JP3905074B2 - 微量流体制御機構及び該機構を有するマイクロチップ - Google Patents
微量流体制御機構及び該機構を有するマイクロチップ Download PDFInfo
- Publication number
- JP3905074B2 JP3905074B2 JP2003374046A JP2003374046A JP3905074B2 JP 3905074 B2 JP3905074 B2 JP 3905074B2 JP 2003374046 A JP2003374046 A JP 2003374046A JP 2003374046 A JP2003374046 A JP 2003374046A JP 3905074 B2 JP3905074 B2 JP 3905074B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- control mechanism
- microfluidic control
- partition wall
- microchip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
本発明はマイクロチップなどに形成された微細流路(マイクロチャネル)内における流体の移送を制御するための空気抜き弁や逆止弁として機能するマイクロバルブに関する。
最近、マイクロスケール・トータル・アナリシス・システムズ(μTAS)又はラブ・オン・チップ(Lab-on-Chip)などの名称で知られるように、基板内に所定の形状の流路を構成するマイクロチャネル及びポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出、生成及び/又は分析など各種の操作を行うことが提案され、一部実用化されている。このような目的のために製作された、基板内にマイクロチャネル及びポートなどの微細構造を有する構造物は総称して「マイクロチップ」と呼ばれる。(マイクロチップはマイクロ流体デバイスと呼ばれることもある。)
マイクロチップは遺伝子解析、臨床診断、薬物スクリーニング及び環境モニタリングなどの幅広い用途に使用できる。常用サイズの同種の装置に比べて、マイクロチップは(1)サンプル及び試薬の使用量が著しく少ない、(2)分析時間が短い、(3)感度が高い、(4)現場に携帯し、その場で分析できる、及び(5)使い捨てできるなどの利点を有する。
従来のマイクロチップ100は、例えば、図13に示されるように、合成樹脂(例えば、ポリジメチルシロキサン又はアクリル樹脂)などの基板102に少なくとも1本のマイクロチャネル104が形成されており、このマイクロチャネル104の少なくとも一端には入出力ポートとなるべきウェル又はポート105,106が形成されており、基板102の下面側に透明又は不透明な素材(例えば、ガラス又は合成樹脂フィルム)からなる対面基板108が接着されている。この対面基板108の存在により、ウェル106及びマイクロチャネル104の底部が封止される。マイクロチップの材質や構造及び製造方法は例えば、特許文献1及び特許文献2などに提案されている。
このようなマイクロチップには連続的な流体(例えば、液体又は気体)の流れや、微小な液滴の移送を制御する目的で、マイクロチャネルの途中にマイクロバルブに代表される各種の微量流体制御機構(マイクロ流体制御素子と呼ばれることもある)が配設されることがある。このようなマイクロバルブ又は微量流体制御機構は、空気抜き弁や逆止弁又は開閉弁として機能することができる。
空気抜き弁として機能する微量流体制御機構は例えば、特許文献3に記載されている。特許文献3に記載されている微量流体制御機構は、液体を移動させるべき主流路(マイクロチャネル)に対して疎液性の細管を接続し、細管を通して主流路内に気体を送るか又は主流路内の気体を吸引し、主流路内の気体の圧力を正又は負に変化させることにより液体を押し引きし、目的の液体の移動を達成しようとするものである。特許文献3に記載されている疎液性の細管は、細管内壁が液体をはじく性質を有し、或る程度の圧力を掛けても液体は細管内に入り込まない。そのため、気体の吸引を行うと、液体は細管入口近傍まで移動するが、それ以上移動することなく、その場に留まる。これは一種の空気抜き弁としての機能を果たしているものと見ることも出来る。
しかし、特許文献3の細管による微量流体制御機構は次のような問題点を有する。
(1)微細な細管の成形が困難である。
主流路形状が矩形断面を有するとすると、その幅は約50μmから500μm、高さは約10μmから100μm程度が一般的である。一方、液体を通さないように形成する細管は、主流路よりずっと小さく、幅、高さ共に数μm以下とする必要がある。よって、微細形成の観点からして、主流路の形成に必要とするよりも一層高度で高価な流路成形方法を採用しなければならない。例えば、リソグラフィーを用いて微細成形を行う場合、フィルムマスクでは不可能で、高価なガラスマスクが必要となる。
(2)チャネル高さを一定にできず、マイクロチップ製作が困難である。
一般にマイクロチップは、微細なチャネル(溝)を形成した基板と、平面を持つ基板とを貼り合わせた構造である。マイクロチップ等の微細なチャネルを形成する場合、同一高さのチャネルは形成しやすいが、段差の有るチャネルの製作は一層困難となる。場合により、主流路と細管を別の基板に形成する等の手段を講じる必要がある。その場合、基板製作の手間が倍加し、更に2枚の基板を精度良く貼り合わせる等、マイクロチップ製作が困難となる。
(3)細管部のみを疎液性に形成するのが困難である。
主流路は当然ながら親液性が好ましいが、細管部は疎液性とする必要がある。微細な構造において部分的な親液性/疎液性の作り分けは困難である。
(4)塵埃の詰まりが発生する。
細管を通して吸引した場合、液体に塵埃が混入していると、細管入口に詰まり、細管が機能しなくなる危険がある。主通路では詰まりを発生しないような微細な塵埃でも、細管では問題となってくることがある。
(5)液体中の空気を脱気する、すなわち空気抜きとして使用する場合、細管を多数、並列に接続する必要がある。
細管を通して除去される液体内の気体は、細管入口近傍にあるものだけである。広範囲にわたって液体内の気体を除去するには、その範囲の全てに細管を接続する必要がある。
(1)微細な細管の成形が困難である。
主流路形状が矩形断面を有するとすると、その幅は約50μmから500μm、高さは約10μmから100μm程度が一般的である。一方、液体を通さないように形成する細管は、主流路よりずっと小さく、幅、高さ共に数μm以下とする必要がある。よって、微細形成の観点からして、主流路の形成に必要とするよりも一層高度で高価な流路成形方法を採用しなければならない。例えば、リソグラフィーを用いて微細成形を行う場合、フィルムマスクでは不可能で、高価なガラスマスクが必要となる。
(2)チャネル高さを一定にできず、マイクロチップ製作が困難である。
一般にマイクロチップは、微細なチャネル(溝)を形成した基板と、平面を持つ基板とを貼り合わせた構造である。マイクロチップ等の微細なチャネルを形成する場合、同一高さのチャネルは形成しやすいが、段差の有るチャネルの製作は一層困難となる。場合により、主流路と細管を別の基板に形成する等の手段を講じる必要がある。その場合、基板製作の手間が倍加し、更に2枚の基板を精度良く貼り合わせる等、マイクロチップ製作が困難となる。
(3)細管部のみを疎液性に形成するのが困難である。
主流路は当然ながら親液性が好ましいが、細管部は疎液性とする必要がある。微細な構造において部分的な親液性/疎液性の作り分けは困難である。
(4)塵埃の詰まりが発生する。
細管を通して吸引した場合、液体に塵埃が混入していると、細管入口に詰まり、細管が機能しなくなる危険がある。主通路では詰まりを発生しないような微細な塵埃でも、細管では問題となってくることがある。
(5)液体中の空気を脱気する、すなわち空気抜きとして使用する場合、細管を多数、並列に接続する必要がある。
細管を通して除去される液体内の気体は、細管入口近傍にあるものだけである。広範囲にわたって液体内の気体を除去するには、その範囲の全てに細管を接続する必要がある。
逆止弁として機能する微量流体制御機構は例えば、非特許文献1の494頁〜495頁のFig.5に記載されている。非特許文献1に記載された「ディフューザ」型の逆止弁は平面的に構成できるが、弁を閉じる性能が落ちる。すなわち、完全に閉止することができない。また、膜を用いた方式は、立体構造(多層構造)とする必要があり、製作が困難である。更に、片持ち梁型の逆止弁はシリコンを積層させるバルクエッチングにより作製されるが、構造が複雑であり、製作は容易ではない。
従って、本発明の目的は、容易に製作でき、空気抜き弁や逆止弁として機能する有用な微量流体制御機構及び該機構を有するマイクロチップを提供することである。
前記課題を解決するための手段として、請求項1に係る発明の特徴は、微量流体制御機構において、所定の容積を有する圧力室と、該圧力室の内部に延びる第1のマイクロチャネルと、該圧力室の周縁部に連通する第2のマイクロチャネルとを有し、前記圧力室内の第1のマイクロチャネルの周囲が気体透過性の隔壁により仕切られていることである。
前記課題を解決するための手段として、請求項2に係る発明の特徴は、圧力室が円形であり、隔壁の形状が、延長された直線状、略ヨ字形、略*字形又は部分的に壁厚が異なる形状であることである。
前記課題を解決するための手段として、請求項3に係る発明の特徴は、前記隔壁がポリジメチルシロキサン(PDMS)から形成されていることである。
前記課題を解決するための手段として、請求項4に係る発明の特徴は、第1の基板と、この第1の基板の一方の面に貼り合わされる対面基板とからなるマイクロチップにおいて、前記第1の基板の貼り合わせ面側に前記微量流体制御機構が設けられており、前記第1の基板がポリジメチルシロキサン(PDMS)から形成されていることである。
前記課題を解決するための手段として、請求項5に係る発明の特徴は、前記隔壁の下面が下部の対面基板に接着していないことである。
前記課題を解決するための手段として、請求項6に係る発明の特徴は、前記圧力室が矩形であり、該矩形圧力室の周囲が下部の対面基板に対して接着しておらず、かつ、前記隔壁の下面が下部の対面基板に接着していないことである。
前記課題を解決するための手段として、請求項7に係る発明の特徴は、対面基板がガラスであることである。
前記課題を解決するための手段として、請求項8に係る発明の特徴は、微量流体制御機構が空気抜き弁又は逆止弁として機能することである。
前記課題を解決するための手段として、請求項9に係る発明の特徴は、マイクロチップの製造方法において、(1)ポリジメチルシロキサン(PDMS)からなる第1の基板の一方の面に請求項1乃至3の何れかに記載の微量流体制御機構を形成するステップと、
(2)前記第1の基板の微量流体制御機構の所望の箇所にマスクを載置するステップと、
(3)前記マスクの上面から酸素プラズマ又は真空紫外光を照射して前記第1の基板の微量流体制御機構形成面側を表面改質することにより該マスク載置部分を非接着部として形成するステップと、
(4)前記マスクを除去するステップと、
(5)前記第1の基板の微量流体制御機構形成面側に対面基板を貼り合わせるステップとからなることである。
(2)前記第1の基板の微量流体制御機構の所望の箇所にマスクを載置するステップと、
(3)前記マスクの上面から酸素プラズマ又は真空紫外光を照射して前記第1の基板の微量流体制御機構形成面側を表面改質することにより該マスク載置部分を非接着部として形成するステップと、
(4)前記マスクを除去するステップと、
(5)前記第1の基板の微量流体制御機構形成面側に対面基板を貼り合わせるステップとからなることである。
本発明の微量流体制御機構は次のような効果を有する。
(1)液体を移送させる主流路と同程度のスケールの構造であり、主流路とは異なる特殊な微細成形を必要としない。
(2)主流路と同じチャネル高さで形成でき、多層構造などにする必要性が無い。
(3)主流路とそれ以外の隔壁や圧力室は、同一の面性状でよく、部分的に疎液性にする必要性が無い。
(4)主流路に対して微細な部分が無く、塵埃や異物などの詰まりが発生し難い。
(5)空気抜き弁として優れている。すなわち、隔壁近傍の液体からは、どこからでも気泡を除くことができ、また、隔壁を延長することで、気泡を除く範囲を容易に拡張することができる。
(6)逆止弁としても機能する。特に平面的に構成できるので、製作が非常に容易である。
(1)液体を移送させる主流路と同程度のスケールの構造であり、主流路とは異なる特殊な微細成形を必要としない。
(2)主流路と同じチャネル高さで形成でき、多層構造などにする必要性が無い。
(3)主流路とそれ以外の隔壁や圧力室は、同一の面性状でよく、部分的に疎液性にする必要性が無い。
(4)主流路に対して微細な部分が無く、塵埃や異物などの詰まりが発生し難い。
(5)空気抜き弁として優れている。すなわち、隔壁近傍の液体からは、どこからでも気泡を除くことができ、また、隔壁を延長することで、気泡を除く範囲を容易に拡張することができる。
(6)逆止弁としても機能する。特に平面的に構成できるので、製作が非常に容易である。
以下、図面を参照しながら本発明の微量流体制御機構の好ましい実施態様について具体的に説明する。
図1は本発明の微量流体制御機構の或る実施態様の概要平面図である。本発明の微量流体制御機構は空気抜き弁又は逆止弁として機能することができるので、“マイクロバルブ”と呼ぶことも出来る。本発明の微量流体制御機構1は第1のマイクロチャネル3と第2のマイクロチャネル5との間に隔壁7を有する。隔壁7の周囲は所定の容積を有する圧力室9が存在する。本発明で重要なことは、隔壁7が気体透過性を有することである。例えば、本発明の微量流体制御機構1をポリジメチルシロキサン(PDMS)からなる基板内に形成すると、隔壁7を通して気体を透過させることができる。圧力室9は正圧又は負圧を隔壁7に掛けたり、隔壁7を透過した気体を第2のマイクロチャネル5に逃がしたりするために存在する。
図2は、図1の微量流体制御機構1が空気抜き弁として機能することを説明する概念説明図である。図1の微量流体制御機構1において、第2のマイクロチャネル5を負圧に吸引すると、第1のマイクロチャネル3内の空気が隔壁7を透過して第2のマイクロチャネル5に流れる。従って、第1のマイクロチャネル3の他端(図示されていない)から液体11を注入すると、液体11は隔壁7に接する第1のマイクロチャネル3の終端に向かって流れる。そして、液体11が第1のマイクロチャネル3の終端に達すると流れは停止する。
一般的に、高分子膜の気体透過性に関しては下記の近似式が成り立つ。
Q=D・ΔP・S/L
{式中、Qは気体透過量(m3/s)であり、Dは比例係数(m3・s/kg)であり、ΔPは膜前後の差圧(Pa)であり、Sは膜の表面積であり、Lは膜厚(m)である。}
本発明に当てはめると、隔壁7を透過して流れる気体の流量、すなわち第1の流路3に引き込まれて流れる液体の流量は、隔壁前後の差圧ΔPと隔壁の面積Sに比例し、隔壁の厚さLに反比例する。本発明者らの実験では、PDMSの場合、比例計数Dは約2〜3x10−15(m3・s/kg)と計測された。これを本発明に当てはめると、隔壁7を透過して流れる気体の流量を増大させるには、(1)隔壁7前後の差圧を大きくする、(2)隔壁7の面積を大きくする、及び(3)隔壁7の厚さを薄くすればよい。
Q=D・ΔP・S/L
{式中、Qは気体透過量(m3/s)であり、Dは比例係数(m3・s/kg)であり、ΔPは膜前後の差圧(Pa)であり、Sは膜の表面積であり、Lは膜厚(m)である。}
本発明に当てはめると、隔壁7を透過して流れる気体の流量、すなわち第1の流路3に引き込まれて流れる液体の流量は、隔壁前後の差圧ΔPと隔壁の面積Sに比例し、隔壁の厚さLに反比例する。本発明者らの実験では、PDMSの場合、比例計数Dは約2〜3x10−15(m3・s/kg)と計測された。これを本発明に当てはめると、隔壁7を透過して流れる気体の流量を増大させるには、(1)隔壁7前後の差圧を大きくする、(2)隔壁7の面積を大きくする、及び(3)隔壁7の厚さを薄くすればよい。
図3は、図1におけるIII-III線に沿った断面図である。微量流体制御機構1はPDMS基板13内に形成されており、PDMS基板13は、対面基板15に貼り合わされて、マイクロチップ10を形成している。PDMS基板13は前記のように気体透過性を有すると共に、適度な弾力性を有するので特に好ましい。対面基板15はPDMS基板13に対して機械的な強度を有するものが好ましい。対面基板15はガラス又はPDMSなどから構成することができるが、機械的な強度の点でガラスが好ましい。特に、ガラスはPDMSと接着剤無しで恒久接着(パーマネント・ボンディング)するので対面基板15として最適である。前記のように、気体透過量を増大させるには、隔壁7の厚さを薄くすればよいのであるが、隔壁7の厚さをあまり薄くし過ぎると、PDMS基板13のモールディング成形において型から離型する際に、隔壁7が破損する危険性が高まる。PDMS基板13の離型の際の隔壁7の破損を避けるために、マイクロチャネルの高さをHとすると、隔壁7の厚さLは、L≧1/2Hの関係を満たすことが好ましい。例えば、マイクロチャネルの高さHが30μmの場合、隔壁7の厚さLは15μm以上であることが好ましい。隔壁7の厚さの上限値は100μm程度である。これ以上の厚さになると気体が隔壁7を透過することが困難になる。
図4(A)は本発明の微量流体制御機構の別の実施態様の概要平面図である。図1の微量流体制御機構1では圧力室9が矩形であったが、図4(A)に示された微量流体制御機構1Aの圧力室9は円形である。第1のマイクロチャネル3の終端は円形圧力室9のほぼ中心付近に位置する。圧力室9が円形の場合、隔壁7への圧力印加が均等になるという利点の他、PDMS基板13の離型がスムーズになるという利点もある。円形以外の形状、例えば、楕円形、台形、多角形などの様々な形状の圧力室9も使用できる。
図4(B)は本発明の微量流体制御機構の更に別の実施態様の概要平面図である。この微量流体制御機構1Bでは、気体透過量を増大させるために隔壁7を延長させ、その面積を大きくしている。隔壁7の延長部分17は第1のマイクロチャネル3と並列に延長されている。この隔壁延長部分17を通して透過される気体を第2のマイクロチャネル5に逃がすために、圧力室9も延長されている。液体内に含まれる気泡など余分な気体を取り除くには、液体が隔壁7に接する必要がある。図4(B)に示されるように、圧力室9を第1のマイクロチャネル3に沿って必要なだけ延長し、第1のマイクロチャネル3の隔壁7を拡張することにより、広範囲に余分な気体の除去が行える。
図4(C)は本発明の微量流体制御機構の更に別の実施態様の概要平面図である。この微量流体制御機構1Cでは、第1のマイクロチャネル3の終端流路を3本に分割し、それにより隔壁7をヨ字形に成形し、総延長距離を長くしている。前記のように、気体透過量は隔壁7の面積に比例するので、隔壁7の長さにも比例して気体透過量が増加する。図では、前記のような1本のチャネルに対し、ほぼ同じ長さのチャネルを3本有しているので、流量もほぼ3倍になる。言うまでもなく、終端流路を3本よりも多い本数に分割することもできる。
図4(D)は本発明の微量流体制御機構の更に別の実施態様の概要平面図である。この微量流体制御機構1Dでは、圧力室9内で、第1のマイクロチャネル3の終端流路を放射状に分割して多数配置して隔壁7の長さ(すなわち面積)を増加させている。この様に、隔壁7を長くして面積を増大させることにより気体透過量を増加させる場合、チャネル内に内容積の増加を回避するために、チャネルの幅を細く形成するなどの手段を講じることが好ましい。チャネルの幅を細くしないと、液体のデッドボリュームが増大し、不経済となる。
図4(E)は本発明の微量流体制御機構の更に別の実施態様の概要平面図である。この微量流体制御機構1Eでは、隔壁7の厚さを部分的に変化させている。前記のように、気体透過量は隔壁7の厚さに反比例する。従って、隔壁7の厚さを薄く形成する方が気体透過量を増加させることが出来る。一方、隔壁前後の差圧に耐えるためには、或る程度の厚みを要する。そこで、隔壁7を一様に薄くするのではなく、図4(E)に示すように、厚い部分と薄い部分を交互に設けることにより、気体の透過性が高く、かつ、大きな差圧に耐えられる構造とすることができる。
図3を参照する。PDMS基板13はガラス基板15に貼り合わされている。PDMS基板はガラス基板と、接着剤を使用しない恒久接着(パーマネント・ボンディング)を行うことが出来る。従って、隔壁7もガラス基板15に対してパーマネント・ボンディングしていることとなる。このため、図2に示されるように、液体11が第1のマイクロチャネル3の終端に達すると流れは停止するが、その後、第2のマイクロチャネル5を正圧に加圧しても、液体を押し戻すことはできない。それは、隔壁7が有する微細な気孔が液体分子により塞がれてしまうためと考えられる。従って、隔壁7がガラス基板15に対してパーマネント・ボンディングしている場合、本発明の微量流体制御機構1は空気抜き弁としては1回しか使用できない。
恒久接着を行うには、その前処理としてPDMS基板13の接着面を表面改質する必要がある。表面改質の方法としては反応性イオンエッチング(RIE)装置やプラズマクリーナーと呼ばれる装置により、酸素プラズマ処理を行うのが一般的である。あるいは、近年利用されるようになった真空紫外光(エキシマUV光等)を酸素を含む雰囲気中で照射する方法も提案されている。恒久接着のメカニズム自体は未だ完全に解明されていないが、酸素プラズマ処理等によりPDMS表面のSi原子にOH基が形成され、それが接着に寄与していると考えられる。従って、この理論を逆読みすれば、酸素プラズマ処理等がされていないPDMS基板面はガラス基板と恒久接着しないこととなる。
そこで、図5に示されるように、PDMS基板13の非接着部の形状に合わせたマスク部材19を用意する。例えば、酸素プラズマ処理又はエキシマUV光照射処理を行う前に、PDMS基板13内に形成された圧力室9内の隔壁7を非接着部とするため、この圧力室9の上部にマスク部材19を載置する。そして、このマスク部材19の上部から酸素プラズマ又はエキシマUV光の照射を行う。照射されたPDMS部分は表面改質されたことにより恒久接着可能になるのに対して、非照射部分は表面改質されないのでガラス基板と貼り合わせても恒久接着は不可能であり、図6に示されるように、圧力室9内の隔壁7の下面(図中のハッチング部分)は非接着部となる。
隔壁7が非接着部として形成されると、本発明の微量流体制御機構を空気抜き弁及び逆止弁の両方の目的に使用できるようになる。また、隔壁7が非接着部として形成されると、本発明の微量流体制御機構を何度でも空気抜き弁として使用することができる。例えば、図7(A)に示されるように、第1のマイクロチャネル3の他端(閉じていない方)より液体11を流す場合を想定する。第1のマイクロチャネル3の流路内をほぼ大気圧の状態にし、第2のマイクロチャネル5の他端(圧力室9とは反対方向)より圧力室9が負圧となるように気体(空気)を吸引する。すると、第1のマイクロチャネル3内の気体は、隔壁7とガラス基板15との接触面や、又はPDMS基板13が有する気体透過性により隔壁7自体を透過して圧力室9に流れ、その結果、液体11は第1にマイクロチャネル3の終端へと流れる。液体11が第1のマイクロチャネル3の終端に到達すると、そこで流れは停止する。この時、圧力室9はマイクロチップ10外部の圧力(大気圧)より負圧になっているので、PDMS基板13が有する弾性により、隔壁7はガラス基板15に押し付けられる。すなわち、隔壁7とガラス基板15との間はシールされ、その接触面を通して液体11が圧力室9に流れ込むことはない。隔壁7がガラス基板15側に押し付けられる力は、負圧が強力になればなるほど大きくなり、自ら閉じる弁として機能する。
前記とは逆に、図7(B)に示されるように、第2のマイクロチャネル5を介して圧力室9に気体を供給し、圧力室9内を正圧にする。すると、圧力室9全体は厚み方向(すなわち、上方)へ向かって膨大する。その結果、隔壁7はガラス基板15から離れる。その間隙を通して気体は第1のマイクロチャネル3に流れ込み、第1のマイクロチャネル3内の液体11を押し戻すことができる。すなわち、隔壁7は吸引時に気体を透過する機能を果たすだけでなく、圧力室9内の圧力により隔壁7が上下することで、隔壁7の下を通過する気体や液体を流したり、止めたりすることができる弁として機能する。
本発明の微量流体制御機構は空気抜き弁として優れた特徴を有する。例えば、図8に示すように、第1のマイクロチャネル3内の液体11が僅かに混入した気体21により複数の液滴に分断されていたり、あるいは液体内に小さな気泡がある場合、それらの余分な気体を取り除くことができる。すなわち、液体11が流れてくる時の先頭部分の気泡21だけでなく、図8における矢線23で示される範囲のように液体11が隔壁7近傍に接していさえすれば、その液体11内の気泡を取り除くことができる。その時、必ずしも気泡自体が隔壁7に接する必要はない。マイクロチャネルでは気泡が自然と隔壁7に吸い寄せられる。また、この空気抜き機能を別の観点で捕らえると、気泡21で分離されている2個以上の液滴を、その間にある気泡21を取り除くことにより、合一し混合させることができ、その結果、その場で化学反応などを起こさせ、所望の生成物などを得ることができる。その生成物は、図7(B)に示すように第1のマイクロチャネル3から押し戻すことによりマイクロチップ外に取り出すことができる。
図9は本発明の微量流体制御機構が逆止弁として動作することを説明する模式図である。第2のマイクロチャネル5側から液体11をポンプ等で圧送すると、隔壁7による弁は開き、液体11は第1のマイクロチャネル3内へ流れ込む。その逆に、液体11を第2のマイクロチャネル5側からポンプ等で吸引すると、隔壁7による弁は閉じて液体11は流れない。すなわち、逆止弁として動作させることができる。
図9に示されるような圧力室9は容積が比較的大きいので、圧送される液体が圧力室9内に残留し、デッドボリュームが大きくなり不経済となる。この欠点を解決するため、例えば、図10に示されるように、圧力室9の周辺に非接着部25(図中の半月状のハッチング部分)を設ける。この圧力室9は図1に示される微量流体制御機構1と同じものである。隔壁7の下面(図中の矩形状のハッチング部分)も非接着部として形成されている。この構造の利点は次の通りである。
(1)逆止弁としての使用時、圧力室9にも液体が流れるため、圧力室9の内容積を減らすことで不用なデッドボリュームを軽減できる。
(2)逆止弁としての使用時、順方向に液体を流すと、圧力室9の一部に液体が流れない場所ができ、残った気体が送液中の液体に時々混合されることがあるが、この気体混入を軽減することができる。
(3)空気抜き弁として使用する時など、圧力室9を負圧に保持すると、隔壁7をガラス基板15に押し付けるだけでなく、隔壁7や第1のマイクロチャネル3が圧潰される方向に変形する。この変形により第1のマイクロチャネル3の容積が変化し、それが不用なポンピング現象を起こすことがあるが、圧力室9を小さくすることにより隔壁7や第1のマイクロチャネル3の変形が軽減され、ポンピング現象の発生を抑制することができる。
(1)逆止弁としての使用時、圧力室9にも液体が流れるため、圧力室9の内容積を減らすことで不用なデッドボリュームを軽減できる。
(2)逆止弁としての使用時、順方向に液体を流すと、圧力室9の一部に液体が流れない場所ができ、残った気体が送液中の液体に時々混合されることがあるが、この気体混入を軽減することができる。
(3)空気抜き弁として使用する時など、圧力室9を負圧に保持すると、隔壁7をガラス基板15に押し付けるだけでなく、隔壁7や第1のマイクロチャネル3が圧潰される方向に変形する。この変形により第1のマイクロチャネル3の容積が変化し、それが不用なポンピング現象を起こすことがあるが、圧力室9を小さくすることにより隔壁7や第1のマイクロチャネル3の変形が軽減され、ポンピング現象の発生を抑制することができる。
図11は本発明の微量流体制御機構を有するマイクロチップの一例の概要構成図である。図11に示されたマイクロチップ10Aは液体分注ポート27に注入された液体より一定量の液体を分取する目的に使用できる。言うまでもなく、その他の目的にも使用できる。先ず、液体分注ポート27にピペット(図示されていない)等により液体を注入して満たす。次に、開閉弁29を開き、空圧ポート31に接続したエアポンプ(図示されていない)により負圧に吸引する。すると、液体分注ポート27内の液体は開閉弁29を通り、第1のマイクロチャネル3の途中にある液溜まり33を満たし、第1のマイクロバルブ35まで達して流れを停止する。この時、第2のマイクロバルブ37は逆止弁として働き、第2のマイクロバルブ37の弁は閉じられた状態となっている。次に、開閉弁29を閉じ、空圧ポート31から今度は正圧の空気を送る。すると、第2のマイクロバルブ37の弁は開き、液溜まり33の液体は第2のマイクロバルブ37を通過し、他の流路へと移動する。以上のように、途中のマイクロチャネルの容積を無視すれば、ほぼ液溜まり33の容積に相当する液量を、液体分注ポート27に入れられた液体から分取することができる。
以下、実施例により本発明の微量流体制御機構を具体的に例証する。
図12に示す寸法を有する本発明の微量流体制御機構(マイクロバルブ)を製作した。図12に示す微量流体制御機構(マイクロバルブ)は厚さ2mmのPDMS基板内に特開2001ー157855号公報に記載された公知の方法に従って形成した。圧力室9の部分にマスクを施してから、酸素プラズマ放射処理を行いPDMS基板を表面改質した。このPDMS基板を厚さ1mmのガラス板に貼り合わせた。図示されていないが、第2のマイクロチャネル5の他端には空圧ポート31(図11参照)が、また、第1のマイクロチャネル3の他端には液体分注ポート27(図11参照)が配設されている。空圧ポート31にはエアポンプが接続されており、液体分注ポート27にピペットから水を注入した。
負圧として−50KPaで第2のマイクロチャネル5から吸引し、第1のマイクロチャネル3に流れ込む水の流速を測定した。結果は、流量として約5x10−13m3/秒(0.03μL/分)であった。
次に、一旦第1のマイクロチャネルに満たされた水を押し戻すべく、第2のマイクロチャネル5の圧力を徐々に上げたところ、約3KPaで第1のマイクロチャネル3内の水が押し戻された。
図12に示す寸法を有する本発明の微量流体制御機構(マイクロバルブ)を製作した。図12に示す微量流体制御機構(マイクロバルブ)は厚さ2mmのPDMS基板内に特開2001ー157855号公報に記載された公知の方法に従って形成した。圧力室9の部分にマスクを施してから、酸素プラズマ放射処理を行いPDMS基板を表面改質した。このPDMS基板を厚さ1mmのガラス板に貼り合わせた。図示されていないが、第2のマイクロチャネル5の他端には空圧ポート31(図11参照)が、また、第1のマイクロチャネル3の他端には液体分注ポート27(図11参照)が配設されている。空圧ポート31にはエアポンプが接続されており、液体分注ポート27にピペットから水を注入した。
負圧として−50KPaで第2のマイクロチャネル5から吸引し、第1のマイクロチャネル3に流れ込む水の流速を測定した。結果は、流量として約5x10−13m3/秒(0.03μL/分)であった。
次に、一旦第1のマイクロチャネルに満たされた水を押し戻すべく、第2のマイクロチャネル5の圧力を徐々に上げたところ、約3KPaで第1のマイクロチャネル3内の水が押し戻された。
本発明の微量流体制御機構はマイクロチップ内で空気抜き弁及び逆止弁として機能することができ、このような微量流体制御機構を有するマイクロチップは極微量分析の分野で広範多岐にわたって使用することができる。また、気体透過性と弾力性を有する素材であればPDMSの代わりに使用することができる。更に、ガラス以外の素材であって、第1の基板と部分的に恒久接着できる素材は対面基板として使用することができる。
1 微量流体制御機構
3 第1のマイクロチャネル
5 第2のマイクロチャネル
7 隔壁
9 圧力室
10、10A マイクロチップ
11 液体
13 PDMS基板
15 ガラス基板
17 隔壁延長部
19 マスク
21 気泡
25 非接着部
27 液体分注ポート
29 開閉弁
31 空圧ポート
33 液溜まり
35 第1のマイクロバルブ
37 第2のマイクロバルブ
3 第1のマイクロチャネル
5 第2のマイクロチャネル
7 隔壁
9 圧力室
10、10A マイクロチップ
11 液体
13 PDMS基板
15 ガラス基板
17 隔壁延長部
19 マスク
21 気泡
25 非接着部
27 液体分注ポート
29 開閉弁
31 空圧ポート
33 液溜まり
35 第1のマイクロバルブ
37 第2のマイクロバルブ
Claims (9)
- 所定の容積を有する圧力室と、該圧力室の内部に延びる第1のマイクロチャネルと、該圧力室の周縁部に連通する第2のマイクロチャネルとを有し、前記圧力室内の第1のマイクロチャネルの周囲が気体透過性の隔壁により仕切られていることを特徴とする微量流体制御機構。
- 圧力室が円形であり、隔壁の形状が、延長された直線状、略ヨ字形、略*字形又は部分的に壁厚が異なる形状であることを特徴とする請求項1に記載の微量流体制御機構。
- 前記隔壁がポリジメチルシロキサン(PDMS)から形成されていることを特徴とする請求項1又は2に記載の微量流体制御機構。
- 第1の基板と、この第1の基板の一方の面に貼り合わされる対面基板とからなるマイクロチップにおいて、前記第1の基板の貼り合わせ面側に請求項1乃至3の何れかに記載の微量流体制御機構が設けられており、前記第1の基板がポリジメチルシロキサン(PDMS)から形成されていることを特徴とするマイクロチップ。
- 前記隔壁の下面が下部の対面基板に接着していないことを特徴とする請求項4に記載のマイクロチップ。
- 前記圧力室が矩形であり、該矩形圧力室の周囲が下部の対面基板に対して接着しておらず、かつ、前記隔壁の下面が下部の対面基板に接着していないことを特徴とする請求項4に記載のマイクロチップ。
- 前記対面基板がガラスであることを特徴とする請求項4乃至6の何れかに記載のマイクロチップ。
- 前記微量流体制御機構が空気抜き弁又は逆止弁として機能することを特徴とする請求項4乃至7に記載のマイクロチップ。
- (1)ポリジメチルシロキサン(PDMS)からなる第1の基板の一方の面に請求項1乃至3の何れかに記載の微量流体制御機構を形成するステップと、
(2)前記第1の基板の微量流体制御機構の所望の箇所にマスクを載置するステップと、
(3)前記マスクの上面から酸素プラズマ又は真空紫外光を照射して前記第1の基板の微量流体制御機構形成面側を表面改質することにより該マスク載置部分を非接着部として形成するステップと、
(4)前記マスクを除去するステップと、
(5)前記第1の基板の微量流体制御機構形成面側に対面基板を貼り合わせるステップとからなることを特徴とするマイクロチップの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003374046A JP3905074B2 (ja) | 2003-11-04 | 2003-11-04 | 微量流体制御機構及び該機構を有するマイクロチップ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003374046A JP3905074B2 (ja) | 2003-11-04 | 2003-11-04 | 微量流体制御機構及び該機構を有するマイクロチップ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005140511A JP2005140511A (ja) | 2005-06-02 |
JP3905074B2 true JP3905074B2 (ja) | 2007-04-18 |
Family
ID=34685888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003374046A Expired - Fee Related JP3905074B2 (ja) | 2003-11-04 | 2003-11-04 | 微量流体制御機構及び該機構を有するマイクロチップ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3905074B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4271610B2 (ja) * | 2004-03-26 | 2009-06-03 | アイダエンジニアリング株式会社 | 電気泳動用マイクロチップ |
JP4774899B2 (ja) * | 2005-10-05 | 2011-09-14 | 横河電機株式会社 | ガス吸着を用いた測定装置および測定方法 |
EP1960306A4 (en) * | 2005-11-22 | 2014-04-02 | Mycrolab Diagnostics Pty Ltd | MICROFLUIDIC STRUCTURES |
JPWO2007094254A1 (ja) * | 2006-02-15 | 2009-07-02 | アイダエンジニアリング株式会社 | マイクロ流路チップ及びその製造方法 |
JP2011090015A (ja) * | 2011-02-09 | 2011-05-06 | Yokogawa Electric Corp | ガス吸着を用いた測定装置および測定方法 |
JP5734014B2 (ja) * | 2011-02-15 | 2015-06-10 | アズビル株式会社 | 粒子捕集装置 |
JP6366226B2 (ja) * | 2013-05-24 | 2018-08-01 | 株式会社島津製作所 | マイクロチップ反応装置 |
JP2017503175A (ja) * | 2013-12-31 | 2017-01-26 | キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. | 現場配置可能な小型フォーマットの迅速一次結果マイクロ流体システム |
JP6418251B2 (ja) * | 2014-12-15 | 2018-11-07 | 日本電気株式会社 | マイクロチップ及び液体移送方法 |
JP6949356B2 (ja) * | 2017-06-23 | 2021-10-13 | 学校法人同志社 | 液滴製造用マイクロ流体チップ |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458852A (en) * | 1992-05-21 | 1995-10-17 | Biosite Diagnostics, Inc. | Diagnostic devices for the controlled movement of reagents without membranes |
DE69329424T2 (de) * | 1992-11-06 | 2001-04-19 | Biolog, Inc. | Testvorrichtung für flüssig- und suspensionsproben |
US5932799A (en) * | 1997-07-21 | 1999-08-03 | Ysi Incorporated | Microfluidic analyzer module |
US5965237A (en) * | 1997-10-20 | 1999-10-12 | Novartis Ag | Microstructure device |
JP3668959B2 (ja) * | 1998-07-14 | 2005-07-06 | 独立行政法人理化学研究所 | 微量液体制御機構 |
JP3441058B2 (ja) * | 1999-12-03 | 2003-08-25 | 理化学研究所 | キャピラリーゲル電気泳動用マイクロチップおよびその製造方法 |
JP3418727B2 (ja) * | 2000-04-27 | 2003-06-23 | 独立行政法人産業技術総合研究所 | マイクロバルブ装置及びその製作方法 |
JP2002018271A (ja) * | 2000-07-05 | 2002-01-22 | Kawamura Inst Of Chem Res | 微小ケミカルデバイス |
JP3777112B2 (ja) * | 2001-11-02 | 2006-05-24 | 財団法人川村理化学研究所 | マイクロ流体デバイス及びその製造方法 |
JP2003166910A (ja) * | 2001-11-30 | 2003-06-13 | Asahi Kasei Corp | 送液機構及び該送液機構を備える分析装置 |
JP4168693B2 (ja) * | 2002-08-02 | 2008-10-22 | セイコーエプソン株式会社 | インクジェット印刷装置及びインクジェットヘッドの液体充填方法並びにマイクロアレイ製造装置及びその吐出ヘッドの液体充填方法 |
JP4098103B2 (ja) * | 2003-01-22 | 2008-06-11 | 旭化成株式会社 | 送液機構及び該送液機構を備える分析装置 |
JP4366523B2 (ja) * | 2003-10-03 | 2009-11-18 | 財団法人生産技術研究奨励会 | 電気泳動用チップ及びこれを用いた試料の分析方法 |
-
2003
- 2003-11-04 JP JP2003374046A patent/JP3905074B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005140511A (ja) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10900886B2 (en) | Microfluidic particle analysis method, device and system | |
US7357898B2 (en) | Microfluidics packages and methods of using same | |
JP4403000B2 (ja) | マイクロチップ及びマイクロポンプ | |
CN101282789B (zh) | 微流体膜片泵和阀 | |
US9150907B2 (en) | Microfluidic flow cell assemblies and method of use | |
US20180029033A1 (en) | Multilayer disposable cartridge for ferrofluid-based assays and method of use | |
JP3905074B2 (ja) | 微量流体制御機構及び該機構を有するマイクロチップ | |
KR20110072275A (ko) | 미세 유체 소자 및 그 제조방법 | |
JP4372616B2 (ja) | マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ | |
JP2009236555A (ja) | 流体デバイス及びその製造方法 | |
US20130000764A1 (en) | Multi-layer micro/nanofluid devices with bio-nanovalves | |
WO2002094441A2 (en) | Fluidic systems with non-planar microfluidic devices | |
Simone et al. | A microvalve for hybrid microfluidic systems | |
US20240280604A1 (en) | Disposable flow velocity measuring device having predetermined sensitivity to pressure change by using various types of ultra-thin films, and microfluidic device capable of removing micro bubbles inside channel by using support patterns protruding from porous ultra-thin film and manufacturing method therefor | |
JP2006053064A (ja) | マイクロ流体チップ及びその製造方法 | |
CN110891686B (zh) | 微流控芯片和制造微流控芯片的方法 | |
JP5001203B2 (ja) | 非接着部を有するマイクロチップの製造方法 | |
US20080187445A1 (en) | Diffusion membrane micropump, device, and associated method | |
US9080941B2 (en) | Microfluidic flow cell assemblies for imaging and method of use | |
JP3965453B2 (ja) | マイクロチップ | |
JP2006029485A (ja) | マイクロバルブ及び該バルブを有するマイクロ流体デバイス | |
Moriguchi et al. | Simple bilayer on-chip valves using reversible sealability of PDMS | |
CN111468197B (zh) | 一种用于离心式微流体系统的水压驱动的弹性膜片微阀及其制备方法 | |
JP4106000B2 (ja) | マイクロチップ | |
JP2006224011A (ja) | マイクロバルブ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |