JP4043855B2 - 半導体集積回路装置 - Google Patents
半導体集積回路装置 Download PDFInfo
- Publication number
- JP4043855B2 JP4043855B2 JP2002168680A JP2002168680A JP4043855B2 JP 4043855 B2 JP4043855 B2 JP 4043855B2 JP 2002168680 A JP2002168680 A JP 2002168680A JP 2002168680 A JP2002168680 A JP 2002168680A JP 4043855 B2 JP4043855 B2 JP 4043855B2
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- circuit
- side power
- potential side
- internal circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 32
- 239000003990 capacitor Substances 0.000 claims description 41
- 230000015556 catabolic process Effects 0.000 claims description 20
- 230000009467 reduction Effects 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 9
- 230000003071 parasitic effect Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/01—Shaping pulses
- H03K5/08—Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/413—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
- G11C11/417—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0248—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
- H01L27/0251—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
- H01L27/0266—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/003—Modifications for increasing the reliability for protection
- H03K19/00315—Modifications for increasing the reliability for protection in field-effect transistor circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/18—Peripheral circuit regions
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Nonlinear Science (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Manipulation Of Pulses (AREA)
Description
【発明の属する技術分野】
本発明は、半導体集積回路装置、さらにはそれにおける入力端子に不所望な高電圧が印加された場合にそれをクランプすることによって素子の破壊を防ぐための技術に関する。
【0002】
【従来の技術】
半導体集積回路において静電耐圧を確保することは重要である。半導体集積回路の静電耐圧技術としては、例えば特開平11−243639号公報に記載されているように、集積エリアの有効利用等を行え簡易な構成でサージ電圧等の急激な電圧変化を逃がすための技術が知られている。それによれば、供給される直流電圧の電圧変化が生じたことに対応して変化する変化信号を生成し、外部への信号出力を相補的に行うスイッチング素子対と、与えられる入力信号と前記信号生成部が生成した信号とに基づき、前記電圧変化が消滅されるように前記スイッチング素子対のスイッチング制御を行うようにしている。
【0003】
また、特開平10−303314号公報には、サージ電圧が印加された場合、入力回路への静電気の進入を防ぐための技術が示されている。それによれば、電源線及び接地線に接続され、入力端子から信号を与えられて前記信号の処理を行う入力回路と、入力端子に電源電圧方向の第1のサージ電圧が入力されるところの第1のサージ電圧による電荷を電源線にバイパスする電源側入力保護回路や、前記電源線と前記接地線との間に接続され、前記電源側入力保護回路により前記電源線にバイパスされた第1のサージ電圧による電荷を前記接地線にバイパスする電源間保護回路を設けることで、入力回路への静電気の進入を防ぐようにしている。
【0004】
さらに、MOSトランジスタの耐圧を越える高いレベルの電源が供給される半導体集積回路において、クランプ回路を2段積みにすることで対処した回路技術が知られている(例えばUSP5907464)。そのような回路において、クランプ回路を2段積みにすることで形成された中間ノードには、中間電位発生回路によって発生された中間電位が供給される。中間電位発生回路は、二つのpチャネル型MOSトランジスタが直列接続されて成り、このMOSトランジスタ直列接続回路において電源電圧を分圧することで得られる。
【0005】
【発明が解決しようとする課題】
MOSトランジスタの耐圧を越える高いレベルの電源が供給される半導体集積回路において、クランプ回路を2段積みにし、二つの素子(例えばpチャネル型MOSトランジスタ)の直列接続回路で中間電位を生成し、それを上記中間ノードに供給する技術では、高電位側電源と低電位側電源の間のインピーダンスが1段の場合の2倍になる。本願発明者の検討によれば、インピーダンスが十分に低くないと、クランプ回路の過電流バイパス機能を十分に発揮できないため、静電耐圧の向上が阻害されることが見いだされた。
【0006】
本発明の目的は、クランプ回路を2段積みした場合において不所望なレベルの電位を低インピーダンスでクランプするための技術を提供することにある。
【0007】
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【0008】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0009】
すなわち、高電位側電源の入力端子と、低電位側電源の入力端子と、上記高電位側電源の電圧よりも低いレベルの内部回路用電源が供給されることによって動作可能な内部回路とを含んで半導体集積回路装置が構成されるとき、それぞれ不所望なレベルの電圧をクランプするための第1クランプ回路と、それに縦積みされた第2クランプ回路とを、上記高電位側電源と上記低電位側電源との間に設け、上記第1クランプ回路と上記第2クランプ回路との縦積みによる中間ノードは、上記内部回路用電源に結合する。
【0010】
内部回路においては、内部回路用電源と低電位側電源に結合されることによって、内部回路用電源に含まれるノイズを低減するためのキャパシタが随所に設けられているため、それらの合成容量は大きくなり、インピーダンスが低く抑えられている。
【0011】
上記の手段によれば、内部回路の動作電源として元々設けられている電源である内部回路用電源を中間ノードに供給するようにしているため、内部回路において元々設けられているキャパシタが、第1クランプ回路と並列に配置され、それによりインピーダンスが低減されるため、チップ内に流れる過電流による電位差が小さくなる。よって、より大きな過電流を流すことが可能となり、静電耐圧の向上図ることができる。
【0012】
このとき、上記内部回路は、上記内部回路用電源に結合された薄膜トランジスタによって形成された論理回路と、上記内部回路用電源と上記低電位側電源との間に設けられたノイズ低減用キャパシタとを含んで構成することができる。
【0013】
また、上記高電位側電源を降圧することによって上記内部回路用電源を生成する内部回路用電源生成回路を設けることができる。
【0014】
上記内部回路用電源とは異なる入出力回路用電源が供給されることによって信号の外部出力を可能とする出力回路と、上記入出力回路用電源と上記低電位側電源との間に設けられ、不所望なレベルの電圧をクランプするための第3クランプ回路とを設けることができる。
【0015】
入力端子と、上記内部回路用電源が供給されることによって動作され、上記入力端子を介して伝達された信号を取り込むための入力回路とを設け、上記入力回路は、入力端子を介して取り込まれた信号を取り込むための入力トランジスタと、上記入出力回路用電源への導通経路を形成する静電破壊防止用ダイオードとを含んで構成することができる。
【0016】
上記第1クランプ回路が低電位側電源に結合され、上記第2クランプ回路が高電位側電源に結合されるとき、上記第2クランプ回路は、所定の時定数の範囲で参照電圧を形成する時定数回路と、上記参照電圧に基づいて上記高電位側電源と上記内部回路用電源との電位差を検出可能なインバータ回路と、上記インバータ回路の出力論理に基づいて、上記高電位側電源と上記内部回路用電源とを短絡可能なMOSトランジスタと、通常動作時において上記MOSトランジスタ及び上記インバータ回路に流れる貫通電流を阻止するための抵抗とを含んで構成することができる。
【0017】
さらに、上記高電位側電源、低電位側電源、及び内部回路用電源における配線には、配線抵抗の低い再配線層を含めることができる。
【0018】
【発明の実施の形態】
図17には本発明にかかる半導体集積回路装置の一例であるSRAMが示される。
【0019】
図17に示されるSRAM102は、特に制限されないが、半導体チップ120にBGA(ボール・グリッド・アレイ)基板121が結合されて成る。半導体チップ120は、特に制限されないが、公知の半導体集積回路製造技術により、単結晶シリコン基板などの一つの半導体基板に形成される。BGA基板121は、部品実装基板などへの電気的な結合を可能とするための外部端子であるBGAボール124を有する。半導体チップ120とBGA基板121とはバンプ電極125を介して電気的に結合される。
【0020】
図1には上記SRAMにおける主要部の回路構成が示される。
【0021】
入力端子を介して高電位側電源VDD、及び低電位側電源VSSが与えられるようになっている。特に制限されないが、高電位側電源VDDは2.5Vとされ、低電位側電源VSSは0V(グランドGNDレベル)とされる。内部回路用電源生成回路40が設けられ、この内部回路用電源生成回路40は、高電位側電源VDDの出力電圧を降圧することで内部回路用電源VDDiを生成する。それぞれ不所望なレベルの電圧をクランプするための第1クランプ回路10と、それに縦積みされた第2クランプ回路20とが、外部から供給された高電位側電源VDDと低電位側電源VSSとの間に設けられる。このように二つのクランプ回路10,20が縦積みされるのは、MOSトランジスタの微細化によりMOSトランジスタの耐圧を越える高電位側電源VDDが供給される場合でも、一つのMOSトランジスタに印加される電圧レベルを下げることによって、MOSトランジスタの使用を可能にするためである。そして、上記第1クランプ回路10と上記第2クランプ回路20との縦積みによる中間ノード100は、上記内部回路用電源VDDiに結合されている。また、信号を外部から信号を取り込むための入力端子80が設けられ、この入力端子80を介して取り込まれた信号は入力回路50によってチップ内部に取り込まれるようになっている。入力回路50は、上記内部回路用電源VDDiが供給されることによって動作される。さらに、信号を外部出力するための出力回路70が設けられる。この出力回路70は、外部からI/O(入出力)回路用電源VDDQが供給されることによって動作される。
【0022】
上記内部回路用電源生成回路40は、特に制限されないが、高電位側電源VDDに結合されたpチャネル型MOSトランジスタ43と、基準電圧を発生するための基準電圧発生回路41と、この基準電圧発生回路41から出力された基準電圧に基づいて、上記pチャネル型MOSトランジスタ43を制御することによって内部回路用電源VDDiが形成される。特に制限されないが、この内部回路用電源VDDiの電圧レベルは、1.2Vとされる。
【0023】
第1クランプ回路10は次のように構成される。
【0024】
内部回路用電源VDDiに結合されたpチャネル型MOSトランジスタ11と、低電位側電源VSSに結合されたキャパシタ12とが直列接続されることによって、その直列接続箇所から参照電圧が得られる。この参照電圧は、pチャネル型MOSトランジスタ11の抵抗成分とキャパシタ12との時定数によって決定される時間内では、内部回路用電源VDDiの電圧レベルが不所望な値に上昇されたとしても、それにかかわらず一定電圧とされる。内部回路用電源VDDiに結合されたpチャネル型MOSトランジスタ13と、低電位側電源VSSに結合されたnチャネル型MOSトランジスタ14とが直列接続されてインバータが形成される。このMOSトランジスタ13,14のゲート電極には上記pチャネル型MOSトランジスタ11とキャパシタ12との直列接続ノードの参照電圧が供給される。そして内部回路用電源VDDiと低電位側電源VSSとを短絡可能にnチャネル型MOSトランジスタ16が設けられる。このMOSトランジスタ16のゲート電極には、MOSトランジスタ13,14によるインバータの出力信号が伝達される。上記MOSトランジスタ15のソース・ドレイン間には寄生ダイオード16が存在する。
【0025】
かかる構成によれば、通常動作時は、MOSトランジスタ11とキャパシタ12との直列接続ノードの参照電圧がMOSトランジスタ13,14のゲート電極に供給されることによって、MOSトランジスタ13がオフ状態とされ、MOSトランジスタ14がオン状態とされる。このとき、MOSトランジスタ15はオフ状態とされる。それに対して内部回路用電源VDDiの電圧レベルが瞬間的に不所望なレベルに上昇された場合には、pチャネル型MOSトランジスタ13がオンされ、nチャネル型MOSトランジスタ14がオフされる。これにより、nチャネル型MOSトランジスタ15が導通され、それによって上記内部回路用電源VDDiの不所望なレベルの電圧がクランプされる。また、寄生ダイオード16が存在するため、低電位側電源VSSの電圧が不所望なレベルに上昇した場合には、上記寄生ダイオード16を介して内部回路用電源VDDiに電流が流れることによって電圧クランプが行われる。
【0026】
第2クランプ回路20は次のように構成される。
【0027】
高電位側電源VDDに結合されたpチャネル型MOSトランジスタ21と、内部回路用電源VDDiに結合されたキャパシタ22とが直列接続されることによって、その直列接続箇所から参照電圧が得られる。この参照電圧は、pチャネル型MOSトランジスタ21の抵抗成分とキャパシタ22との時定数によって決定される時間内では、高電位側電源VDDの電圧レベルが不所望な値に上昇されたとしても、それにかかわらず一定電圧とされる。高電位側電源VDDに結合されたpチャネル型MOSトランジスタ23と、内部回路用電源VDDiに結合されたnチャネル型MOSトランジスタ24とが直列接続されてインバータが形成される。このMOSトランジスタ23,24のゲート電極には上記pチャネル型MOSトランジスタ21とキャパシタ22との直列接続ノードの参照電圧が供給される。そして、高電位側電源VDDと内部回路用電源VDDiとを短絡可能にnチャネル型MOSトランジスタ25が設けられる。このMOSトランジスタ25のゲート電極には、MOSトランジスタ23,24によるインバータの出力信号が伝達される。上記MOSトランジスタ25のソース・ドレイン間には寄生ダイオード26が存在する。
【0028】
第3クランプ回路30は次のように構成される。
【0029】
I/O回路用電源VDDQに結合されたpチャネル型MOSトランジスタ31と、低電位側電源VSSに結合されたキャパシタ32とが直列接続されることによって、その直列接続箇所から参照電圧が得られる。この参照電圧は、pチャネル型MOSトランジスタ31の抵抗成分とキャパシタ32との時定数によって決定される時間内では、I/O回路用電源VDDQの電圧レベルが不所望な値に上昇されたとしても、それにかかわらず一定電圧とされる。I/O回路用電源VDDQに結合されたpチャネル型MOSトランジスタ33と、低電位側電源VSSに結合されたnチャネル型MOSトランジスタ34とが直列接続されてインバータが形成される。このMOSトランジスタ33,34のゲート電極には上記pチャネル型MOSトランジスタ31とキャパシタ32との直列接続ノードの参照電圧が供給される。そして、I/O回路用電源VDDQと低電位側電源VSSとを短絡可能にnチャネル型MOSトランジスタ35が設けられる。このMOSトランジスタ35のゲート電極には、MOSトランジスタ33,34によるインバータの出力信号が伝達される。上記MOSトランジスタ35のソース・ドレイン間には寄生ダイオード36が存在する。
【0030】
かかる構成におけるクランプ動作は上記第1クランプ回路10や上記第2クランプ回路20と同様であるため、ここではその詳細な説明を省略する。
【0031】
上記内部回路60は、特に制限されないが、このSRAMにおける主要な内部論理を含む。例えば、図示されないメモリセルアレイやその周辺回路などはこの内部回路60に含まれる。図1においては、内部回路60の一例として、2入力アンドゲートや、それの後段に配置されたMOSトランジスタ62,63が代表的に示される。このような内部回路60を構成するMOSトランジスタは、微細化により耐圧が低下されているため、高電位側電源VDDを降圧して得られた内部回路用電源VDDiが供給される。内部回路の出力信号例えばメモりセルアレイからの読み出しデータなどは、出力回路70を介して外部出力可能とされる。また、内部回路60には、内部回路用電源VDDiと低電位側電源VSSに結合されることによって、内部回路用電源VDDiに含まれるノイズを低減するためのキャパシタ64が随所に設けられる。そのようにキャパシタ64が随所に設けられることにより、それらの合成容量は大きくなり、インピーダンスが低く抑えられている。
【0032】
入力回路50は、特に制限されないが、nチャネル型MOSトランジスタ53,55、及びpチャネル型MOSトランジスタ54を含む。内部回路用電源VDDiに結合されたpチャネル型MOSトランジスタ54と、低電位側電源VSSに結合されたnチャネル型MOSトランジスタ55と直列接続されることで、入力信号を取り込むためのインバータが形成される。このMOSトランジスタ54,55と、信号入力のための入力端子80との間には、nチャネル型MOSトランジスタ53が介在される。このMOSトランジスタ53のゲート電極は内部回路用電源VDDiに結合される。また、この入力回路50を構成するMOSトランジスタの静電破壊を防止するためのダイオード51,52が設けられている。ダイオード51は、入力端子80からMOSトランジスタ53に至る信号入力経路と低電位側電源VSSとの間に設けられ、ダイオード52は、I/O回路用電源VDDQと上記信号入力経路との間に設けられる。
【0033】
出力回路70は、特に制限されないが、出力端子90を介して信号を外部出力するためのMOSトランジスタ71〜74と、この入力回路の素子を静電破壊から防止するためのダイオード75,76を含む。上記MOSトランジスタ71〜74など、この出力回路70を構成するMOSトランジスタは、I/O回路用電源VDDQが供給されることによって動作される。
【0034】
上記各回路において使用されるキャパシタ12,22,32,64などは、特に制限されないが、図3に示されるように、ゲート酸化膜を利用したMOS容量によって形成することができる。すなわち、ソース電極又はドレイン電極に相当する半導体領域(P+,N+)が低電位側電源VSS(又は内部回路用電源VDDi)に共通接続されることによって、ゲート電極FGとの間に形成されるMOS容量が利用される。
【0035】
半導体集積回路装置の静電破壊耐圧評価方法として、HBM(Human Body Model)、MM(Machine Model)方式、及びCDM(Charged Device Model)方式が知られている。HBM方式は、人間にたまった静電気が半導体集積回路装置に放出される場合の波形をシミュレーションしたものである。MM方式は、機械にたまった静電気が半導体集積回路装置に放出される場合の波形をシミュレーションしたものである。CDM方式は、半導体集積回路装置のパッケージにたまった静電気が放出される状態をシミュレーションしたものである。何れの方式においても、クランプ回路を介して低抵抗の電流パスが形成されていれば、MOSトランジスタに不所望なレベルの電圧が印加されないため、当該MOSトランジスタは破壊されずに済む。以下、HBM方式とCDM方式を例に、クランプ回路の作用について図4乃至図7を参照しながら説明する。尚、説明の都合上、高電位側電源VDDの配線に存在する配線抵抗はrdで示され、低電位側電源VSSの配線に存在する配線抵抗はrsで示され、I/O回路用電源VDDQの配線に存在する配線抵抗はrqで示される。
【0036】
図4には、HBM方式において入力端子80に正極側の電荷が供給される場合が示される。
【0037】
スイッチ402が破線で示される状態で直流電源(例えば150V)の正極側がキャパシタ403に結合されることで、このキャパシタ403の充電が行われる。次に、スイッチ402が実線で示されるように切り換わることでキャパシタ403の蓄積電荷(正極側)が入力端子80に供給されることによって静電破壊耐圧評価が行われる。この評価には、VSS基準、VDD基準、VDDQ基準の3種類がある。
【0038】
VSS基準の場合、低電位側電源VSSの入力端子のみがグランドレベルにされ、その状態でキャパシタ403の蓄積電荷(正極側)が入力端子80に供給される。この場合、他の入力端子は開放状態とされる。このVSS基準の場合には、入力端子80、ダイオード52、I/O回路用電源VDDQの配線、不所望な電圧印加により導通されたnチャネル型MOSトランジスタ35を介して低電位側電源VSSに至る電流パスに電流が流れることで、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0039】
VDD基準の場合、高電位側電源VDDの入力端子のみがグランドレベルにされ、その状態でキャパシタ403の蓄積電荷(正極側)が入力端子80に供給される。このとき、他の入力端子は開放状態とされる。このVDD基準の場合には、入力端子80、ダイオード52、I/O回路用電源VDDQの配線、不所望な電圧印加により導通されたnチャネル型MOSトランジスタ35、低電位側電源VSSの配線、ダイオード16,26を介して高電位側電源VDDに至る電流パスに電流が流れることで、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0040】
VDDQ基準の場合、I/O回路用電源VDDQの入力端子のみがグランドレベルにされ、その状態でキャパシタ403の蓄積電荷(正極側)が入力端子80に供給される。このとき、他の入力端子は開放状態とされる。このVDDQ基準の場合には、入力端子80、ダイオード52を介してI/O回路用電源VDDQに至る電流パスに電流が流れることで、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0041】
図5には、HBM方式において入力端子80に負極側の電荷が供給される場合が示される。
【0042】
スイッチ502が破線で示される状態で直流電源(例えば150V)の負極側がキャパシタ403に結合されることで、このキャパシタ403の充電が行われる。次に、スイッチ502が実線で示されるように切り換わることでキャパシタ403の蓄積電荷(負極側)が入力端子80に供給されることによって静電破壊耐圧評価が行われる。この評価には、VSS基準、VDD基準、VDDQ基準の3種類がある。
【0043】
VSS基準の場合、低電位側電源VSSの入力端子のみがグランドレベルにされ、その状態でキャパシタ403の蓄積電荷(負極側)が入力端子80に供給される。この場合、他の入力端子は開放状態とされる。このVSS基準の場合には、この低電位側電源VSSの入力端子、配線からダイオード51を介して入力端子80に至る電流パスに電流が流れることで、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0044】
VDD基準の場合、高電位側電源VDDの入力端子のみがグランドレベルにされ、その状態でキャパシタ403の蓄積電荷(負極側)が入力端子80に供給される。このとき、他の入力端子は開放状態とされる。このVDD基準の場合には、この高電位側電源VDDの入力端子、配線から、不所望な電圧印加により導通されたnチャネル型MOSトランジスタ25,15、低電位側電源VSSの配線、ダイオード51を介して入力端子80に至る電流パスに電流が流れることで、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0045】
VDDQ基準の場合、I/O回路用電源VDDQの入力端子のみがグランドレベルにされ、その状態でキャパシタ403の蓄積電荷(負極側)が入力端子80に供給される。このとき、他の入力端子は開放状態とされる。このVDDQ基準の場合には、このI/O回路用電源VDDQの入力端子、配線から、不所望な電圧印加により導通されたnチャネル型MOSトランジスタ35、低電位側電源VSSの配線、ダイオード51を介して入力端子80に至る電流パスに電流が流れることで、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0046】
尚、図4及び図5において、キャパシタ403からSRAM内に電荷移動するとき、各配線抵抗rs、rd、rqや、各クランプ回路10,20,30内のMOSトランジスタ15,25,35のオン抵抗によって電圧が発生するが、この電圧のレベルがMOSトランジスタの耐圧を越えないように素子の定数設定が行われる。
【0047】
図6には、CDM方式において、入力端子80を介して帯電された負電位が放出される場合が示される。
【0048】
高電位側電源VDDの入力端子、低電位側電源VSSの入力端子、I/O回路用電源VDDQの入力端子、及び信号の入力端子80を含む全ての端子に、それぞれスイッチ601、604、602、603を介して、直流電源(例えば2000V)605、608、606、607の負極側が供給されることによってSRAMに電荷が蓄積された後に、スイッチ601,604,602はオフされ、スイッチ603の切り換えにより入力端子80がグランドGND(低電位側電源VSSレベル)に短絡される。このとき、入力端子80からダイオード52、不所望な電圧印加により導通されたnチャネル型MOSトランジスタ35、低電位側電源VSSの配線を介して入力回路50に至る電流パスに電流が流れ、また、入力端子80からダイオード52、不所望な電圧印加により導通されたnチャネル型MOSトランジスタ35、ダイオード16、内部回路用電源VDDiの配線を介して入力回路50に至る電流パスに電流が流れることにより、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0049】
図7には、CDM方式において、入力端子80を介して帯電された正電位が放出される場合が示される。
【0050】
高電位側電源VDDの入力端子、低電位側電源VSSの入力端子、I/O回路用電源VDDQの入力端子、及び信号の入力端子80を含む全ての端子に、それぞれスイッチ701、704、702、703を介して、直流電源(例えば2000V)705、708、706、707の正極側が供給されることによってSRAMに電荷が蓄積された後に、スイッチ701,704,702はオフされ、スイッチ703の切り換えにより入力端子80がグランドGND(低電位側電源VSSレベル)に短絡される。このとき、入力回路50から低電位側電源VSSの配線、ダイオード51、及び入力端子80を介してグランドGNDに至る電流パスに電流が流れ、また、入力回路50から内部回路用電源VDDiの配線、不所望な電圧印加によって導通されたnチャネル型MOSトランジスタ15、低電位側電源VSSの配線、ダイオード51、及び入力端子80を介してグランドGNDに至る電流パスに電流が流れ、入力回路50を形成するMOSトランジスタ53,54,55の電極に、不所望なレベルの電圧が印加されるのが回避される。
【0051】
尚、図6及び図7において、入力回路50の入力抵抗rgと、配線抵抗rq,rs,riとの間には、rq<rg、及びrq+rs+ri<rgの関係が成立するものとする。
【0052】
ここで、図1に示される回路の比較対象とされる回路について図2を参照しながら説明する。
【0053】
MOSトランジスタの耐圧を越える高いレベルの電源が供給される半導体集積回路において、クランプ回路10,20を2段積みした場合において、クランプ回路を2段積みにすることで形成された中間ノード100に、pチャネル型MOSトランジスタ401,402が直列接続されて成る中間電位生成回路404が設けられる。かかる構成において、上記中間電位を生成するために二つのpチャネル型MOSトランジスタ401,402の直列接続回路を設けることは、上記中間電位を生成するためだけの専用のMOSトランジスタが必要になるし、また、上記中間電位を生成するに際して、二つのpチャネル型MOSトランジスタ401,402には中間電位生成のために所定の電流を流さなければならず、その分、半導体集積回路の消費電流が増えてしまう。
【0054】
これに対して、図1に示される構成では、内部回路60の動作電源として元々設けられている電源である内部回路用電源VDDiを中間ノード100に供給するようにしているため、上記中間電位を生成するために二つのpチャネル型MOSトランジスタ401,402の直列接続回路を新たに設ける必要がない。このため、二つのpチャネル型MOSトランジスタ401,402の直列接続回路に無駄な電流をながさなくて済む。
【0055】
次に、上記SRAMのチップレイアウトについて説明する。
【0056】
図8には上記SRAM102における再配線層とそれに接続されるバンプ電極及びパッドのレイアウトが示される。
【0057】
図8においてバンプ(Bump)電極は丸印で示され、小さな四角は金属配線層によって形成されたパッドを示している。バンプ電極、パッド、及び再配線層は、そこにかかる電圧や信号の違いを区別するため、網掛けやハッチング、塗りつぶし等が行われている。
【0058】
低電位側電源VSS、高電位側電源VDD、I/O回路用電源VDDQ、内部回路用電源VDDiの各配線が形成され、それらは、対応するバンプ電極に結合される。低電位側電源VSS、高電位側電源VDD、I/O回路用電源VDDQは、対応するバンプ電極を介して外部から取り込まれ、対応する配線を介して各部に伝達される。再配線層266は、特に制限されないが、銅(Cu)とニッケル(Ni)から形成され、低抵抗である。そのような再配線層266を使って低電位側電源VSS、高電位側電源VDD、I/O回路用電源VDDQ、内部回路用電源VDDiの伝達を行うようことにより、配線抵抗による電圧降下を小さく抑えることができるので、良好な電源供給が可能とされる。また、中央部を避けて配置されたメモリマットは、スタティック型の複数のメモリセルがマトリクス状に配列されて成る。
【0059】
図9には、入力回路50や、内部回路電源生成回路(VDDi発生回路)40、クランプ回路10,20,30の配置が示される。尚、図9では、入力回路50や、内部回路電源生成回路(VDDi発生回路)40、クランプ回路10,20,30などの配置個所を見やすくするため、再配線層266における配線やバンプ電極を省略している。図9に示されるように、配線抵抗の影響を可能な限り少なくするため、入力回路50や、内部回路電源生成回路(VDDi発生回路)40、クランプ回路10,20,30を複数箇所に分散配置するようにしている。
【0060】
図10には、第1クランプ回路10のレイアウト例が示される。
【0061】
pチャネル型MOSトランジスタ13及びnチャネル型MOSトランジスタ14はインバータを形成するためのMOSトランジスタであり、それぞれ同数のMOSトランジスタが並列接続されている。nチャネル型MOSトランジスタ15は、クランプ用のMOSトランジスタであり、多くの電流を安定して流せるように多数のMOSトランジスタが並列接続されている。キャパシタ12は、MOSトランジスタの酸化膜を利用したもので、多数のMOSトランジスタが並列接続されてPWELLの寄生抵抗を小さくしている。内部回路用電源VDDi、低電位側電源VSSには配線第2層が用いられる。MOSトランジスタ13,14とMOSトランジスタ15との結合や、キャパシタ12とMOSトランジスタ11,13,14との結合には、配線第1層、配線第2層が用いられる。また、図11に示されるように、配線第3層を利用して低電位側電源VSSと、内部回路用電源VDDiの配線が行われる。
【0062】
図12には、第2クランプ回路20のレイアウト例が示される。
【0063】
第2クランプ回路20のレイアウトは基本的には第1クランプ回路20のレイアウトと同じである。すなわち、pチャネル型MOSトランジスタ23及びnチャネル型MOSトランジスタ24はインバータを形成するためのMOSトランジスタであり、それぞれ同数のMOSトランジスタが並列接続されている。nチャネル型MOSトランジスタ25は、クランプ用のMOSトランジスタであり、多くの電流を安定して流せるように多数のMOSトランジスタが並列接続されている。キャパシタ22は、MOSトランジスタの酸化膜を利用したもので、多数のMOSトランジスタが並列接続されてPWELLの寄生抵抗を小さくしている。内部回路用電源VDDi、高電位側電源VDDには配線第2層が用いられる。MOSトランジスタ23,24とMOSトランジスタ25との結合や、キャパシタ22とMOSトランジスタ21,23,24との結合には、配線第1層、配線第2層が用いられる。また、図13に示されるように、配線第3層を利用して高電位側電源VDDと、内部回路用電源VDDiの配線が行われる。
【0064】
図10、図11に示される第1クランプ回路10や、図12、図13に示される第2クランプ回路20とは、半導体チップにおいて、図14に示されるように横に並べて配置しても良いし、図15に示されるように、それらを縦に並べて配置するようにしても良い。
【0065】
また、本例では、外部から取り込まれたアドレス信号をも再配線層266を介して伝達するようにしている、例えば代表的に示されるアドレス信号又はコントロール信号入力用のバンプ電極(二重丸で示される)に、再配線層266によるアドレス信号配線が結合され、このアドレス信号配線を介して対応するパッドまでアドレス信号の伝達が行われる。そして、このパッドから半導体チップ120における金属配線層を介してアドレスレジスタ及びプレデコーダに伝達される。再配線層266は低抵抗であるため、そのような再配線層266を使ってアドレス信号の伝達を行うようにすれば、アドレス信号の遅延量が少ないので、アドレス信号伝達時間の短縮化を図ることができる。
【0066】
また、本例では、アドレス信号配線にノイズが混入したり、また、隣接するアドレス配線からのクロストークを避けるため、アドレス信号配線を低電位側電源VSSの配線によってシールドするようにしている。例えばアドレス信号配線を挟むように低電位側電源VSSの配線が併設され、それによりによってアドレス信号配線は、それに隣接する低電位側電源VSSの配線によってシールドされている。
【0067】
上記の例によれば、以下の作用効果を得ることができる。
【0068】
(1)MOSトランジスタの耐圧を越える高いレベルの電源が供給されるSRAMにおいて、クランプ回路10,20を2段積みにすることで、高電位側電源VDD、低電位側電源VSS間のクランプが可能とされるので、クランプ回路専用の高耐圧のMOSトランジスタを作る必要がない。
【0069】
(2)図2に示されるように、MOSトランジスタの耐圧を越える高いレベルの電源が供給される半導体集積回路において、クランプ回路10,20を2段積みした場合において、クランプ回路を2段積みにすることで形成された中間ノード100に、pチャネル型MOSトランジスタ401,402が直列接続されて成る中間電位生成回路404が設けられる場合には、上記中間電位を生成するためだけの専用のMOSトランジスタが必要になるし、また、上記中間電位を生成するに際して、二つのpチャネル型MOSトランジスタ401,402には中間電位生成のために所定の電流を流さなければならず、その分、半導体集積回路の消費電流が増えてしまうのに対して、図1に示される構成では、内部回路60の動作電源として元々設けられている電源である内部回路用電源VDDiを中間ノード100に供給するようにしているため、上記中間電位を生成するために二つのpチャネル型MOSトランジスタ401,402の直列接続回路を新たに設ける必要がない。このため、二つのpチャネル型MOSトランジスタ401,402の直列接続回路に無駄な電流をながさなくて済む。
【0070】
(3)内部回路60には、内部回路用電源VDDiと低電位側電源VSSに結合されることによって、内部回路用電源VDDiに含まれるノイズを低減するためのキャパシタ64が随所に設けられる。そのようにキャパシタ64が随所に設けられることにより、それらの合成容量は大きくなり、インピーダンスが低く抑えられている。内部回路用電源VDDiを中間ノード100に供給する構成は、中間ノード100と低電位側電源VSSとの間に、上記内部回路60におけるキャパシタ64が接続されることになるため、中間ノード100と低電位側電源VSSとの間のインピーダンスを低く抑えることができる。そのようにインピーダンスが小さくなることでチップ内に流れる過電流による電位差が小さくなる。よってより大きな過電流を流すことが可能となり、より大きな静電耐圧を満足できる。
【0071】
以上本発明者によってなされた発明を具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0072】
例えば、外部から供給される高電位側電源VDDの電圧レベルが低くされたことにより、内部回路用電源VDDiの電圧レベルが、高電位側電源VDDの電圧レベルの半分以上になることがある。例えば、図16において、内部回路用電源VDDiの電圧レベルが1.2Vの場合に、高電位側電源VDDが1.5Vに低下された場合が考えられる。この場合、高電位側電源VDDと内部回路用電源VDDiとの差153は、0.3Vと低いため、通常動作において、第2クランプ回路2におけるpチャネル型MOSトランジスタ13や、nチャネル型MOSトランジスタ25を十分にオフすることができない。このために、当該MOSトランジスタに貫通電流が流れてしまう。
【0073】
このように、高電位側電源VDDと内部回路用電源VDDiとの差153が低すぎる場合には、pチャネル型MOSトランジスタ11に対して高抵抗151を並列接続することにより、pチャネル型MOSトランジスタ13のゲート電圧を、当該MOSトランジスタ13をオフするに十分なハイレベルとする。また、nチャネル型MOSトランジスタ14に対して高抵抗152を並列接続することで、nチャネル型MOSトランジスタ25のゲート電圧を、当該MOSトランジスタをオフするに十分なローレベルにする。これにより、pチャネル型MOSトランジスタ13や、nチャネル型MOSトランジスタ25に貫通電流が流れるのを回避することができる。
【0074】
また、上記の例では、入力回路50における静電破壊防止用ダイオード52をI/O回路用電源VDDQに結合したが、入力端子に結合された各種入力回路の構成によっては、静電破壊防止用ダイオードを高電位側電源VDDに結合するようにしても良い。
【0075】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野であるSRAMに適用した場合について説明したが、本発明はそれに限定されるものではなく、各種半導体集積回路装置に広く適用することができる。
【0076】
本発明は、少なくとも高電位側電源の電圧よりも低いレベルの内部回路用電源が供給されることによって動作可能な内部回路を含むことを条件に適用することができる。
【0077】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
【0078】
すなわち、内部回路の動作電源として元々設けられている電源である内部回路用電源を中間ノードに供給するようにしているため、内部回路において元々設けられているキャパシタが、第1クランプ回路と並列に配置されるため、不所望なレベルの電位を低インピーダンスでクランプすることが可能である。このようにインピーダンスを低く抑えることで、チップ内に流れる過電流による電位差が小さくなる。よってより大きな過電流を流すことが可能となり、より大きな静電耐圧を満足できる。
【図面の簡単な説明】
【図1】本発明にかかる半導体集積回路の一例であるSRAMにおける主要部の構成例回路図である。
【図2】図1に示される回路の比較対象とされる回路の構成例回路図である。
【図3】図1に示される回路に含まれるキャパシタの断面図である。
【図4】図1に示される回路の静電破壊耐圧評価を説明するための回路図である。
【図5】図1に示される回路の静電破壊耐圧評価を説明するための回路図である。
【図6】図1に示される回路の静電破壊耐圧評価を説明するための回路図である。
【図7】図1に示される回路の静電破壊耐圧評価を説明するための回路図である。
【図8】上記SRAMにおける再配線層に関するレイアウト説明図である。
【図9】上記SRAMにおける再配線層に関するレイアウト説明図である。
【図10】上記SRAMにおける再配線層に関するレイアウト説明図である。
【図11】上記SRAMにおける再配線層に関するレイアウト説明図である。
【図12】上記SRAMに含まれる第2クランプ回路のレイアウト説明図である。
【図13】上記SRAMに含まれる第2クランプ回路のレイアウト説明図である。
【図14】上記第1クランプ回路と上記第2クランプ回路との配置例説明図である。
【図15】上記第1クランプ回路と上記第2クランプ回路との配置例説明図である。
【図16】上記第2クランプ回路の別の構成例回路図である。
【図17】上記SRAMの構成例説明図である。
【符号の説明】
10 第1クランプ回路
20 第2クランプ回路
30 第3クランプ回路
40 内部回路電源生成回路
50 入力回路
60 内部回路
70 出力回路
80 入力端子
Claims (5)
- 高電位側電源の入力端子と、低電位側電源の入力端子と、上記高電位側電源の電圧よりも低いレベルの内部回路用電源が供給されることによって動作可能な内部回路とを含む半導体集積回路装置であって、
それぞれ不所望なレベルの電圧をクランプするための第1クランプ回路と、それに縦積みされた第2クランプ回路とが、上記高電位側電源と上記低電位側電源との間に設けられ、上記第1クランプ回路と上記第2クランプ回路との縦積みによる中間ノードは、上記内部回路用電源に結合されてなり、
上記内部回路は、上記内部回路用電源に結合された薄膜トランジスタによって形成された論理回路と、上記内部回路用電源と上記低電位側電源との間に設けられたノイズ低減用キャパシタと、を含む半導体集積回路装置。 - 上記高電位側電源を降圧することによって上記内部回路用電源を生成する内部回路用電源生成回路を含む請求項1に記載の半導体集積回路装置。
- 高電位側電源の入力端子と、低電位側電源の入力端子と、上記高電位側電源の電圧よりも低いレベルの内部回路用電源が供給されることによって動作可能な内部回路とを含む半導体集積回路装置であって、
それぞれ不所望なレベルの電圧をクランプするための第1クランプ回路と、それに縦積みされた第2クランプ回路とが、上記高電位側電源と上記低電位側電源との間に設けられ、上記第1クランプ回路と上記第2クランプ回路との縦積みによる中間ノードは、上記内部回路用電源に結合されてなり、
上記内部回路用電源とは異なる入出力回路用電源が供給されることによって信号の外部出力を可能とする出力回路と、
上記入出力回路用電源と上記低電位側電源との間に設けられ、不所望なレベルの電圧をクランプするための第3クランプ回路と、を含む半導体集積回路装置。 - 入力端子と、上記内部回路用電源が供給されることによって動作され、上記入力端子を介して伝達された信号を取り込むための入力回路と、を含み、
上記入力回路は、入力端子を介して取り込まれた信号を取り込むための入力トランジスタと、上記入出力回路用電源への導通経路を形成する静電破壊防止用ダイオードと、を含む請求項3に記載の半導体集積回路装置。 - 上記第1クランプ回路と上記第2クランプ回路とは互いに構成が等しい請求項1または請求項3に記載の半導体集積回路装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002168680A JP4043855B2 (ja) | 2002-06-10 | 2002-06-10 | 半導体集積回路装置 |
US10/443,035 US6828842B2 (en) | 2002-06-10 | 2003-05-22 | Semiconductor integrated circuit device |
TW092114300A TWI286380B (en) | 2002-06-10 | 2003-05-27 | Semiconductor integrated circuit device |
CNB031424384A CN1326242C (zh) | 2002-06-10 | 2003-06-09 | 半导体集成电路器件 |
KR10-2003-0037075A KR20030095349A (ko) | 2002-06-10 | 2003-06-10 | 반도체집적회로장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002168680A JP4043855B2 (ja) | 2002-06-10 | 2002-06-10 | 半導体集積回路装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004014929A JP2004014929A (ja) | 2004-01-15 |
JP2004014929A5 JP2004014929A5 (ja) | 2005-09-29 |
JP4043855B2 true JP4043855B2 (ja) | 2008-02-06 |
Family
ID=29706811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002168680A Expired - Fee Related JP4043855B2 (ja) | 2002-06-10 | 2002-06-10 | 半導体集積回路装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6828842B2 (ja) |
JP (1) | JP4043855B2 (ja) |
KR (1) | KR20030095349A (ja) |
CN (1) | CN1326242C (ja) |
TW (1) | TWI286380B (ja) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100569558B1 (ko) * | 2003-11-10 | 2006-04-10 | 주식회사 하이닉스반도체 | 전원 제어 기능을 갖는 불휘발성 강유전체 메모리 장치 |
US7098717B2 (en) * | 2004-06-25 | 2006-08-29 | Altera Corporation | Gate triggered ESD clamp |
JP4942007B2 (ja) | 2004-10-25 | 2012-05-30 | ルネサスエレクトロニクス株式会社 | 半導体集積回路 |
US7859301B2 (en) * | 2007-04-30 | 2010-12-28 | Altera Corporation | Power regulator circuitry for programmable logic device memory elements |
US7692975B2 (en) * | 2008-05-09 | 2010-04-06 | Micron Technology, Inc. | System and method for mitigating reverse bias leakage |
JP2009283610A (ja) * | 2008-05-21 | 2009-12-03 | Elpida Memory Inc | Esd保護回路 |
DE102008034109B4 (de) * | 2008-07-21 | 2016-10-13 | Dspace Digital Signal Processing And Control Engineering Gmbh | Schaltung zur Nachbildung einer elektrischen Last |
US8238067B2 (en) * | 2008-12-11 | 2012-08-07 | Ati Technologies Ulc | Electrostatic discharge circuit and method |
JP2011228372A (ja) * | 2010-04-16 | 2011-11-10 | Toshiba Corp | 半導体集積回路装置 |
TWI422008B (zh) | 2010-05-24 | 2014-01-01 | Au Optronics Corp | 靜電防護電路及採用此種靜電防護電路之顯示裝置 |
CN101859764B (zh) * | 2010-06-03 | 2012-02-08 | 友达光电股份有限公司 | 静电防护电路及采用此种静电防护电路的显示装置 |
JP5656658B2 (ja) * | 2011-01-14 | 2015-01-21 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | 半導体装置 |
JP2013055102A (ja) * | 2011-09-01 | 2013-03-21 | Sony Corp | 半導体集積回路及び保護回路 |
JP2014229624A (ja) | 2013-05-17 | 2014-12-08 | ソニー株式会社 | 半導体装置および電子機器 |
JP5710706B2 (ja) * | 2013-07-29 | 2015-04-30 | アギア システムズ エルエルシーAgere Systems LLC | 静電気放電保護回路 |
JP2016035958A (ja) | 2014-08-01 | 2016-03-17 | ソニー株式会社 | 保護素子、保護回路及び半導体集積回路 |
CN111584490A (zh) * | 2015-02-26 | 2020-08-25 | 杭州海存信息技术有限公司 | 分离的三维纵向存储器 |
US10734806B2 (en) | 2016-07-21 | 2020-08-04 | Analog Devices, Inc. | High voltage clamps with transient activation and activation release control |
JP6623139B2 (ja) | 2016-10-24 | 2019-12-18 | 株式会社東芝 | Esd保護回路 |
US10861845B2 (en) * | 2016-12-06 | 2020-12-08 | Analog Devices, Inc. | Active interface resistance modulation switch |
US11387648B2 (en) | 2019-01-10 | 2022-07-12 | Analog Devices International Unlimited Company | Electrical overstress protection with low leakage current for high voltage tolerant high speed interfaces |
TWI735909B (zh) * | 2019-07-10 | 2021-08-11 | 瑞昱半導體股份有限公司 | 靜電放電保護電路以及運作方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3229809B2 (ja) * | 1995-08-31 | 2001-11-19 | 三洋電機株式会社 | 半導体装置 |
CN1075667C (zh) * | 1996-04-19 | 2001-11-28 | 松下电器产业株式会社 | 半导体集成电路及采用该电路的系统 |
JPH10243639A (ja) * | 1997-02-27 | 1998-09-11 | Hitachi Ltd | 電源回路 |
US5907464A (en) * | 1997-03-24 | 1999-05-25 | Intel Corporation | MOSFET-based power supply clamps for electrostatic discharge protection of integrated circuits |
JPH10303314A (ja) | 1997-04-24 | 1998-11-13 | Toshiba Microelectron Corp | 半導体集積回路 |
JPH11243639A (ja) | 1998-02-24 | 1999-09-07 | Asahi Kasei Micro Syst Co Ltd | 半導体回路 |
US6400546B1 (en) * | 1999-09-02 | 2002-06-04 | Ati International Srl | I/O pad voltage protection circuit and method |
US6181193B1 (en) * | 1999-10-08 | 2001-01-30 | International Business Machines Corporation | Using thick-oxide CMOS devices to interface high voltage integrated circuits |
US6462601B1 (en) * | 2001-05-11 | 2002-10-08 | Faraday Technology Corp. | Electrostatic discharge protection circuit layout |
JP2002344251A (ja) * | 2001-05-22 | 2002-11-29 | Oki Electric Ind Co Ltd | オフリーク電流キャンセル回路 |
-
2002
- 2002-06-10 JP JP2002168680A patent/JP4043855B2/ja not_active Expired - Fee Related
-
2003
- 2003-05-22 US US10/443,035 patent/US6828842B2/en not_active Expired - Fee Related
- 2003-05-27 TW TW092114300A patent/TWI286380B/zh not_active IP Right Cessation
- 2003-06-09 CN CNB031424384A patent/CN1326242C/zh not_active Expired - Fee Related
- 2003-06-10 KR KR10-2003-0037075A patent/KR20030095349A/ko not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
TWI286380B (en) | 2007-09-01 |
US20030227304A1 (en) | 2003-12-11 |
US6828842B2 (en) | 2004-12-07 |
TW200402140A (en) | 2004-02-01 |
KR20030095349A (ko) | 2003-12-18 |
JP2004014929A (ja) | 2004-01-15 |
CN1467844A (zh) | 2004-01-14 |
CN1326242C (zh) | 2007-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043855B2 (ja) | 半導体集積回路装置 | |
TWI425608B (zh) | 多重電力領域積體電路之靜電放電保護電路 | |
US9048655B2 (en) | ESD protection scheme using I/O pads | |
JP5341866B2 (ja) | 半導体集積回路装置 | |
US7705404B2 (en) | Electrostatic discharge protection device and layout thereof | |
US9997513B1 (en) | Package including a plurality of stacked semiconductor devices having area efficient ESD protection | |
CN104134978B (zh) | 具有高的有效维持电压的静电放电(esd)钳位电路 | |
JP3901671B2 (ja) | 半導体集積回路装置 | |
JP4000096B2 (ja) | Esd保護回路 | |
JP2007511898A (ja) | 静電気放電に対する保護回路及びその動作方法 | |
US20090135534A1 (en) | Semiconductor integrated circuit | |
JPH06163824A (ja) | 半導体集積回路 | |
US20080173899A1 (en) | Semiconductor device | |
EP1905084A2 (en) | Integrated circuit with electro-static discharge protection | |
US10181721B2 (en) | Area-efficient active-FET ESD protection circuit | |
CN102569290A (zh) | 多电源集成电路的静电放电保护电路 | |
US10454269B2 (en) | Dynamically triggered electrostatic discharge cell | |
US7616417B2 (en) | Semiconductor device including protection circuit and switch circuit and its testing method | |
TW202207411A (zh) | 用於增強靜電放電(esd)穩健性的電路技術 | |
CN100592235C (zh) | 功率集成电路及其静电放电(esd)防护方法 | |
JP4873504B2 (ja) | 半導体集積回路装置 | |
JP2003124328A (ja) | 半導体集積回路装置 | |
JP2839624B2 (ja) | 半導体集積回路 | |
JP2004063754A (ja) | 半導体集積回路装置 | |
JPH05198763A (ja) | 半導体集積回路装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050511 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071114 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |