JP3932511B2 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
JP3932511B2
JP3932511B2 JP2003105697A JP2003105697A JP3932511B2 JP 3932511 B2 JP3932511 B2 JP 3932511B2 JP 2003105697 A JP2003105697 A JP 2003105697A JP 2003105697 A JP2003105697 A JP 2003105697A JP 3932511 B2 JP3932511 B2 JP 3932511B2
Authority
JP
Japan
Prior art keywords
negative electrode
group
chemical formula
structure represented
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003105697A
Other languages
English (en)
Other versions
JP2004311306A (ja
Inventor
忠彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003105697A priority Critical patent/JP3932511B2/ja
Priority to EP04008260A priority patent/EP1467429A3/en
Priority to US10/818,798 priority patent/US20040234864A1/en
Priority to KR1020040024026A priority patent/KR101047270B1/ko
Priority to CNB2004100477661A priority patent/CN1332473C/zh
Publication of JP2004311306A publication Critical patent/JP2004311306A/ja
Application granted granted Critical
Publication of JP3932511B2 publication Critical patent/JP3932511B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1691Mounting or coupling means for cyclonic chamber or dust receptacles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0495Chemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重合性化合物を重合することにより得られる高分子電解質を用いた電池に関する。
【0002】
【従来の技術】
近年、カメラ一体型VTR(videotape recorder)、携帯電話あるいは携帯用コンピューターなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。それに伴い、電子機器のポータブル電源として、電池、特に二次電池の開発が活発に進められている。中でも、リチウムイオン二次電池は、高いエネルギー密度を実現できるものとして注目されている。
【0003】
従来より、このリチウムイオン二次電池の負極活物質としては、主に黒鉛などの炭素材料が用いられている。しかし、炭素材料の理論容量は372mAh/gであり、これ以上に容量を向上させるには、新たな技術開発が必要であるという問題があった。
【0004】
そこで、最近、炭素材料に代えて、ケイ素やスズを含む合金を負極活物質として用いる研究が活発化している。ところが、合金を電池の負極に用いた場合、負極の電位が上昇したり、充放電を繰り返した際に負極活物質の激しい膨張および収縮により負極が微細化してしまい、サイクル特性が悪いという問題があった。
【0005】
この問題を解決するものとして、重合性化合物および電解液を混合した電解質用組成物を重合開始剤を用いて重合させてゲル化させることにより形成された高分子電解質を用いたものがある(特許文献1および特許文献2を参照)。
【0006】
この重合により得られる高分子電解質は、例えば電極を巻回した電池に用いる場合、電極を巻回する前に、電極上に重合性化合物を含む電解質用組成物を塗布して紫外線照射あるいは加熱するか、または、電極を巻回して巻回電極体を作製したのち、巻回電極体に電解質用組成物を注入して加熱することにより作製される。その際に用いる重合性化合物としては、例えば、ポリメタクリル酸メチル(例えば、特許文献3参照)や、あるいはアクリレート基およびエーテル基を有する化合物(例えば、特許文献4参照)が知られている。この特許文献3のように、重合性化合物にエーテル基を導入する例は多く見られるが、これは、全固体状あるいはゲル状のいかんにかかわらず、電荷を輸送するカチオン(例えば、リチウムイオン二次電池の場合はリチウムイオン)の解離促進を期待したものである。
【0007】
また、電解液についても種々の研究がなされており、例えばオキシアルキレンあるいはウレタン構造を有するアクリレート系あるいはメタクリレート系重合性化合物に、エチレンカーボネートとエチルメチルカーボネートとを混合した有機溶媒を適用することにより、低温特性を大幅に改善できることが報告されている(例えば、特許文献5参照)。
【0008】
【特許文献1】
特開2000−21449号公報
【特許文献2】
特開2000−173607号公報
【特許文献3】
特公昭58−56467号公報
【特許文献4】
特公平7−25838号公報
【特許文献5】
特開平10−294105号公報
【0009】
【発明が解決しようとする課題】
しかしながら、例えば特許文献3に記載されている高分子電解質は、耐漏液性向上を念頭に置いた電解液の固定化方法としては好適ではあるが、比較的多量の重合性化合物が必要であるので、電池特性上目的とする高いイオン伝導率を得ることができないという問題があった。また、例えば特許文献4に記載されている高分子電解質では、重合性化合物にエーテル基を有しているので、解離により生じたカチオンがエーテル基の酸素に配位してカチオンの移動度が低下してしまい、カチオン伝導率が低下してしまうという問題があった。しかも、エーテル基の部分は耐酸化性も低いので、充放電効率および保存特性も悪いという問題もあった。更に、例えば特許文献5に記載されている高分子電解質では、低温特性の改善はみられるものの、充分な充放電サイクル特性が得られないという問題があった。
【0010】
本発明はかかる問題点に鑑みてなされたもので、その目的は、電池性能を向上させることができる電池を提供することにある。
【0011】
【課題を解決するための手段】
本発明による電池は、外装部材の内部に正極および負極と共に高分子電解質を収納したものであって、負極は、ケイ素またはスズの単体および化合物からなる群のうちの少なくとも1種を含み、高分子電解質は、電解液と共に、アクリレート基あるいはメタクリレート基を有しかつエーテル基を含まない多官能重合性化合物が重合された構造を有する高分子化合物を含有し、高分子化合物は、外装部材の内部において重合されたものである。
【0012】
本発明による電池では、高分子電解質が、アクリレート基あるいはメタクリレート基を有しかつエーテル基を含まない重合性化合物が重合された構造を有する高分子化合物を含んでいるので、高分子電解質におけるイオンの移動が容易となり、高いイオン伝導率が得られる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0014】
図1は本発明の一実施の形態に係る二次電池を分解して表すものである。この二次電池は、正極端子11および負極端子12が取り付けられた電池素子20をフィルム状の外装部材30A,30Bの内部に封入したものである。正極端子11および負極端子12は、外装部材30A,30Bの内部から外部に向かい例えば同一方向にそれぞれ導出されている。正極端子11および負極端子12は、例えば、アルミニウム(Al),銅(Cu),ニッケル(Ni)あるいはステンレスなどの金属材料によりそれぞれ構成されている。
【0015】
外装部材30A,30Bは、例えば、ナイロンフィルム,アルミニウム箔およびポリエチレンフィルムをこの順に張り合わせた矩形状のラミネートフィルムにより構成されている。外装部材30A,30Bは、例えば、ポリエチレンフィルム側と電池素子20とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材30A,30Bと正極端子11および負極端子12との間には、外気の侵入を防止するための密着フィルム31が挿入されている。密着フィルム31は、正極端子11および負極端子12に対して密着性を有する材料により構成され、例えば、正極端子11および負極端子12が上述した金属材料により構成される場合には、ポリエチレン,ポリプロピレン,変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されることが好ましい。
【0016】
なお、外装部材30A,30Bは、上述したラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレンなどの高分子フィルムあるいは金属フィルムなどにより構成するようにしてもよい。
【0017】
図2は、図1に示した電池素子20のI−I線に沿った断面構造を表すものである。電池素子20は、正極21と負極22とが高分子電解質23およびセパレータ24を介して対向して位置し、巻回されているものであり、最外周部は保護テープ25により保護されている。
【0018】
正極21は、例えば、対向する一対の面を有する正極集電体21Aと、正極集電体21Aの両面あるいは片面に設けられた正極活物質層21Bとを有している。正極集電体21Aには、長手方向における一方の端部に正極活物質層21Bが設けられず露出している部分があり、この露出部分に正極端子11が取り付けられている。正極集電体21Aは、例えば、アルミニウム箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
【0019】
正極活物質層21Bは、例えば、正極活物質として、リチウムを吸蔵および離脱することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて導電剤および結着剤を含んでいてもよい。リチウムを吸蔵および離脱することが可能な正極材料としては、例えば、一般式Lim MIO2 で表されるリチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物は、高電圧を発生可能であると共に、高密度であるため、二次電池の更なる高容量化を図ることが可能だからである。なお、MIは1種類以上の遷移金属であり、例えばコバルト(Co)およびニッケルのうちの少なくとも一方が好ましい。mは電池の充放電状態によって異なり、通常0.05≦m≦1.10の範囲内の値である。このようなリチウム含有金属複合酸化物の具体例としては、LiCoO2 あるいはLiNiO2 などが挙げられる。
【0020】
負極22は、例えば、正極21と同様に、対向する一対の面を有する負極集電体22Aと、負極集電体22Aの両面あるいは片面に設けられた負極活物質層22Bとを有している。負極集電体22Aは、例えば、銅,ステンレス,ニッケル,チタン(Ti),タングステン(W),モリブデン(Mo)あるいはアルミニウムなどにより構成することが好ましく、中でも、負極活物質層22Bとの合金化を起こしやすい金属により構成した方がより好ましい場合もある。例えば、後述するように負極活物質層22Bがケイ素またはスズの単体および化合物からなる群のうちの少なくとも1種を含む場合には、銅,チタン,アルミニウムあるいはニッケルなどが合金化しやすい材料として挙げられる。なお、負極集電体22Aは、単層により構成してもよいが、複数層により構成してもよい。その場合、負極活物質層22Bと接する層を負極活物質層22Bと合金化しやすい金属材料により構成し、他の層を他の金属材料により構成するようにしてもよい。
【0021】
負極活物質層22Bは、例えば、負極活物質として、ケイ素またはスズの単体および化合物からなる群のうちの少なくとも1種を含んでいる。ケイ素またはスズの単体および化合物は、リチウムを吸蔵・離脱する能力が大きく、負極22のエネルギー密度を高くすることができるからである。ケイ素およびスズの化合物は、結晶質でも非晶質でもよいが、好ましくは非晶質、または微結晶の集合体である。ここでいう非晶質あるいは微結晶とは、特性X線としてCuKαを用いたX線回折分析で得られる回折パターンのピークの半値幅が2θで0.5°以上であり、かつ、2θで30°から60°にブロードなパターンを有するものである。
【0022】
ケイ素またはスズの化合物としては、例えば、SiB4 ,SiB6 ,Mg2 Si,Mg2 Sn,Ni2 Si,TiSi2 ,MoSi2 ,CoSi2 ,NiSi2 ,CaSi2 ,CrSi2 ,Cu5 Si,FeSi2 ,MnSi2 ,NbSi2 ,TaSi2 ,VSi2 ,WSi2 ,ZnSi2 ,SiC,Si3 4 ,Si2 2 O,SiOv (0<v≦2),SnOw (0<w≦2),SnSiO3 ,LiSiOあるいはLiSnOが挙げられる。
【0023】
この負極活物質層22Bは、例えば、塗布により形成され、負極活物質に加えて、ポリフッ化ビニリデンなどの結着剤を含んでいてもよい。この場合、ケイ素およびスズの化合物の粉末は、1次粒径が、0.1μm以上35μm以下であることが好ましく、0.1μm以上25μm以下であればより好ましい。粒径がこの範囲よりも小さいと、粒子表面と後述の電解液との望ましくない反応が顕著になり、容量または効率が悪化する恐れがあり、一方、粒径がこの範囲よりも大きいとリチウムとの反応が粒子内部で進みにくくなり、容量が低下する恐れがあるからである。なお、粒径測定法としては、光学顕微鏡あるいは電子顕微鏡による観察法またはレーザー回折法などがあり、粒径域に応じて使い分けることが好ましい。また、所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩いあるいは風力分級機などを乾式法あるいは湿式法で用いることができる。
【0024】
なお、ケイ素あるいはスズの単体または化合物の粉末は、例えば、粉末冶金などで用いられている従来の方法により得られる。従来の方法としては、例えば、アーク溶解炉あるいは高周波誘導加熱炉などの溶解炉で原料を溶融し冷却した後粉砕する方法、または、単ロール急冷法,双ロール急冷法,ガスアトマイズ法,水アトマイズ法あるいは遠心アトマイズ法などのように原料の溶融金属を急速冷却する方法、または、単ロール急冷法あるいは双ロール急冷法などの冷却法により原料の溶融金属を固化したのち、メカニカルアロイング法などの方法で粉砕する方法が挙げられる。特に、ガスアトマイズ法あるいはメカニカルアロイング法が好ましい。これらの合成および粉砕は、空気中の酸素による酸化を防ぐために、アルゴン(Ar)、窒素あるいはヘリウム(He)などの不活性ガス雰囲気中もしくは真空雰囲気中で行うことが好ましい。
【0025】
また、負極活物質層22Bは、気相法,液相法および焼結法からなる群のうちの少なくとも1つの方法により形成されたものであってもよい。この場合、充放電に伴う負極活物質層22Bの膨張・収縮による破壊を抑制することができると共に、負極集電体22Aと負極活物質層22Bとを一体化することができ、負極活物質層22Bにおける電子伝導性を向上させることができるので好ましい。また、結着剤および空隙などを低減または排除でき、負極22を薄膜化することもできるので好ましい。
【0026】
この負極活物質層22Bは、負極集電体22Aとの界面の少なくとも一部において負極集電体22Aと合金化していることが好ましい。具体的には、界面において負極集電体22Aの構成元素が負極活物質層22Bに、または負極活物質の構成元素が負極集電体22Aに、またはそれらが互いに拡散していることが好ましい。この合金化は、負極活物質層22Bを気相法,液相法あるいは焼結法により形成する際に同時に起こることが多いが、更に熱処理が施されることにより起こったものでもよい。
【0027】
この負極22の厚みは、負極集電体22Aの厚みも含め、10μm以上100μm以下であることが好ましく、10μm以上50μm以下であればより好ましい。薄すぎると、負極22全体に占める負極集電体22Aの割合が増えるため、電池容量の低下が見られ、厚すぎるとケイ素またはスズの充放電に伴う膨張収縮によって、負極活物質層22Bの破壊が起きる場合があるからである。
【0028】
高分子電解質23は、電解液と、高分子化合物とを含有している。電解液は、溶媒に電解質塩を溶解したものであり、必要に応じて添加剤を含んでいてもよい。溶媒としては、例えば、γ−ブチロラクトン,γ−バレロラクトン,δ−バレロラクトンあるいはε−カプロラクトンなどのラクトン系溶媒、エチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ビニレンカーボネート,ジメチルカーボネート,エチルメチルカーボネートあるいはジエチルカーボネートなどのカーボネート系溶媒、1,2−ジメトキシエタン,1−エトキシ−2−メトキシエタン,1,2−ジエトキシエタン,テトラヒドロフランあるいは2−メチルテトラヒドロフランなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、またはピロリドン類などの非水溶媒が挙げられる。溶媒は、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
【0029】
電解質塩は、溶媒に溶解してイオンを生ずるものであればいずれを用いてもよく、1種を単独で用いても、2種以上を混合して用いてもよい。例えばリチウム塩であれば、六フッ化リン酸リチウム(LiPF6 ),四フッ化ホウ酸リチウム(LiBF4 ),六フッ化ヒ酸リチウム(LiAsF6 ),過塩素酸リチウム(LiClO4 ),トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 ),ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(SO2 CF3 2 ),トリス(トリフルオロメタンスルホニル)メチルリチウム(LiC(SO2 CF3 3 ),四フッ化アルミン酸リチウム(LiAlCl4 )あるいは六フッ化ケイ酸リチウム(LiSiF6 )などが挙げられ、特に六フッ化リン酸リチウムあるいは四フッ化ホウ酸リチウムが酸化安定性の点から好ましい。電解質塩の濃度は、溶媒1リットル(l)に対して0.1mol〜3.0molが好ましく、より好ましくは0.5mol〜2.0molである。
【0030】
高分子化合物は、アクリレート基あるいはメタクリレート基を有しかつエーテル基を含まない重合性化合物が重合された構造を有している。重合性化合物としては、例えば、エーテル基を含有していない単官能アクリレート,単官能メタクリレート,多官能アクリレートあるいは多官能メタクリレートが挙げられる。具体的には、アクリル酸エステル,メタクリル酸エステル,アクリロニトリル,メタクリロニトリル,ジアクリル酸エステル,トリアクリル酸エステル,ジメタクリル酸エステルあるいはトリメタクリル酸エステルなどがこれに該当する。このようにエーテル基を含まない重合性化合物を用いるのは、エーテル基が存在するとエーテル基にカチオンが配位し、それによりカチオン伝導率が低下してしまうからである。
【0031】
特に、重合性化合物として、化12で表される構造と、化13で表される構造と、化14で表される構造との少なくとも3つの構造部を有する化合物を用いるようにすれば、極めて優れた電池特性を得ることができ好ましい。この化合物1つにおける各構造部のモル比は、化12の構造部をx、化13の構造部をy、化14の構造部をzとすると、例えば0.1≦x≦98、0≦y≦98、0.1≦z≦98である。各構造部の結合関係は任意であり、例えば、各構造部は、一定の順番で繰り返し結合していてもよく、順不同に結合していてもよい。
【0032】
【化12】
Figure 0003932511
【0033】
【化13】
Figure 0003932511
【0034】
【化14】
Figure 0003932511
【0035】
化12ないし化14において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表す。R1は炭素を含みエーテル基を含まない構造部を表す。好ましくは炭素数10以下のアルキレン基であり、具体的にはメチレン基(−CH2 −)あるいはエチレン基(−CH2 CH2 −)などである。R2は水素原子、あるいは炭素を含みエーテル基を含まない構造部を表す。好ましくは炭素数10以下のアルキル基などであり、分岐構造でもよく環状構造を含んでいてもよい。具体的には、メチル基(−CH3 ),エチル基(−CH2 CH3 ),プロピル基(−CH2 CH2 CH3 ),イソプロピル基(−CH(CH3 2 ),ブチル基(−CH2 CH2 CH2 CH3 ),t−ブチル基(−C(CH3 3 ),s−ブチル基(−CH(CH3 )CH2 CH3 ),2−エチルヘキシル基(−CH2 CH(C2 5 )CH2 CH2 CH2 CH3 )あるいはシクロヘキシル基(−C6 11)などである。R3は水素原子、あるいは炭素を含みエーテル基を含まない構造部を表す。好ましくは炭素数10以下のアルキル基、化15で表される基、あるいは化16で表される基などであり、アルキル基は分岐構造でもよく環状構造を含んでいてもよく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、s−ブチル基、2−エチルヘキシル基、シクロヘキシル基などである。
【0036】
【化15】
Figure 0003932511
【0037】
化15において、R32は水素原子、フッ素原子、あるいはフッ化メチル(CF3 )基を表し、aは0以上6以下の整数、bは0以上16以下の整数、cは1または2、dは1または2である。
【0038】
【化16】
Figure 0003932511
【0039】
化16において、R33は2価の連結基を表し、R34は環状カーボネート基を表す。
【0040】
このような重合性化合物としては、例えば、化17で表される構造と、化18で表される構造と、化19で表される構造とを有する化合物が好ましい。
【0041】
【化17】
Figure 0003932511
【0042】
【化18】
Figure 0003932511
【0043】
【化19】
Figure 0003932511
【0044】
化17ないし化19において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R21は水素原子、炭素数10以下のアルキル基、あるいは芳香環を有する炭素数12以下の基を表し、R31は水素原子、炭素数10以下のアルキル基、芳香環を有する炭素数12以下の基、化20で表される基、あるいは化21で表される基を表す。
【0045】
【化20】
Figure 0003932511
【0046】
化20において、R32は水素原子、フッ素原子、あるいはフッ化メチル基を表し、aは0以上6以下の整数、bは0以上16以下の整数、cは1または2、dは1または2である。
【0047】
【化21】
Figure 0003932511
【0048】
化21において、R33は2価の連結基を表し、R34は環状カーボネート基を表す。
【0049】
重合性化合物のより具体的な例としては、例えば、化22で表される構造と、化23で表される構造と、化24で表される構造とを有する化合物が挙げられる。
【0050】
【化22】
Figure 0003932511
【0051】
【化23】
Figure 0003932511
【0052】
【化24】
Figure 0003932511
【0053】
化22ないし化24において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R22およびR35はそれぞれ炭素数6以下のアルキル基を表す。
【0054】
また例えば、化25で表される構造と、化26で表される構造と、化27で表される構造とを有する化合物も挙げられる。
【0055】
【化25】
Figure 0003932511
【0056】
【化26】
Figure 0003932511
【0057】
【化27】
Figure 0003932511
【0058】
化25ないし化27において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R22は炭素数6以下のアルキル基を表し、R36は芳香環を有する炭素数12以下の基を表す。R36としては、例えば、化28で表される基が挙げられる。
【0059】
【化28】
Figure 0003932511
【0060】
更に例えば、化29で表される構造と、化30で表される構造と、化31で表される構造とを有する化合物も挙げられる。
【0061】
【化29】
Figure 0003932511
【0062】
【化30】
Figure 0003932511
【0063】
【化31】
Figure 0003932511
【0064】
化29ないし化31において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R22は炭素数6以下のアルキル基を表し、R32は水素原子、フッ素原子、あるいはフッ化メチル基を表し、aは0以上6以下の整数、bは0以上16以下の整数、cは1または2、dは1または2である。
【0065】
加えて例えば、化32で表される構造と、化33で表される構造と、化34で表される構造とを有する化合物も挙げられる。
【0066】
【化32】
Figure 0003932511
【0067】
【化33】
Figure 0003932511
【0068】
【化34】
Figure 0003932511
【0069】
化32ないし化34において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R22は炭素数6以下のアルキル基を表す。
【0070】
重合性化合物はいずれか1種を単独で用いてもよいが、単官能体と多官能体を混合するか、または、多官能体を単独あるいは2種類以上混合して用いることが望ましい。このように構成することにより、重合した高分子電解質23の機械的強度と電解液保持性とが両立させやすくなるからである。
【0071】
電解液に対する高分子化合物の割合は、電解液100質量部に対して、高分子化合物が3質量部以上10質量部以下であることが好ましい。高分子化合物が少ないと十分な機械的強度を得ることができず、高分子化合物が多いとイオン伝導率が低くなってしまうからである。
【0072】
セパレータ24は、例えば、ポリプロピレンあるいはポリエチレンなどのポリオレフィン系の材料よりなる多孔質膜、またはセラミック製の不織布などの無機材料よりなる多孔質膜など、イオン透過度が大きく、所定の機械的強度を有する絶縁性の薄膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。
【0073】
この二次電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが離脱し、高分子電解質23を介して負極活物質層22Bに吸蔵される。放電を行うと、例えば、負極活物質層22Bからリチウムイオンが離脱し、高分子電解質23を介して正極活物質層21Bに吸蔵される。その際、リチウムイオンの移動度は高分子電解質23に含まれる電解液に依存する。本実施の形態では、高分子電解質23が、エーテル基を含まない重合性化合物が重合された構造を有する高分子化合物を有しているので、リチウムイオンの移動が容易となり、高いイオン伝導率が得られる。
【0074】
この二次電池は例えば次のようにして製造することができる。
【0075】
まず、例えば、正極集電体21Aに正極活物質層21Bを形成し正極21を作製する。正極活物質層21Bは、正極活物質の粉末と必要に応じて導電剤および結着剤とを混合して正極合剤を調製し、N−メチル−2−ピロリドンなどの分散媒に分散させて正極合剤スラリーを調製したのち、この正極合剤スラリーを正極集電体21Aに塗布し乾燥させ、圧縮成型することにより形成する。
【0076】
また、例えば、負極集電体22Aに負極活物質層22Bを形成し負極22を作製する。負極活物質層22Bは、例えば、負極活物質の粉末と必要に応じて結着剤とを混合して負極合剤を調製し、N−メチル−2−ピロリドンなどの分散媒に分散させて負極合剤スラリーを調製したのち、この負極合剤スラリーを負極集電体22Aに塗布し乾燥させ、圧縮成型することにより形成する。
【0077】
負極活物質層22Bは、また、例えば、負極集電体22Aに、気相法または液相法により、負極活物質を堆積させることにより形成するようにしてもよい。また、粒子状の負極活物質を含む前駆層を負極集電体22Aに形成したのち、これを焼結させる焼結法により形成するようにしてもよいし、気相法,液相法および焼結法のうちの2つまたは3つの方法を組み合わせて形成するようにしてもよい。このように気相法,液相法および焼結法からなる群のうちの少なくとも1つの方法により負極活物質層22Bを形成することにより、場合によっては、負極集電体22Aとの界面の少なくとも一部において負極集電体22Aと合金化した負極活物質層22Bが形成される。
【0078】
なお、負極集電体22Aと負極活物質層22Bとの界面をより合金化させるために、更に真空雰囲気下または非酸化性雰囲気下で熱処理を行うようにしてもよい。特に、負極活物質層22Bを後述する鍍金により形成する場合、負極活物質層22Bは負極集電体22Aとの界面においても合金化しにくい場合があるので、必要に応じてこの熱処理を行うことが好ましい。また、気相法により形成する場合においても、負極集電体22Aと負極活物質層22Bとの界面をより合金化させることにより特性を向上させることができる場合があるので、必要に応じてこの熱処理を行うことが好ましい。
【0079】
なお、気相法としては、負極活物質の種類によって物理堆積法あるいは化学堆積法を用いることができ、具体的には、真空蒸着法,スパッタ法,イオンプレーティング法,レーザーアブレーション法,熱CVD(Chemical Vapor Deposition ;化学気相成長)法あるいはプラズマCVD法等が利用可能である。液相法としては電解鍍金あるいは無電解鍍金等の公知の手法が利用可能である。焼結法に関しても公知の手法が利用可能であり、例えば、雰囲気焼結法,反応焼結法あるいはホットプレス焼結法が利用可能である。但し、真空蒸着法、スパッタ法,CVD法,電解鍍金または無電解鍍金が好ましい。
【0080】
次いで、正極21に正極端子11を取り付けると共に、負極22に負極端子12を取り付けたのち、セパレータ24,正極21,セパレータ24および負極22を順次積層して巻回し、最外周部に保護テープ25を接着して巻回電極体を形成する。続いて、この巻回電極体を外装部材30A,30Bで挟み、一辺を除く外周縁部を熱融着して袋状とする。
【0081】
そののち、上述した電解液と重合性化合物と必要に応じて重合開始剤とを含む電解質用組成物を用意し、外装部材30A,30Bの開口部から巻回電極体の内部に注入して、外装部材30A,30Bの開口部を熱融着し封入する。重合開始剤としては公知のものを用いることができる。たとえば、アゾビス化合物,パーオキサイド,ハイドロパーオキサイド,パーオキシエステルあるいはレドックス触媒などであり、具体的には、過硫酸カリウム、過硫酸アンモニウム、t−ブチルパーオクトエート、ベンゾイルパーオキサイド、イソプロピルパーカーボネート2,4−ジクロロベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、アゾビスイソブチロニトリル、2,2' −アゾビス( 2−アミノジプロパン) ハイドロクロライド、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、あるいはt−ブチルパーオキシアセテートが挙げられる。
【0082】
中でも、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、あるいはt−ブチルパーオキシアセテートなどのパーオキシエステル系重合開始剤を用いることが好ましい。ゲル化時における気体の発生を抑制することができると共に、重合性化合物の割合を少なくしても十分にゲル化させることができ、十分な機械的強度を得ることができるからである。
【0083】
次いで、電解質用組成物を注入した巻回電極体を外装部材30A,30Bの外部から加熱して重合性化合物を重合させることにより、ゲル状の高分子電解質23を形成する。その際、加熱温度は90℃以下、更には75℃以下とすることが好ましい。これにより図1および図2に示した二次電池が完成する。
【0084】
なお、この二次電池は次のようにして製造してもよい。例えば、巻回電極体を作製してから電解質用組成物を注入するのではなく、正極21および負極22の上に電解質用組成物を塗布したのちに巻回し、外装部材30A,30Bの内部に封入して加熱するようにしてもよい。また、正極21および負極22の上に電解質用組成物を塗布し、加熱して高分子電解質23を形成したのちに巻回し、外装部材30A,30Bの内部に封入するようにしてもよい。但し、外装部材30A,30Bの内部に封入してから加熱するようにした方が好ましい。加熱して高分子電解質23を形成したのちに巻回すると、高分子電解質23とセパレータ24との界面接合が不十分となり、内部抵抗が高くなってしまう場合があるからである。
【0085】
このように本実施の形態では、高分子電解質23がエーテル基を含まない重合性化合物が重合された構造を有する高分子化合物を含有するようにしたので、イオンの移動を容易とすることができ、電解液と同等の高いイオン伝導率を得ることができる。よって、負極22がケイ素またはスズの単体および化合物からなる群のうちの少なくとも1種を含むようにしても、優れたサイクル特性を得ることができる。
【0086】
また、高分子化合物が、化12,化13および化14で表される各構造を有する重合性化合物が重合された構造を有するようにすれば、より高い効果を得ることができる。
【0087】
【実施例】
更に、本発明の具体的な実施例について、図面を参照して詳細に説明する。本実施例では、図3に示したいわゆる平型(あるいはペーパー型,カード型)の二次電池を作製した。この二次電池は、電解質用組成物を染み込ませた正極41と負極42とをセパレータ44を介して積層し、外装部材45に封入したのち、加熱することにより高分子電解質43を形成したものである。
【0088】
(実施例1〜16)
まず、正極41を次のようにして作製した。炭酸リチウム(Li2 CO3 )0.5molに対して炭酸コバルト(CoCO3 )1molの割合で混合し、空気中において900℃で5時間焼成することにより、正極活物質としてリチウムコバルト複合酸化物(LiCoO2 )を得た。次いで、得られたリチウムコバルト複合酸化物85質量部と、導電剤である黒鉛5質量部と、結着剤であるポリフッ化ビニリデン10質量部とを混合して正極合剤を調製し、さらにこれを分散媒であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーとした。続いて、この正極合剤スラリーを厚み20μmのアルミニウム箔よりなる正極集電体41Aに均一に塗布し、乾燥させたのち、ロールプレス機で圧縮成型して正極活物質層41Bを形成した。そののち、正極41に正極端子46を取り付けた。
【0089】
また、負極42を次のようにして作製した。実施例1,6,11,13,15では、まず、電子ビーム蒸着法により厚み18μmの電解銅箔よりなる負極集電体42Aにスズよりなる厚み3μmの層を形成したのち、真空度1×10-5Torr(約1.33×10-3Pa)にて200℃で24時間熱処理し、負極活物質層42Bを形成した。
【0090】
また、実施例2,7では、まず、表面を清浄にした圧延銅箔よりなる負極集電体42Aをスズ−ニッケル(Sn−Ni)合金鍍金浴中に浸漬して、負極集電体42Aをカソードとして通電することによりスズ−ニッケル合金よりなる厚み約3μmの層を析出させた。次いで、これを水洗して乾燥させた後、200℃で24時間熱処理することにより、負極活物質層42Bを形成した。
【0091】
更に、実施例3,8では、負極活物質の原料として、スズ粉末とコバルト粉末と亜鉛粉末とを用意し、スズ粉末とコバルト粉末と亜鉛粉末とを、スズ:コバルト:亜鉛=2.0:2.2:0.80の原子比で合計50gとなるように秤量したのち、遊星ボールミルを用いてアルゴン雰囲気下において40時間メカニカルアロイング処理を行い、スズ−コバルト−亜鉛(Sn−Co−Zn)合金である黒色粉末を得た。その際、粉砕メディアと原料との質量比は25:1とした。次いで、得られた黒色粉末を、篩いにかけ、粗大粒子を取り除き負極活物質とした。
【0092】
スズ−コバルト−亜鉛合金を作製したのち、このスズ−コバルト−亜鉛合金85質量%と、負極活物質および導電剤である針状人造黒鉛5質量%と、結着剤であるポリフッ化ビニリデン10質量%とを混合して負極合剤を調製し、さらにこれを分散媒であるN−メチル−2−ピロリドンに分散させて負極合剤スラリーとした。続いて、この負極合剤スラリーを厚み18μmの電解銅箔よりなる負極集電体42Aに塗布し、乾燥させたのち、ロールプレス機で圧縮成型して負極活物質層42Bを形成した。
【0093】
加えて、実施例4,9では、まず、負極活物質である平均粒径1μmのケイ素粉末90質量%と、結着剤であるポリフッ化ビニリデン10質量%とを混合して負極合剤を調製し、さらにこれを分散媒であるN−メチル−2−ピロリドンに分散させて負極合剤スラリーとした。続いて、この負極合剤スラリーを厚み18μmの電解銅箔よりなる負極集電体42Aに塗布し、乾燥させ加圧したのち、真空雰囲気下において400℃で12時間熱処理し、負極活物質層42Bを形成した。
【0094】
更にまた、実施例5,10,12,14,16では、電子ビーム蒸着法により厚み18μmの電解銅箔よりなる負極集電体42Aに非晶質ケイ素よりなる負極活物質層42Bを形成した。
【0095】
負極42を作製したのち、負極42に負極端子47を取り付けた。
【0096】
更に、電解液100質量部に対して、重合性化合物溶液を5質量部、パーオキシエステル系重合開始剤であるt−ブチルパーオキシネオデカノエートを0.1質量部の割合で混合し、電解質用組成物を作製した。その際、電解液には、エチレンカーボネートとジエチルカーボネートとをエチレンカーボネート:ジエチルカーボネート=3:7の質量比で混合した溶媒に1mol/lの割合で六フッ化リン酸リチウムを溶解させたものを用いた。
【0097】
また、重合性化合物には、実施例1〜5では、化35に示したトリメチロールプロパントリアクリレートと化36に示したネオペンチルグリコールジアクリレートとを、トリメチロールプロパントリアクリレート:ネオペンチルグリコールジアクリレート=2:8の質量比で混合したものを用い、実施例6〜10では、化37に示した3つの構造部をa:b:c=30:40:30のモル比で有する化合物を用い、実施例11,12では、化38に示した3つの構造部をa:b:c=30:60:10のモル比で有する化合物を用い、実施例13,14では、化39に示した3つの構造部をa:b:c=20:80:10のモル比で有する化合物を用い、実施例15,16では、化40に示した3つの構造部をa:b:c=10:60:20のモル比で有する化合物を用いた。
【0098】
【化35】
Figure 0003932511
【0099】
【化36】
Figure 0003932511
【0100】
【化37】
Figure 0003932511
【0101】
【化38】
Figure 0003932511
【0102】
【化39】
Figure 0003932511
【0103】
【化40】
Figure 0003932511
【0104】
次いで、作製した正極41および負極42に電解質用組成物を染み込ませたのち、厚み25μmの微孔性ポリエチレンフィルムよりなるセパレータ44を介して密着させ、外装部材45の内部に減圧下で封入した。外装部材45には最外層から順に25μm厚のナイロンフィルムと40μm厚のアルミニウム箔と30μm厚のポリプロピレンフィルムとが積層されてなる防湿性のアルミラミネートフィルムを用いた。そののち、これをガラス板に挟んで75℃で30分間加熱し、重合性化合物を重合させることにより電解質用組成物をゲル化させて高分子電解質43とした。これにより、図3に示した二次電池を得た。
【0105】
また、本実施例に対する比較例1として、重合性化合物として化41に示した化合物を用いたことを除き、他は実施例1と同様にして二次電池を作製した。更に、本実施例に対する比較例2として、スズ−コバルト−亜鉛合金に代えてグラファイトを用いたことを除き、他は実施例3と同様にして負極42を作製し、二次電池を作製した。また、本実施例に対する比較例3として、重合性化合物として化41に示した化合物を用いたことを除き、他は比較例2と同様にして二次電池を作製した。
【0106】
【化41】
Figure 0003932511
【0107】
得られた実施例1〜16および比較例1〜3の各二次電池に対して、23℃で100mAの定電流定電圧充電を上限4.2Vまで15時間行い、次に100mAの定電流放電を終止電圧2.5Vまで行い、初回放電容量を求めた。そののち、各二次電池に対して、23℃で500mAの定電流定電圧充電を上限4.2Vまで2時間行い、60℃にて5日間保存し、次に500mAの定電流放電を終止電圧2.5Vまで行うという充放電を50サイクル行い、500mA放電における1サイクル目の放電容量を100%としたときの50サイクル目の容量維持率を求めた。その結果を表1に示す。
【0108】
【表1】
Figure 0003932511
【0109】
表1に示したように、実施例1〜16によれば、比較例1よりも、初回容量および容量維持率の両方について高い値が得られ、特に、容量維持率については比較例1に比べて大きく向上させることができた。これに対して、比較例2,3では、初回容量および容量維持率の両方についてほとんど差がなかった。
【0110】
すなわち、負極42がケイ素またはスズの単体あるいは化合物を含む二次電池において、高分子電解質43がエーテル基を含まない重合性化合物が重合された構造を有する高分子化合物を含むようにすれば、大きな容量を得ることができ、かつサイクル特性を向上させることができることが分かった。
【0111】
なお、上記実施例では、電解液、重合性化合物およびパーオキシエステル系重合開始剤についていくつかの例を挙げて具体的に説明したが、エーテル基を含まない他の重合開始剤を用いても、同様の結果を得ることができる。
【0112】
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例では、高分子電解質23,43が、電解液と、エーテル基を含まない重合性化合物が重合された構造を有する高分子化合物とを含む場合について説明したが、これら以外の他の材料、添加剤などを含んでいてもよい。
【0113】
また、上記実施の形態および実施例では、電解質組成物を加熱して高分子電解質23,43を作製するようにしたが、加圧しつつ加熱するようにしてもよく、加熱したのち加圧するようにしてもよい。
【0114】
更に、上記実施の形態および実施例では、二次電池の構成について一例を挙げて説明したが、他の構成を有する電池についても適用することができる。例えば、上記実施の形態では巻回ラミネート型の二次電池、上記実施例では単層ラミネート型の二次電池について説明したが、積層ラミネート型についても同様に適用することができる。また、いわゆる円筒型、角型、コイン型、ボタン型などについても適用することができる。更に、二次電池に限らず、一次電池についても適用することができる。
【0115】
加えて、上記実施の形態および実施例では、電解質塩としてリチウム塩を用いる場合について説明したが、ナトリウム塩あるいはカリウム塩などの他のアルカリ金属塩、またはマグネシウム塩あるいはカルシウム塩などのアルカリ土類金属塩、またはアルミニウム塩などの他の軽金属塩を用いる場合についても本発明を適用することができる。その際、正極活物質、負極活物質および非水溶媒などは、その電解質塩に応じて選択される。
【0116】
【発明の効果】
以上説明したように請求項1ないし請求項10のいずれか1項に記載の電池よれば、高分子電解質が、アクリレート基あるいはメタクリレート基を有しかつエーテル基を含まない多官能重合性化合物が重合された構造を有する高分子化合物を含有するようにしたので、機械的強度および電解液保持性が向上すると共にイオンの移動容易となり、電解液と同等の高いイオン伝導率を得ることができる。さらに、その高分子化合物を外装部材の内部において重合するようにしたので、内部抵抗を抑えることができる。よって、負極がケイ素またはスズの単体および化合物からなる群のうちの少なくとも1種を含むので、優れたサイクル特性を得ることができる。
【0117】
特に、請求項記載の電池によれば、高分子化合物が、化1,化2,化3で表される各構造を有する重合性化合物が重合された構造を有するようにしたので、より高い効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る二次電池の構成を表す分解斜視図である。
【図2】図1に示した電池素子のI−I線に沿った断面図である。
【図3】本発明の実施例で作製した二次電池の構成を表す断面図である。
【符号の説明】
11,46…正極端子、12,47…負極端子、20…電池素子、21,41…正極、21A,41A…正極集電体、21B,41B…正極活物質層、22,42…負極、22A,42A…負極集電体、22B,42B…負極活物質層、23,43…高分子電解質、24,44…セパレータ、25…保護テープ、30A,30B,45…外装部材、31…密着フィルム。

Claims (10)

  1. 外装部材の内部に正極および負極と共に高分子電解質を収納した電池であって、
    前記負極は、ケイ素(Si)またはスズ(Sn)の単体および化合物からなる群のうちの少なくとも1種を含み、
    前記高分子電解質は、電解液と共に、アクリレート基あるいはメタクリレート基を有しかつエーテル基を含まない多官能重合性化合物が重合された構造を有する高分子化合物を含有し、
    前記高分子化合物は、前記外装部材の内部において重合されたものである
    ことを特徴とする電池。
  2. 前記高分子化合物は、2以上のアクリレート基あるいはメタクリレート基を有する多官能重合性化合物が重合された構造を有することを特徴とする請求項1記載の電池。
  3. 前記高分子電解質における前記電解液に対する前記高分子化合物の割合は、前記電解液100質量部に対して、前記高分子化合物が3質量部以上10質量部以下の範囲内であることを特徴とする請求項1記載の電池。
  4. 前記高分子化合物は、化1で表される構造と、化2で表される構造と、化3で表される構造とを有する重合性化合物が重合された構造を有することを特徴とする請求項1記載の電池。
    Figure 0003932511
    Figure 0003932511
    Figure 0003932511
    (化1ないし化3において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R1は炭素を含みエーテル基を含まない構造部を表し、R2およびR3はそれぞれ水素原子、あるいは炭素を含みエーテル基を含まない構造部を表す。)
  5. 前記重合性化合物における各構造のモル比は、化1で表される構造が0.1モル%以上98モル%以下の範囲内であり、化2で表される構造が0モル%以上98モル%以下の範囲内であり、化3で表される構造が0.1モル%以上98モル%以下の範囲内であることを特徴とする請求項4記載の電池。
  6. 前記高分子化合物は、化4で表される構造と、化5で表される構造と、化6で表される構造とを有する重合性化合物が重合された構造を有することを特徴とする請求項1記載の電池。
    Figure 0003932511
    Figure 0003932511
    Figure 0003932511
    (化4ないし化6において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R21は水素原子、炭素数10以下のアルキル基、あるいは芳香環を有する炭素数12以下の基を表し、R31は水素原子、炭素数10以下のアルキル基、芳香環を有する炭素数12以下の基、化7で表される基、あるいは化8で表される基を表す。)
    Figure 0003932511
    (化7において、R32は水素原子、フッ素原子、あるいはフッ化メチル(CF3 )基を表し、aは0以上6以下の整数、bは0以上16以下の整数、cは1または2、dは1または2である。)
    Figure 0003932511
    (化8において、R33は2価の連結基を表し、R34は環状カーボネート基を表す。)
  7. 前記高分子化合物は、化9で表される構造と、化10で表される構造と、化11で表される構造とを有する重合性化合物が重合された構造を有することを特徴とする請求項1記載の電池。
    Figure 0003932511
    Figure 0003932511
    Figure 0003932511
    (化9ないし化11において、X11,X12,X2およびX3はそれぞれ水素原子またはメチル基を表し、R22およびR35はそれぞれ炭素数6以下のアルキル基を表す。)
  8. 前記負極は、負極集電体と、この負極集電体に設けられ、負極集電体との界面の少なくとも一部において負極集電体と合金化している負極活物質層とを有することを特徴とする請求項1記載の電池。
  9. 前記負極は、負極集電体と、この負極集電体に気相法,液相法および焼結法からなる群のうちの少なくとも1つの方法により形成された負極活物質層とを有することを特徴とする請求項1記載の電池。
  10. 前記高分子化合物が前記重合性化合物を重合開始剤により重合した構造を有し、前記重合開始剤は、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、およびt−ブチルパーオキシアセテートからなる群のうちの少なくとも1種であることを特徴とする請求項1記載の電池。
JP2003105697A 2003-04-09 2003-04-09 電池 Expired - Fee Related JP3932511B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003105697A JP3932511B2 (ja) 2003-04-09 2003-04-09 電池
EP04008260A EP1467429A3 (en) 2003-04-09 2004-04-05 Battery
US10/818,798 US20040234864A1 (en) 2003-04-09 2004-04-06 Battery
KR1020040024026A KR101047270B1 (ko) 2003-04-09 2004-04-08 전지
CNB2004100477661A CN1332473C (zh) 2003-04-09 2004-04-09 电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105697A JP3932511B2 (ja) 2003-04-09 2003-04-09 電池

Publications (2)

Publication Number Publication Date
JP2004311306A JP2004311306A (ja) 2004-11-04
JP3932511B2 true JP3932511B2 (ja) 2007-06-20

Family

ID=32866752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105697A Expired - Fee Related JP3932511B2 (ja) 2003-04-09 2003-04-09 電池

Country Status (5)

Country Link
US (1) US20040234864A1 (ja)
EP (1) EP1467429A3 (ja)
JP (1) JP3932511B2 (ja)
KR (1) KR101047270B1 (ja)
CN (1) CN1332473C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019773B1 (ko) * 2007-08-09 2011-03-07 주식회사 엘지화학 비수 전해액 및 이를 포함하는 이차 전지

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118502A1 (en) * 2003-11-27 2005-06-02 Matsushita Electric Industrial Co., Ltd. Energy device and method for producing the same
JP4646612B2 (ja) * 2004-12-08 2011-03-09 パナソニック株式会社 非水電解質二次電池用負極およびその製造法ならびに非水電解質二次電池
JP5089028B2 (ja) * 2005-02-07 2012-12-05 三洋電機株式会社 ナトリウム二次電池
JP4439456B2 (ja) * 2005-03-24 2010-03-24 株式会社東芝 電池パック及び自動車
JP4193141B2 (ja) * 2005-03-25 2008-12-10 ソニー株式会社 リチウム二次電池用負極およびリチウム二次電池、並びにそれらの製造方法
JP5051408B2 (ja) * 2005-04-08 2012-10-17 ソニー株式会社 二次電池
JP5055710B2 (ja) * 2005-04-13 2012-10-24 ソニー株式会社 二次電池用電解液、二次電池および電子機器
JP2008059753A (ja) * 2005-08-31 2008-03-13 Sanyo Electric Co Ltd 非水電解質二次電池
GB2520946A (en) * 2013-12-03 2015-06-10 Nexeon Ltd Electrodes for Metal-Ion Batteries
JP6713452B2 (ja) 2015-03-17 2020-06-24 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2020009436A1 (ko) 2018-07-02 2020-01-09 주식회사 엘지화학 고온 특성이 향상된 리튬 이차전지
JPWO2020090695A1 (ja) * 2018-10-31 2021-09-30 東亞合成株式会社 二次電池電極用バインダー及びその利用
KR20230111514A (ko) * 2022-01-18 2023-07-25 삼성에스디아이 주식회사 겔 폴리머 전해질을 포함하는 리튬 이차 전지

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079343B2 (ja) * 1993-07-13 2000-08-21 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
US6013393A (en) * 1995-05-09 2000-01-11 Ricoh Company, Ltd. Ionic conductive polymer gel and lithium-ion battery using the same
JP3601200B2 (ja) * 1996-08-28 2004-12-15 ソニー株式会社 高分子電解質およびその製造方法
JPH10195271A (ja) * 1997-01-16 1998-07-28 Nitto Denko Corp ポリマー電解質
JP2948205B1 (ja) * 1998-05-25 1999-09-13 花王株式会社 二次電池用負極の製造方法
WO2000010213A1 (fr) * 1998-08-11 2000-02-24 Yuasa Corporation Batterie au lithium, electrolyte polymere, materiau electrolyte, ester di(meth)acrylique et polymere di(meth)acrylate
KR20000019372A (ko) 1998-09-10 2000-04-06 박호군 균질상의 고체고분자합금 전해질 및 그 제조방법과, 그 전해질을 이용한 복합전극, 리튬고분자전지, 리튬이온고분자전지 및그 제조방법
EP1052711A4 (en) 1998-12-02 2005-03-30 Matsushita Electric Ind Co Ltd SECONDARY CELL WITH NON-ACID ELECTROLYTES
US6699623B1 (en) * 2000-04-26 2004-03-02 E. I. Du Pont De Nemours And Company High performance lithium or lithium ion cell
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2002208311A (ja) * 2000-11-08 2002-07-26 Toyo Tire & Rubber Co Ltd ゲル状電解質形成組成物及びゲル状電解質
KR100369076B1 (ko) * 2001-01-05 2003-01-24 삼성에스디아이 주식회사 고분자 전해질 및 이를 구비하는 리튬 2차전지
KR100373731B1 (ko) * 2001-01-05 2003-02-25 삼성에스디아이 주식회사 리튬 2차 전지 및 그 제조방법
JP2002270156A (ja) 2001-03-08 2002-09-20 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
US6844113B2 (en) * 2001-04-13 2005-01-18 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and method for producing the same
KR100412092B1 (ko) * 2001-05-03 2003-12-24 삼성에스디아이 주식회사 고분자 전해질 및 이를 채용한 리튬 전지
JP2002359004A (ja) * 2001-05-30 2002-12-13 Hitachi Ltd リチウム二次電池およびその製造方法
JP4771626B2 (ja) * 2001-08-07 2011-09-14 日東電工株式会社 イオン伝導性接着性多孔質膜とそれを用いて得られる高分子ゲル電解質
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP4085986B2 (ja) * 2003-04-01 2008-05-14 ソニー株式会社 電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019773B1 (ko) * 2007-08-09 2011-03-07 주식회사 엘지화학 비수 전해액 및 이를 포함하는 이차 전지
US8524399B2 (en) 2007-08-09 2013-09-03 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same

Also Published As

Publication number Publication date
CN1610173A (zh) 2005-04-27
KR101047270B1 (ko) 2011-07-06
US20040234864A1 (en) 2004-11-25
JP2004311306A (ja) 2004-11-04
KR20040087944A (ko) 2004-10-15
EP1467429A2 (en) 2004-10-13
CN1332473C (zh) 2007-08-15
EP1467429A3 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP3713900B2 (ja) 負極材料及びこれを用いた非水電解液二次電池
JP3079343B2 (ja) 非水電解質二次電池及びその製造方法
JP3726958B2 (ja) 電池
JP4126715B2 (ja) 負極材料の製造方法および二次電池の製造方法
JP5051408B2 (ja) 二次電池
JP4085986B2 (ja) 電池
US20070202365A1 (en) Lithium secondary battery
US20070092797A1 (en) Anode, battery, and methods of manufacturing them
JP2010140901A (ja) リチウム二次電池用アノード活物質、その製造方法及びそれを備えたリチウム二次電池
JP3932511B2 (ja) 電池
JP2004362895A (ja) 負極材料およびそれを用いた電池
JP2007258127A (ja) 負極および電池
JP4140425B2 (ja) 二次電池
JPWO2006088002A1 (ja) 電解液および電池
JP3640227B2 (ja) 非水二次電池
JP2005293962A (ja) 電解質用組成物、高分子電解質およびそれを用いた電池
JP2003317705A (ja) 電 池
JP2005209377A (ja) 電池
JP5217083B2 (ja) リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP4381023B2 (ja) 二次電池
JP2005317447A (ja) 電池
JP4172443B2 (ja) 非水電解液二次電池用負極材料及び非水電解液二次電池
JP2023543242A (ja) リチウム二次電池の製造方法及びこれにより製造されたリチウム二次電池
CN113784916A (zh) 制备负极活性材料的方法
KR20080070492A (ko) 복합체 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees