上記移動位置における上記部品装着ヘッドの傾きと、上記第1の基板認識装置と上記第2の基板認識装置との配置関係と、上記部品保持部材と上記第1の基板認識装置との配置関係とを用いて、上記部品装着位置における当該部品装着ヘッドが備える上記部品保持部材の位置補正値を求め、当該位置補正値を用いて上記部品装着位置への上記部品保持部材の移動位置の補正を行い、上記基板保持装置に保持された上記部品実装用基板の上記部品装着位置に上記部品の装着を行う制御装置とを備えることを特徴とする部品実装装置。
  3. 上記部品装着ヘッドは、上記第1の基板認識装置と上記第2の基板認識装置との間に複数の上記部品保持部材を配置して備える請求項2に記載の部品実装装置。
  4. 上記第1の基板認識装置及び上記第2の基板認識装置は、上記基準マークの位置座標を認識可能に、各々の光軸に沿って上記基準基板上の当該基準マークの画像を取得が可能であって、
    上記部品装着ヘッドにおいて、上記第1の基板認識装置の上記光軸、上記第2の基板認識装置の上記光軸、及び上記それぞれの部品保持部材の昇降動作軸は、略同一直線上に配列されている請求項3に記載の部品実装装置。
JP2004165976A 2004-06-03 2004-06-03 部品実装方法及び装置 Expired - Fee Related JP4128156B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004165976A JP4128156B2 (ja) 2004-06-03 2004-06-03 部品実装方法及び装置
US10/571,853 US20080250636A1 (en) 2004-06-03 2005-06-02 Component Mounting Method and Apparatus
EP05750066A EP1671525B1 (en) 2004-06-03 2005-06-02 Component mounting method and apparatus
PCT/JP2005/010530 WO2005120147A1 (en) 2004-06-03 2005-06-02 Component mounting method and apparatus
CN200580001123A CN100589688C (zh) 2004-06-03 2005-06-02 元件安装方法和装置
DE602005000512T DE602005000512T2 (de) 2004-06-03 2005-06-02 Verfahren und vorrichtung zum montieren von bauelementen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165976A JP4128156B2 (ja) 2004-06-03 2004-06-03 部品実装方法及び装置

Publications (2)

Publication Number Publication Date
JP2005347555A JP2005347555A (ja) 2005-12-15
JP4128156B2 true JP4128156B2 (ja) 2008-07-30

Family

ID=35063237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165976A Expired - Fee Related JP4128156B2 (ja) 2004-06-03 2004-06-03 部品実装方法及び装置

Country Status (6)

Country Link
US (1) US20080250636A1 (ja)
EP (1) EP1671525B1 (ja)
JP (1) JP4128156B2 (ja)
CN (1) CN100589688C (ja)
DE (1) DE602005000512T2 (ja)
WO (1) WO2005120147A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739077B2 (en) * 2005-06-27 2010-06-15 Panasonic Corporation Mounting condition determination method
JP4860366B2 (ja) * 2006-06-21 2012-01-25 Juki株式会社 表面実装装置
CN101755229B (zh) * 2007-10-17 2011-11-09 Ads技术株式会社 在光学装置组装期间使用传感器调节自由度的设备
WO2009123382A1 (en) * 2008-04-01 2009-10-08 Ads Technologies Co., Ltd. Apparatus for adjusting the degree of freedom using sensor in assembling optical device
JP4993614B2 (ja) * 2008-02-29 2012-08-08 東京エレクトロン株式会社 搬送手段のティーチング方法、記憶媒体及び基板処理装置
JP5301329B2 (ja) * 2008-03-31 2013-09-25 Juki株式会社 電子部品の実装方法
JP5344145B2 (ja) * 2008-12-25 2013-11-20 澁谷工業株式会社 ボンディング装置における電子部品と基板の位置合わせ方法
JP4843751B2 (ja) 2010-03-29 2011-12-21 パナソニック株式会社 部品実装装置
CN101840572A (zh) * 2010-04-13 2010-09-22 河海大学常州校区 一种基于区域分割的qfp元件位置误差视觉检测方法
JP5597050B2 (ja) * 2010-07-15 2014-10-01 富士機械製造株式会社 基板停止位置制御方法および装置、ならびに基板装着位置制御方法
CN102622046A (zh) * 2011-01-31 2012-08-01 株式会社东芝 便携式计算机的扩展坞
CN102186310B (zh) * 2011-05-05 2013-04-10 深圳创维数字技术股份有限公司 一种定位方法及装置
JP6014315B2 (ja) * 2011-09-30 2016-10-25 ヤマハ発動機株式会社 電子部品装着装置の測定方法
JP5873320B2 (ja) * 2011-12-16 2016-03-01 ヤマハ発動機株式会社 部品実装装置
JP5995307B2 (ja) * 2012-03-27 2016-09-21 Jukiオートメーションシステムズ株式会社 認識装置、認識方法、プログラム及び基板の製造方法
JP5918622B2 (ja) 2012-05-11 2016-05-18 ヤマハ発動機株式会社 部品または基板の作業装置および部品実装装置
JP5852505B2 (ja) 2012-05-14 2016-02-03 ヤマハ発動機株式会社 部品または基板の作業装置および部品実装装置
DE112013003227B4 (de) * 2012-06-28 2023-06-22 Universal Instruments Corporation Montagemaschine, Bestückungsmaschine und Verfahren
JP6159124B2 (ja) * 2013-04-04 2017-07-05 ヤマハ発動機株式会社 部品実装装置
CH707934B1 (de) * 2013-04-19 2017-04-28 Besi Switzerland Ag Verfahren zum Montieren von elektronischen oder optischen Bauelementen auf einem Substrat.
DE112015000672T5 (de) 2014-02-07 2016-10-20 Universal Instruments Corp. Pick-and-Place-Bestückungskopf mit interner Unterdruck- und Luftdruckzuführung, System und Verfahren
JP6407826B2 (ja) * 2015-09-03 2018-10-17 ファナック株式会社 座標系設定方法、座標系設定装置、及び座標系設定装置を備えたロボットシステム
JP6606982B2 (ja) * 2015-11-04 2019-11-20 セイコーエプソン株式会社 ドット記録装置、検査装置、検査方法
WO2018109828A1 (ja) * 2016-12-13 2018-06-21 株式会社Fuji 作業ロボットの目的位置補正方法
JP7072264B2 (ja) * 2017-08-28 2022-05-20 株式会社新川 対象物に対して移動体を直線移動させる装置および方法
US10589423B2 (en) * 2018-06-18 2020-03-17 Shambhu Nath Roy Robot vision super visor for hybrid homing, positioning and workspace UFO detection enabling industrial robot use for consumer applications
JP6990309B2 (ja) * 2018-07-25 2022-01-12 ヤマハ発動機株式会社 表面実装機
JP7112274B2 (ja) * 2018-07-25 2022-08-03 芝浦メカトロニクス株式会社 実装装置、及び実装装置に用いられる校正基板
DE102020115598B3 (de) * 2020-06-12 2021-08-26 Asm Assembly Systems Gmbh & Co. Kg Verfahren und Bestückmaschine zum Bestücken von Bauelementeträgern basierend auf einem Rekalibrieren der Bestückmaschine im realen Bestückbetrieb, Computerprogramm zum Steuern einer Bestückmaschine
CN112330744A (zh) * 2020-11-09 2021-02-05 上海原能细胞生物低温设备有限公司 样本位置确定方法、装置、计算机设备和存储介质
CN113050702B (zh) * 2021-06-02 2021-08-31 中科长光精拓智能装备(苏州)有限公司 柔性载体位置校正装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164310A (en) * 1981-04-03 1982-10-08 Hitachi Ltd Automatic assembling device
US4812666A (en) * 1987-09-17 1989-03-14 Universal Instruments Corporation Position feedback enhancement over a limited repositioning area for a moveable member
US4980971A (en) * 1989-12-14 1991-01-01 At&T Bell Laboratories Method and apparatus for chip placement
JP3746127B2 (ja) * 1997-01-20 2006-02-15 Juki株式会社 部品搭載装置
JP3523480B2 (ja) * 1998-01-27 2004-04-26 株式会社日立ハイテクインスツルメンツ カメラ位置の補正装置
JPH11274799A (ja) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd 電子部品装着装置
US6591219B1 (en) * 1999-08-18 2003-07-08 Fuji Machine Mfg. Co., Ltd. Method and apparatus for correcting electric-component-mount position
JP4485667B2 (ja) * 2000-08-21 2010-06-23 パナソニック株式会社 部品実装装置のオフセット測定用基板及び部品実装装置のオフセット測定方法
EP1583412A4 (en) * 2002-12-02 2007-08-15 Matsushita Electric Ind Co Ltd DEVICE AND METHOD FOR PARTS ASSEMBLY

Also Published As

Publication number Publication date
EP1671525B1 (en) 2007-01-24
EP1671525A1 (en) 2006-06-21
US20080250636A1 (en) 2008-10-16
DE602005000512D1 (de) 2007-03-15
WO2005120147A1 (en) 2005-12-15
CN100589688C (zh) 2010-02-10
DE602005000512T2 (de) 2008-01-31
JP2005347555A (ja) 2005-12-15
CN1860837A (zh) 2006-11-08

Similar Documents

Publication Publication Date Title
JP4128156B2 (ja) 部品実装方法及び装置
US7356918B2 (en) Component mounting method
KR101560322B1 (ko) 기판 상에 물질을 분배하는 방법 및 장치
TW528881B (en) Position measuring apparatus
JP6012742B2 (ja) 作業装置
US20050205778A1 (en) Laser trim motion, calibration, imaging, and fixturing techniques
JP5301329B2 (ja) 電子部品の実装方法
JP4745727B2 (ja) ペースト塗布装置
JP5996979B2 (ja) 電子部品実装装置および実装位置補正データ作成方法
CN109916342A (zh) 一种定位平台直线度测量系统及方法
JP3450580B2 (ja) 露光装置および露光方法
JP2017112197A (ja) 基板保持装置、塗布装置、基板保持方法
JP2005159110A (ja) 部品実装方法及び装置
KR20070016098A (ko) 부품 실장 방법 및 장치
CN107024185B (zh) 一种基底面型测量方法及测量装置
JP4515814B2 (ja) 装着精度測定方法
JP2003234598A (ja) 部品実装方法及び部品実装装置
JP4150474B2 (ja) 画像測定機のテーブル撓み補正方法及び装置
JPH08335612A (ja) プロ−ブ装置およびその方法
JP5113657B2 (ja) 表面実装方法及び装置
JP3507033B2 (ja) ペースト塗布機
KR100219611B1 (ko) 웨이퍼 테스트 장치의 위치 에러 보정 방법
KR20240055034A (ko) 직접 묘화 장치 및 그 제어 방법
JP2595995B2 (ja) 組立装置
JP2022150192A (ja) キャリブレーションシステムおよびキャリブレーション方法ならびに部品装着装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees