JP3994883B2 - 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体 - Google Patents

電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体 Download PDF

Info

Publication number
JP3994883B2
JP3994883B2 JP2003026121A JP2003026121A JP3994883B2 JP 3994883 B2 JP3994883 B2 JP 3994883B2 JP 2003026121 A JP2003026121 A JP 2003026121A JP 2003026121 A JP2003026121 A JP 2003026121A JP 3994883 B2 JP3994883 B2 JP 3994883B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
reactor
reference value
vibration frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003026121A
Other languages
English (en)
Other versions
JP2004242375A (ja
Inventor
堅滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003026121A priority Critical patent/JP3994883B2/ja
Publication of JP2004242375A publication Critical patent/JP2004242375A/ja
Application granted granted Critical
Publication of JP3994883B2 publication Critical patent/JP3994883B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、直流電源からの直流電圧を指令電圧に変換する電圧変換装置に関し、特に、回路素子の故障判定が可能な電圧変換装置、および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体に関するものである。
【0002】
【従来の技術】
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
【0003】
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
【0004】
このようなハイブリッド自動車または電気自動車においては、直流電源からの直流電圧を昇圧コンバータによって昇圧し、その昇圧した直流電圧がモータを駆動するインバータに供給されることも提案されている。
【0005】
すなわち、ハイブリッド自動車または電気自動車は、図24に示すモータ駆動装置を搭載している。図24を参照して、モータ駆動装置300は、直流電源Bと、システムリレーSR1,SR2と、コンデンサC1,C2と、双方向コンバータ310と、電圧センサー320と、インバータ330とを備える。
【0006】
直流電源Bは、直流電圧を出力する。システムリレーSR1,SR2は、制御装置(図示せず)によってオンされると、直流電源Bからの直流電圧をコンデンサC1に供給する。コンデンサC1は、直流電源BからシステムリレーSR1,SR2を介して供給された直流電圧を平滑化し、その平滑化した直流電圧を双方向コンバータ310へ供給する。
【0007】
双方向コンバータ310は、リアクトル311と、NPNトランジスタ312,313と、ダイオード314,315とを含む。リアクトル311の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタ312とNPNトランジスタ313との中間点、すなわち、NPNトランジスタ312のエミッタとNPNトランジスタ313のコレクタとの間に接続される。NPNトランジスタ312,313は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタ312のコレクタは電源ラインに接続され、NPNトランジスタ313のエミッタはアースラインに接続される。また、各NPNトランジスタ312,313のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオード314,315が配置されている。
【0008】
双方向コンバータ310は、制御装置(図示せず)によってNPNトランジスタ312,313がオン/オフされ、コンデンサC1から供給された直流電圧を昇圧して出力電圧をコンデンサC2に供給する。また、双方向コンバータ310は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1によって発電され、インバータ330によって変換された直流電圧を降圧して直流電源Bに供給する。
【0009】
コンデンサC2は、双方向コンバータ310から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330へ供給する。電圧センサー320は、コンデンサC2の両側の電圧、すなわち、双方向コンバータ310の出力電圧Vmを検出する。
【0010】
インバータ330は、コンデンサC2から直流電圧が供給されると制御装置(図示せず)からの制御に基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値によって指定されたトルクを発生するように駆動される。また、インバータ330は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置からの制御に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して双方向コンバータ310へ供給する。
【0011】
このように、双方向コンバータ310は、直流電源Bからの直流電圧を昇圧してインバータ330に供給するとともに、交流モータM1で発電され、インバータ330によって変換された直流電圧を降圧して直流電源Bを充電する。
【0012】
そして、特開平2−308935号公報には、直流電圧を昇圧する昇圧チョッパの異常を判定する方法が開示されている。すなわち、特開平2−308935号公報には、昇圧された電圧が異常値の範囲にある場合に昇圧チョッパが異常であると判定する異常判定方法が開示されている。
【0013】
【特許文献1】
特開平2−308935号公報
【0014】
【発明が解決しようとする課題】
しかし、特開平2−308935号公報に開示された方法では、昇圧チョッパのどの回路素子が故障しているかを具体的に判定できないという問題がある。
【0015】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、回路素子の故障を判定可能な電圧変換装置を提供することである。
【0016】
また、この発明の別の目的は、電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体を提供することである。
【0017】
【課題を解決するための手段および発明の効果】
この発明によれば、電圧変換装置は、コンデンサと、スイッチング回路と、直流電源と、リアクトルと、制御手段と、故障判定手段とを備える。スイッチング回路は、上アームおよび下アーム用の第1および第2のスイッチング素子を含み、コンデンサに並列に接続される。リアクトルは、一方端が直流電源に接続され、他方端が第1のスイッチング素子と第2のスイッチング素子との間に接続される。制御手段は、コンデンサとリアクトルとを用いて共振回路を構成するように制御する。故障判定手段は、共振回路が構成されたときのコンデンサから出力される第1の電圧、リアクトルに流れるリアクトル電流および直流電源から出力される第2の電圧のいずれかに基づいて、コンデンサおよび/またはリアクトルの故障を判定する。
【0018】
好ましくは、故障判定手段は、第1の電圧、リアクトル電流および第2の電圧のいずれかの振動周波数を検出し、その検出した振動周波数を基準値と比較することによりコンデンサおよび/またはリアクトルの故障を判定する。
【0019】
好ましくは、故障判定手段は、第1ピークまでの時間を検出することにより振動周波数を検出する。
【0020】
好ましくは、故障判定手段は、第1の電圧、リアクトル電流および第2の電圧のいずれかのピーク値をさらに検出し、その検出したピーク値の基準値との比較結果と、振動周波数の基準値との比較結果との組合わせに基づいて、コンデンサおよびリアクトルのいずれかを故障と判定する。
【0021】
好ましくは、故障判定手段は、振動周波数が基準値よりも低く、かつ、ピーク値が基準値よりも小さいとき、リアクトルが故障であると判定する。
【0022】
好ましくは、故障判定手段は、振動周波数が基準値よりも低く、かつ、ピーク値が基準値よりも大きいとき、コンデンサが故障であると判定する。
【0023】
好ましくは、故障判定手段は、振動周波数が基準値よりも高く、かつ、ピーク値が基準値よりも小さいとき、コンデンサが故障であると判定する。
【0024】
好ましくは、故障判定手段は、振動周波数が基準値よりも高く、かつ、ピーク値が基準値よりも大きいとき、リアクトルが故障であると判定する。
【0025】
好ましくは、制御手段は、コンデンサ側の電圧を直流電源側の電圧よりも高く設定し、第1のスイッチング素子をオンすることにより共振回路を構成する。
【0026】
好ましくは、電圧変換装置は、配線をさらに備える。配線は、一方端がリアクトルの他方端に接続される。そして、制御手段は、コンデンサ側の電圧を直流電源側の電圧よりも高く設定し、配線の他方端をコンデンサの正電極に接続することにより共振回路を構成する。
【0027】
好ましくは、電圧変換装置は、付加電源をさらに備える。付加電源は、コンデンサに並列に接続される。そして、制御手段は、付加電源を停止し、第1のスイッチング素子をオンすることにより共振回路を構成する。
【0028】
また、この発明によれば、直流電源から出力された直流電圧を出力電圧に変換してコンデンサに供給する電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体は、コンデンサと電圧変換装置に含まれるリアクトルとを用いて共振回路を構成する第1のステップと、共振回路が構成されたときのコンデンサから出力される第1の電圧、リアクトルに流れるリアクトル電流および直流電源から出力される第2の電圧のいずれかを検出して記憶する第2のステップと、第2のステップにおいて記憶された第1の電圧、リアクトル電流および第2の電圧のいずれかに基づいてコンデンサおよび/またはリアクトルの故障を判定する第3のステップとをコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体である。
【0029】
好ましくは、第3のステップは、第1の電圧、リアクトル電流および第2の電圧のいずれかの振動周波数を検出する第1のサブステップと、検出された振動周波数を基準値と比較する第2のサブステップと、振動周波数が基準値と異なるとき、コンデンサおよびリアクトルの少なくとも一方が故障であると判定する第3のサブステップとを含む。
【0030】
好ましくは、第3のステップは、第1の電圧、リアクトル電流および第2の電圧のいずれかの振動周波数を検出する第1のサブステップと、検出された振動周波数を基準値と比較する第2のサブステップと、第2のステップにおいて記憶された第1の電圧、リアクトル電流および第2の電圧のいずれかのピーク値を検出する第3のサブステップと、検出されたピーク値を基準値と比較する第4のサブステップと、振動周波数の基準値との比較結果と、ピーク値の基準値との比較結果とに基づいてコンデンサおよびリアクトルのいずれか一方が故障であると判定する第5のサブステップとを含む。
【0031】
好ましくは、第5のサブステップは、振動周波数が基準値よりも低く、かつ、ピーク値が基準値よりも小さいとき、リアクトルが故障であると判定する。
【0032】
好ましくは、第5のサブステップは、振動周波数が基準値よりも低く、かつ、ピーク値が基準値よりも大きいとき、コンデンサが故障であると判定する。
【0033】
好ましくは、第5のサブステップは、振動周波数が基準値よりも高く、かつ、ピーク値が基準値よりも小さいとき、コンデンサが故障であると判定する。
【0034】
好ましくは、第5のサブステップは、振動周波数が基準値よりも高く、かつ、ピーク値が基準値よりも大きいとき、リアクトルが故障であると判定する。
【0035】
好ましくは、第1のサブステップは、第1ピークまでの時間を検出することにより振動周波数を検出する。
【0036】
この発明においては、リアクトルおよびコンデンサにより共振回路が構成されたときのコンデンサの電圧、直流電源の電圧およびリアクトル電流のいずれかが検出され、その検出された電圧またはリアクトル電流に基づいてリアクトルおよび/またはコンデンサの故障が判定される。
【0037】
より具体的には、検出されたコンデンサの電圧、直流電源の電圧およびリアクトル電流のいずれかの振動周波数に基づいてリアクトルおよび/またはコンデンサの故障が判定される。
【0038】
また、検出されたコンデンサの電圧、直流電源の電圧およびリアクトル電流のいずれかの振動周波数およびピーク値に基づいてリアクトルおよびコンデンサのいずれかが故障していると判定される。
【0039】
したがって、この発明によれば、回路素子の故障を判定できる。
【0040】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0041】
[実施の形態1]
図1を参照して、実施の形態1による電圧変換装置を備えたモータ駆動装置100は、直流電源Bと、電圧センサー10,13と、システムリレーSR1,SR2と、コンデンサC1,C2と、昇圧コンバータ12と、インバータ14と、電圧記憶器20と、電流センサー24と、制御装置30とを備える。交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。あるいは、交流モータM1は、エンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなモータとして用いられてもよい。
【0042】
昇圧コンバータ12は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2とを含む。リアクトルL1の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。NPNトランジスタQ1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタQ1のコレクタは電源ラインに接続され、NPNトランジスタQ2のエミッタはアースラインに接続される。また、各NPNトランジスタQ1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2が配置されている。
【0043】
インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16およびW相アーム17は、電源ラインとアースラインとの間に並列に設けられる。
【0044】
U相アーム15は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
【0045】
インバータ14の各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
【0046】
直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。より具体的には、システムリレーSR1,SR2は、制御装置30からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置30からのL(論理ロー)レベルの信号SEによりオフされる。コンデンサC1は、直流電源Bから供給された直流電圧Vbを平滑化し、その平滑化した直流電圧を昇圧コンバータ12へ供給する。
【0047】
昇圧コンバータ12は、コンデンサC1から供給された直流電圧を昇圧してコンデンサC2へ供給する。より具体的には、昇圧コンバータ12は、制御装置30から信号PWMUを受けると、信号PWMUによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してコンデンサC2に供給する。この場合、NPNトランジスタQ1は、信号PWMUによってオフされている。
【0048】
また、昇圧コンバータ12は、制御装置30からの信号PWMU_Lに応じて、後述する故障判定を行なうためにコンデンサC1から供給された直流電圧を電圧Vb+αに昇圧する。このαは、NPNトランジスタQ2をオフし、NPNトランジスタQ1をオン状態にした場合にNPNトランジスタQ1およびリアクトルL1に過電流が流れない値に設定される。
【0049】
さらに、昇圧コンバータ12は、制御装置30からの信号PWMDに応じて、コンデンサC2を介してインバータ14から供給された直流電圧を降圧して直流電源Bを充電する。
【0050】
さらに、昇圧コンバータ12が制御装置30から信号PWMD_Lを受けると、NPNトランジスタQ1はオンされ、NPNトランジスタQ2はオフされる。
【0051】
コンデンサC2は、昇圧コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。電圧センサー13は、コンデンサC2の両端の電圧、すなわち、昇圧コンバータ12の出力電圧Vm(インバータ14への入力電圧に相当する。以下同じ。)を検出し、その検出した出力電圧Vmを電圧記憶器20および制御装置30へ出力する。
【0052】
インバータ14は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMIに基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生するように駆動される。また、インバータ14は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMCに基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。
【0053】
なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0054】
電圧記憶器20は、電圧センサー13からの電圧Vmを記憶し、制御装置30からのアクセスに応じて、記憶した電圧Vmを制御装置30へ出力する。
【0055】
電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTを制御装置30へ出力する。
【0056】
制御装置30は、外部に設けられたECU(Electrical Control Unit)からのトルク指令値TRおよびモータ回転数MRN、電圧センサー10からの直流電圧Vb、電圧センサー13からの出力電圧Vmおよび電流センサー24からのモータ電流MCRTを受ける。そして、制御装置30は、トルク指令値TR、モータ回転数MRN、直流電圧Vb、出力電圧Vmおよびモータ電流MCRTに基づいて、後述する方法により昇圧コンバータ12を駆動するための信号PWMUとインバータ14を駆動するための信号PWMIとを生成し、その生成した信号PWMUおよび信号PWMIをそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0057】
信号PWMUは、昇圧コンバータ12がコンデンサC1からの直流電圧を出力電圧Vmに変換する場合に昇圧コンバータ12を駆動するための信号である。そして、制御装置30は、昇圧コンバータ12が直流電圧を出力電圧Vmに変換する場合に、出力電圧Vmをフィードバック制御し、出力電圧Vmが指令された電圧指令Vdc_comになるように昇圧コンバータ12を駆動するための信号PWMUを生成する。
【0058】
また、制御装置30は、イグニッションキーがオフされたことを示す信号IGOFFを外部ECUから受けると、直流電圧Vbを電圧Vb+αに昇圧するための信号PWMU_Lとインバータ14を停止するための信号STPとを生成し、その生成した信号PWMU_Lおよび信号STPをそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0059】
なお、信号PWMU,PWMU_Lの生成方法については後述する。
さらに、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するための信号PWMCを生成してインバータ14へ出力する。この場合、インバータ14のNPNトランジスタQ3〜Q8は信号PWMCによってスイッチング制御される。これにより、インバータ14は、交流モータM1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。
【0060】
さらに、制御装置30は、回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ12へ出力する。これにより、交流モータM1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
【0061】
さらに、制御装置30は、外部ECUから信号IGOFFを受けると、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達したとき信号PWMD_Lを生成して昇圧コンバータ12へ出力する。そして、制御装置30は、信号PWMD_Lを昇圧コンバータ12へ出力した後、一定時間が経過すると、電圧記憶器20へアクセスし、電圧記憶器20に記憶された電圧Vm(Vm_emg)を読み出す。その後、制御装置30は、読み出した電圧Vm_emgの振動周波数f1およびピーク値P1を検出し、その検出した振動周波数f1およびピーク値P1に基づいて、後述する方法によってリアクトルL1およびコンデンサC2のいずれが故障しているかを判定し、その判定結果RET1〜4を外部に設けられた表示器(図示せず)へ出力する。
【0062】
さらに、制御装置30は、システムリレーSR1,SR2をオン/オフするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0063】
図2は、制御装置30の機能ブロック図である。図2を参照して、制御装置30は、モータトルク制御手段301と、電圧変換制御手段302と、故障処理手段303とを含む。モータトルク制御手段301は、トルク指令値TR、直流電圧Vb、モータ電流MCRT、モータ回転数MRNおよび昇圧コンバータ12の出力電圧Vmに基づいて、交流モータM1の駆動時、後述する方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUと、インバータ14のNPNトランジスタQ3〜Q8をオン/オフするための信号PWMIとを生成する。そして、モータトルク制御手段301は、信号PWMUを昇圧コンバータ12へ出力し、信号PWMIをインバータ14へ出力する。
【0064】
また、モータトルク制御手段301は、外部ECUから信号IGOFFを受けると信号PWMU_Lおよび信号STPを生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0065】
電圧変換制御手段302は、回生制動時、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWMCを生成してインバータ14へ出力する。
【0066】
また、電圧変換制御手段302は、回生制動時、信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWMDを生成して昇圧コンバータ12へ出力する。このように、昇圧コンバータ12は、直流電圧を降圧するための信号PWMDにより電圧を降下させることもできるので、双方向コンバータの機能を有するものである。
【0067】
さらに、電圧変換制御手段302は、外部ECUから信号IGOFFを受けると、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達したとき、信号PWMD_Lを生成して昇圧コンバータ12および故障処理手段303へ出力する。
【0068】
故障処理手段303は、電圧変換制御手段302から信号PWMU_Lを受けると、信号PWMU_Lを受信してから一定時間が経過したか否かを判定し、一定時間が経過しているとき、電圧記憶器20へアクセスして電圧Vm_emgを読み出す。そして、故障処理手段303は、読み出した電圧Vm_emgの振動周波数f1およびピーク値P1を検出し、その検出した振動周波数f1およびピーク値P1に基づいて、リアクトルL1およびコンデンサC2のいずれが故障しているかを判定する。リアクトルL1およびコンデンサC2のいずれが故障しているかの具体的な判定方法については後述する。
【0069】
そして、故障処理手段303は、判定結果RET1〜4を外部に設けられた表示器(図示せず)へ出力する。
【0070】
図3は、モータトルク制御手段301の機能ブロック図である。図3を参照して、モータトルク制御手段301は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42と、インバータ入力電圧指令演算部50と、コンバータ用デューティー比演算部52と、コンバータ用PWM信号変換部54とを含む。
【0071】
モータ制御用相電圧演算部40は、昇圧コンバータ12の出力電圧Vm、すなわち、インバータ14への入力電圧を電圧センサー13から受け、交流モータM1の各相に流れるモータ電流MCRTを電流センサー24から受け、トルク指令値TRを外部ECUから受ける。そして、モータ制御用相電圧演算部40は、これらの入力される信号に基づいて、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0072】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ14の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMIを生成し、その生成した信号PWMIをインバータ14の各NPNトランジスタQ3〜Q8へ出力する。
【0073】
これにより、インバータ14の各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1が指令されたトルクを出力するように交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TRに応じたモータトルクが出力される。
【0074】
また、インバータ用PWM信号変換部42は、外部ECUから信号IGOFFを受けると、モータ制御用相電圧演算部40から受けた計算結果に拘わらず、インバータ14のNPNトランジスタQ3〜Q8をオフするための信号STPを生成してインバータ14へ出力する。
【0075】
一方、インバータ入力電圧指令演算部50は、トルク指令値TRおよびモータ回転数MRNに基づいてインバータ入力電圧の最適値(目標値)、すなわち、電圧指令Vdc_comを演算し、その演算した電圧指令Vdc_comをコンバータ用デューティー比演算部52へ出力する。
【0076】
また、インバータ入力電圧指令演算部50は、外部ECUから信号IGOFFを受けると、外部ECUからのトルク指令値TRに拘わらず、電圧指令Vdc_com_Lを生成してコンバータ用デューティー比演算部52へ出力する。
【0077】
なお、電圧指令Vdc_com_Lは、昇圧コンバータ12の出力電圧Vmを電圧Vb+αに設定するための電圧指令である。
【0078】
コンバータ用デューティー比演算部52は、電圧センサー10からの直流電圧(「バッテリ電圧」とも言う。)Vbに基づいて、電圧センサー13からの出力電圧Vmをインバータ入力電圧指令演算部50からの電圧指令Vdc_comまたはVdc_com_Lに設定するためのデューティー比を演算し、その演算したデューティー比をコンバータ用PWM信号変換部54へ出力する。
【0079】
コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比に基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMU,PWMU_Lを生成する。そして、コンバータ用PWM信号変換部54は、生成した信号PWMU,PWMU_Lを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
【0080】
なお、昇圧コンバータ12の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。
【0081】
図4は、図2に示す故障処理手段303の機能ブロック図を示す。図4を参照して、故障処理手段303は、制御部3031と、検出部3032と、判定部3033とを含む。
【0082】
制御部3031は、電圧変換制御手段302から信号PWMD_Lを受けると、信号PWMD_Lを受信してから一定時間が経過したか否かを判定し、一定時間が経過しているとき、電圧記憶器20へアクセスして電圧Vm_emgを読み出す。そして、制御部3031は、読み出した電圧Vm_emgを検出部3032へ出力する。また、制御部3031は、判定部3033から判定結果RET1〜4を受けると、判定結果RET1〜4を外部に設けられた表示器(図示せず)へ出力する。
【0083】
図5を参照して、検出部3032における電圧Vm_emgの振動周波数f1およびピーク値P1の検出方法について説明する。制御部3031は、上述したように、電圧変換制御手段302から信号PWMD_Lを受信した後、一定時間経過後に電圧Vm_emgを読み出す。そして、信号PWMD_Lは、インバータ14が信号STPによって停止され、コンデンサC2の両端の電圧Vmが電圧Vb+αに到達した後に昇圧コンバータ12へ出力される。したがって、信号PWMD_Lに応じて、昇圧コンバータ12のNPNトランジスタQ1がオンされ、NPNトランジスタQ2がオフされたとき、コンデンサC2の両端の電圧Vmは電圧Vb+αになっている。そうすると、リアクトルL1、NPNトランジスタQ1およびコンデンサC2は、コンデンサC2側からリアクトルL1側に向かって共振電流が流れる共振回路を構成する。
【0084】
その結果、電圧記憶部20は、電圧センサー13から周期的に振動する電圧Vm_emgを受け、その受けた電圧Vm_emgを記憶するので、制御部3031が電圧記憶器20から読み出した電圧Vm_emgは、曲線k1によって示される波形を有する。タイミングt1でNPNトランジスタQ1がオンされると、コンデンサC2に蓄積された電荷はNPNトランジスタQ1を介してリアクトルL1側へ流れるが、リアクトルL1およびコンデンサC2によって共振回路が構成されているため、タイミングt1後、共振電流がリアクトルL1とコンデンサC2との間で流れる。その結果、コンデンサC2の両端の電圧Vmは周期的に振動する波形となる。
【0085】
検出部3032は、制御部3031から電圧Vm_emgを受取ると、NPNトランジスタQ1がオンされた時間から、電圧Vm_emgの最初のピークPAまでの時間、すなわち、タイミングt1からタイミングt2までの時間ΔT1を内蔵したタイマーにより計測し、その計測した時間ΔT1に基づいて電圧Vm_emgの振動周波数f1を演算する。すなわち、検出部3032は、計測した時間ΔT1を用いて1/(4×ΔT1)を演算することにより振動周波数f1を求める。また、検出部3032は、電圧Vm_emgに基づいて最初のピークPAのピーク値P1を検出する。そして、検出部3032は、振動周波数f1およびピーク値P1を判定部3033へ出力する。
【0086】
なお、NPNトランジスタQ1がオンされた時間から電圧Vm_emgの最初のピークPAまでの時間に基づいて、振動周波数f1を演算することにしたのは、最初のピークPAは、他のピークに比べて現れ易く、振動周波数をより正確に求めることができるからである。
【0087】
しかし、この発明においては、電圧Vm_emgの振動周波数f1は、NPNトランジスタQ1がオンされた時間から電圧Vm_emgの最初のピークPAまでの時間に基づいて求める方法に限らず、どのような方法によって求めてもよい。
【0088】
再び、図4を参照して、判定部3033は、検出部3032から振動周波数f1およびピーク値P1を受けると、振動周波数f1を基準値fs1と比較し、振動周波数f1が基準値fs1以内か否かを判定する。そして、判定部3033は、振動周波数f1が基準値fs1以内のとき、リアクトルL1およびコンデンサC2を正常と判定し、振動周波数f1が基準値fs1以内でないときリアクトルL1およびコンデンサC2のいずれか一方が故障していると判定する。
【0089】
判定部3033は、リアクトルL1およびコンデンサC2のいずれか一方が故障していると判定したとき、すなわち、振動周波数f1が基準値fs1以内でないとき、さらに、ピーク値P1を基準値Ps1と比較し、ピーク値P1が基準値Ps1よりも大きいか小さいかを判定する。
【0090】
振動周波数f1が基準値fs1以内でないときとしては、振動周波数f1が基準値fs1よりも高い場合(f1>fs1)と、振動周波数f1が基準値fs1よりも低い場合(f1<fs1)とがある。したがって、判定部3033は、振動周波数f1の基準値fs1との比較結果と、ピーク値P1の基準値Ps1との比較結果とに基づいて表1に示すようにリアクトルL1およびコンデンサC2のいずれかが故障していると判定する。
【0091】
【表1】
Figure 0003994883
すなわち、判定部3033は、振動周波数f1が基準値fs1よりも高く(f1>fs1)、かつ、ピーク値P1が基準値Ps1よりも大きい(P1>Ps1)と判定したとき、インダクタンスLが小さくなってリアクトルL1が故障していると判定する。
【0092】
振動周波数f1が基準値fs1よりも高いことはリアクトルL1のインダクタンスLおよびコンデンサC2の容量Cのいずれかが小さくなっていることを意味するが、この場合、ピーク値P1は基準値Ps1よりも大きいので、コンデンサC2の容量Cは正常であり、コンデンサC2に蓄積された電荷が、インダクタンスLが小さくなったリアクトルL1を介して流れた結果、振動周波数f1が基準値fs1よりも高く、かつ、ピーク値P1が基準値Ps1よりも大きくなったと考えられる。したがって、インダクタンスLが小さくなってリアクトルL1が故障していると判定することにしたものである。
【0093】
判定部3033は、振動周波数f1が基準値fs1よりも高く(f1>fs1)、かつ、ピーク値P1が基準値Ps1よりも小さい(P1<Ps1)と判定したとき、容量Cが小さくなってコンデンサC2が故障していると判定する。
【0094】
この場合、ピーク値P1が基準値Ps1よりも小さいので、コンデンサC2の容量Cが小さくなり、コンデンサC2に蓄積された電荷が正常時よりも少なくなったと考えられる。コンデンサC2に蓄積された電荷が少なくなると、NPNトランジスタQ1がオンされた時間から最初のピークPAに達するまでの時間が短くなり、かつ、ピーク値P1も小さくなる。したがって、容量Cが小さくなってコンデンサC2が故障していると判定することにしたものである。
【0095】
判定部3033は、振動周波数f1が基準値fs1よりも低く(f1<fs1)、かつ、ピーク値P1が基準値Ps1よりも大きい(P1>Ps1)と判定したとき、容量Cが大きくなってコンデンサC2が故障していると判定する。
【0096】
振動周波数f1が基準値fs1よりも低いことはリアクトルL1のインダクタンスLおよびコンデンサC2の容量Cのいずれかが大きくなっていることを意味するが、この場合、ピーク値P1は基準値Ps1よりも大きいので、リアクトルL1は正常であり、コンデンサC2の容量Cが大きくなり、コンデンサC2に蓄積された電荷が増加したと考えられる。コンデンサC2に蓄積された電荷が増加すると、NPNトランジスタQ1がオンされた時間から最初のピークPAに到達するまでの時間が正常時に比べ長くなり、ピーク値P1が大きくなる。その結果、振動周波数f1が基準値fs1よりも低くなり、ピーク値P1が基準値Ps1よりも大きくなる。したがって、容量Cが大きくなってコンデンサC2が故障していると判定することにしたものである。
【0097】
判定部3033は、振動周波数f1が基準値fs1よりも低く(f1<fs1)、かつ、ピーク値P1が基準値Ps1よりも小さい(P1<Ps1)と判定したとき、インダクタンスLが大きくなってリアクトルL1が故障していると判定する。
【0098】
この場合、ピーク値P1が基準値Ps1よりも小さいので、コンデンサC2は正常であり、リアクトルL1のインダクタンスLが大きくなったと考えられる。インダクタンスLが大きくなるとリアクトルL1に電流が流れにくくなる。その結果、NPNトランジスタQ1がオンされてから最初のピークPAに到達するまでの時間が長くなり、ピーク値P1は小さくなる。したがって、インダクタンスLが大きくなってリアクトルL1が故障していると判定することにしたものである。
【0099】
このように、判定部3033は、振動周波数f1の基準値fs1との比較結果と、ピーク値P1の基準値Ps1との比較結果とに基づいて、リアクトルL1およびコンデンサC2のいずれかが故障していると判定する。
【0100】
そして、判定部3033は、判定結果RET1〜4を制御部3031へ出力する。この場合、判定結果RET1は、リアクトルL1のインダクタンスLが小さくなったことによりリアクトルL1が故障していると判定したことを示し、判定結果RET2は、容量Cが小さくなったことによりコンデンサC2が故障していると判定したことを示し、判定結果RET3は、容量Cが大きくなったことによりコンデンサC2が故障していると判定したことを示し、判定結果RET4は、インダクタンスLが大きくなったことによりリアクトルL1が故障していると判定したことを示す。
【0101】
図6を参照して、実施の形態1におけるリアクトルL1およびコンデンサC2の故障判定の動作について説明する。一連の動作が開始されると、制御装置30のモータトルク制御手段301は、外部ECUからの信号IGOFFに応じて信号PWMU_Lおよび信号STPを生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力する。インバータ14は、制御装置30からの信号STPに応じて停止される。また、昇圧コンバータ12は、制御装置30からの信号PWMU_Lに応じて、出力電圧Vmが電圧Vb+αになるようにコンデンサC1からの直流電圧を昇圧する(ステップS1)。
【0102】
電圧変換制御手段302は、外部ECUから信号IGOFFを受けた後、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達すると信号PWMD_Lを生成して昇圧コンバータ12および故障処理手段303へ出力する。そうすると、信号PWMD_Lに応じて、昇圧コンバータ12のNPNトランジスタQ1はオンされ、NPNトランジスタQ2はオフされる(ステップS2)。これにより、リアクトルL1、NPNトランジスタQ1およびコンデンサC2は共振回路を構成する。
【0103】
電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを電圧記憶器20および制御装置30へ出力する。そして、電圧記憶器20は、電圧センサー13からの電圧Vmを記憶する。故障処理手段303は、電圧変換制御手段302から信号PWMD_Lを受けた後、一定時間が経過したか否かを判定する(ステップS4)。一定時間が経過していないとき、ステップS3,S4が繰返し実行される。
【0104】
ステップS4において、一定時間が経過していると判定されると、故障処理手段303は、電圧記憶器20へアクセスし、記憶された電圧Vm(Vm_emg)を読み出す。そして、故障処理手段303は、読み出した電圧Vm_emgの振動周波数f1を上述した方法によって演算し(ステップS5)、振動周波数f1が基準値fs1以内か否かを判定する(ステップS6)。
【0105】
振動周波数f1が基準値fs1以内であるとき、故障処理手段303は、リアクトルL1およびコンデンサC2は正常であると判定し(ステップS7)、振動周波数f1が基準値fs1以内でないとき、故障処理手段303は、リアクトルL1およびコンデンサC2のいずれかが故障していると判定する(ステップS8)。
【0106】
故障処理手段303は、リアクトルL1およびコンデンサC2のいずれかが故障していると判定したとき、電圧Vm_emgの最初のピーク値P1を検出する(ステップS9)。そして、故障処理手段303は、振動周波数f1が基準値fs1よりも低いか高いかを判定し(ステップS10)、振動周波数f1が基準値fs1よりも高いとき、ピーク値P1が基準値Ps1よりも大きいか小さいかをさらに判定する(ステップS11)。
【0107】
故障処理手段303は、ピーク値P1が基準値Ps1よりも大きいときリアクトルL1が故障していると判定し(ステップS12)、ピーク値P1が基準値Ps1よりも小さいときコンデンサC2が故障していると判定する(ステップS13)。
【0108】
一方、ステップS10において、振動周波数f1が基準値fs1よりも低いと判定されたとき、故障処理手段303は、さらに、ピーク値P1が基準値Ps1よりも大きいか小さいかを判定する(ステップS14)。そして、ピーク値P1が基準値Ps1よりも大きいとき、故障処理手段303は、コンデンサC2が故障していると判定し(ステップS15)、ピーク値P1が基準値Ps1よりも小さいとき、故障処理手段303は、リアクトルL1が故障していると判定する(ステップS16)。
【0109】
そして、ステップS12,S13,S15,S16のいずれかの後、故障判定の動作が終了する。
【0110】
このように、この発明においては、外部ECUからモータ駆動装置100に信号IGOFFが入力されると、制御装置30は、リアクトルL1、NPNトランジスタQ1およびコンデンサC2により共振回路を構成する。そして、電圧センサー13は、コンデンサC2に蓄積された電荷が共振回路を流れるときのコンデンサC2の両端の電圧Vmを検出し、故障処理手段303は、検出された電圧Vmの振動周波数f1に基づいて、リアクトルL1およびコンデンサC2のいずれかが故障していると判定する。また、故障処理手段303は、振動周波数f1と基準値fs1との比較結果と、電圧Vmの最初のピーク値P1の基準値Ps1との比較結果とに基づいてリアクトルL1およびコンデンサC2のいずれが故障しているかを判定する。
【0111】
なお、この発明においては、上述したステップS1〜ステップS16によりリアクトルL1およびコンデンサC2の故障を判定するものに限らず、ステップS1〜ステップS8によりリアクトルL1およびコンデンサC2のいずれかが故障していると判定するものであればよい。つまり、共振回路が構成されたときの電圧Vm_emgの振動周波数f1に基づいてリアクトルL1およびコンデンサC2のいずれかの故障を判定するものであればよい。
【0112】
上述したように、リアクトルL1およびコンデンサC2の故障判定は、信号IGOFFがモータ駆動装置100に入力された後、すなわち、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の停止時に行なわれる。ハイブリッド自動車または電気自動車の停止時、通常、コンデンサC2に蓄積された電荷は放電されるが、この発明による故障判定は、通常、行なわれるコンデンサC2の放電を利用して行なわれるので、エネルギーの無駄な消費を防止できる。
【0113】
また、この発明による故障判定は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車が完全に停止する場合に限らず、走行途中に赤信号等により停止したような場合にも行なわれる。
【0114】
さらに、この発明による故障判定は、ハイブリッド自動車または電気自動車の走行中であっても昇圧コンバータ12の動作を停止してもよい期間に行なわれる。上述した振動周波数f1およびピーク値P1の検出に必要な時間は数秒以下と非常に短いので、この発明による故障判定をハイブリッド自動車または電気自動車の走行中に実行することは可能である。
【0115】
再び、図1を参照して、モータ駆動装置100の全体動作について説明する。全体動作が開始されると、制御装置30は、Hレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2がオンされる。直流電源Bは直流電圧をシステムリレーSR1,SR2を介して昇圧コンバータ12へ出力する。
【0116】
電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。また、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを電圧記憶器20および制御装置30へ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出して制御装置30へ出力する。そして、制御装置30は、外部ECUからトルク指令値TRおよびモータ回転数MRNを受ける。
【0117】
そうすると、制御装置30は、直流電圧Vb、出力電圧Vm、モータ電流MCRT、トルク指令値TRおよびモータ回転数MRNに基づいて、上述した方法により信号PWMIを生成し、その生成した信号PWMIをインバータ14へ出力する。
【0118】
また、制御装置30は、インバータ14が交流モータM1を駆動するとき、直流電圧Vb、出力電圧Vm、モータ電流MCRT、トルク指令値TR、およびモータ回転数MRNに基づいて、昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0119】
そうすると、NPNトランジスタQ1,Q2は、信号PWMUに応じてオン/オフされ、昇圧コンバータ12は、NPNトランジスタQ2がオンされた期間に応じて直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をコンデンサC2に供給する。そして、インバータ14は、コンデンサC2によって平滑化された直流電圧を制御装置30からの信号PWMIによって交流電圧に変換して交流モータM1を駆動する。これによって、交流モータM1は、トルク指令値TRによって指定されたトルクを発生する。
【0120】
また、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、制御装置30は、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWMCを生成してそれぞれインバータ14へ出力し、信号PWMDを生成して昇圧コンバータ12へ出力する。
【0121】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWMCに応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12は、コンデンサC2からの直流電圧を受け、その受けた直流電圧を信号PWMDによって降圧し、その降圧した直流電圧を直流電源Bに供給する。これにより、交流モータM1によって発電された電力が直流電源Bに充電される。
【0122】
そして、信号IGOFFが外部ECUからモータ駆動装置100に入力されると、制御装置30は、信号PWMU_Lおよび信号STPを生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力する。インバータ14は信号STPに応じて停止され、昇圧コンバータ12は、信号PWMU_Lに応じて電圧Vmが電圧Vb+αになるように直流電圧Vbを昇圧する。また、制御装置30は、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達したとき信号PWMD_Lを生成して昇圧コンバータ12へ出力する。
【0123】
そうすると、昇圧コンバータ12のNPNトランジスタQ1は信号PWMD_Lに応じてオンされ、NPNトランジスタQ2は信号PWMD_Lに応じてオフされ、リアクトルL1、NPNトランジスタQ1およびコンデンサC2は共振回路を構成する。そして、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出して電圧記憶器20および制御装置30へ出力する。制御装置30の故障処理手段303は、電圧変換制御手段302から信号PWMD_Lを受信してから一定時間を経過すると、電圧記憶器20にアクセスして電圧Vm(Vm_emg)を読み出し、その読み出した電圧Vm_emgの振動周波数f1およびピーク値P1を検出する。そして、故障処理手段303は、振動周波数f1を基準値fs1と比較して振動周波数f1が基準値fs1以内か否かを判定し、振動周波数f1が基準値fs1以内であるときリアクトルL1およびコンデンサC2は正常であると判定する。また、故障処理手段303は、振動周波数f1が基準値fs1以内でないときリアクトルL1およびコンデンサC2のいずれか一方が故障していると判定する。
【0124】
リアクトルL1およびコンデンサC2のいずれか一方が故障しているとき、故障処理手段303は、振動周波数f1と基準値fs1との高低関係を比較し、さらに、ピーク値P1と基準値Ps1との大小関係を比較する。そして、故障処理手段303は、2つの比較結果に応じて、表1に示すようにリアクトルL1およびコンデンサC2のいずれか一方が故障していると判定し、判定結果RET1〜4を外部に設けられた表示器へ出力する。これにより、一連の動作が終了する。
【0125】
なお、制御装置30における電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定は、実際にはCPU(Central ProcessingUnit)によって実行され、CPUは、図6に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図6に示すフローチャートに従って電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定を行なう。したがって、ROMは、図6に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0126】
また、直流電源B、リアクトルL1、NPNトランジスタQ1,Q2、コンデンサC2、電圧記憶器20および制御装置30は、「電圧変換装置」を構成する。
【0127】
さらに、直列接続されたNPNトランジスタQ1,Q2は、「スイッチング回路」を構成する。
【0128】
さらに、信号PWMU_Lおよび信号STPを生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力するモータトルク制御手段301、および信号PWMD_Lを生成して昇圧コンバータ12へ出力する電圧変換制御手段302は、共振回路を構成する「制御手段」を構成する。
【0129】
さらに、電圧記憶器20および故障処理手段303は、「故障判定手段」を構成する。
【0130】
実施の形態1によれば、電圧変換装置は、リアクトルL1およびコンデンサC2によって共振回路が構成されたときのコンデンサC2の電圧Vm(Vm_emg)に基づいてリアクトルL1およびコンデンサC2の故障判定を行なう制御装置を備えるので、電圧変換装置に含まれる回路素子の故障を判定できる。
【0131】
また、制御装置は、コンデンサC2の電圧Vm(Vm_emg)の振動周波数に基づいてリアクトルL1およびコンデンサC2の故障を判定するので、リアクトルL1およびコンデンサC2の状態が確実に故障判定に反映され、回路素子の故障を精度良く判定できる。
【0132】
さらに、制御装置は、コンデンサC2に蓄積された電荷の放電を利用してリアクトルL1およびコンデンサC2の故障判定を行なうので、無駄なエネルギーの消費を防止して回路素子の故障を判定できる。
【0133】
[実施の形態2]
図7を参照して、実施の形態2による電圧変換装置を備えたモータ駆動装置100Aは、モータ駆動装置100の電圧記憶器20を電流記憶器21に代え、制御装置30を制御装置30Aに代え、電流センサー11を追加したものであり、その他はモータ駆動装置100と同じである。
【0134】
電流センサー11は、リアクトルL1に流れるリアクトル電流ILを検出し、その検出したリアクトル電流ILを電流記憶器21へ出力する。電流記憶器21は、電流センサー11からのリアクトル電流ILを記憶する。制御装置30Aは、リアクトルL1、NPNトランジスタQ1およびコンデンサC2により共振回路が構成されたときのリアクトル電流ILを電流記憶器21から読み出し、その読み出したリアクトル電流ILの振動周波数f2およびピーク値P2に基づいてリアクトルL1およびコンデンサC2の故障を判定する。制御装置30Aは、その他、制御装置30と同じ機能を果たす。
【0135】
図8は、制御装置30Aの機能ブロック図を示す。図8を参照して、制御装置30Aは、制御装置30の故障処理手段303を故障処理手段303Aに代えたものであり、その他は、制御装置30と同じである。
【0136】
故障処理手段303Aは、電圧変換制御手段302から信号PWMD_Lを受信すると、信号PWMD_Lを受信した時間から一定時間が経過したか否かを判定し、一定時間が経過すると、電流記憶器21にアクセスしてリアクトル電流ILを読み出す。そして、故障処理手段303Aは、読み出したリアクトル電流ILの振動周波数f2およびピーク値P2を検出し、その検出した振動周波数f2およびピーク値P2に基づいてリアクトルL1およびコンデンサC2の故障判定を行なう。
【0137】
図9を参照して、故障処理手段303Aは、制御部3031Aと、検出部3032Aと、判定部3033Aとを含む。制御部3031Aは、電圧変換制御手段302から信号PWMD_Lを受けると、信号PWMD_Lを受信した時間から一定時間が経過したか否かを判定し、一定時間が経過すると電流記憶器21へアクセスして電流記憶器21に記憶されたリアクトル電流ILを読み出す。そして、制御部3031Aは、読み出したリアクトル電流ILを検出部3032Aへ出力する。また、制御部3031Aは、判定部3033Aからの判定結果RET1〜4を外部に設けられた表示器(図示せず)へ出力する。
【0138】
検出部3032Aは、制御部3031Aからリアクトル電流ILを受ける。制御部3031Aは、リアクトルL1、NPNトランジスタQ1およびコンデンサC2により共振回路が構成されたときのリアクトル電流ILを電流記憶部21から読み出すので、検出部3032Aが制御部3031Aから受けるリアクトル電流ILは図10に示す曲線k2によって表わされる波形を有する。
【0139】
タイミングt3でNPNトランジスタQ1がオンされると、コンデンサC2に蓄積された電荷はNPNトランジスタQ1を介してリアクトルL1側へ流れるが、リアクトルL1およびコンデンサC2によって共振回路が構成されているため、タイミングt3後、共振電流がリアクトルL1とコンデンサC2との間で流れる。その結果、リアクトル電流ILは周期的に振動する波形となる。
【0140】
検出部3032Aは、制御部3031Aからリアクトル電流ILを受取ると、NPNトランジスタQ1がオンされた時間から、リアクトル電流ILの最初のピークPBまでの時間、すなわち、タイミングt3からタイミングt4までの時間ΔT2を内蔵したタイマーにより計測し、その計測した時間ΔT2に基づいてリアクトル電流ILの振動周波数f2を演算する。すなわち、検出部3032Aは、計測した時間ΔT2を用いて1/(4×ΔT2)を演算することにより振動周波数f2を求める。また、検出部3032Aは、リアクトル電流ILに基づいて最初のピークPBのピーク値P2を検出する。そして、検出部3032Aは、振動周波数f2およびピーク値P2を判定部3033Aへ出力する。
【0141】
なお、NPNトランジスタQ1がオンされた時間からリアクトル電流ILの最初のピークPBまでの時間に基づいて、振動周波数f2を演算することにしたのは、最初のピークPBは、他のピークに比べて現れ易く、振動周波数f2をより正確に求めることができるからである。
【0142】
しかし、この発明においては、リアクトル電流ILの振動周波数f2は、NPNトランジスタQ1がオンされた時間からリアクトル電流ILの最初のピークPBまでの時間に基づいて求める方法に限らず、どのような方法により求めてもよい。
【0143】
再び、図9を参照して、判定部3033Aは、検出部3032Aから振動周波数f2およびピーク値P2を受けると、振動周波数f2を基準値fs2と比較し、振動周波数f2が基準値fs2以内か否かを判定する。そして、判定部3033Aは、振動周波数f2が基準値fs2以内のとき、リアクトルL1およびコンデンサC2を正常と判定し、振動周波数f2が基準値fs2以内でないときリアクトルL1およびコンデンサC2のいずれか一方が故障していると判定する。
【0144】
判定部3033Aは、リアクトルL1およびコンデンサC2のいずれか一方が故障していると判定したとき、すなわち、振動周波数f2が基準値fs2以内でないとき、さらに、ピーク値P2を基準値Ps2と比較し、ピーク値P2が基準値Ps2よりも高いか低いかを判定する。
【0145】
振動周波数f2が基準値fs2以内でないときとしては、振動周波数f2が基準値fs2よりも高い場合(f2>fs2)と、振動周波数f2が基準値fs2よりも低い場合(f2<fs2)とがある。したがって、判定部3033Aは、振動周波数f2の基準値fs2との比較結果と、ピーク値P2の基準値Ps2との比較結果とに基づいて表2に示すようにリアクトルL1およびコンデンサC2のいずれかが故障していると判定する。
【0146】
【表2】
Figure 0003994883
すなわち、判定部3033Aは、振動周波数f2が基準値fs2よりも高く(f2>fs2)、かつ、ピーク値P2が基準値Ps2よりも大きい(P2>Ps2)と判定したとき、インダクタンスLが小さくなってリアクトルL1が故障していると判定する。
【0147】
振動周波数f2が基準値fs2よりも高いことはリアクトルL1のインダクタンスLおよびコンデンサC2の容量Cのいずれかが小さくなっていることを意味するが、この場合、ピーク値P2は基準値Ps2よりも大きいので、コンデンサC2の容量Cは正常であり、コンデンサC2に蓄積された電荷が、インダクタンスLが小さくなったリアクトルL1を介して流れた結果、振動周波数f2が基準値fs2よりも高く、かつ、ピーク値P2が基準値Ps2よりも大きくなったと考えられる。したがって、インダクタンスLが小さくなってリアクトルL1が故障していると判定することにしたものである。
【0148】
判定部3033Aは、振動周波数f2が基準値fs2よりも高く(f2>fs2)、かつ、ピーク値P2が基準値Ps2よりも小さい(P2<Ps2)と判定したとき、容量Cが小さくなってコンデンサC2が故障していると判定する。
【0149】
この場合、ピーク値P2が基準値Ps2よりも小さいので、コンデンサC2の容量Cが小さくなり、コンデンサC2に蓄積された電荷が正常時よりも少なくなったと考えられる。コンデンサC2に蓄積された電荷が少なくなると、NPNトランジスタQ1がオンされた時間から最初のピークPBに達するまでの時間が短くなり、かつ、ピーク値P2も小さくなる。したがって、容量Cが小さくなってコンデンサC2が故障していると判定することにしたものである。
【0150】
判定部3033Aは、振動周波数f2が基準値fs2よりも低く(f2<fs2)、かつ、ピーク値P2が基準値Ps2よりも大きい(P2>Ps2)と判定したとき、容量Cが大きくなってコンデンサC2が故障していると判定する。
【0151】
振動周波数f2が基準値fs2よりも低いことはリアクトルL1のインダクタンスLおよびコンデンサC2の容量Cのいずれかが大きくなっていることを意味するが、この場合、ピーク値P2は基準値Ps2よりも大きいので、リアクトルL1は正常であり、コンデンサC2の容量Cが大きくなり、コンデンサC2に蓄積された電荷が増加したと考えられる。コンデンサC2に蓄積された電荷が増加すると、NPNトランジスタQ1がオンされた時間から最初のピークPBに到達するまでの時間が正常時に比べ長くなり、ピーク値P2が大きくなる。その結果、振動周波数f2が基準値fs2よりも低くなり、ピーク値P2が基準値Ps2よりも大きくなる。したがって、容量Cが大きくなってコンデンサC2が故障していると判定することにしたものである。
【0152】
判定部3033Aは、振動周波数f2が基準値fs2よりも低く(f2<fs2)、かつ、ピーク値P2が基準値Ps2よりも小さい(P2<Ps2)と判定したとき、インダクタンスLが大きくなってリアクトルL1が故障していると判定する。
【0153】
この場合、ピーク値P2が基準値Ps2よりも小さいので、コンデンサC2は正常であり、リアクトルL1のインダクタンスLが大きくなったと考えられる。インダクタンスLが大きくなるとリアクトルL1に電流が流れにくくなる。その結果、NPNトランジスタQ1がオンされてから最初のピークPBに到達するまでの時間が長くなり、ピーク値P2は小さくなる。したがって、インダクタンスLが大きくなってリアクトルL1が故障していると判定することにしたものである。
【0154】
このように、判定部3033Aは、振動周波数f2の基準値fs2との比較結果と、ピーク値P2の基準値Ps2との比較結果とに基づいて、リアクトルL1およびコンデンサC2のいずれかが故障していると判定する。
【0155】
そして、判定部3033Aは、判定結果RET1〜4を制御部3031Aへ出力する。
【0156】
図11を参照して、実施の形態2におけるリアクトルL1およびコンデンサC2の故障判定の動作について説明する。図11に示すフローチャートは図6に示すフローチャートのステップS3,S5,S6,S9〜S11,S14をそれぞれステップS3A,S5A,S6A,S9A〜S11A,S14Aに代えたものであり、その他は図6に示すフローチャートと同じである。
【0157】
ステップS1,S2により共振回路が構成された後、電流センサー11は、リアクトル電流ILを検出し、その検出したリアクトル電流ILを電流記憶器21へ出力する。そして、電流記憶器21はリアクトル電流ILを記憶する(ステップS3A)。
【0158】
ステップS4において、一定時間が経過したと判定されると、故障処理手段303Aは、電流記憶器21へアクセスし、電流記憶器21に記憶されたリアクトル電流ILを読み出す。そして、故障処理手段303Aは、リアクトル電流ILにおける時間ΔT2を検出し、その検出した時間ΔT2を用いてリアクトル電流ILの振動周波数f2を演算する(ステップS5A)。
【0159】
その後、故障処理手段303Aは、振動周波数f2が基準値fs2以内か否かを判定し(ステップS6A)、振動周波数f2が基準値fs2以内のときリアクトルL1およびコンデンサC2は正常であると判定し(ステップS7)、振動周波数f2が基準値fs2以内でないときリアクトルL1およびコンデンサC2のいずれかが故障していると判定する(ステップS8)。
【0160】
リアクトルL1およびコンデンサC2のいずれかが故障していると判定されたとき、故障処理手段303Aは、リアクトル電流ILのピーク値P2を検出し(ステップS9A)、振動周波数f2が基準値fs2よりも高いか低いかを判定する(ステップS10A)。そして、振動周波数f2が基準値fs2よりも高いとき、故障処理手段303Aは、さらに、ピーク値P2が基準値Ps2よりも大きいか小さいかを判定する(ステップS11A)。
【0161】
ピーク値P2が基準値Ps2よりも大きいとき、故障処理手段303Aは、インダクタンスLが小さくなってリアクトルL1が故障していると判定し(ステップS12)、ピーク値P2が基準値Ps2よりも小さいとき、故障処理手段303Aは、容量Cが小さくなってコンデンサC2が故障していると判定する(ステップS13)。
【0162】
一方、ステップS10Aにおいて、振動周波数f2が基準値fs2よりも低いと判定されたとき、故障処理手段303Aは、さらに、ピーク値P2が基準値Ps2よりも大きいか小さいかを判定する(ステップS14A)。
【0163】
そして、ピーク値P2が基準値Ps2よりも大きいとき、故障処理手段303Aは、容量Cが大きくなってコンデンサC2が故障していると判定し(ステップS15)、ピーク値P2が基準値Ps2よりも小さいとき、故障処理手段303Aは、インダクタンスLが大きくなってリアクトルL1が故障していると判定する(ステップS16)。
【0164】
その他は、図6における説明と同じである。
このように、実施の形態2においては、リアクトルL1、NPNトランジスタQ1およびコンデンサC2により共振回路が構成されたときのリアクトル電流ILの振動周波数f2およびピーク値Ps2に基づいてリアクトルL1およびコンデンサC2のいずれが故障しているかが判定される。
【0165】
なお、この発明においては、図11に示すステップS1〜ステップS16によりリアクトルL1およびコンデンサC2の故障を判定するものに限らず、図11に示すステップS1〜ステップS8によりリアクトルL1およびコンデンサC2が故障していると判定するものであればよい。つまり、共振回路が構成されたときのリアクトル電流ILの振動周波数f2に基づいてリアクトルL1およびコンデンサC2のいずれかの故障を判定するものであればよい。
【0166】
モータ駆動装置100Aの全体動作は、モータ駆動装置100の動作において故障処理手段303の動作を上述した故障処理手段303Aの動作に代えたものである。
【0167】
なお、制御装置30Aにおける電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定は、実際にはCPUによって実行され、CPUは、図11に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図11に示すフローチャートに従って電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定を行なう。したがって、ROMは、図11に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0168】
また、直流電源B、リアクトルL1、NPNトランジスタQ1,Q2、コンデンサC2、電流記憶器21および制御装置30Aは、「電圧変換装置」を構成する。
【0169】
さらに、電流記憶器21および故障処理手段303Aは、「故障判定手段」を構成する。
【0170】
その他は、実施の形態1と同じである。
実施の形態2によれば、電圧変換装置は、リアクトルL1およびコンデンサC2によって共振回路が構成されたときのリアクトル電流ILに基づいてリアクトルL1およびコンデンサC2の故障判定を行なう制御装置を備えるので、電圧変換装置に含まれる回路素子の故障を判定できる。
【0171】
また、制御装置は、リアクトル電流ILの振動周波数に基づいてリアクトルL1およびコンデンサC2の故障を判定するので、リアクトルL1およびコンデンサC2の状態が確実に故障判定に反映され、回路素子の故障を精度良く判定できる。
【0172】
さらに、制御装置は、コンデンサC2に蓄積された電荷の放電を利用してリアクトルL1およびコンデンサC2の故障判定を行なうので、無駄なエネルギーの消費を防止して回路素子の故障を判定できる。
【0173】
[実施の形態3]
図12を参照して、実施の形態3による電圧変換装置を備えたモータ駆動装置100Bは、モータ駆動装置100の電圧記憶器20を電圧記憶器22に代え、制御装置30を制御装置30Bに代えたものであり、その他は、モータ駆動装置100と同じである。
【0174】
モータ駆動装置100Bにおいては、電圧センサー10は、検出したバッテリ電圧Vbを制御装置30Bおよび電圧記憶器22へ出力する。電圧記憶器22は、電圧センサー10からの直流電圧Vbを記憶する。
【0175】
制御装置30Bは、リアクトルL1、NPNトランジスタQ1およびコンデンサC2によって共振回路が構成されたときのバッテリ電圧Vb(Vb_emg)の振動周波数f3およびピーク値P3に基づいてリアクトルL1およびコンデンサC2のいずれが故障しているかを判定する。
【0176】
図13は、制御装置30Bの機能ブロック図を示す。図13を参照して、制御装置30Bは、制御装置30の故障処理手段303を故障処理手段303Bに代えたものであり、その他は、制御装置30と同じである。
【0177】
故障処理手段303Bは、電圧変換制御手段302から信号PWMD_Lを受信すると、信号PWMD_Lを受信した時間から一定時間が経過したか否かを判定し、一定時間が経過すると、電圧記憶器22にアクセスしてバッテリ電圧Vb(Vb_emg)を読み出す。そして、故障処理手段303Bは、読み出したバッテリ電圧Vb(Vb_emg)の振動周波数f3およびピーク値P3を検出し、その検出した振動周波数f3およびピーク値P3に基づいてリアクトルL1およびコンデンサC2のいずれかの故障判定を行なう。
【0178】
図14は、故障処理手段303Bの機能ブロック図を示す。図14を参照して、故障処理手段303Bは、制御部3031Bと、検出部3032Bと、判定部3033Bとを含む。制御部3031Bは、電圧変換制御手段302から信号PWMD_Lを受けると、信号PWMD_Lを受信した時間から一定時間が経過したか否かを判定し、一定時間が経過すると電圧記憶器22へアクセスして電圧記憶器22に記憶されたバッテリ電圧Vb(Vb_emg)を読み出す。そして、制御部3031Bは、読み出したバッテリ電圧Vb_emgを検出部3032Bへ出力する。また、制御部3031Bは、判定部3033Bからの判定結果RET1〜4を外部に設けられた表示器(図示せず)へ出力する。
【0179】
検出部3032Bは、制御部3031Bからバッテリ電圧Vb_emgを受ける。制御部3031Bは、リアクトルL1、NPNトランジスタQ1およびコンデンサC2により共振回路が構成されたときのバッテリ電圧Vb_emgを電圧記憶部22から読み出すので、検出部3032Bが制御部3031Bから受けるバッテリ電圧Vb_emgは図15に示す曲線k3によって表わされる波形を有する。
【0180】
タイミングt5でNPNトランジスタQ1がオンされると、コンデンサC2に蓄積された電荷はNPNトランジスタQ1を介してリアクトルL1側へ流れるが、リアクトルL1およびコンデンサC2によって共振回路が構成されているため、タイミングt5後、共振電流がリアクトルL1とコンデンサC2との間で流れる。その結果、バッテリ電圧Vb_emgは周期的に振動する波形となる。
【0181】
検出部3032Bは、制御部3031Bからバッテリ電圧Vb_emgを受取ると、NPNトランジスタQ1がオンされた時間から、バッテリ電圧Vb_emgの最初のピークPCまでの時間、すなわち、タイミングt5からタイミングt6までの時間ΔT3を内蔵したタイマーにより計測し、その計測した時間ΔT3に基づいてバッテリ電圧Vb_emgの振動周波数f3を演算する。すなわち、検出部3032Bは、計測した時間ΔT3を用いて1/(4×ΔT3)を演算することにより振動周波数f3を求める。また、検出部3032Bは、バッテリ電圧Vb_emgに基づいて最初のピークPCのピーク値P3を検出する。そして、検出部3032Bは、振動周波数f3およびピーク値P3を判定部3033Bへ出力する。
【0182】
なお、NPNトランジスタQ1がオンされた時間からバッテリ電圧Vb_emgの最初のピークPCまでの時間に基づいて、振動周波数f3を演算することにしたのは、最初のピークPCは、他のピークに比べて現れ易く、振動周波数f3をより正確に求めることができるからである。
【0183】
しかし、この発明においては、バッテリ電圧Vb_emgの振動周波数f3は、NPNトランジスタQ1がオンされた時間からバッテリ電圧Vb_emgの最初のピークPCまでの時間に基づいて求める方法に限らず、どのような方法により求めてもよい。
【0184】
再び、図14を参照して、判定部3033Bは、検出部3032Bから振動周波数f3およびピーク値P3を受けると、振動周波数f3を基準値fs3と比較し、振動周波数f3が基準値fs3以内か否かを判定する。そして、判定部3033Bは、振動周波数f3が基準値fs3以内のとき、リアクトルL1およびコンデンサC2を正常と判定し、振動周波数f3が基準値fs3以内でないときリアクトルL1およびコンデンサC2のいずれか一方が故障していると判定する。
【0185】
判定部3033Bは、リアクトルL1およびコンデンサC2のいずれか一方が故障していると判定したとき、すなわち、振動周波数f3が基準値fs3以内でないとき、さらに、ピーク値P3を基準値Ps3と比較し、ピーク値P3が基準値Ps3よりも大きいか小さいかを判定する。
【0186】
振動周波数f3が基準値fs3以内でないときとしては、振動周波数f3が基準値fs3よりも高い場合(f3>fs3)と、振動周波数f3が基準値fs3よりも低い場合(f3<fs3)とがある。したがって、判定部3033Bは、振動周波数f3の基準値fs3との比較結果と、ピーク値P3の基準値Ps3との比較結果とに基づいて表1に示すようにリアクトルL1およびコンデンサC2のいずれかが故障していると判定する。
【0187】
すなわち、判定部3033Bは、振動周波数f3が基準値fs3よりも高く(f3>fs3)、かつ、ピーク値P3が基準値Ps3よりも大きい(P3>Ps3)と判定したとき、インダクタンスLが小さくなってリアクトルL1が故障していると判定する。
【0188】
振動周波数f3が基準値fs3よりも高いことはリアクトルL1のインダクタンスLおよびコンデンサC2の容量Cのいずれかが小さくなっていることを意味するが、この場合、ピーク値P3は基準値Ps3よりも大きいので、コンデンサC2の容量Cは正常であり、コンデンサC2に蓄積された電荷が、インダクタンスLが小さくなったリアクトルL1を介して流れ、直流電源B側に多くの電荷が供給された結果、振動周波数f3が基準値fs3よりも高く、かつ、ピーク値P3が基準値Ps3よりも大きくなったと考えられる。したがって、インダクタンスLが小さくなってリアクトルL1が故障していると判定することにしたものである。
【0189】
判定部3033Bは、振動周波数f3が基準値fs3よりも高く(f3>fs3)、かつ、ピーク値P3が基準値Ps3よりも小さいと判定したとき、容量Cが小さくなってコンデンサC2が故障していると判定する。
【0190】
この場合、ピーク値P3が基準値Ps3よりも小さいので、コンデンサC2の容量Cが小さくなり、コンデンサC2に蓄積された電荷が正常時よりも少なくなり、リアクトルL1を介して直流電源B側に供給される電荷が減少したと考えられる。コンデンサC2に蓄積された電荷が少なくなると、NPNトランジスタQ1がオンされた時間から最初のピークPCに達するまでの時間が短くなり、かつ、ピーク値P3も小さくなる。したがって、容量Cが小さくなってコンデンサC2が故障していると判定することにしたものである。
【0191】
判定部3033Bは、振動周波数f3が基準値fs3よりも低く(f3<fs3)、かつ、ピーク値P3が基準値Ps3よりも大きい(P3>Ps3)と判定したとき、容量Cが大きくなってコンデンサC2が故障していると判定する。
【0192】
振動周波数f3が基準値fs3よりも低いことはリアクトルL1のインダクタンスLおよびコンデンサC2の容量Cのいずれかが大きくなっていることを意味するが、この場合、ピーク値P3は基準値Ps3よりも大きいので、リアクトルL1は正常であり、コンデンサC2の容量Cが大きくなり、コンデンサC2に蓄積された電荷が増加したと考えられる。コンデンサC2に蓄積された電荷が増加すると、NPNトランジスタQ1がオンされた時間から最初のピークPCに到達するまでの時間が正常時に比べ長くなり、リアクトルL1を介して直流電源B側に供給される電荷が増加してピーク値P3が大きくなる。その結果、振動周波数f3が基準値fs3よりも低くなり、ピーク値P3が基準値Ps3よりも大きくなる。したがって、容量Cが大きくなってコンデンサC2が故障していると判定することにしたものである。
【0193】
判定部3033Bは、振動周波数f3が基準値fs3よりも低く(f3<fs3)、かつ、ピーク値P3が基準値Ps3よりも小さい(P3<Ps3)と判定したとき、インダクタンスLが大きくなってリアクトルL1が故障していると判定する。
【0194】
この場合、ピーク値P3が基準値Ps3よりも小さいので、コンデンサC2は正常であり、リアクトルL1のインダクタンスLが大きくなったと考えられる。インダクタンスLが大きくなるとリアクトルL1に電流が流れにくくなる。その結果、NPNトランジスタQ1がオンされてから最初のピークPCに到達するまでの時間が正常時に比べ長くなり、リアクトルL1を介して直流電源B側に供給される電荷が減少してピーク値P3は小さくなる。したがって、インダクタンスLが大きくなってリアクトルL1が故障していると判定することにしたものである。
【0195】
このように、判定部3033Bは、振動周波数f3の基準値fs3との比較結果と、ピーク値P3の基準値Ps3との比較結果とに基づいて、リアクトルL1およびコンデンサC2のいずれかが故障していると判定する。
【0196】
そして、判定部3033Bは、判定結果RET1〜4を制御部3031Bへ出力する。
【0197】
図16を参照して、実施の形態3におけるリアクトルL1およびコンデンサC2の故障判定の動作について説明する。図16に示すフローチャートは図6に示すフローチャートのステップS3,S5,S6,S9〜S11,S14をそれぞれステップS3B,S5B,S6B,S9B〜S11B,S14Bに代えたものであり、その他は図6に示すフローチャートと同じである。
【0198】
ステップS1,S2により共振回路が構成された後、電圧センサー10は、バッテリ電圧Vb(Vb_emg)を検出し、その検出したバッテリ電圧Vb(Vb_emg)を電圧記憶器22および制御装置30Bへ出力する。そして、電圧記憶器22はバッテリ電圧Vb(Vb_emg)を記憶する(ステップS3B)。
【0199】
ステップS4において、一定時間が経過したと判定されると、故障処理手段303Bは、電圧記憶器22へアクセスし、電圧記憶器22に記憶されたバッテリ電圧Vb(Vb_emg)を読み出す。そして、故障処理手段303Bは、バッテリ電圧Vb(Vb_emg)における時間ΔT3を検出し、その検出した時間ΔT3を用いてバッテリ電圧Vb_emgの振動周波数f3を演算する(ステップS5B)。
【0200】
その後、故障処理手段303Bは、振動周波数f3が基準値fs3以内か否かを判定し(ステップS6B)、振動周波数f3が基準値fs3以内のときリアクトルL1およびコンデンサC2は正常であると判定し(ステップS7)、振動周波数f3が基準値fs3以内でないときリアクトルL1およびコンデンサC2のいずれかが故障していると判定する(ステップS8)。
【0201】
リアクトルL1およびコンデンサC2のいずれかが故障していると判定されたとき、故障処理手段303Bは、バッテリ電圧Vb_emgのピーク値P3を検出し(ステップS9B)、振動周波数f3が基準値fs3よりも高いか低いかを判定する(ステップS10B)。そして、振動周波数f3が基準値fs3よりも高いとき、故障処理手段303Bは、さらに、ピーク値P3が基準値Ps3よりも大きいか小さいかを判定する(ステップS11B)。
【0202】
ピーク値P3が基準値Ps3よりも大きいとき、故障処理手段303Bは、インダクタンスLが小さくなってリアクトルL1が故障していると判定し(ステップS12)、ピーク値P3が基準値Ps3よりも小さいとき、故障処理手段303Bは、容量Cが小さくなってコンデンサC2が故障していると判定する(ステップS13)。
【0203】
一方、ステップS10Bにおいて、振動周波数f3が基準値fs3よりも低いと判定されたとき、故障処理手段303Bは、さらに、ピーク値P3が基準値Ps3よりも大きいか小さいかを判定する(ステップS14B)。
【0204】
そして、ピーク値P3が基準値Ps3よりも大きいとき、故障処理手段303Bは、容量Cが大きくなってコンデンサC2が故障していると判定し(ステップS15)、ピーク値P3が基準値Ps3よりも小さいとき、故障処理手段303Bは、インダクタンスLが大きくなってリアクトルL1が故障していると判定する(ステップS16)。
【0205】
その他は、図6における説明と同じである。
このように、実施の形態3においては、リアクトルL1、NPNトランジスタQ1およびコンデンサC2により共振回路が構成されたときのバッテリ電圧Vb_emgの振動周波数f3およびピーク値Ps3に基づいてリアクトルL1およびコンデンサC2のいずれが故障しているかが判定される。
【0206】
モータ駆動装置100Bの全体動作は、モータ駆動装置100の動作において故障処理手段303の動作を上述した故障処理手段303Bの動作に代えたものである。
【0207】
なお、この発明においては、図16に示すステップS1〜ステップS16によりリアクトルL1およびコンデンサC2の故障を判定するものに限らず、図16に示すステップS1〜ステップS8によりリアクトルL1およびコンデンサC2が故障していると判定するものであればよい。つまり、共振回路が構成されたときのバッテリ電圧Vb(Vb_emg)の振動周波数f3に基づいてリアクトルL1およびコンデンサC2の故障を判定するものであればよい。
【0208】
また、制御装置30Bにおける電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定は、実際にはCPUによって実行され、CPUは、図16に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図16に示すフローチャートに従って電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定を行なう。したがって、ROMは、図16に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0209】
また、直流電源B、リアクトルL1、NPNトランジスタQ1,Q2、コンデンサC2、電圧記憶器22および制御装置30Bは、「電圧変換装置」を構成する。
【0210】
さらに、電圧記憶器22および故障処理手段303Bは、「故障判定手段」を構成する。
【0211】
その他は、実施の形態1と同じである。
実施の形態3によれば、電圧変換装置は、リアクトルL1およびコンデンサC2によって共振回路が構成されたときのバッテリ電圧Vb_emgに基づいてリアクトルL1およびコンデンサC2の故障判定を行なう制御装置を備えるので、電圧変換装置に含まれる回路素子の故障を判定できる。
【0212】
また、制御装置は、バッテリ電圧Vb_emgの振動周波数に基づいてリアクトルL1およびコンデンサC2の故障を判定するので、リアクトルL1およびコンデンサC2の状態が確実に故障判定に反映され、回路素子の故障を精度良く判定できる。
【0213】
さらに、制御装置は、コンデンサC2に蓄積された電荷の放電を利用してリアクトルL1およびコンデンサC2の故障判定を行なうので、無駄なエネルギーの消費を防止して回路素子の故障を判定できる。
【0214】
[実施の形態4]
図17を参照して、実施の形態4による電圧変換装置を備えるモータ駆動装置100Cは、モータ駆動装置100の制御装置30を制御装置30Cに代え、スイッチ41および配線43を追加したものであり、その他は、モータ駆動装置100と同じである。
【0215】
スイッチ41は、その一方端がノードN1に接続され、他方端が配線43の一方端に接続される。配線43は、その他方端がノードN2に接続される。つまり、スイッチ41および配線43は、NPNトランジスタQ1およびダイオードD1に対してバイパス回路を構成するようにノードN1とノードN2との間に接続される。
【0216】
制御装置30Cは、信号PWMU_Lおよび信号STP1(実施の形態4においては信号STPに代えて信号STP1が生成される)を生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力した後、電圧センサー13からの電圧Vmが電圧Vb+αに到達すると、信号PWMD_Lの生成に代えて、スイッチ41をオンするためのHレベルの信号SWとNPNトランジスタQ1,Q2を停止するための信号STP2とを生成してそれぞれスイッチ41および昇圧コンバータ12へ出力する。制御装置30Cは、その他、制御装置30と同じ機能を果たす。
【0217】
図18は、制御装置30Cの機能ブロック図を示す。図18を参照して、制御装置30Cは、制御装置30の電圧変換制御手段302を電圧変換制御手段302Aに代えたものであり、その他は、制御装置30と同じである。
【0218】
なお、モータトルク制御手段301は、信号STPに代えて信号STP1を生成してインバータ14へ出力する。
【0219】
電圧変換制御手段302Aは、外部ECUから信号IGOFFを受けると、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達したとき、Hレベルの信号SWおよび信号STP2を生成する。そして、電圧変換制御手段302Aは、生成したHレベルの信号SWをスイッチ41および故障処理手段303へ出力し、生成した信号STP2を昇圧コンバータ12へ出力する。
【0220】
電圧変換制御手段302Aは、その他、電圧変換制御手段302と同じ機能を果たす。
【0221】
モータ駆動装置100Cにおいては、外部ECUから信号IGOFFが入力されると、モータトルク制御手段301は、信号PWMU_Lおよび信号STP1を生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力する。インバータ14は、信号STP1に応じて停止される。また、昇圧コンバータ12は、信号PWMU_Lに応じて電圧Vmが電圧Vb+αになるようにバッテリ電圧Vbを昇圧する。
【0222】
そして、電圧変換制御手段302Aは、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達するとHレベルの信号SWと、信号STP2とを生成し、その生成したHレベルの信号SWをスイッチ41および故障処理手段303へ出力し、生成した信号STP2を昇圧コンバータ12へ出力する。
【0223】
そうすると、昇圧コンバータ12は、信号STP2に応じて停止され、スイッチ41は、Hレベルの信号SWに応じてオンされる。これにより、スイッチ41および配線43は、NPNトランジスタQ1およびダイオードD1をバイパスし、リアクトルL1、スイッチ41、配線43およびコンデンサC2は共振回路を構成する。
【0224】
なお、実施の形態4においては、故障処理手段303は、電圧変換制御手段302AからのHレベルの信号SWに応じて電圧記憶器20へアクセスし、電圧Vm_emgを読み出す。
【0225】
その後、実施の形態1において説明したように、故障処理手段303は、電圧Vm_emgの振動周波数f1およびピーク値P1に基づいてリアクトルL1およびコンデンサC2のいずれかの故障を判定する。
【0226】
このように、実施の形態4においては、スイッチ41および配線43から成るバイパス回路を付加して共振回路を構成したときの電圧Vm_emgに基づいてリアクトルL1およびコンデンサC2の故障を判定することを特徴とする。
【0227】
図19は、実施の形態4におけるリアクトルL1およびコンデンサC2の故障判定の動作を説明するためのフローチャートを示す。図19に示すフローチャートは図6に示すフローチャートのステップS2をステップS2Aに代えたものであり、その他は、図6に示すフローチャートと同じである。
【0228】
図19を参照して、昇圧コンバータ12が信号PWMU_Lに応じてバッテリ電圧Vbを電圧Vb+αに昇圧すると(ステップS1)、電圧変換制御手段302Aは、電圧センサー13からのVmが電圧Vb+αに到達したことを確認し、Hレベルの信号SWと、信号STP2とを生成する。そして、電圧変換制御手段302Aは、生成したHレベルの信号SWをスイッチ41および故障処理手段303へ出力し、生成した信号STP2を昇圧コンバータ12へ出力する。スイッチ41は、Hレベルの信号SWによってオンされ、昇圧コンバータ12は、信号STP2に応じて停止される。
【0229】
そして、スイッチ41および配線43からなるバイパス回路が付加され、リアクトルL1、スイッチ41、配線43およびコンデンサC2から成る共振回路が構成される(ステップS2A)。
【0230】
その後、実施の形態1において説明した動作に従ってリアクトルL1およびコンデンサC2の故障が判定される。
【0231】
なお、実施の形態4による電圧変換装置を備えるモータ駆動装置は、スイッチ41および配線43をモータ駆動装置100Aまたは100Bに追加したものであってもよい。
【0232】
また、制御装置30Cにおける電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定は、実際にはCPUによって実行され、CPUは、図19に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図19に示すフローチャートに従って電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定を行なう。したがって、ROMは、図19に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0233】
また、直流電源B、リアクトルL1、NPNトランジスタQ1,Q2、コンデンサC2、電圧記憶器22、制御装置30B、スイッチ41および配線43は、「電圧変換装置」を構成する。
【0234】
さらに、信号PWMU_Lおよび信号STP1を生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力するモータトルク制御手段301およびHレベルの信号SWと信号STP2とを生成してそれぞれスイッチ41および昇圧コンバータ12へ出力する電圧変換制御手段302Aは、共振回路を構成する「制御手段」を構成する。
【0235】
その他は、実施の形態1と同じである。
実施の形態4によれば、電圧変換装置は、バイパス回路を付加して共振回路が構成されたときの電圧Vm_emgに基づいてリアクトルL1およびコンデンサC2の故障判定を行なう制御装置を備えるので、NPNトランジスタを用いずに共振回路を構成して電圧変換装置に含まれる回路素子の故障を判定できる。
【0236】
また、共振電流は、配線を介してリアクトルL1とコンデンサC2との間で流れるので、リアクトルL1およびコンデンサC2の状態が確実に故障判定に反映され、回路素子の故障を精度良く判定できる。
【0237】
さらに、制御装置は、コンデンサC2に蓄積された電荷の放電を利用してリアクトルL1およびコンデンサC2の故障判定を行なうので、無駄なエネルギーの消費を防止して回路素子の故障を判定できる。
【0238】
[実施の形態5]
図20を参照して、実施の形態5による電圧変換装置を備えるモータ駆動装置100Dは、モータ駆動装置100の制御装置30を制御装置30Dに代え、燃料電池60を追加したものであり、その他は、モータ駆動装置100と同じである。
【0239】
燃料電池60は、インバータ14の電源ラインとアースラインとの間に接続される。
【0240】
制御装置30Dは、外部ECUから信号IGOFFを受けると信号STP1,STP2を生成し、その生成した信号STP1をインバータ14へ出力し、生成した信号STP2を燃料電池60へ出力する。
【0241】
また、制御装置30Dは、信号STP1,STP2を出力した後、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達したとき、信号PWMD_Lを生成して昇圧コンバータ12へ出力する。
【0242】
そして、制御装置30Dは、信号PWMU_Lを生成して昇圧コンバータ12へ出力する機能を除いて制御装置30と同じ機能を果たす。
【0243】
図21は、制御装置30Dの機能ブロック図を示す。図21を参照して、制御装置30Dは、制御装置30のモータトルク制御手段301をモータトルク制御手段301Aに代え、電圧変換制御手段302を電圧変換制御手段302Bに代えたものであり、その他は、制御装置30と同じである。
【0244】
モータトルク制御手段301Aは、信号STPに代えて信号STP1を生成してインバータ14へ出力する。そして、モータトルク制御手段301Aは、信号PWMU_Lを生成して昇圧コンバータ12へ出力する機能を除いてモータトルク制御手段301と同じ機能を果たす。
【0245】
電圧変換制御手段302Bは、外部ECUからの信号IGOFFに応じて信号STP2を生成して燃料電池60へ出力する。また、電圧変換制御手段302Bは、信号STP2を出力した後、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達すると、信号PWMD_Lを生成して昇圧コンバータ12および故障処理手段303へ出力する。電圧変換制御手段302Bは、その他、電圧変換制御手段302と同じ機能を果たす。
【0246】
図22は、モータトルク制御手段301Aの機能ブロック図を示す。図22を参照して、モータトルク制御手段301Aは、モータトルク制御手段301のインバータ入力電圧指令演算部50をインバータ入力電圧指令演算部50Aに代えたものであり、その他は、モータトルク制御手段301と同じである。
【0247】
インバータ入力電圧指令演算部50Aは、外部ECUからの信号IGOFFに応じて電圧指令Vdc_com_Lを生成する機能を除いてインバータ入力電圧指令演算部50と同じ機能を果たす。
【0248】
モータ駆動装置100Dにおいては、外部ECUから信号IGOFFが入力されると、モータトルク制御手段301Aは、信号STP1を生成してインバータ14へ出力する。インバータ14は、信号STP1に応じて停止される。
【0249】
また、電圧変換制御手段302Bは、外部ECUからの信号IGOFFに応じて、信号STP2を生成して燃料電池60へ出力する。そして、燃料電池60は、信号STP2に応じて停止される。
【0250】
そうすると、電圧変換制御手段302Bは、信号STP2を出力した後、電圧センサー13からの電圧Vmが電圧Vb+αに到達したか否かを判定し、電圧Vmが電圧Vb+αに到達すると信号PWMD_Lを生成して昇圧コンバータ12および故障処理手段303へ出力する。
【0251】
そして、昇圧コンバータ12のNPNトランジスタQ1は信号PWMD_Lに応じてオンされ、NPNトランジスタQ2は信号PWMD_Lに応じてオフされる。これにより、リアクトルL1、NPNトランジスタQ1およびコンデンサC2は共振回路を構成する。
【0252】
その後、実施の形態1において説明したように、故障処理手段303は、電圧Vm_emgの振動周波数f1およびピーク値P1に基づいてリアクトルL1およびコンデンサC2の故障を判定する。
【0253】
このように、実施の形態5においては、燃料電池60という付加電源をコンデンサC2に並列に接続することにより、コンデンサC2の電圧Vmを電圧Vb+αに設定した共振回路を構成し、共振回路を構成したときの電圧Vm_emgに基づいてリアクトルL1およびコンデンサC2の故障を判定することを特徴とする。
【0254】
図23は、実施の形態5におけるリアクトルL1およびコンデンサC2の故障判定の動作を説明するためのフローチャートを示す。図23に示すフローチャートは図6に示すフローチャートのステップS1をステップS1Aに代えたものであり、その他は、図6に示すフローチャートと同じである。
【0255】
図23を参照して、一連の動作が開始されると、モータトルク制御手段301Aは、外部ECUからの信号IGOFFに応じて信号STP1を生成してインバータ14へ出力する。インバータ14は、信号STP1に応じて停止される。また、電圧変換制御手段302Bは、外部ECUからの信号IGOFFに応じて信号STP2を生成して燃料電池60へ出力する。そして、燃料電池60は、信号STP2に応じて停止される。
【0256】
その後、コンデンサC2の電圧Vmが低下し、電圧Vmが電圧Vb+αに設定される(ステップS1A)。
【0257】
その後、上述したステップS2〜S16が実行され、故障判定の動作が終了する。
【0258】
なお、実施の形態5による電圧変換装置を備えるモータ駆動装置は、燃料電池60をモータ駆動装置100Aまたは100Bに追加したものであってもよい。
【0259】
また、制御装置30Dにおける電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定は、実際にはCPUによって実行され、CPUは、図23に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図23に示すフローチャートに従って電圧変換装置(リアクトルL1およびコンデンサC2)の故障判定を行なう。したがって、ROMは、図23に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0260】
また、直流電源B、リアクトルL1、NPNトランジスタQ1,Q2、コンデンサC2、電圧記憶器22、制御装置30Dおよび燃料電池60は、「電圧変換装置」を構成する。
【0261】
さらに、信号STP1を生成してインバータ14へ出力するモータトルク制御手段301Aおよび信号STP2を生成して燃料電池60へ出力し、かつ、信号PWMD_Lを生成して昇圧コンバータ12へ出力する電圧変換制御手段302Bは、共振回路を構成する「制御手段」を構成する。
【0262】
その他は、実施の形態1と同じである。
実施の形態5によれば、電圧変換装置は、燃料電池を付加して共振回路が構成されたときの電圧Vm_emgに基づいてリアクトルL1およびコンデンサC2の故障判定を行なう制御装置を備えるので、外部電源を付加することにより共振回路を構成して電圧変換装置に含まれる回路素子の故障を判定できる。
【0263】
また、停止された燃料電池の出力電圧が低下することを利用してコンデンサC2の電圧Vmを電圧Vb+αに設定するので、無駄なエネルギーを使用せずに共振回路を構成できる。
【0264】
さらに、制御装置は、コンデンサC2に蓄積された電荷の放電を利用してリアクトルL1およびコンデンサC2の故障判定を行なうので、無駄なエネルギーの消費を防止して回路素子の故障を判定できる。
【0265】
なお、この発明は、上述した実施の形態1から実施の形態5に記載した内容以外にも、種々のハイブリッド自動車または電気自動車に適用できることは言うまでもない。たとえば、コンデンサC2に対して複数のインバータおよび交流モータを並列に接続し、それぞれのモータ(またはモータジェネレータ)を独立に駆動するようにしてもよい。また、遊星ギア機構を用いたハイブリッド自動車としては、1つのモータジェネレータを遊星ギア機構のサンギアに接続し、エンジンを遊星ギア機構のキャリアに接続し、もう1つのモータジェネレータを遊星ギア機構のリングギアに接続するものも公知であるが、この発明を、このようなハイブリッド自動車にも適用できる。
【0266】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】 実施の形態1による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図2】 図1に示す制御装置の機能ブロック図である。
【図3】 図2に示すモータトルク制御手段の機能ブロック図である。
【図4】 図3に示す故障処理手段の機能ブロック図である。
【図5】 図1に示す電圧記憶器に記憶された電圧Vmのタイミングチャートである。
【図6】 実施の形態1における故障判定の動作を説明するためのフローチャートである。
【図7】 実施の形態2による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図8】 図7に示す制御装置の機能ブロック図である。
【図9】 図8に示す故障処理手段の機能ブロック図である。
【図10】 図7に示す電流記憶器に記憶されたリアクトル電流ILのタイミングチャートである。
【図11】 実施の形態2における故障判定の動作を説明するためのフローチャートである。
【図12】 実施の形態3による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図13】 図12に示す制御装置の機能ブロック図である。
【図14】 図13に示す故障処理手段の機能ブロック図である。
【図15】 図12に示す電圧記憶器に記憶されたバッテリ電圧Vbのタイミングチャートである。
【図16】 実施の形態3における故障判定の動作を説明するためのフローチャートである。
【図17】 実施の形態4による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図18】 図17に示す制御装置の機能ブロック図である。
【図19】 実施の形態4における故障判定の動作を説明するためのフローチャートである。
【図20】 実施の形態5による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図21】 図20に示す制御装置の機能ブロック図である。
【図22】 図21に示すモータトルク制御手段の機能ブロック図である。
【図23】 実施の形態5における故障判定の動作を説明するためのフローチャートである。
【図24】 従来のモータ駆動装置の概略ブロック図である。
【符号の説明】
10,13,320 電圧センサー、11,24 電流センサー、12 昇圧コンバータ、14,330 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、20,22 電圧記憶器、21 電流記憶器、30,30A,30B,30C,30D 制御装置、40 モータ制御用相電圧演算部、41 スイッチ、42 インバータ用PWM信号変換部、43 配線、50,50A インバータ入力電圧指令演算部、52 コンバータ用デューティー比演算部、54 コンバータ用PWM信号変換部、60 燃料電池、100,100A,100B,100C,100D,300 モータ駆動装置、301,301A モータトルク制御手段、302,302A,302B 電圧変換制御手段、303,303A,303B 故障処理手段、310 双方向コンバータ、3031,3031A,3031B 制御部、3032,3032A,3032B 検出部、3033,3033A,3033B 判定部、B 直流電源、SR1,SR2 システムリレー、C1,C2 コンデンサ、L1,311 リアクトル、Q1〜Q8,312,313 NPNトランジスタ、D1〜D8,314,315ダイオード、N1,N2 ノード、M1 交流モータ。

Claims (19)

  1. コンデンサと、
    上アームおよび下アーム用の第1および第2のスイッチング素子を含み、前記コンデンサに並列に接続されたスイッチング回路と、
    直流電源と、
    一方端が前記直流電源に接続され、他方端が前記第1のスイッチング素子と前記第2のスイッチング素子との間に接続されたリアクトルと、
    前記コンデンサと前記リアクトルとを用いて共振回路を構成するように制御する制御手段と、
    前記共振回路が構成されたときの前記コンデンサから出力される第1の電圧、前記リアクトルに流れるリアクトル電流および前記直流電源から出力される第2の電圧のいずれかに基づいて、前記コンデンサおよび/または前記リアクトルの故障を判定する故障判定手段とを備える電圧変換装置。
  2. 前記故障判定手段は、前記第1の電圧、前記リアクトル電流および前記第2の電圧のいずれかの振動周波数を検出し、その検出した振動周波数を基準値と比較することにより前記コンデンサおよび/または前記リアクトルの故障を判定する、請求項1に記載の電圧変換装置。
  3. 前記故障判定手段は、第1ピークまでの時間を検出することにより前記振動周波数を検出する、請求項2に記載の電圧変換装置。
  4. 前記故障判定手段は、前記第1の電圧、前記リアクトル電流および前記第2の電圧のいずれかのピーク値をさらに検出し、その検出したピーク値の基準値との比較結果と、前記振動周波数の前記基準値との比較結果との組合わせに基づいて、前記コンデンサおよび前記リアクトルのいずれかを故障と判定する、請求項2または請求項3に記載の電圧変換装置。
  5. 前記故障判定手段は、前記振動周波数が前記基準値よりも低く、かつ、前記ピーク値が前記基準値よりも小さいとき、前記リアクトルが故障であると判定する、請求項4に記載の電圧変換装置。
  6. 前記故障判定手段は、前記振動周波数が前記基準値よりも低く、かつ、前記ピーク値が前記基準値よりも大きいとき、前記コンデンサが故障であると判定する、請求項4に記載の電圧変換装置。
  7. 前記故障判定手段は、前記振動周波数が前記基準値よりも高く、かつ、前記ピーク値が前記基準値よりも小さいとき、前記コンデンサが故障であると判定する、請求項4に記載の電圧変換装置。
  8. 前記故障判定手段は、前記振動周波数が前記基準値よりも高く、かつ、前記ピーク値が前記基準値よりも大きいとき、前記リアクトルが故障であると判定する、請求項4に記載の電圧変換装置。
  9. 前記制御手段は、前記コンデンサ側の電圧を前記直流電源側の電圧よりも高く設定し、前記第1のスイッチング素子をオンすることにより前記共振回路を構成する、請求項1から請求項8のいずれか1項に記載の電圧変換装置。
  10. 一方端が前記リアクトルの前記他方端に接続された配線をさらに備え、
    前記制御手段は、前記コンデンサ側の電圧を前記直流電源側の電圧よりも高く設定し、前記配線の他方端を前記コンデンサの正電極に接続することにより前記共振回路を構成する、請求項1から請求項8のいずれか1項に記載の電圧変換装置。
  11. 前記コンデンサに並列に接続された付加電源をさらに備え、
    前記制御手段は、前記付加電源を停止し、前記第1のスイッチング素子をオンすることにより前記共振回路を構成する、請求項1から請求項8のいずれか1項に記載の電圧変換装置。
  12. 直流電源から出力された直流電圧を出力電圧に変換してコンデンサに供給する電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体であって、
    前記コンデンサと前記電圧変換装置に含まれるリアクトルとを用いて共振回路を構成する第1のステップと、
    前記共振回路が構成されたときの前記コンデンサから出力される第1の電圧、前記リアクトルに流れるリアクトル電流および前記直流電源から出力される第2の電圧のいずれかを検出して記憶する第2のステップと、
    前記第2のステップにおいて記憶された前記第1の電圧、前記リアクトル電流および前記第2の電圧のいずれかに基づいて前記コンデンサおよび/または前記リアクトルの故障を判定する第3のステップとをコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  13. 前記第3のステップは、
    前記第1の電圧、前記リアクトル電流および前記第2の電圧のいずれかの振動周波数を検出する第1のサブステップと、
    前記検出された振動周波数を基準値と比較する第2のサブステップと、
    前記振動周波数が前記基準値と異なるとき、前記コンデンサおよび前記リアクトルの少なくとも一方が故障であると判定する第3のサブステップとを含む、請求項12に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  14. 前記第3のステップは、
    前記第1の電圧、前記リアクトル電流および前記第2の電圧のいずれかの振動周波数を検出する第1のサブステップと、
    前記検出された振動周波数を基準値と比較する第2のサブステップと、
    前記第2のステップにおいて記憶された前記第1の電圧、前記リアクトル電流および前記第2の電圧のいずれかのピーク値を検出する第3のサブステップと、
    前記検出されたピーク値を基準値と比較する第4のサブステップと、
    前記振動周波数の前記基準値との比較結果と、前記ピーク値の前記基準値との比較結果とに基づいて前記コンデンサおよび前記リアクトルのいずれか一方が故障であると判定する第5のサブステップとを含む、請求項12に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  15. 前記第5のサブステップは、前記振動周波数が前記基準値よりも低く、かつ、前記ピーク値が前記基準値よりも小さいとき、前記リアクトルが故障であると判定する、請求項14に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  16. 前記第5のサブステップは、前記振動周波数が前記基準値よりも低く、かつ、前記ピーク値が前記基準値よりも大きいとき、前記コンデンサが故障であると判定する、請求項14に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  17. 前記第5のサブステップは、前記振動周波数が前記基準値よりも高く、かつ、前記ピーク値が前記基準値よりも小さいとき、前記コンデンサが故障であると判定する、請求項14に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  18. 前記第5のサブステップは、前記振動周波数が前記基準値よりも高く、かつ、前記ピーク値が前記基準値よりも大きいとき、前記リアクトルが故障であると判定する、請求項14に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
  19. 前記第1のサブステップは、第1ピークまでの時間を検出することにより前記振動周波数を検出する、請求項13から請求項18のいずれか1項に記載のコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体。
JP2003026121A 2003-02-03 2003-02-03 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体 Expired - Fee Related JP3994883B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026121A JP3994883B2 (ja) 2003-02-03 2003-02-03 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026121A JP3994883B2 (ja) 2003-02-03 2003-02-03 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JP2004242375A JP2004242375A (ja) 2004-08-26
JP3994883B2 true JP3994883B2 (ja) 2007-10-24

Family

ID=32954220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026121A Expired - Fee Related JP3994883B2 (ja) 2003-02-03 2003-02-03 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体

Country Status (1)

Country Link
JP (1) JP3994883B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027677A (ja) * 2019-08-02 2021-02-22 株式会社デンソー 共振インバータ装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710489B2 (ja) * 2005-08-30 2011-06-29 トヨタ自動車株式会社 負荷駆動回路における異常監視装置
JP4804916B2 (ja) * 2005-12-28 2011-11-02 本田技研工業株式会社 昇圧装置
JP2007189781A (ja) * 2006-01-11 2007-07-26 Sharp Corp 駆動装置及び回路モジュール
JP4962184B2 (ja) * 2007-07-18 2012-06-27 トヨタ自動車株式会社 車両の電源装置
JP5071129B2 (ja) * 2008-01-31 2012-11-14 日産自動車株式会社 チョッパ型コンバータのリアクトル状態検出装置
JP5636625B2 (ja) * 2008-06-17 2014-12-10 株式会社Ihi インバータ回路及びその平滑コンデンサの異常検知方法
JP5392191B2 (ja) * 2010-06-02 2014-01-22 トヨタ自動車株式会社 車両の制御装置および制御方法
US9302588B2 (en) * 2012-06-29 2016-04-05 Ford Global Technologies, Llc Vehicle system for evaluating a voltage converter
JP6884029B2 (ja) * 2017-05-09 2021-06-09 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
KR102575045B1 (ko) * 2018-01-09 2023-09-05 현대모비스 주식회사 배터리 충전기 최적효율 제어방법 및 이를 채용한 충전기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027677A (ja) * 2019-08-02 2021-02-22 株式会社デンソー 共振インバータ装置
JP7238677B2 (ja) 2019-08-02 2023-03-14 株式会社デンソー 共振インバータ装置

Also Published As

Publication number Publication date
JP2004242375A (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
US7099756B2 (en) Motor drive apparatus, hybrid vehicle drive apparatus using the same, and computer readable recording medium recorded with program for causing computer to perform control of motor drive apparatus
US7269535B2 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
JP3928559B2 (ja) 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
RU2413352C1 (ru) Устройство электропитания для транспортного средства
US7759817B2 (en) Power supply system for driving vehicle
US20070058404A1 (en) Voltage conversion device
JP4120310B2 (ja) 電気負荷駆動装置、電気負荷駆動方法、電気負荷の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
CN102763313A (zh) 电源装置
WO2005013467A1 (en) Voltage conversion device and computer-readable recording medium having program recorded thereon for computer to control voltage conversion by voltage conversion device
JP4013739B2 (ja) 電圧変換装置、電圧変換方法および電圧変換をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP3994883B2 (ja) 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2009171644A (ja) 車両の電源装置およびその制御方法
JP4432463B2 (ja) 負荷駆動装置およびその動作をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP3879528B2 (ja) 電圧変換装置
JP2006254643A (ja) 異常判定装置および車両
JP2004088866A (ja) 電圧変換装置、判定方法、電圧変換における異常原因の判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4172203B2 (ja) 電源システム、電源制御方法、および電源制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP4049038B2 (ja) 負荷駆動装置および負荷駆動装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004194475A (ja) インバータ装置
JP2003324942A (ja) 電圧変換装置、電圧変換装置の駆動方法、電圧変換装置の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP4314896B2 (ja) 負荷駆動装置、それを搭載した自動車および負荷駆動装置における漏電発生時の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2021151041A (ja) 切替装置、その装置を含む蓄電システム、そのシステムを含む車両、及び、切替方法
JP4356476B2 (ja) 電圧変換装置、電圧変換装置の故障の判定方法、およびその方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2011234538A (ja) 車両の駆動装置およびそれを備える車両
JP2005304228A (ja) 電気システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees