JP4107156B2 - 電気化学酸化方法、電界放射型電子源の製造方法 - Google Patents

電気化学酸化方法、電界放射型電子源の製造方法 Download PDF

Info

Publication number
JP4107156B2
JP4107156B2 JP2003134895A JP2003134895A JP4107156B2 JP 4107156 B2 JP4107156 B2 JP 4107156B2 JP 2003134895 A JP2003134895 A JP 2003134895A JP 2003134895 A JP2003134895 A JP 2003134895A JP 4107156 B2 JP4107156 B2 JP 4107156B2
Authority
JP
Japan
Prior art keywords
anode
cathode
voltage
oxidation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003134895A
Other languages
English (en)
Other versions
JP2004047970A (ja
Inventor
祥文 渡部
浩一 相澤
卓哉 菰田
崇 幡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003134895A priority Critical patent/JP4107156B2/ja
Publication of JP2004047970A publication Critical patent/JP2004047970A/ja
Application granted granted Critical
Publication of JP4107156B2 publication Critical patent/JP4107156B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体の電気化学酸化を行う電気化学酸化方法、酸化膜を利用した電界放射型電子源の製造方法に関するものである。
【0002】
【従来の技術】
従来より、半導体の表面に酸化膜を形成する技術として電解液中の電気化学反応を利用した電気化学酸化方法が知られており、近年では、電気化学酸化方法を含むプロセスにより形成された電界放射型電子源が提案されている。
【0003】
この種の電界放射型電子源は、下部電極と、下部電極に対向する導電性薄膜よりなる表面電極と、下部電極と表面電極との間に介在し下部電極と表面電極との間に表面電極を高電位側として電圧を印加したときに下部電極から注入された電子がドリフトする強電界ドリフト層とを備えており、強電界ドリフト層が、酸化した多孔質半導体層たる多孔質多結晶シリコン層により構成されている。
【0004】
このように構成された電界放射型電子源は、表面電極を真空中に配置するとともに表面電極に対向してコレクタ電極を配置し、表面電極と下部電極との間に表面電極を高電位側として直流電圧を印加するとともに、コレクタ電極と表面電極との間にコレクタ電極を高電位側として直流電圧を印加することにより、強電界ドリフト層をドリフトした電子が表面電極を通して放出されるものである。したがって、表面電極には仕事関数の小さな金属材料(例えば、金)が採用され、表面電極の膜厚は10〜15nm程度に設定されている。また、この種の電界放射型電子源においては、抵抗率が導体の抵抗率に比較的近い半導体基板と当該半導体基板の裏面に形成したオーミック電極とで下部電極を構成したものや、絶縁性基板(ガラス基板、セラミック基板など)の一表面側に形成された導電性層により下部電極を構成したものなどがある。
【0005】
上述の電界放射型電子源において、表面電極と下部電極との間に流れる電流をダイオード電流Ipsと呼び、コレクタ電極と表面電極との間に流れる電流をエミッション電流(放出電子電流)Ieと呼ぶことにすれば、ダイオード電流Ipsに対するエミッション電流Ieの比率(=Ie/Ips)が大きいほど電子放出効率(=(Ie/Ips)×100〔%〕)が高くなるが、上述の電界放射型電子源では、表面電極と下部電極との間に印加する直流電圧を10〜20V程度の低電圧としても電子を放出させることができ、電子放出特性の真空度依存性が小さく且つ電子放出時にポッピング現象が発生せず安定して電子を高い電子放出効率で放出することができる。
【0006】
ところで、上述の電界放射型電子源における強電界ドリフト層は、多孔質多結晶シリコン層を酸化することで、多孔質多結晶シリコン層に含まれていた多数のナノメータオーダのシリコン微結晶および多数のグレインそれぞれの表面に薄いシリコン酸化膜が形成されているものと考えられ、全てのシリコン微結晶およびグレインの表面に良好な膜質のシリコン酸化膜を形成することを目的として、強電界ドリフト層を形成するにあたって、例えば、1mol/lの硫酸、硝酸などの水溶液からなる電解液中にて多孔質多結晶シリコン層を電気化学的に酸化する方法(電気化学酸化方法)が提案されている。ここにおける電解液は、質量分率で90%(90wt%)以上の水を含んでいる。なお、多孔質多結晶シリコン層を電気化学的に酸化する方法を採用することにより、多孔質多結晶シリコン層を急速熱酸化して強電界ドリフト層を形成する場合に比べてプロセス温度を低温化することができ、基板の材料の制約が少なくなり、電界放射型電子源の大面積化および低コスト化を図れるという利点もある。
【0007】
ところで、上述の電気化学酸化方法では、図11に示すように、電気化学酸化の対象となる半導体層である多孔質多結晶シリコン層が形成された被処理物30および白金電極よりなる陰極33を処理槽31に入った電解液B中に浸漬した状態で、被処理物30における下部電極を陽極として、直流電流源32を用いて陽極と陰極33との間に一定の化成電流密度の電流を流すように通電し、陽極と陰極33との間の電圧が電界放射型電子源の特性(例えば、エミッション電流や絶縁耐圧など)に応じて設定した所定電圧まで上昇した時点で通電を停止させている(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開2001−155622号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上述のような電気化学酸化方法を利用して強電界ドリフト層を形成した電界放射型電子源では、エミッション電流や絶縁耐圧などの特性のばらつきが大きく歩留まりが低いという不具合があった。つまり、上述のように陽極と陰極33との間の電圧が電子デバイスの特性に応じて設定した所定電圧まで上昇した時点で通電を終了させる電気化学酸化方法を利用して形成した電子デバイスでは、電子デバイスの特性のばらつきが大きく歩留まりが低いという不具合があった。
【0010】
本発明は上記事由に鑑みて為されたものであり、請求項1〜の発明の目的は、電子デバイスの特性のばらつきを小さくすることができる電気化学酸化方法を提供することにあり、また、請求項6の発明の目的は、従来に比べてエミッション電流および絶縁耐圧のばらつきを小さくすることが可能な電界放射型電子源の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1,2の発明は、上記目的を達成するために、電気化学酸化の対象となる半導体層の主表面とは反対側の電極を陽極として、少なくとも半導体層および陰極が電解液に接した状態で陽極と陰極との間に通電することにより半導体層を酸化する電気化学酸化方法であって、陽極と陰極との間に電流を通電して酸化を開始し、陽極と陰極との間の電圧Vをあらかじめ求めた電解液の抵抗による電圧上昇値V0に基づいて補正した電圧値Vtが規定の上限電圧値V1に達した時点を終点として当該終点以後に酸化を終了ことを特徴とし、電解液の抵抗によらず酸化開始から酸化終了までの期間における陽極と陰極との間の電圧値の増加分のばらつきを抑えることができ、つまり、酸化膜の形成に伴う電圧値の増加分のばらつきを抑えることができ、電子デバイスの特性のばらつきを小さくすることができる。また、請求項1の発明では、陽極と陰極との間に通電する前に、半導体層の主表面において所望の酸化対象領域とは別に設けた抵抗測定用領域を利用して電解液の抵抗を検出するので、電解液の抵抗を検出する際に半導体層の酸化対象領域が酸化されるのを防止することができるとともに半導体層の表面状態を反映した電解液の抵抗を検出することができ、電子デバイスの特性のばらつきをより小さくすることができる。また、請求項2の発明では、陽極と陰極との間に通電する前に、電気化学酸化の対象となる半導体層が形成された被処理物と同形状に形成した抵抗モニタ用の試料を用いて電解液の抵抗を検出するので、電解液の抵抗を検出する際に半導体層が酸化されるのを防止することができるとともに、検出抵抗値と通電開始時の電解液の抵抗値との差を小さくすることができ、電子デバイスの特性のばらつきをより小さくすることができる。
【0012】
求項の発明は、請求項1または請求項2の発明において、前記終点で酸化を終了するので、スループットを高めることができる。
【0013】
請求項の発明は、請求項1または請求項2の発明において、前記終点までは前記陽極と前記陰極との間に定電流を通電して酸化を行い、前記終点の後、補正した電圧値Vtを前記上限電圧値V1に維持して電流が所定値まで減少したときに酸化を終了するようにし、電流が減少する期間においても電流値と前記電解液の抵抗との積である前記電圧上昇値V0に基づいて電圧Vを補正して電圧値Vtを求めるので、通電開始から前記上限電圧値V1に達した後で電流が所定値に減少するまでの期間における酸化膜の形成に伴う電圧値の増加分のばらつきを抑えることができ、しかも、電子デバイスの特性のばらつきを請求項の発明に比べてより小さくすることができる。また、電流が所定値まで減少したときに酸化を終了するので、請求項の発明に比べて酸化膜が緻密化され絶縁耐圧も向上する
【0014】
求項の発明は、請求項1ないし請求項の発明において、前記電解液として有機溶媒に電解質を溶かした溶液を用いるので、従来のように硫酸、硝酸などの水溶液からなる電解液中にて半導体層を電気化学的に酸化することで酸化膜を形成したものに比べて、酸化膜中に水分が取り込まれにくくなり酸化膜の緻密性が高くなって酸化膜の絶縁耐圧が向上する
【0015】
求項の発明は、下部電極と、下部電極に対向する表面電極と、下部電極と表面電極との間に介在しナノメータオーダの多数の半導体微結晶および各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の酸化膜よりなる多数の絶縁膜を有する強電界ドリフト層とを備え、下部電極と表面電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層を形成するにあたっては、ナノメータオーダの多数の半導体微結晶を有する結晶層を酸化する酸化工程において請求項1ないし請求項のいずれか1項に記載の電気化学酸化方法により下部電極を陽極とし絶縁膜を形成することを特徴とし、電界放射型電子源のエミッション電流および絶縁耐圧のばらつきを低減することができて歩留まりが向上し、低コスト化を図ることができる。
【0016】
【発明の実施の形態】
(参考例)
本参考例では、電気化学酸化方法を利用して形成される電子デバイスの一例として電界放射型電子源について例示する。
【0017】
本参考例の電界放射型電子源10は、図3に示すように、絶縁性基板(例えば、絶縁性を有するガラス基板、絶縁性を有するセラミック基板など)よりなる基板1の一表面側に電子源素子10aが形成されている。ここにおいて、電子源素子10aは、基板1の上記一表面側に形成された下部電極2と、下部電極2上に形成されたノンドープの多結晶シリコン層3と、多結晶シリコン層3上に形成された強電界ドリフト層6と、強電界ドリフト層6上に形成された表面電極7とで構成されている。つまり、電子源素子10aは、表面電極7と下部電極2とが対向しており、表面電極7と下部電極2との間に強電界ドリフト層6が介在している。なお、本参考例では、基板1として絶縁性基板を用いているが、基板1としてシリコン基板などの半導体基板を用い、半導体基板と当該半導体基板の裏面に積層した導電性層(例えば、オーミック電極)とで下部電極2を構成するようにしてもよい。また、強電界ドリフト層6と下部電極2との間に多結晶シリコン層3を介在させてあるが、多結晶シリコン層3を介在させずに下部電極2上に強電界ドリフト層6を形成した構成を採用してもよい。
【0018】
ところで、下部電極2は金属材料からなる単層(例えば、Mo,Cr,W,Ti,Ta,Ni,Al,Cu,Au,Ptなどの金属あるいは合金あるいはシリサイドなど金属間化合物からなる単層)の薄膜により構成されているが、多層(例えば、Mo,Cr,W,Ti,Ta,Ni,Al,Cu,Au,Ptなどの金属あるいは合金あるいはシリサイドなど金属間化合物からなる多層)の薄膜により構成してもよいし、不純物をドープした多結晶シリコンなどの半導体材料により形成してもよい。なお、下部電極2の厚さは300nm程度に設定されている。
【0019】
また、表面電極7の材料には仕事関数の小さな材料(例えば、金)が採用されているが、表面電極7の材料は金に限定されるものではなく、また、単層構造に限らず、多層構造としてもよい。なお、表面電極7の厚さは強電界ドリフト層6を通ってきた電子がトンネルできる厚さであればよく、10〜15nm程度に設定すればよい。
【0020】
図3に示す構成の電界放射型電子源10から電子を放出させるには、例えば、図4に示すように、表面電極7に対向配置されたコレクタ電極21を設け、表面電極7とコレクタ電極21との間を真空とした状態で、表面電極7が下部電極2に対して高電位側となるように表面電極7と下部電極2との間に直流電圧Vpsを印加するとともに、コレクタ電極21が表面電極7に対して高電位側となるようにコレクタ電極21と表面電極7との間に直流電圧Vcを印加する。各直流電圧Vps,Vcを適宜に設定すれば、下部電極2から注入された電子が強電界ドリフト層6をドリフトし表面電極7を通して放出される(図4中の一点鎖線は表面電極7を通して放出された電子eの流れを示す)。なお、強電界ドリフト層6の表面に到達した電子はホットエレクトロンであると考えられ、表面電極7を容易にトンネルし真空中に放出される。
【0021】
本参考例の電界放射型電子源10では、表面電極7と下部電極2との間に流れる電流をダイオード電流Ipsと呼び、コレクタ電極21と表面電極7との間に流れる電流をエミッション電流(放出電子電流)Ieと呼ぶことにすれば(図4参照)、ダイオード電流Ipsに対するエミッション電流Ieの比率(=Ie/Ips)が大きいほど電子放出効率(=(Ie/Ips)×100〔%〕)が高くなる。
【0022】
強電界ドリフト層6は、後述のナノ結晶化プロセスおよび酸化プロセスを行うことにより形成されており、図5に示すように、少なくとも、下部電極2の上記一表面側に列設された柱状の多結晶シリコンのグレイン(半導体結晶)51と、グレイン51の表面に形成された薄いシリコン酸化膜52と、グレイン51間に介在する多数のナノメータオーダのシリコン微結晶(半導体微結晶)63と、各シリコン微結晶63の表面に形成され当該シリコン微結晶63の結晶粒径よりも小さな膜厚の酸化膜である多数のシリコン酸化膜(絶縁膜)64とから構成されると考えられる。なお、各グレイン51は、下部電極2の厚み方向に延びている。
【0023】
本参考例の電界放射型電子源10では、次のようなモデルで電子放出が起こると考えられる。すなわち、表面電極7と下部電極2との間に表面電極7を高電位側として直流電圧Vpsを印加するとともに、コレクタ電極21と表面電極7との間にコレクタ電極21を高電位側として直流電圧Vcを印加することにより、直流電圧Vpsが所定値(臨界値)に達すると、下部電極2から強電界ドリフト層6へ熱的励起された電子eが注入される。一方、強電界ドリフト層6に印加された電界の大部分はシリコン酸化膜64にかかるから、注入された電子eはシリコン酸化膜64にかかっている強電界により加速され、強電界ドリフト層6におけるグレイン51の間の領域を表面に向かって図5中の矢印の向き(図5における上向き)へドリフトし、表面電極7をトンネルし真空中に放出される。しかして、強電界ドリフト層6では下部電極2から注入された電子がシリコン微結晶63でほとんど散乱されることなくシリコン酸化膜64にかかっている電界で加速されてドリフトし、表面電極7を通して放出され、強電界ドリフト層6で発生した熱がグレイン51を通して放熱されるから、電子放出時にポッピング現象が発生せず、安定して電子を放出することができる。なお、強電界ドリフト層6の表面に到達した電子はホットエレクトロンであると考えられ、表面電極7を容易にトンネルし真空中に放出される。
【0024】
以下、本参考例の電界放射型電子源10の製造方法について図6を参照しながら説明する。
【0025】
まず、絶縁性を有するガラス基板からなる基板1の一表面上に所定膜厚(例えば、300nm程度)の金属膜(例えば、タングステン膜)からなる下部電極2をスパッタ法によって形成した後、基板1の一表面側の全面に所定膜厚(例えば、1.5μm)のノンドープの多結晶シリコン層3を例えばプラズマCVD法によって形成することにより、図6(a)に示すような構造が得られる。なお、多結晶シリコン層3の成膜方法は、プラズマCVD法に限らず、LPCVD法、触媒CVD法、スパッタ法、CGS(Continuous Grain Silicon)法などを採用すればよい。
【0026】
ノンドープの多結晶シリコン層3を形成した後、上述のナノ結晶化プロセスを行うことにより、多結晶シリコンの多数のグレイン51(図5参照)と多数のシリコン微結晶63(図5参照)とが混在する複合ナノ結晶層4が形成され、図6(b)に示すような構造が得られる。ここにおいて、ナノ結晶化プロセスでは、55wt%のフッ化水素水溶液とエタノールとを略1:1で混合した混合液よりなる電解液の入った処理槽を利用し、白金電極(図示せず)を陰極、下部電極2を陽極として、多結晶シリコン層3に光照射を行いながら所定の電流(例えば、電流密度が12mA/cmの電流)を所定時間(例えば、10秒)だけ流すことによって複合ナノ結晶層4が形成される。このようにして形成された複合ナノ結晶層4は、多結晶シリコンのグレイン51およびシリコン微結晶63を含んでいる。なお、本参考例では、複合ナノ結晶層4が半導体層を構成している。
【0027】
上述のナノ結晶化プロセスが終了した後に、上述の酸化プロセスを行うことによって図5のような構成の複合ナノ結晶層からなる強電界ドリフト層6が形成され、図6(c)に示すような構造が得られる。ここに、酸化プロセスは、図1に示す構成の酸化装置を用いて行う。すなわち、処理槽31に入れた電解液(例えばエチレングリコールからなる有機溶媒中に0.04mol/lの硝酸カリウムからなる溶質を溶かした溶液)B中に複合ナノ結晶層4が形成された被処理物30を浸漬し、電解液B中において複合ナノ結晶層4に格子状の白金電極からなる陰極33を対向配置して、下部電極2を陽極とし、電源としての直流電流源32から陽極(下部電極2)と陰極33との間に定電流(例えば、電流密度が0.1mA/cmの電流)を流し複合ナノ結晶層4を電気化学的に酸化する酸化処理を行うことによって上述のグレイン51、シリコン微結晶63、各シリコン酸化膜52,64を含む強電界ドリフト層6を形成するようになっている。ただし、上述の酸化装置は、処理槽31の電解液B中に浸漬した一対の抵抗測定用電極34a,34bにより電解液Bの抵抗を検出する抵抗検出部35と、陽極と陰極33との間の電圧(電位差)Vを検出する電圧検出部36と、電圧検出部36による検出電圧Vと抵抗検出部35による検出抵抗値とに基づいて直流電流源32の出力を制御する制御部37とを備えており、制御部37は、あらかじめ抵抗検出部35による検出抵抗値に基づいて電解液Bの抵抗による電圧上昇値V0(図2(a)参照)を求めておき、その後、直流電流源32から定電流が流れるように直流電流源32を制御することで酸化処理を開始させ、電圧検出部36による検出電圧Vから電圧上昇値V0を減算する補正を行い、補正した電圧値Vt(=V−V0)が規定の上限電圧値V1(図2(b)参照)に達すると、直流電流源32の出力を停止させることにより酸化処理を終了させるようになっている。要するに、制御部37は、補正した電圧値Vtが規定の上限電圧値V1に達した時点を終点として当該終点で酸化を終了させるようになっている。なお、本参考例では、上述のナノ結晶化プロセスを行うことによって形成される複合ナノ結晶層4においてグレイン51、シリコン微結晶63以外の領域はアモルファスシリコンからなるアモルファス領域となっており、強電界ドリフト層6においてグレイン51、シリコン微結晶63、各シリコン酸化膜52,64以外の領域がアモルファスシリコン若しくは一部が酸化したアモルファスシリコンからなるアモルファス領域65となっているが、ナノ結晶化プロセスの条件によってはアモルファス領域65が孔となり、このような場合の複合ナノ結晶層4は従来例と同様に多孔質多結晶シリコン層とみなすことができる。
【0028】
強電界ドリフト層6を形成した後は、例えば蒸着法などによって金薄膜からなる表面電極7を強電界ドリフト層6上に形成することにより、図6(d)に示す構造の電界放射型電子源10が得られる。
【0029】
ところで、従来の電気化学酸化方法を利用して強電界ドリフト層6を形成する場合には、図2(a)に示すように、陽極と陰極33との間の電圧Vが所定電圧(V0+V1)に達した時点で酸化処理を終了するが、この所定電圧には酸化膜(シリコン酸化膜52,64)の形成に伴う電圧値の増加分(V1)の他に電解液Bの抵抗による電圧上昇値V0が含まれており、この電圧上昇値V0は電解液Bの作成、連続使用、保管などに伴う電解液Bの比抵抗のばらつきや、陰極33の形状や、被処理物30の表面状態などによりばらつくので、所定電圧が一定値の場合、シリコン酸化膜52,64の形成に伴う電圧値の増加分がばらついてしまい、結果的に電界放射型電子源10のエミッション電流や絶縁耐圧がばらつき、歩留まりが低下するという不具合がある。
【0030】
これに対して、本参考例の製造方法によれば、強電界ドリフト層6を形成するにあたっては、結晶層たる複合ナノ結晶層4を電気化学的に酸化する電気化学酸化方法において、陽極と陰極33との間に電流を通電して酸化を開始し、陽極と陰極33との間の電圧Vをあらかじめ求めた電解液Bの抵抗による電圧上昇値V0に基づいて補正した電圧値Vtが上限電圧値V1に達した時点で酸化を終了するので、電解液Bの抵抗によらず酸化開始から酸化終了までの期間における陽極と陰極33との間の電圧値の増加分のばらつきを抑えることができ、つまり、酸化膜(シリコン酸化膜52,64)の形成に伴う電圧値の増加分のばらつきを抑えることができ、電界放射型電子源10のエミッション電流や絶縁耐圧などの特性のばらつきを小さくすることができる。また、本参考例における電気化学酸化方法では、陽極と陰極33との間に通電する前に、抵抗測定用電極34a,34bにより電解液Bの抵抗を検出し検出抵抗値から上記電圧上昇値V0を求めるので、陽極と陰極33との間に通電することなく電圧上昇値V0が得られるから、電解液Bの抵抗を検出する際に半導体層(結晶層)である複合ナノ結晶層4が酸化されるのを防止することができる。なお、抵抗測定用電極34a,34b間の距離は被処理物30と陰極33との間の距離に対応するように設定することが望ましい。また、本参考例では、被処理物30と陰極33との間の距離や陰極33の形状などに応じたパラメータが制御部37に入力されており、制御部37においてこれらのパラメータおよび抵抗検出部35の検出抵抗値を利用して電解液Bの比抵抗を求め、比抵抗から上記電圧上昇値V0を求めるようにしている。
【0031】
また、電気化学酸化方法において用いる電解液Bが有機溶媒に電解質を溶かした溶液からなるので、従来のように硫酸、硝酸などの水溶液からなる電解液中にて半導体層を電気化学的に酸化することでシリコン酸化膜52,64を形成したものに比べて、シリコン酸化膜52,64中に水分が取り込まれにくくなり、シリコン酸化膜52,64の緻密性が高くなってシリコン酸化膜52,64の絶縁耐圧が向上する。ここにおいて、上述のように電解液Bの溶媒として有機溶媒を利用した場合、電解液Bの溶媒として水を利用した場合に比べて電解液Bの抵抗が非常に高くなることが多く、特に非極性の有機溶媒では顕著であり、電解液Bの抵抗による電圧上昇値V0が大きいので、本参考例の電気化学酸化方法が特に有効である。
【0032】
なお、本参考例の電界放射型電子源10をディスプレイの電子源として利用する場合には、下部電極2、表面電極7、強電界ドリフト層6などを適宜にパターニングして多数の電子源素子10aを基板1の上記一表面側にマトリクス状に配列すればよい。
【0033】
(実施形態
ところで、参考例では、電界放射型電子源10の製造方法において、図1に示した酸化装置を利用して、酸化処理の開始前に抵抗測定用電極34a,34bを用いて電解液Bの抵抗を測定し、被処理物30と陰極33との間の距離や陰極33の形状などを考慮して電圧検出部36の検出電圧Vを補正しているが、被処理物30の表面状態によって電解液Bの抵抗が変動してしまうことがある。
【0034】
これに対して、本実施形態では、図7に示すように、被処理物30の半導体層(複合ナノ結晶層4)の主表面において所望の酸化対象領域30aとは別に抵抗測定用領域30bを設けておき、陽極と陰極33との間に通電する前に、抵抗測定用領域30bを利用して電解液Bの抵抗を検出し検出抵抗値から電圧上昇値V0を求め、この電圧上昇値V0を用いて電圧検出部36による検出電圧Vを補正して電圧値Vtを求めている点が参考例とは相違する。
【0035】
しかして、本実施形態では、電解液Bの抵抗を検出する際に半導体層である複合ナノ結晶層4が酸化されるのを防止することができるとともに複合ナノ結晶層4の表面状態を反映した電解液Bの抵抗を検出することができ、検出抵抗値と通電開始時の電解液Bの抵抗値との差を小さくすることができ、電界放射型電子源10の特性のばらつきを参考例よりも小さくすることができる。なお、電界放射型電子源10の構成および動作は参考例と同じなので図示および説明を省略する。
【0036】
(実施形態
ところで、実施形態にて説明した電気化学酸化方法では、被処理物30に酸化対象領域30aとは別に抵抗測定用領域30bを設ける必要があるが、酸化対象領域30aのパターン形状などによっては抵抗測定用領域30bを設けることができない場合や、抵抗測定用領域30bに対応した電極の引出しが困難な場合がある。
【0037】
これに対して、本実施形態では、図8に示すような酸化装置を用いて被処理物30の酸化処理を行うにあたって陽極(下部電極2)と陰極33との間に通電する前に、被処理物30と同形状に形成した抵抗モニタ用の試料(図示せず)を用いて電解液Bの抵抗を検出し検出抵抗値から上記電圧上昇値V0を求めている点が実施形態とは相違する。なお、図8に示す酸化装置において参考例における酸化装置と同様の構成要素には同一の符号を付して説明を省略する。
【0038】
しかして、本実施形態では、陽極と陰極33との間に通電する前に、電気化学酸化の対象である半導体層(複合ナノ結晶層4)が形成された被処理物30と同形状に形成した抵抗モニタ用の試料を用いて電解液Bの抵抗を検出し検出抵抗値から上記電圧上昇値V0を求めるので、電解液Bの抵抗を検出する際に半導体層である複合ナノ結晶層4が酸化されるのを防止することができるとともに、検出抵抗値と通電開始時の電解液Bの抵抗値との差を小さくすることができ、電界放射型電子源10の特性のばらつきをより小さくすることができる。なお、電界放射型電子源10の構成および動作は参考例と同じなので図示および説明を省略する。
【0039】
(実施形態
ところで、上記参考例および上記各実施形態における電気化学酸化方法では、陽極(下部電極2)と陰極33との間の電圧Vを補正して求めた補正値Vtが上限電圧値V1に達した時点で酸化処理を終了しているので、強電界ドリフト層6の厚み方向において下部電極2に近い側に形成されるシリコン酸化膜52,64に比べて、下部電極2から遠い側に形成されるシリコン酸化膜52,64の膜厚が薄すぎたり緻密性が不十分であったりして十分な絶縁耐圧が得られないことがある。
【0040】
これに対して、本実施形態における電気化学酸化方法では、図9に示す構成の酸化装置を用い、図10に示すように、陽極と陰極33との間の電圧Vの補正値Vt(図10中の「イ」)が上限電圧値V1に達した時点(終点)の後は陽極と陰極33との間の電圧Vの補正値Vtを上限電圧値V1に維持して陽極と陰極33との間に流れる電流I(図10中の「ロ」)が所定値I1まで減少したときに酸化を終了するようにしている。ここにおいて、本実施形態における酸化装置は、陽極と陰極33との間に流れる電流Iを電流センサ38を介して検出する電流検出部39を備えるとともに、電源として直流電流源32aと直流電圧源32bとを備え、さらに、陽極と陰極33との間に通電する電源として直流電流源32aと直流電圧源32bとのいずれか一方を選択的に陽極および陰極33に接続する切換器41を備えており、制御部37は通電開始前に上限電圧値V1を電解液Bの抵抗による電圧上昇値V0に基づいて補正し、陽極と陰極33との間の電圧Vの補正値Vtが上限電圧値V1に達する終点までは直流電流源32aにより陽極と陰極33との間に通電し、当該終点の後は、直流電圧源32bにより陽極と陰極33との間に通電するようになっている。また、電流Iが減少する期間(図10中の「b」の期間であって見かけ上の定電圧制御が行われる期間)においても電解液Bを流れる電流値と電解液Bの抵抗との積である電圧上昇値V0に基づいて電圧Vを補正して電圧値Vtを求めるようにしている。なお、図9に示す酸化装置において参考例における酸化装置と同様の構成要素には同一の符号を付して説明を省略する。また、実施形態1,2における陽極酸化装置に対して本実施形態における技術思想を適用してもよい。
【0041】
しかして、本実施形態では、通電開始から上限電圧値V1に達するまでの期間(図10中の「a」の期間であって定電流制御が行われる期間)における電圧値の増加分のばらつきを抑えることができ、さらに、上限電圧値V1に達した後で電流Iが所定値I1に減少するまでの期間における電解液Bを流れる電流の変化に応じた電圧上昇値V0に基づいて電圧Vを補正して電圧値Vtを求めるので、通電開始から前記上限電圧値V1に達した後で電流Iが所定値I1に減少するまでの期間における各シリコン酸化膜52,64の形成に伴う電圧値の増加分のばらつきを抑えることができて、電界放射型電子源10の特性のばらつきを上記参考例および上記各実施形態に比べて、より小さくすることができる。また、電流が所定値まで減少したときに酸化を終了するので、上記参考例および上記各実施形態に比べて各シリコン酸化膜52,64が緻密化され絶縁耐圧も向上する。
【0042】
【発明の効果】
請求項1,2の発明は、電気化学酸化の対象となる半導体層の主表面とは反対側の電極を陽極として、少なくとも半導体層および陰極が電解液に接した状態で陽極と陰極との間に通電することにより半導体層を酸化する電気化学酸化方法であって、陽極と陰極との間に電流を通電して酸化を開始し、陽極と陰極との間の電圧Vをあらかじめ求めた電解液の抵抗による電圧上昇値V0に基づいて補正した電圧値Vtが規定の上限電圧値V1に達した時点を終点として当該終点以後に酸化を終了するので、電解液の抵抗によらず酸化開始から酸化終了までの期間における陽極と陰極との間の電圧値の増加分のばらつきを抑えることができ、つまり、酸化膜の形成に伴う電圧値の増加分のばらつきを抑えることができ、電子デバイスの特性のばらつきを小さくすることができるという効果がある。また、請求項1の発明では、陽極と陰極との間に通電する前に、半導体層の主表面において所望の酸化対象領域とは別に設けた抵抗測定用領域を利用して電解液の抵抗を検出するので、電解液の抵抗を検出する際に半導体層の酸化対象領域が酸化されるのを防止することができるとともに半導体層の表面状態を反映した電解液の抵抗を検出することができ、電子デバイスの特性のばらつきをより小さくすることができるという効果がある。また、請求項2の発明では、陽極と陰極との間に通電する前に、電気化学酸化の対象となる半導体層が形成された被処理物と同形状に形成した抵抗モニタ用の試料を用いて電解液の抵抗を検出するので、電解液の抵抗を検出する際に半導体層が酸化されるのを防止することができるとともに、検出抵抗値と通電開始時の電解液の抵抗値との差を小さくすることができ、電子デバイスの特性のばらつきをより小さくすることができるという効果がある。
【0043】
求項の発明は、請求項1または請求項2の発明において、前記終点で酸化を終了するので、スループットを高めることができるという効果がある。
【0044】
請求項の発明は、請求項1または請求項2の発明において、前記終点までは前記陽極と前記陰極との間に定電流を通電して酸化を行い、前記終点の後、補正した電圧値Vtを前記上限電圧値V1に維持して電流が所定値まで減少したときに酸化を終了するようにし、電流が減少する期間においても電流値と前記電解液の抵抗との積である前記電圧上昇値V0に基づいて電圧Vを補正して電圧値Vtを求めるので、通電開始から前記上限電圧値V1に達した後で電流が所定値に減少するまでの期間における酸化膜の形成に伴う電圧値の増加分のばらつきを抑えることができ、しかも、電子デバイスの特性のばらつきを請求項の発明に比べてより小さくすることができる。また、電流が所定値まで減少したときに酸化を終了するので、請求項の発明に比べて酸化膜が緻密化され絶縁耐圧も向上する
【0045】
求項の発明は、請求項1ないし請求項の発明において、前記電解液として有機溶媒に電解質を溶かした溶液を用いるので、従来のように硫酸、硝酸などの水溶液からなる電解液中にて半導体層を電気化学的に酸化することで酸化膜を形成したものに比べて、酸化膜中に水分が取り込まれにくくなり酸化膜の緻密性が高くなって酸化膜の絶縁耐圧が向上するという効果がある
【0046】
求項の発明は、下部電極と、下部電極に対向する表面電極と、下部電極と表面電極との間に介在しナノメータオーダの多数の半導体微結晶および各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の酸化膜よりなる多数の絶縁膜を有する強電界ドリフト層とを備え、下部電極と表面電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層を形成するにあたっては、ナノメータオーダの多数の半導体微結晶を有する結晶層を酸化する酸化工程において請求項1ないし請求項のいずれか1項に記載の電気化学酸化方法により下部電極を陽極とし絶縁膜を形成するので、電界放射型電子源のエミッション電流および絶縁耐圧のばらつきを低減することができて歩留まりが向上し、低コスト化を図ることができるという効果がある。
【図面の簡単な説明】
【図1】 参考例における電気化学酸化方法の説明図である。
【図2】 同上における酸化装置の概略構成図である。
【図3】 同上における電界放射型電子源の概略断面図である。
【図4】 同上における電界放射型電子源の動作説明図である。
【図5】 同上における電界放射型電子源の動作説明図である。
【図6】 同上における電界放射型電子源の製造方法を説明するための主要工程断面図である。
【図7】 実施形態における被処理物の概略構成図である。
【図8】 実施形態における酸化装置の概略構成図である。
【図9】 実施形態における酸化装置の概略構成図である。
【図10】 同上における電気化学酸化方法の説明図である。
【図11】 従来例における酸化装置の概略構成図である。
【符号の説明】
30 被処理物
31 処理槽
32 直流電流源
33 陰極
34a,34b 抵抗測定用電極
35 抵抗検出部
36 電圧検出部
37 制御部
B 電解液

Claims (6)

  1. 電気化学酸化の対象となる半導体層の主表面とは反対側の電極を陽極として、少なくとも半導体層および陰極が電解液に接した状態で陽極と陰極との間に通電することにより半導体層を酸化する電気化学酸化方法であって、陽極と陰極との間に電流を通電して酸化を開始し、陽極と陰極との間の電圧Vをあらかじめ求めた電解液の抵抗による電圧上昇値V0に基づいて補正した電圧値Vtが規定の上限電圧値V1に達した時点を終点として当該終点以後に酸化を終了するようにし、陽極と陰極との間に通電する前に、半導体層の主表面において所望の酸化対象領域とは別に設けた抵抗測定用領域を利用して電解液の抵抗を検出することを特徴とする電気化学酸化方法。
  2. 電気化学酸化の対象となる半導体層の主表面とは反対側の電極を陽極として、少なくとも半導体層および陰極が電解液に接した状態で陽極と陰極との間に通電することにより半導体層を酸化する電気化学酸化方法であって、陽極と陰極との間に電流を通電して酸化を開始し、陽極と陰極との間の電圧Vをあらかじめ求めた電解液の抵抗による電圧上昇値V0に基づいて補正した電圧値Vtが規定の上限電圧値V1に達した時点を終点として当該終点以後に酸化を終了するようにし、陽極と陰極との間に通電する前に、電気化学酸化の対象となる半導体層が形成された被処理物と同形状に形成した抵抗モニタ用の試料を用いて電解液の抵抗を検出することを特徴とする電気化学酸化方法。
  3. 前記終点で酸化を終了することを特徴とする請求項1または請求項2記載の電気化学酸化方法。
  4. 前記終点までは前記陽極と前記陰極との間に定電流を通電して酸化を行い、前記終点の後、補正した電圧値Vtを前記上限電圧値V1に維持して電流が所定値まで減少したときに酸化を終了するようにし、電流が減少する期間においても電流値と前記電解液の抵抗との積である前記電圧上昇値V0に基づいて電圧Vを補正して電圧値Vtを求めることを特徴とする請求項1または請求項2記載の電気化学酸化方法。
  5. 前記電解液として有機溶媒に電解質を溶かした溶液を用いることを特徴とする請求項1ないし請求項のいずれかに記載の電気化学酸化方法。
  6. 下部電極と、下部電極に対向する表面電極と、下部電極と表面電極との間に介在しナノメータオーダの多数の半導体微結晶および各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の酸化膜よりなる多数の絶縁膜を有する強電界ドリフト層とを備え、下部電極と表面電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層を形成するにあたっては、ナノメータオーダの多数の半導体微結晶を有する結晶層を酸化する酸化工程において請求項1ないし請求項5のいずれか1項に記載の電気化学酸化方法により下部電極を陽極とし絶縁膜を形成することを特徴とする電界放射型電子源の製造方法。
JP2003134895A 2002-05-14 2003-05-13 電気化学酸化方法、電界放射型電子源の製造方法 Expired - Fee Related JP4107156B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134895A JP4107156B2 (ja) 2002-05-14 2003-05-13 電気化学酸化方法、電界放射型電子源の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002138993 2002-05-14
JP2003134895A JP4107156B2 (ja) 2002-05-14 2003-05-13 電気化学酸化方法、電界放射型電子源の製造方法

Publications (2)

Publication Number Publication Date
JP2004047970A JP2004047970A (ja) 2004-02-12
JP4107156B2 true JP4107156B2 (ja) 2008-06-25

Family

ID=31719344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134895A Expired - Fee Related JP4107156B2 (ja) 2002-05-14 2003-05-13 電気化学酸化方法、電界放射型電子源の製造方法

Country Status (1)

Country Link
JP (1) JP4107156B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2731158A1 (en) * 2008-07-28 2010-02-04 Day4 Energy Inc. Crystalline silicon pv cell with selective emitter produced with low temperature precision etch back and passivation process

Also Published As

Publication number Publication date
JP2004047970A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4285684B2 (ja) 量子デバイスおよびその製造方法
JP4107156B2 (ja) 電気化学酸化方法、電界放射型電子源の製造方法
KR100563978B1 (ko) 전기화학산화방법
JP4321009B2 (ja) 電界放射型電子源の製造方法
JP4415922B2 (ja) シリコン酸化膜の形成方法
JP2003133309A (ja) 絶縁薄膜の形成方法、絶縁薄膜の形成装置、電界放射型電子源およびmosfet
JP2003329575A (ja) 検査対象層の検査方法および検査対象層の検査装置
TWI258819B (en) Method for electrochemical oxidation
JP3963121B2 (ja) 陽極酸化方法、電気化学酸化方法、電界放射型電子源およびその製造方法
JP2003331718A (ja) 電界放射型電子源の製造方法
JP2003331719A (ja) 電界放射型電子源の製造方法
JP2003197097A (ja) 電界放射型電子源の製造方法
JP3809808B2 (ja) 電界放射型電子源の製造方法
JP3478206B2 (ja) 電界放射型電子源の製造方法
JP2003187688A (ja) 電界放射型電子源およびその製造方法
JP3648602B2 (ja) 電界放射型電子源の製造方法
JP4543716B2 (ja) 電子源およびその製造方法
JP3947317B2 (ja) 陽極酸化の制御方法および陽極酸化装置
JP3551862B2 (ja) 電界放射型電子源の製造方法
JP4433857B2 (ja) 電界放射型電子源
JP2002352706A (ja) 電界放射型電子源の製造方法
JP4433858B2 (ja) 電子源装置
JP2001118489A (ja) 電界放射型電子源およびその製造方法
JP2003045352A (ja) ブラウン管用電子銃
JP3648601B2 (ja) 電界放射型電子源の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees