JP4031142B2 - 内部電圧生成回路および半導体メモリ - Google Patents

内部電圧生成回路および半導体メモリ Download PDF

Info

Publication number
JP4031142B2
JP4031142B2 JP10085599A JP10085599A JP4031142B2 JP 4031142 B2 JP4031142 B2 JP 4031142B2 JP 10085599 A JP10085599 A JP 10085599A JP 10085599 A JP10085599 A JP 10085599A JP 4031142 B2 JP4031142 B2 JP 4031142B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
node
resistance
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10085599A
Other languages
English (en)
Other versions
JPH11353889A (ja
Inventor
浩司 細野
寧夫 伊藤
健 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10085599A priority Critical patent/JP4031142B2/ja
Publication of JPH11353889A publication Critical patent/JPH11353889A/ja
Application granted granted Critical
Publication of JP4031142B2 publication Critical patent/JP4031142B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路のチップ内部電圧を発生する電圧発生回路およびそれを用いた半導体メモリに係り、特に複数の可変電位を設定する電圧設定回路およびそれを用いた半導体メモリに関するもので、例えば不揮発性半導体メモリのデータ書き込み、消去用の多段階電圧発生回路に使用されるものである。
【0002】
【従来の技術】
EEPROMやフラッシュメモリなど電気的に書き込み、消去を可能とする不揮発性メモリを内蔵する半導体集積回路では、単一電源化に伴い、書き込みや消去に必要な高電圧を内部電圧発生回路によりチップ内部で発生させている。
【0003】
この内部電圧発生回路は、外部から供給される電源電圧を昇圧する昇圧回路と、昇圧回路の出力電圧を所望の電圧値(内部電圧)に調整するために電圧リミッタ回路が用いられている。
【0004】
一方、ウエハーやチップ毎の特性的なばらつきを考慮して、前記電圧リミッタ回路にトリミング回路を付加することが必要不可欠となっている。また、書き込みや消去動作において、内部発生電圧を意図的にステップアップして用いる場合もある。
【0005】
そこで、前記電圧リミッタ回路として、設定可能な電圧範囲や、電圧刻みを用途に合わせて設計する必要があり、設定電圧の範囲や、電圧刻みを自由に設定できることが望ましい。
【0006】
図7は、EEPROMやフラッシュメモリなどにおいて書き込み電圧、消去電圧に代表される内部電圧を発生する内部電圧発生回路の従来例の等価回路を示している。
【0007】
図7において、ある内部電圧を発生する昇圧回路70の出力ノード10に電圧リミッタ回路が接続されており、この電圧リミッタ回路は、昇圧回路70の出力ノード10と接地電位Vssとの間に抵抗値が一定の負荷抵抗素子RLと、出力ノードの電圧値を設定するトリミング回路20の等価抵抗R1'とが直列に接続されている。
【0008】
そして、前記抵抗素子RL 、R1'の接続ノードN1 の電位を電位比較回路13で基準電圧Vref と比較した比較出力VXXFLG を用いて、前記接続ノードN1 の電位が基準電圧Vref と等しくなるように昇圧回路70の昇圧動作を抑制するように、昇圧制御回路17を介してフィードバック制御し、出力ノード10の出力電圧VXXを制御するように構成されている。
【0009】
図8は、図7中のトリミング回路20の従来例として使用されている抵抗分圧方式のD/A変換回路の等価回路を示している。
【0010】
このトリミング回路は、直列接続されている分割抵抗R1-1 、R1-2 、…、R1-m と、上記各抵抗の接地電位側の各一端に各一端が接続され、各他端が一括されて接地電位Vssに接続されているスイッチ用のMOSトランジスタT1 、T2 、…、Tm と、制御データB1、B2、…、Bnをデコードして上記各MOSトランジスタを択一的にオン状態にスイッチ制御するための制御信号D1 、D2 、…、Dm を供給するデコード回路21とからなる。
【0011】
図7に示した昇圧回路70の出力ノード10の出力電圧VXXは次の式(1) で表される。
【0012】
VXX=Vref +(Vref ・RL )/R1' …(1)
上式(1) から分るように、トリミング回路20の等価抵抗R1'を調整して接続ノードN10の電位を変えることにより、出力電圧VXXを調整することができる。
【0013】
しかし、図7及び図8の回路構成では、負荷抵抗素子RLとトリミングされる抵抗素子R1'とが出力電圧VXXの絶対値と電圧刻みの両方を決めている。換言すると、抵抗素子R1'や負荷抵抗素子RL の抵抗値を変更すると、出力電圧VXXの値と電圧刻みの両方が変り易い。
【0014】
従って、出力電圧VXXの所望の設定値の範囲が変更されると、電圧刻みを変えないようにするためには、トリミング回路20の等価抵抗R1'(図8に示す回路においては各抵抗R1‐1乃至R1‐m)を決め直す必要があり、また、電圧刻みだけを変更する場合でも同様のことが生じる。このことは、プロセス工程を経たチップで電圧を調整する場合にも言えることであり、例えばFIB加工により配線(抵抗成分)を追加及び削除して抵抗素子R1'やRL の抵抗値を変更すると、設定値だけでなく電圧刻みまで変わる、といった不都合を生じることがある。
【0015】
即ち、図7および図8に示した従来の内部電圧発生回路は、設定電圧の範囲や最小値と電圧刻みの決め方に自由度がなく、設定電圧の最小値を変えると電圧刻みも変わってしまうだけでなく、設定電圧の数だけ制御信号を生成するためのデコード回路21を必要とするので、構成が複雑になり、使用素子数が多くなる。
【0016】
例えば電圧リミッタ回路の設定電圧を16ステップ用意するには、トリミング回路20における分割抵抗R1-i (i=1,2,…m )とMOSトランジスタTi のペアを16個と、MOSトランジスタTi のゲートに入力する制御信号Di 用の配線も16本と、デコード回路21として4ビットのデジタルデータをデコードするための4入力デコーダ回路が16個必要になる。
【0017】
一般的には、トリミングのステップ数が2N の場合、分割抵抗を2N 通り用意し、Nビットのデジタル入力に対応するN入力デコーダが2N 個必要である。
【0018】
上記Nの値が大きくなると、デコーダ回路21や分割抵抗の素子数が急激に増えるので、トリミング回路20のパターン面積が増えてしまい、回路設計が困難となる。しかも、抵抗値の製造バラツキに対してもパターン変更の自由度がないので、抵抗値の調整のための設計変更がより困難となる。
【0019】
次に、前記内部電圧生成回路をEEPROMの多段階高電源発生回路に適用した従来例について説明する。
【0020】
EEPROMの中で高集積化・一括消去が可能なものとして、メモリセルを複数個直列接続したセルユニット(NANDセル)のアレイを採用したNANDセル型フラッシュメモリが知られている。
【0021】
NANDセル型フラッシュメモリの1つのメモリセルは、ソース・ドレイン領域が形成された半導体基板上に絶縁膜を介して浮遊ゲート(電荷蓄積層)と制御ゲートが積層されたMOSFET構造を有する。そして、複数個のメモリセルが隣接するもの同士でソース・ドレインを共有する形で直列接続されてNANDセルを構成し、このようなNANDセルがマトリックス配列されてメモリセルアレイが構成される。
【0022】
この場合、各ビット線は列方向に配設されており、メモリセルアレイの列方向に並ぶNANDセルの一端側のドレインは、それぞれ選択ゲートトランジスタを介して前記ビット線に共通接続され、他端側ソースはやはり選択ゲートトランジスタを介して共通ソース線に接続されている。また、セルトランジスタの制御ゲートは行方向に連続的に配設されて制御ゲート線(ワード線)となり、各選択ゲートトランジスタのゲートは行方向に連続的に配設されて選択ゲート線となる。
【0023】
このようなNANDセル型フラッシュメモリは、K. D. Suh et al., "A 3.3V 32Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme," IEEE J. Solid-State Circuits, vol.30, No.11,pp.1149-1156, Nov. 1995.等に発表されている。
【0024】
そして、上記文献のFig.7 には、データ書き込み時や消去時にワード線などに供給する書き込み電圧Vpgm を発生するVpgm 発生回路(昇圧回路)および電圧リミッタ回路として、図9(a)に示すような構成が示されている。
【0025】
図9(a)において、Vpgm 発生回路100 の出力ノード(Vpgm ノード)と接地電位Vssとの間に接続されている電圧リミッタ回路は、電圧発生回路部、電圧比較回路部などから構成されている。
【0026】
上記電圧発生回路部は、直列接続された複数個の電圧分割用の抵抗Ri(本例ではR12〜R1 )および1個のNMOSトランジスタQn0と、一部の抵抗(本例ではR10〜R1 )の一端側にそれぞれの一端が接続され、他端が共通接続された複数個のスイッチ選択用NMOSトランジスタQni(本例ではQn1〜Qn10 )とから構成されている。
【0027】
前記NMOSトランジスタQn1〜Qn10 のゲートには、それぞれ対応して制御信号TRMi(本例ではTRM1〜TRM10 )が供給される。また、前記NMOSトランジスタQn0のゲートには制御信号PGM が供給される。
【0028】
また、前記電圧比較回路部は、PMOSトランジスタQp1,Qp2およびNMOSトランジスタQn21 ,Qn22 ,Qn23 からなる差動型の演算増幅回路であり、前記電圧発生回路部の抵抗R11、R12の接続ノードの電圧が駆動用MOSトランジスタの一方であるNMOSトランジスタQn22 のゲートに供給される。そして、駆動用MOSトランジスタの他方のNMOSトランジスタQn21 のゲートには参照用電圧発生回路(図示せず)で発生される参照用電圧Refが供給され、前記抵抗R11、R12の接続ノードの電位と比較される。
【0029】
なお、前記電圧比較回路部内のNMOSトランジスタQn23 のゲートには前記制御信号PGM が供給され、この信号PGM が“H”レベルにされてNMOSトランジスタQn23 が導通した時に、電圧比較回路の比較動作が行われる。
【0030】
さらに、前記電圧比較回路部の出力ノードの信号と前記制御信号PGM が二入力ナンド回路101 に入力し、このナンド回路101 の出力がクロック出力回路102 に入力し、クロック信号φp 、/φp により制御されて出力信号φvpgm、/φvpgmとなる。
【0031】
上記構成の電圧リミッタ回路においては、抵抗R11、R12の接続ノードの電位が参照用電圧Refよりも大きいか小さいかが判定され、判定結果に応じて出力信号φvpgm、/φvpgmが活性化されてVvpgm発生回路100 の動作の停止/活性状態が制御され、Vvpgmノードは一定に近い電圧(リミット電圧)が保たれる。
【0032】
そして、Vvpgmノードと接地電位Vssとの間の電位差が抵抗R12〜R1 によって複数に分割され、スイッチ選択用トランジスタQn1〜Qn10 のいずれか一つのトランジスタが制御信号TRM1〜TRM10 に応じて導通制御される。従って、制御信号TRM1〜TRM10 の設定変更によりリミット電圧設定値を調節可能となる。
【0033】
即ち、図9(b)に示すように、トランジスタQn1が選択されると16.0Vが発生し、トランジスタQn2が選択されると16.5Vが発生し、トランジスタQn10 が選択されると20.0Vが発生する。この回路では、15.5Vから20.0Vまで0.5Vの刻みで出力電圧を発生させることが可能である。
【0034】
しかし、図9(a)中の電圧リミッタ回路は、次のような問題点がある。
【0035】
まず、制御信号TRM1〜TRM10 はデコードされた信号であり、制御信号TRMiの1個につき1個のデコーダが必要である。従って、出力電圧の刻み数が増えるにつれてデコーダの使用数が増え、パターン面積が増える。
【0036】
また、メモリセルの書き込み、消去特性に応じて、出力電圧の設定値を変更する必要が生じた場合、出力電圧の設定の仕方に自由度がないため、全ての抵抗値を変える必要が生じることもあり、特に出力電圧の刻み数が多い場合には全ての抵抗値を微調整したり修正することは困難になる。
【0037】
なお、前述したようなパターン面積が増大するという欠点を改善するために、デコーダを使わず、電流加算型のD/A変換回路、電圧加算型のD/A変換回路、重み抵抗方式のD/A変換回路などといった抵抗を組み合わせて直接にアナログ的にデコードする方式がいくつか知られている。
【0038】
これらの中では、電流加算型のD/A変換回路が最もよく使われており、動作原理は、例えば「図解 D/A変換入門、米山寿一著、オーム社、1993年」などに開示されている。
【0039】
【発明が解決しようとする課題】
上記したように従来の内部電圧発生回路の電圧リミッタ回路は、設定電圧の範囲や最小値と電圧刻みの決め方に自由度がなく、設定電圧の最小値を変えると電圧刻みも変わってしまうだけでなく、トリミング用のデコード回路は設定電圧の数だけ制御信号を生成する必要があるので、構成が複雑になり、使用素子数が多くなるという問題があった。
【0040】
本発明は上記の問題点を解決すべくなされたもので、設定電圧の最小値と電圧刻みを別々に設定することが可能になり、電圧刻みを一定のまま設定電圧の範囲をシフトさせることができ、トリミング用のデコード回路を不要にし、n本の制御信号で2のn乗通りの電圧値を設定し得る内部電圧発生回路を提供することを目的とする。
【0041】
また、本発明は、電流加算型のD/A変換回路を使用して基準電位とそれより高い電源電位との間の正の電圧を比較的容易に多段階で出力させることが可能であり、デジタル入力のビット数nが増えても抵抗回路網のパターン面積の占める割合の増大を抑制し得る半導体メモリを提供することを目的とする。
【0042】
【課題を解決するための手段】
本発明の内部電圧発生回路は、電圧発生回路と、前記電圧発生回路の出力ノードに一端側が接続された負荷抵抗素子と、前記負荷抵抗素子の他端側の第1のノードに接続され、デジタルデータに応じて等価抵抗が制御されることによって前記負荷抵抗素子側からの入力電流の大きさを制御する第1の電圧設定回路と、前記負荷抵抗素子の他端側の第1のノードに接続され、前記負荷抵抗素子側から所定の電流が流れる第2の電圧設定回路と、前記第1のノードの電位と所定の基準電位を比較して、前記第1のノードの電位を検出する電位比較回路と、前記電位比較回路の出力により実質的に前記電圧発生回路を制御することによって前記第1のノードの電位が前記基準電位に等しくなるように設定する昇圧制御回路と
を具備し、前記第1の電圧設定回路は、前記等価抵抗が制御されることによって前記電圧発生回路の出力ノードの電圧を第1の電圧幅刻みで設定し、前記第2の電圧設定回路は、前記第1の電圧設定回路で設定される前記電圧発生回路の出力ノードの電圧の最小値を設定することを特徴とする。この内部電圧発生回路において、第1の電圧設定回路は、第1のノードに各一端が共通に接続され、それぞれデジタル入力の各ビット信号に対応して切換え制御される複数の第1のスイッチ素子と、基準電位と実質的に等電位の基準電圧が印加される第2のノードに各一端が共通に接続され、各他端は各対応する第1のスイッチ素子の各他端に共通にされ、デジタル入力の各ビット信号とは相補的な信号に応じて切換え制御される複数の第2のスイッチ素子と、複数の第1のスイッチ素子と複数の第2のスイッチ素子の各対応するスイッチ素子が共通接続された複数の接続ノードに対応して各一端が接続された複数の第1の抵抗素子および第1の抵抗素子の抵抗値の1/2の抵抗値をそれぞれ有するストリング接続された複数の第2の抵抗素子が梯子状に接続されてなるラダー型抵抗回路網と、ラダー型抵抗回路網のストリング接続された複数の第2の抵抗素子の一端と接地ノードとの間に接続された第3の抵抗素子とを具備する。
【0043】
また、本発明の半導体メモリは、発振イネーブル信号により発振動作の可否が制御され、発振動作状態では所定周期のクロック信号を発生する発振回路と、前記クロック信号が供給されることにより、電源電圧を昇圧して所定の高電圧を発生する昇圧回路と、前記昇圧回路の出力ノードに一端側が接続された負荷抵抗素子と、前記負荷抵抗素子の他端側の第1のノードに接続され、デジタルデータに応じて等価抵抗が制御されることによって前記負荷抵抗素子側からの入力電流の大きさを制御する第1の電圧設定回路と、前記負荷抵抗素子の他端側の第1のノードに接続され、前記負荷抵抗素子側から所定の電流が流れる第2の電圧設定回路と、前記第1のノードの電位と所定の基準電位を比較し、比較出力により前記発振回路の発振イネーブル信号の活性/非活性状態を制御する演算増幅回路と、前記昇降回路の出力電圧が用いられることによりデータの書き込みまたは消去が行われるメモリセルからなるメモリセルアレイとを具備し、前記第1の電圧設定回路は、前記等価抵抗が制御されることによって前記電圧発生回路の出力ノードの電圧を第1の電圧幅刻みで設定し、前記第2の電圧設定回路は、前記第1の電圧設定回路で設定される前記電圧発生回路の出力ノードの電圧の最小値を設定することを特徴とする。この半導体メモリにおいて、第1の電圧設定回路は、第1のノードに各一端が共通に接続され、それぞれデジタル入力の各ビット信号に対応して切換え制御される複数の第1のスイッチ素子と、基準電位と実質的に等電位の基準電圧が印加される第2のノードに各一端が共通に接続され、各他端は各対応する第1のスイッチ素子の各他端に共通にされ、デジタル入力の各ビット信号とは相補的な信号に応じて切換え制御される複数の第2のスイッチ素子と、複数の第1のスイッチ素子と複数の第2のスイッチ素子の各対応するスイッチ素子が共通接続された複数の接続ノードに対応して各一端が接続された複数の第1の抵抗素子および第1の抵抗素子の抵抗値の1/2の抵抗値をそれぞれ有するストリング接続された複数の第2の抵抗素子が梯子状に接続されてなるラダー型抵抗回路網と、ラダー型抵抗回路網のストリング接続された複数の第2の抵抗素子の一端と接地ノードとの間に接続された第3の抵抗素子とを具備する。
【0044】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0045】
図1は、本発明の第1の実施の形態に係る内部電圧生成回路の等価回路を示している。
【0046】
図1に示す内部電圧生成回路は、図7を参照して前述した内部電圧生成回路と比べて、電圧リミッタ回路が異なる。
【0047】
即ち、ある内部電圧を発生する電圧発生回路(例えば昇圧回路)70の出力ノード10に接続された電圧リミッタ回路は、前記昇圧回路70の出力ノード10に一端側が接続された負荷抵抗素子RL と、前記負荷抵抗素子RL の他端側の第1のノードN1 と接地電位Vssとの間に接続されたトリミング回路とを具備する。
【0048】
前記トリミング回路は、デジタルデータに応じて等価抵抗R10(第1の等価抵抗)が制御されることによって前記負荷抵抗素子RL 側からの入力電流I10の大きさを制御する電流加算式のDAコンバータを原理とする回路が用いられてなる第1の電圧設定回路11と、前記負荷抵抗素子RL 側から所定の電流が流れる第2の電圧設定回路12とが並列に接続されている。上記第2の電圧設定回路12は、等価抵抗R20(第2の等価抵抗)が制御されることによって前記負荷抵抗素子RL 側からの入力電流I20の大きさを制御し得るように構成されている。
【0049】
そして、前記第1のノードN1 の電位を電位比較回路(演算増幅回路)13で基準電圧Vref と比較した出力信号VXXFLG を用いて、前記第1のノードN1 の電位が基準電圧Vref と等しくなるように、昇圧制御回路17を介して前記昇圧回路70の昇圧動作を制御して、出力電圧VXXを得るように構成されている。
【0050】
ここで、前記電圧比較回路13による比較・制御動作について説明しておく。
【0051】
前記電圧比較回路13は、前記第1のノードN1 の電位が基準電圧Vref より低い/高い時に応じて“L”/“H”レベルになる出力信号VXXFLG を出力する。
【0052】
前記出力電圧VXXが所望の電圧値に達していない時(第1のノードN1 の電位が基準電圧Vref より低い時)には、出力信号VXXFLG は、“L”レベルになり、昇圧制御回路17は昇圧回路70の昇圧動作を持続させる。
【0053】
これに対して、前記出力電圧VXXが所望の電圧値に達している時(第1のノードN1 の電位が基準電圧Vref より高い時)には、出力信号VXXFLG は、“H”レベルになり、昇圧制御回路17は、昇圧回路70の昇圧動作を抑制する。
【0054】
このような昇圧制御回路17の具体例としては、例えば昇圧クロック信号を止める回路、または、VXX端子から接地ノードへのリークパスを導通させる回路を使用することができる。
【0055】
図1に示した昇圧回路70の出力ノード10の出力電圧VXXは次式(2) で表される。
【0056】
VXX=Vref +(Vref ・RL /R10)+(Vref ・RL /R20) …(2)
上式(2) から分るように、出力電圧VXXに対して第1の電圧設定回路11の等価抵抗R10および第2の電圧設定回路12の等価抵抗R20が別々に寄与している。
【0057】
いま、第1の電圧設定回路11の第1の等価抵抗R10が無限大の時、第1のノードN1 には第2の電圧設定回路12の電流I20のみが流れるので、昇圧回路70の出力電圧VXXは電流I20で決まる最小値になる。この最小電圧値は、前記基準電圧Vref と第2の電圧設定回路12の第2の等価抵抗R20によって決まる、つまり、第2の等価抵抗R20は、昇圧回路70の最小電圧出力を決める役割を有する。
【0058】
これに対して、第1の電圧設定回路11の第1の等価抵抗R10を小さくするにつれて、第1の等価抵抗R10に応じた電流I10および第2の電圧設定回路12の電流I20が第1のノードN1 を流れるようになり、昇圧回路70の出力電圧VXXは大きくなっていく。
【0059】
このように第1の等価抵抗R10を調整することによって昇圧回路70の出力電圧VXXのステップ電圧を決める場合、前記したように第2の等価抵抗R20によって昇圧回路70の最小電圧出力を変えても、出力電圧に対して別々に寄与するため、第1の等価抵抗R10による出力電圧変化分、すなわち電圧刻みは変化しない。
【0060】
即ち、上述したような内部電圧発生回路は、設定電圧の大まかな設定を行うために設定電圧の最小値を決める第2の電圧設定回路12と設定電圧の細かい設定を行うために電圧刻みを決める第1の電圧設定回路11とを互いに独立に動作し得るように構成しているので、設定電圧の電圧刻みを一定のままに保って設定電圧の範囲をシフトさせることができるようになる。
【0061】
<実施例1>(図2)
図2は、図1の回路の一例を具体的に示している。
【0062】
以下、図2に示す内部電圧生成回路を参照して実施例1を詳細に説明する。
【0063】
図2において、70は昇圧回路、10は昇圧回路70の出力ノード、RL は負荷抵抗素子、N1 は負荷抵抗素子RL 他端側の第1のノード、11は第1の電圧設定回路、12は第2の電圧設定回路である。
【0064】
13は前記第1のノードN1 に得られる分圧電位を基準電位Vref と比較し、比較出力により実質的に前記昇圧回路70を制御し、前記第1のノードN1 が前記基準電位Vref と等電位になるようにフィードバック制御するためのオペアンプ(演算増幅回路)である。
【0065】
第1の電圧設定回路11において、M1 〜Mn は、第1のノードN1 に各一端が共通に接続された複数個(n、本例ではn=3)の第1のスイッチ素子であり、それぞれデジタル入力の各ビット信号B1 〜Bn に対応して切換え制御される。
【0066】
M1'〜Mn'は、各一端が第2のノードN2 に共通に接続され、前記デジタル入力の各ビット信号B1 〜Bn がそれぞれインバータ回路IVにより反転された信号/B1 〜/Bn に応じて切換え制御される複数個(n)の第2のスイッチ素子である。
【0067】
上記複数の第1のスイッチ素子M1 〜Mn と相補的に切換え制御される複数の第2のスイッチ素子M1'〜Mn'のうちの各対応するスイッチ素子の他端同士は共通に接続されている。
【0068】
これらのスイッチ素子M1 〜Mn 、M1'〜Mn'は、デジタル入力の相補的な各ビット信号B1 〜Bn 、/B1 〜/Bn に対応してそれぞれ前記第1のノードN1 /第2のノードN2 を選択する状態に切換え制御される切換回路網14を構成している。
【0069】
15は、前記各対応するスイッチ素子の共通接続ノードに対応して各一端が接続された複数個(n)の第1の抵抗素子R5 〜R7 および複数個(n+1)の第2の抵抗素子R1 〜R4 が梯子状に接続されてなるラダー抵抗回路網である。ここで、ストリング接続された第2の抵抗素子R1 〜R4 の抵抗値をRで表わすと、第1の抵抗素子R5 〜R7 の抵抗値は2Rに設定されている。
【0070】
R8 は前記ラダー型抵抗回路網15の第2の抵抗素子群(R1 〜R4 )の一端とVssノードとの間に接続された第3の抵抗素子である。
【0071】
16は第2のノードN2 に基準電位Vref と等電位を印加する基準電圧発生回路であり、低インピーダンスを有する。
【0072】
即ち、第1の電圧設定回路11は、切換回路網14にラダー抵抗回路網15が接続されてなる電流加算型のD/A変換回路が用いられている。
【0073】
なお、図2中、17は昇圧回路70の昇圧動作を制御する昇圧制御回路である。
【0074】
次に、図2の内部電圧生成回路の動作を説明する。
【0075】
第1のスイッチ素子M1 〜Mn および第2のスイッチ素子M1'〜Mn'の各抵抗値は、第1の抵抗素子R5 〜R7 の抵抗値に比べて十分小さいものとする。
【0076】
まず、動作の概要を説明すると、デジタル入力の値に対応して電流加算型のD/A変換回路の抵抗値が変化することにより、昇圧回路70の出力ノード10の出力電圧VXXが変化する。
【0077】
この場合、図2の回路が安定状態にある時は、第1のノードN1 および第2のノードN2 は仮想的に短絡して基準電位Vref であり、切換回路網14がデジタル入力の各ビット信号B1 〜Bn 、/B1 〜/Bn に対応して切換え制御された時、前記第1のノードN1 /第2のノードN2 のどちらを選択する状態になっても等しい電位であるので、以下で述べるように合成抵抗の計算が可能となる。
【0078】
即ち、ラダー抵抗回路網15における抵抗ストリングの各抵抗接続ノードのうちノードCから第2のノードN2 間の抵抗のうち、ノードDを経由した方の合成抵抗RC1はR1 +R2 となり、2Rとなる。これは、ノードCから第1の抵抗素子R5 側をみた抵抗値2Rに等しい。
【0079】
従って、ノードD側からノードCに流れ込む電流I1 と、スイッチ素子M1 がオン状態の時に第1のノードN1 からスイッチ素子M1 および第1の抵抗素子R5 を介してノードCに流れ込む電流I1 あるいはスイッチ素子M1'がオン状態の時に第2のノードN2 からスイッチ素子M1'および第1の抵抗素子R5 を介してノードCに流れ込む電流I1 とは等しい。
【0080】
次に、前記抵抗ストリングのノードCより接地電位Vss側の1つ隣りのノードBについて考えると、このノードBからノードN2 間の抵抗のうち、ノードC、Dを経由した方の合成抵抗RB1は、R3 +1/{(1/R5 )+(1/RC1)}となり、2Rとなる。これは、ノードBから第1の抵抗素子R6 側をみた抵抗値2Rに等しい。
【0081】
従って、ノードC側からノードBに流れ込む電流I2 (=2×I1 )と、スイッチ素子M2 がオン状態の時に第1のノードN1からスイッチ素子M2 および第1の抵抗素子R6 を介してノードBに流れ込む電流I2 あるいはスイッチ素子M2'がオン状態の時に第2のノードN2 からスイッチ素子M2'および第1の抵抗素子R6 を介してノードBに流れ込む電流I2 とは等しい。
【0082】
以上のように、前記抵抗ストリングの各抵抗接続ノードを接地電位Vss側に向かって順に考えると、ノードA、ノードN2 間の抵抗のうち、ノードBを経由した方の合成抵抗値RA1は、ノードAから第1の抵抗素子R7 側をみた抵抗値に等しい。よって、ノードAと第1のノードN1およびノードAと第2のノードN2との間の合成抵抗はRに等しい。
【0083】
従って、各抵抗接続ノードとも、接地電位Vss側に向かって流れ出る電流は、第1の抵抗素子R5〜R7および第2の抵抗素子R1〜R4側からそれぞれ流れ込む等しい電流が加算されたものとなり、以下の特徴を有する。
【0084】
即ち、ラダー抵抗回路網15から第3の抵抗素子R8 を経て接地電位Vss側に向かって流れ出る電流をI10' で表わすと、前記抵抗ストリングにおける接地電位Vss側の一端ノードAからノードD側に向かう各抵抗接続ノードに対応する各スイッチ素子に流れる電流は、順に、I10' /2、I10' /4、I10' /8の重み付けを有する。これらの電流が加算される電流I10が負荷抵抗RL で電圧変換される。
【0085】
なお、各部抵抗素子を全体的に高い抵抗値に設定し、図1、図2に示す電圧設定回路での貫通電流を減らすことにより、昇圧電位の立ち上がり特性が良くなり、消費電力も減少する。
【0086】
これに対して、貫通電流は多少大きくなるが、各部抵抗素子を全体的に小さくすると、第1のノードN1の電位変化を感知する応答性が良くなるので、設定電位での安定性が良くなる。したがって、出力電圧の用途に応じて抵抗値を設定する必要がある。
【0087】
図2において、第2の電圧設定回路12に流入する電流I20は、次式(3) で表される。
【0088】
I20=Vref /R20 …(3)
ここで、Vref は基準電圧、R20は第2の電圧設定回路12の等価抵抗である。
【0089】
以上より、前記昇圧回路70から負荷抵抗素子RL を介して流れる電流は、I10+I20になるので、昇圧回路70の出力電位VXXは次式(4) で表される。
【0090】
【数1】
Figure 0004031142
【0091】
上式(4) において、第1項、第2項は、デジタル入力の値に関係なく、R20とRL とVref で決まる電圧になる。また、第3項は、デジタル入力B1、B2、…、Bn(Bnは0または1)の値によって、Vref ・RL /(R +R8 )で決まる電圧刻みに比例した電圧になる。
【0092】
このことは、第1の電圧設定回路11が昇圧回路70の出力電位VXXの電圧刻みを決め、第2の電圧設定回路12が昇圧回路70の出力電位VXXの最小値を決めることを示している。
【0093】
図3は、図2中の第2の電圧設定回路12の等価抵抗R20の抵抗値を変える手段の一例を示している。
【0094】
図3において、第1のノードN1 と接地ノードとの間には、抵抗素子R21とゲートに制御信号A1 が印加されるNMOSトランジスタT21からなるスイッチ素子とが直列に接続された第1の直列回路および抵抗素子R22とゲートに制御信号A2 が印加されるNMOSトランジスタT22からなるスイッチ素子とが直列に接続された第2の直列回路が並列に接続されている。
【0095】
ここで、R21>R22である時、制御信号A2 を“L”レベルにしてトランジスタT22をオフ、制御信号A1 を“H”レベルにしてトランジスタT21をオンにして抵抗素子R21を選択すると、昇圧回路70の出力電位VXXの最小値は小さくなり、その電位を基準にして、第1の電圧設定回路11のデジタル入力の各ビット信号B1 、…、Bn によってVref ・RL /(R +R8 )の電圧刻みのトリミング、あるいは、ステップアップ動作が可能である。
【0096】
これに対して、制御信号A1 を“L”レベルにしてトランジスタT21をオフ、制御信号A2 を“H”レベルにしてトランジスタT22をオンにして抵抗素子R22を選択すると、昇圧回路70の出力電位VXXの最小値は大きくなり、その電位を基準にして、第1の電圧設定回路11のデジタル入力の各ビット信号B1 、…、Bn によってVref ・RL /(R +R8 )の電圧刻みのトリミング、あるいは、ステップアップ動作が可能である。
【0097】
即ち、上記したような第1実施例の内部電圧生成回路によれば、電圧刻みを決める役割を有する第1の電圧設定回路11と、出力電位の最小値を決める役割を有する第2の電圧設定回路12とを並列に接続することにより、それぞれの役割を独立に発揮させることが可能になった。
【0098】
このことは、設計段階において各値を設定する場合や、実際のチップにおいてFIB加工などにより設定電圧を微調整する場合などの処理を容易にする。
【0099】
例えば、図2における第1の電圧設定回路11において、電圧刻みは、Vref ・RL /(R +R8 )で表されるが、R8 のみを変更することによって、電圧刻みの変更が可能であり、R8 を変更する前の同じ最小電圧から、異なる電圧刻みで出力電圧を設定していくことができる。また、図2における第2の電圧設定回路12において、R20を変更することにより、電圧刻みを変えることなく、設定電圧をシフトさせることが可能である。この特徴を利用して、例えば図3の実施例に示すように、A1 、A2 をそれぞれある動作モードに対応した選択信号として、異なる設定電圧範囲で使用することができる。
【0100】
また、電圧刻みを決める役割を有する第1の電圧設定回路11にD/Aコンバータを応用した回路を用いているので、n本の信号により2のn乗通りの電圧を設定することが可能になり、従来のデコード方式では設定電圧の数だけ必要だった制御信号、スイッチ用MOSトランジスタ群およびデコード回路自体が不要になる。
【0101】
即ち、第1の電圧設定回路11のスイッチ素子M1 〜Mn をオフ状態(スイッチ素子M1'〜Mn'をオン状態)に制御すれば、第1のノードN1 から第1の電圧設定回路11に流れる電流I10は零になるので、設定電圧は、第1のノードN1 から第2の電圧設定回路12に流れる電流I20だけで決まる最小値となる。
【0102】
これに対して、第1の電圧設定回路11のスイッチ素子M1 〜Mn をオン状態(スイッチ素子M1'〜Mn'をオフ状態)に制御すれば、第1のノードN1 から第1の電圧設定回路11に流れる電流I10は最大値になるので、設定電圧は最大値となる。
【0103】
NAND型フラッシュメモリの書込み動作を例に挙げると、ある書込み電圧での書込みがベリファイリードでフェイルすると、次の書込み時の書込み電圧は前回よりある電圧刻みの分だけ高く設定される。つまり、書込み特性の遅いセルに対する再書込み時に書込み電圧をステップアップしていく書込み方式に用いる場合、本回路では第一の電圧設定回路に与えるデジタル信号B1、B2、…、Bnをカウンタ回路でインクリメントしていくだけで容易に実現される。
【0104】
また、上記デジタル信号の最下位ビットのレベルを固定にして、それより1ビットの上位を最下位ビットとしてインクリメントすることによって、2倍の電圧刻みで出力電圧をステップアップすることも容易である。
【0105】
なお、図2に示した内部電圧生成回路は、第1の電圧設定回路11と第2の電圧設定回路12とを組み合わせて使うことに利点があり、第1の電圧設定回路11のみを使うとすれば冗長な回路が必要になる。
【0106】
即ち、第1の電圧設定回路11のみにより、例えば15Vから18Vを0.5Vの電圧刻みでトリミングする場合を考えると、0Vから18Vを0.5Vで刻むためには、デジタル信号のビット数は6ビット必要である。
【0107】
しかし、実際にトリミングするのは、7段階であるので、制御に必要なビット数は、3ビットでよい。従って、第1の電圧設定回路11のみでは、冗長なビットに対応する余分な回路が必要になる。また、この場合の最小電圧15Vの設定に際して、デジタル信号B1、B2、…、Bnが全ビット0ではなくある組み合わせになっているので、制御信号と設定電圧の対応が直観的に分り難い。また、設定電圧の最小値と電圧刻みを別々に決めることができないので、従来と同じ問題点もある。
【0108】
これに対して、図2に示した構成にすると、第1の電圧設定回路11を3ビットの制御信号で制御するだけでよく、全ビットとも0の時に設定電圧の最小電圧15Vに対応するので、制御信号と設定電圧との対応も分かり易い。
【0109】
以上をまとめると、下記の表1のように表すことができる。ある設定状態(A)に対して、設定状態(B)は、前記第2の電圧設定回路12の等価抵抗R20のみの変更で、設定電圧最小値をV2 に変更したものである。また、設定状態(C)は、前記第3の抵抗素子R8 のみの変更で、電圧刻みをΔV2 に変更したものである。設定最小電圧は、全ビット“L”にできるので、設定電圧値との対応がわかりやすい。
【0110】
【表1】
Figure 0004031142
【0111】
上記内部電圧生成回路の適用範囲は広く、電気的書き換え可能な不揮発性半導体メモリ(EEPROM)の多段階高電源発生回路、その他の半導体メモリにおいてワード線駆動用電源、ダミーワード線駆動用電源、内部電源、メモリセルデータセンス用参照電位発生回路などに適用可能である。
【0112】
以下、本発明に係る内部電圧生成回路をNAND型EEPROMのデータ書き込み時や消去時にワード線(制御ゲート)などに供給する高電圧発生回路(昇圧回路)の電圧リミッタ回路に適用して、所望レベルの刻みで多段階の高電圧を発生させる例を説明する。
【0113】
図4は、本発明が適用されたNANDセル型のEEPROMの全体構成を概略的に示すブロック図である。
【0114】
図4において、メモリセルアレイ61は、直列接続されたメモリセルの両端側にそれぞれ選択ゲートトランジスタが直列に接続されたNANDセルユニットが、全体として行列状に配列されて形成されている。
【0115】
このメモリセルアレイ61において、複数のワード線WLは、同一行のセルトランジスタの各制御ゲートに共通に1本ずつ接続され、各NANDセルの一端側ドレインに接続された選択ゲートトランジスタはビット線BLに、各NANDセルの他端側ソースに接続された選択ゲートトランジスタは共通ソース線に接続されている。
【0116】
ビット線制御回路62は、前記メモリセルアレイ61に対してカラム選択を行うカラム選択スイッチと、メモリセルアレイ61に対して書き込みデータのラッチ動作、ビット線電位を読むためのセンス動作、書き込み後のベリファイ読み出しのためのセンス動作、再書き込みデータのラッチ動作を行うセンスアンプ・書き込みデータラッチ回路と、各ビット線にそれぞれ所要の電圧を供給するビット線ドライバなどにより構成されており、データ入出力バッファ66に接続されている。
【0117】
カラムデコーダ63は、アドレスバッファ64からのカラムアドレス信号をデコードし、デコード出力により前記カラム選択スイッチを制御する。
【0118】
ロウデコーダ65は、前記アドレスバッファ64からのロウアドレス信号をデコードするデコーダ回路と、このデコーダ回路のデコード出力に応じてワード線WLおよび選択ゲート線にそれぞれ所要の所定の電圧を供給するワード線ドライバとから構成されている。
【0119】
前記ロウデコーダ65のワード線ドライバは、電源電位Vcc、接地電位(0V)のほか、後述する高電圧発生回路から書き込み用高電圧、書き込み用中間電圧、読み出し高電圧が供給される。また、前記ビット線制御回路62のビット線ドライバは、電源電位Vcc、接地電位(0V)などが供給される。
【0120】
基板電位制御回路67は、メモリセルアレイ61が形成されるp型基板(あるいはpウエル)の電位を制御するために設けられている。図4には明記していないが、消去時には消去用高電圧を発生してメモリセルアレイのウェルに消去電圧を印加してチャネル消去を行う。
【0121】
3個の高電圧発生回路681 〜683 は、それぞれ電源電位Vcc(例えば3.3V)を昇圧し、それぞれ対応して、メモリセルへのデータ書き込みを行う際に必要な書き込み用高電圧(〜20V)、書き込み用中間電圧(〜10V)、書き込み後のベリファイ読み出しを行う際に必要な読み出し用高電圧(〜4.5V)を発生するためにチップ内部に設けられたものである。
【0122】
制御回路60は、チップ内部の動作を制御するとともに外部とのインターフェースをとるために設けられており、NANDセルに対する消去/消去ベリファイ/書き込み/書き込みベリファイ/読み出し動作を制御するためのシーケンス制御手段(例えばプログラマブルロジックアレイ)が含まれている。
【0123】
なお、各高電圧発生回路681 〜683 はほぼ同様に構成されており、それぞれ電源電位Vccを昇圧して高電圧を得る昇圧回路と、所定周期で発振し、2相または4相のクロック信号φ、/φを前記昇圧回路に駆動信号として供給するリングオシレータなどの発振回路と、前記昇圧回路で得られた高電圧を所望の任意の一定値に制限する電圧リミッタ回路などにより構成されている。
【0124】
図5(a)は、図4中の各高電圧発生回路681 〜683 にそれぞれ用いられる発振回路の一例に係るリングオシレータを示している。
【0125】
このリングオシレータは、発振イネーブル信号OSCEおよびクロック信号φ出力のフィードバック信号が入力する二入力NAND回路91と複数段のインバータ回路92がリング状に接続され、各段間にはVssノードとの間にキャパシタ93が接続されてなり、最終段のインバータ回路から出力するクロック信号φがさらにインバータ回路により反転されてクロック信号/φとなる。
【0126】
図5(b)は、図4中の各高電圧発生回路681〜683にそれぞれ用いられる昇圧回路のうち代表的にVpp発生回路を示している。
【0127】
この昇圧回路は、多段縦続接続されたチャージポンプ回路(CP)を用いて構成されている。上記チャージポンプ回路の構成はよく知られている通り、ソース・ゲート相互が接続されたMOSトランジスタ81群と、このMOSトランジスタのドレインに一端が接続され、他端に前記発振回路からクロック信号φあるいはクロック信号/φが印加されるキャパシタ82群からなり、2相のクロック信号φ、/φが交互に活性化する状態では昇圧出力ノードに高電圧(本例ではVpp)が発生する。
【0128】
図6は、図4中の各高電圧発生回路681〜683のうち代表的にVpp発生回路およびVppリミッタ回路を示している。
【0129】
即ち、Vpp発生回路(CP回路)80の出力ノード10に負荷抵抗素子RL の一端が接続されており、オペアンプAの出力をインバータ回路95により反転した信号がリングオシレータ(ROSC)90の発振イネーブル信号OSCEとして供給されている。
【0130】
D/A変換回路の抵抗回路網として、相補的な4ビットのデジタル信号(B1 、/B1 )〜(B4 、/B4 )に対応して4組のスイッチ素子(M1 、M1')〜(M4 、M4')とR−2Rラダー抵抗回路が用いられている。
【0131】
いま、Vpp発生回路80の出力電圧が何らかの原因で低下すると、ノードN1の電位もVppに比例して低下するためオペアンプAの出力が“L”レベル、インバータ回路95の出力(発振イネーブル信号OSCE)が“H”レベルになり、リングオシレータ90は回路の特性で決まる周期で発振し、2相のクロック信号φ、/φが交互に活性化し、Vpp発生回路80が動作し、その出力電圧Vppが上昇する。
【0132】
一方、Vpp発生回路80の出力電圧が高くなり過ぎると、ノードN1の電位もVppに比例して高くなるためオペアンプAの出力が“H”レベル、インバータ回路95の出力(発振イネーブル信号OSCE)が“L”レベルになり、リングオシレータ90の動作が停止し、Vpp発生回路80の昇圧動作が停止する。これにより、Vpp発生回路80の出力ノードからVppリミッタ回路に流れる電流によりVpp発生回路80の出力ノードの電圧が徐々に低下する。
【0133】
以上のようなフィードバック動作を繰り返し、出力電圧はVppに安定する。
【0134】
この場合、4段のR−2Rラダー抵抗回路で使用している抵抗素子は、Rが5個、2Rが4個であり、RL 、R8 、R20を含めてもVppリミッタ回路全体で使用している抵抗素子は12個であり、図8のような従来の方式に比べて抵抗素子数を削減することができる。
【0135】
さらに、前記抵抗比RL /(R +R8 )及びRL /R20 を一定にした状態でRL 、R8 及びR20の値を変えることにより、Vppを変えずに抵抗分割回路に流れる電流量を任意に変えることができる。換言すれば、抵抗素子の値が何らかの原因でばらついても、RL とR8 とR20の3素子を調整するだけで所望の電流量を決定することができるので、Vpp発生回路の設計が容易となるばかりでなく、パターン面積も削減することができる。
【0136】
なお、本発明に係る内部電圧発生回路は、上記したような高電圧発生回路(昇圧回路)に限らず、各種の電源電位発生回路に適用することが可能であり、特に可変ステップ数が多い程効果が増大する。
【0137】
また、システム内に本発明の内部電圧発生回路と従来の内部電圧発生回路を併設するようにしてもよい。すなわち、ある一定の電位近傍を細かく設定したい部分には本発明の回路を用い、電位の設定をそれ程細かくする必要にない部分には従来の回路というようにその用途に応じて使い分ければよい。
【0138】
【発明の効果】
上述したように本発明によれば、第1の電圧設定回路として電流加算型のD/A変換回路を、第2の電圧設定回路として他の抵抗回路を並列に接続してリミッター回路に使用することによって、基準電位としてそれより高い電源電位との間で、比較的容易に多段階で電圧を出力させることができる。
【0139】
従来のトリミングにデコードを必要とする方式と比較して、デコード回路が不要になり、抵抗素子数が減り、また、D/A変換回路のみの方式と比較しても、デジタル入力のビット数を必要最小限に止めることができ、トリミング回路のパターン面積の占める割合の増大を抑制することができる。
【図面の簡単な説明】
【図1】本発明の内部電圧発生回路の第1の実施の形態を示す等価回路図。
【図2】図1の内部電圧発生回路の第1実施例を示す回路図。
【図3】図2中の第2の電圧設定回路の一例を示す回路図。
【図4】本発明が適用されるNANDセル型のEEPROMの全体構成を概略的に示すブロック図。
【図5】図4中の各高電圧発生回路にそれぞれ用いられる発振回路の一例に係るリングオシレータおよび各高電圧発生回路にそれぞれ用いられる昇圧回路のうち代表的にVpp発生回路を示す回路図。
【図6】図4中の各高電圧発生回路のうち代表的にVpp発生回路およびVppリミッタ回路を示す回路図。
【図7】従来の内部電圧発生回路を示す等価回路図。
【図8】図7中の抵抗分圧方式の電圧トリミング回路を示す回路図。
【図9】従来のNANDセル型フラッシュメモリに用いられる書き込み電圧(Vpgm )発生回路(昇圧回路)と電圧リミッタ回路の一例を示す回路図およびその動作例を示す波形図。
【符号の説明】
10…昇圧回路の出力ノード、
11…第1の電圧設定回路、
12…第2の電圧設定回路、
13…オペアンプ(演算増幅回路)、
14…切換回路網、
15…ラダー抵抗回路網、
16…基準電圧電圧発生回路、
17…昇圧制御回路、
70…昇圧回路、
RL …負荷抵抗素子、
N1 …第1のノード、
N2 …第2のノード、
R5 〜R7 …第1の抵抗素子、
R1 〜R4 …第2の抵抗素子、
R8 …第3の抵抗素子、
R10…第1の電圧設定回路の等価抵抗、
R20…第2の電圧設定回路の等価抵抗、
I10…第1の電圧設定回路に流れ込む電流、
I20…第2の電圧設定回路に流れ込む電流、
M1 〜Mn …第1のスイッチ素子、
M1'〜Mn'…第2のスイッチ素子。
B1 〜Bn …電圧設定用のデジタル入力信号。

Claims (2)

  1. 電圧発生回路と、
    前記電圧発生回路の出力ノードに一端側が接続された負荷抵抗素子と、
    前記負荷抵抗素子の他端側の第1のノードに接続され、デジタルデータに応じて等価抵抗が制御されることによって前記負荷抵抗素子側からの入力電流の大きさを制御する第1の電圧設定回路と、
    前記負荷抵抗素子の他端側の第1のノードに接続され、前記負荷抵抗素子側から所定の電流が流れる第2の電圧設定回路と、
    前記第1のノードの電位と所定の基準電位を比較して、前記第1のノードの電位を検出する電位比較回路と、
    前記電位比較回路の出力により実質的に前記電圧発生回路を制御することによって前記第1のノードの電位が前記基準電位に等しくなるように設定する昇圧制御回路と
    を具備し、
    前記第1の電圧設定回路は、前記等価抵抗が制御されることによって前記電圧発生回路の出力ノードの電圧を第1の電圧幅刻みで設定し、
    前記第2の電圧設定回路は、前記第1の電圧設定回路で設定される前記電圧発生回路の出力ノードの電圧の最小値を設定し、
    前記第1の電圧設定回路は、
    前記第1のノードに各一端が共通に接続され、それぞれデジタル入力の各ビット信号に対応して切換え制御される複数の第1のスイッチ素子と、
    前記基準電位と実質的に等電位の基準電圧が印加される第2のノードに各一端が共通に接続され、各他端は各対応する前記第1のスイッチ素子の各他端に共通にされ、前記デジタル入力の各ビット信号とは相補的な信号に応じて切換え制御される複数の第2のスイッチ素子と、
    前記複数の第1のスイッチ素子と複数の第2のスイッチ素子の各対応するスイッチ素子が共通接続された複数の接続ノードに対応して各一端が接続された複数の第1の抵抗素子および前記第1の抵抗素子の抵抗値の1/2の抵抗値をそれぞれ有するストリング接続された複数の第2の抵抗素子が梯子状に接続されてなるラダー型抵抗回路網と、
    前記ラダー型抵抗回路網のストリング接続された複数の第2の抵抗素子の一端と接地ノードとの間に接続された第3の抵抗素子と
    を具備する
    ことを特徴とする内部電圧生成回路。
  2. 発振イネーブル信号により発振動作の可否が制御され、発振動作状態では所定周期のクロック信号を発生する発振回路と、
    前記クロック信号が供給されることにより、電源電圧を昇圧して所定の高電圧を発生する昇圧回路と、
    前記昇圧回路の出力ノードに一端側が接続された負荷抵抗素子と、
    前記負荷抵抗素子の他端側の第1のノードに接続され、デジタルデータに応じて等価抵抗が制御されることによって前記負荷抵抗素子側からの入力電流の大きさを制御する第1の電圧設定回路と、
    前記負荷抵抗素子の他端側の第1のノードに接続され、前記負荷抵抗素子側から所定の電流が流れる第2の電圧設定回路と、
    前記第1のノードの電位と所定の基準電位を比較し、比較出力により前記発振回路の発振イネーブル信号の活性/非活性状態を制御する演算増幅回路と、
    前記昇降回路の出力電圧が用いられることによりデータの書き込みまたは消去が行われるメモリセルからなるメモリセルアレイと
    を具備し、
    前記第1の電圧設定回路は、前記等価抵抗が制御されることによって前記電圧発生回路 の出力ノードの電圧を第1の電圧幅刻みで設定し、
    前記第2の電圧設定回路は、前記第1の電圧設定回路で設定される前記電圧発生回路の出力ノードの電圧の最小値を設定し、
    前記第1の電圧設定回路は、
    前記第1のノードに各一端が共通に接続され、それぞれデジタル入力の各ビット信号に対応して切換え制御される複数の第1のスイッチ素子と、
    前記基準電位と実質的に等電位の基準電圧が印加される第2のノードに各一端が共通に接続され、各他端は各対応する前記第1のスイッチ素子の各他端に共通にされ、前記デジタル入力の各ビット信号とは相補的な信号に応じて切換え制御される複数の第2のスイッチ素子と、
    前記複数の第1のスイッチ素子と複数の第2のスイッチ素子の各対応するスイッチ素子が共通接続された複数の接続ノードに対応して各一端が接続された複数の第1の抵抗素子および前記第1の抵抗素子の抵抗値の1/2の抵抗値をそれぞれ有するストリング接続された複数の第2の抵抗素子が梯子状に接続されてなるラダー型抵抗回路網と、
    前記ラダー型抵抗回路網のストリング接続された複数の第2の抵抗素子の一端と接地ノードとの間に接続された第3の抵抗素子と
    を具備する
    ことを特徴とする半導体メモリ
JP10085599A 1998-04-09 1999-04-08 内部電圧生成回路および半導体メモリ Expired - Fee Related JP4031142B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10085599A JP4031142B2 (ja) 1998-04-09 1999-04-08 内部電圧生成回路および半導体メモリ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-97410 1998-04-09
JP9741098 1998-04-09
JP10085599A JP4031142B2 (ja) 1998-04-09 1999-04-08 内部電圧生成回路および半導体メモリ

Publications (2)

Publication Number Publication Date
JPH11353889A JPH11353889A (ja) 1999-12-24
JP4031142B2 true JP4031142B2 (ja) 2008-01-09

Family

ID=26438583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10085599A Expired - Fee Related JP4031142B2 (ja) 1998-04-09 1999-04-08 内部電圧生成回路および半導体メモリ

Country Status (1)

Country Link
JP (1) JP4031142B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100410987B1 (ko) * 2001-11-02 2003-12-18 삼성전자주식회사 내부 전원전압 발생회로
JP4168637B2 (ja) * 2002-02-13 2008-10-22 セイコーエプソン株式会社 不揮発性半導体記憶装置
TWI283408B (en) * 2004-05-14 2007-07-01 Samsung Electronics Co Ltd Circuit and method for controlling boosting voltage
JP4925621B2 (ja) * 2005-08-03 2012-05-09 ルネサスエレクトロニクス株式会社 電源電位制御回路、半導体集積回路装置、フラッシュメモリ、及び電源電位の調整方法
US7477097B2 (en) * 2005-09-29 2009-01-13 Hynix Semiconductor Inc. Internal voltage generating circuit
JP4843472B2 (ja) 2006-03-13 2011-12-21 株式会社東芝 電圧発生回路
US7639540B2 (en) * 2007-02-16 2009-12-29 Mosaid Technologies Incorporated Non-volatile semiconductor memory having multiple external power supplies
JP5242730B2 (ja) * 2011-04-18 2013-07-24 株式会社東芝 半導体記憶装置
JP5857595B2 (ja) * 2011-09-30 2016-02-10 サンケン電気株式会社 ソフトスタート回路
CN105336369B (zh) * 2014-07-22 2019-09-10 硅存储技术公司 用于高速闪存存储器系统的位线调节器
CN114244082B (zh) * 2021-12-30 2024-04-09 合肥市芯海电子科技有限公司 一种驱动电路、芯片及电子设备

Also Published As

Publication number Publication date
JPH11353889A (ja) 1999-12-24

Similar Documents

Publication Publication Date Title
KR100292565B1 (ko) 내부 전압 발생 회로와 반도체 메모리
JP3497708B2 (ja) 半導体集積回路
JP3663039B2 (ja) 低い電源電圧での動作に適したメモリおよびそのためのセンスアンプ
US6600692B2 (en) Semiconductor device with a voltage regulator
JP2805210B2 (ja) 昇圧回路
US6172917B1 (en) Semiconductor memory device and regulator
US5969557A (en) Delay circuit, oscillation circuit and semiconductor memory device
TWI459387B (zh) 利用參考記憶體單元來讀取非揮發性記憶體之結構及其方法
JP4764414B2 (ja) 不揮発性半導体記憶装置及びその動作方法
US7272047B2 (en) Wordline voltage generating circuit including a voltage dividing circuit for reducing effects of parasitic capacitance
US7656225B2 (en) Voltage generation circuit and semiconductor memory device including the same
US20050127981A1 (en) Multi-level high voltage generator
JP4031142B2 (ja) 内部電圧生成回路および半導体メモリ
US20090097323A1 (en) Bitline current generator for a non-volatile memory array and a non-volatile memory array
JP2016173869A (ja) 半導体装置
TWI745254B (zh) 斷電檢測電路及半導體儲存裝置
KR102160353B1 (ko) 반도체 메모리 디바이스
US6625063B2 (en) Nonvolatile semiconductor memory device and programming method therefor
JP2003272396A (ja) 半導体装置
JP3827418B2 (ja) 不揮発性メモリのための制御ゲートドライバ回路およびこれを用いたメモリ
KR100553715B1 (ko) 멀티 레벨 고전압 레귤레이터
JPH0982095A (ja) 昇圧回路及びそれを用いた不揮発性半導体記憶装置
JP3541503B2 (ja) 半導体記憶装置
WO2022133777A1 (en) Voltage regulation for multiple voltage levels
JPH11260087A (ja) 多値レベルの不揮発性メモリデバイスにおける復号回路用高電圧駆動回路および不揮発性メモリの選択されたワ―ド線を駆動する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees