JP3827892B2 - フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法 - Google Patents

フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法 Download PDF

Info

Publication number
JP3827892B2
JP3827892B2 JP26260099A JP26260099A JP3827892B2 JP 3827892 B2 JP3827892 B2 JP 3827892B2 JP 26260099 A JP26260099 A JP 26260099A JP 26260099 A JP26260099 A JP 26260099A JP 3827892 B2 JP3827892 B2 JP 3827892B2
Authority
JP
Japan
Prior art keywords
sulfur hexafluoride
decomposition treatment
halons
chlorofluorocarbons
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26260099A
Other languages
English (en)
Other versions
JP2001079344A (ja
Inventor
貴之 古田
達夫 村上
茂 相藤
義正 赤塚
章浩 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP26260099A priority Critical patent/JP3827892B2/ja
Publication of JP2001079344A publication Critical patent/JP2001079344A/ja
Application granted granted Critical
Publication of JP3827892B2 publication Critical patent/JP3827892B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、フロン類、ハロン類、六フッ化硫黄等を分解処理するためのフロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法に関するものである。
【0002】
【従来の技術】
有機ハロゲン化合物は産業上広く使用されているが、その中には地球環境に対する深刻な影響が指摘され、問題とされているものもある。例えばフロン類、ハロン類及び六フッ化硫黄は高い温暖化係数を示し、温室効果ガスとして地球温暖化を招くことが知られている。また、フロン類とハロン類はオゾン層破壊物質としても知られている。このため、これらの使用、生産を規制するのと並行して、使用済みのフロン類、ハロン類及び六フッ化硫黄を分解処理する技術の開発が急務とされている。
【0003】
そこで、本発明者らは、特許第2795837号公報、特開平10−225618号公報に示すような有機ハロゲン化合物の分解処理方法を提案した。この分解処理方法は、石灰焼成炉を使用して、800℃以上の温度下で有機ハロゲン化合物の分解処理剤としての石灰石又はドロマイトと有機ハロゲン化合物とを接触させ、同時に生成した塩酸やフッ酸を吸収させるものである。
【0004】
【発明が解決しようとする課題】
ところが、特許第2795837号公報、特開平10−225618号公報に開示された方法では、石灰石又はドロマイトが焼成してできる酸化カルシウムと有機ハロゲン化合物とが反応すると、融点が772℃の塩化カルシウムが生成される。分解処理剤に有機ハロゲン化合物を少量だけ反応させたときには、分解処理剤の表面に生成される塩化カルシウムの量も少ないため、800℃以上の温度下でこの塩化カルシウムが融解しても分解処理剤が塊状となるおそれはない。しかし、所定量以上の有機ハロゲン化合物を反応させると、融解した塩化カルシウムにより塊状となり、分解処理剤としての機能を発揮させることができなくなるという問題があった。例えばnモルの酸化カルシウムからなる分解処理剤の場合、約0.1nモルを超えるフロン12と反応させると塊状となることが確かめられた。
【0005】
この発明は、上記のような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、高温度下でフロン類、ハロン類及び六フッ化硫黄と接触させたときに融解して塊状になるのを防ぐことができ、その機能を持続的に発揮させることができるフロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に記載の発明のフロン類、ハロン類及び六フッ化硫黄の分解処理剤は、酸化マグネシウムと酸化カルシウムとを含有し、その含有量が合わせて50重量%以上であるとともに、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)](モル比)が0.67以下であることを特徴とするものである。
【0007】
請求項2に記載の発明は、請求項1に記載の発明において、粒状であることを特徴とするものである。
【0008】
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、酸化マグネシウム、酸化カルシウム及び焼成により酸化マグネシウムと酸化カルシウムの少なくとも一方を生成する化合物から選ばれた少なくとも一種を含有する粉末状の組成物を水と混合し、造粒、焼成して形成したことを特徴とするものである。
請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、900〜1200℃の温度で焼成したドロマイトを含有することを特徴とするものである。
【0009】
請求項5に記載の発明のフロン類、ハロン類及び六フッ化硫黄の分解処理方法は、請求項1から請求項4のいずれか一項に記載の分解処理剤と、フロン類、ハロン類及び六フッ化硫黄から選ばれる少なくとも一種とを、800〜1400℃の温度で接触させて反応させることを特徴とするものである。
【0013】
【発明の実施の形態】
(第1実施形態)
以下、この発明の第1実施形態について説明する。
【0014】
第1実施形態の分解処理剤は、酸化マグネシウムと酸化カルシウムとを含有するものである。その含有量は合わせて50重量%以上であり、75重量%以上が好ましい。50重量%未満では単位重量当たりの分解処理量が減少するため不適当である。また、分解処理剤に含有される酸化マグネシウムと酸化カルシウムは、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)]の値がモル比で0.67以下となるように設定される。この値が0.67を超えると、800〜1400℃の温度下でフロン類、ハロン類及び六フッ化硫黄と接触させたときに、分解処理剤が融解して塊状になり、分解処理能力が低下してしまう。
【0015】
分解処理剤に含有される酸化マグネシウムと酸化カルシウム以外の成分は特に限定されるものでなく、例えば粘土鉱物、シリカ、シラス、火山灰、石炭灰、ケイ藻土、ガラス粉末、スラグ等が使用される。
【0016】
分解処理剤の形状は、通気性、接触効率の点から粒状が好ましい。その粒度は特に限定されるものではないが、1〜8mmが好ましく、2〜5mmがさらに好ましい。粒度が1mm未満では分解処理剤にガスを流す際に圧力損失が大きくなりすぎて好ましくない。一方、8mmを超えると接触効率が悪くなって分解処理能力が低下するため好ましくない。
【0017】
次に、前記のように構成された分解処理剤の製造方法について説明する。
まず、酸化マグネシウムと、焼成により酸化マグネシウムを生成する化合物のうち少なくとも一方を含有する粉末状の組成物と、水とを、ボールミル、ニーダー、擂潰機、マラー、湿式攪拌機等の混合装置を使って混合する。そして、その混合物を押出し造粒機、パン型造粒機、攪拌式造粒機、打錠機等の造粒装置を使って造粒することによって第1実施形態の分解処理剤が形成される。ただし、焼成により酸化マグネシウムを生成する化合物を組成物中に含有する場合には、工程のどこかで又は使用時に焼成することが必要である。
【0018】
焼成により酸化マグネシウムを生成する化合物としては、水酸化マグネシウム、炭酸マグネシウム、塩基性炭酸マグネシウム、酢酸マグネシウム、硝酸マグネシウム等が挙げられ、単独で又はこれらのうち2種以上を混合して使用される。
【0019】
次に、酸化マグネシウムと、焼成により酸化マグネシウムを生成する化合物のうち少なくとも一方と、酸化カルシウムと、焼成により酸化カルシウムを生成する化合物のうち少なくとも一方とを含有する粉末状又は塊状の組成物を使用して形成される。
【0020】
焼成により酸化カルシウムを生成する化合物としては、水酸化カルシウム、炭酸カルシウム、酢酸カルシウム等が挙げられ、単独で又はこれらのうち2種以上を混合して使用される。
【0021】
次に、第1実施形態の分解処理剤を使用したフロン類、ハロン類及び六フッ化硫黄の分解処理方法について説明する。
フロン類、ハロン類及び六フッ化硫黄の分解処理は、フロン類、ハロン類及び六フッ化硫黄を好ましくは800〜1400℃の温度下で分解処理剤に接触させることによって行われる。この温度が800℃未満の場合には、分解処理能力が低下するため好ましくなく、一方1400℃を超えると、フロン類、ハロン類及び六フッ化硫黄との反応性が低下するため好ましくない。
【0022】
ロン類、ハロン類、六フッ化硫黄等から選ばれた少なくとも一種が使用される。フロン類としては、フロン11,12,113,114,115の特定フロン五種をはじめ、その他のCFC,HCFC,HFC、PFC等が挙げられる。また、ハロン類としては、ハロン1211,1301,2402の他、その他のBCFCやBFC,HBFC等が挙げられる。
【0023】
フロン類、ハロン類及び六フッ化硫黄の濃度は、10〜100vol%が好ましく、30〜100vol%がさらに好ましい。この濃度が10vol%未満であると、加熱する際に多くのエネルギーを必要とするため好ましくない。
【0024】
以下に、フロン12とハロン1301と六フッ化硫黄を、第1実施形態の分解処理剤にそれぞれ接触させることによって進行する反応の反応式を示す。(なお、反応式中のMはMg又はCaを表す。)
【0025】
CCl +2MO→aMCl +aMF +(2−2a)MClF+CO (ただし0<a<1)
CF Br+2MO→aMF +(a−1)MBr +(3−2a)MBrF+CO (ただし1<a<2/3)
SF +4MO→3MF +MSO
これらの反応は、酸化マグネシウムと酸化カルシウムの触媒的作用の下で起こるので、水やメタン等の水素源を必要としない。
【0026】
上記三つの反応式で生成する塩化カルシウム、フッ化カルシウム、臭化カルシウムは、それぞれ融点が772℃,1403℃,730℃であるが、酸化カルシウムと共存することにより、これらは融点以下の温度でも融解が起こる。例えば、塩化カルシウムは酸化カルシウムと共存するときには700℃でも融解することが確かめられている。このため、800〜1400℃の温度下でフロン類、ハロン類及び六フッ化硫黄を分解処理剤に接触させると、融解したこれらの化合物により分解処理剤が塊状になることが予想される。特に所定量以上のフロン類、ハロン類及び六フッ化硫黄を反応させたとき、例えば分解処理剤中の酸化カルシウムnモルに対して約0.1nモルを超えるフロン12を反応させたときに、この塊状化は顕著であると考えられる。
しかし、分解処理剤に含有される酸化マグネシウムと酸化カルシウムを、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)]の値がモル比で0.67以下となるように設定することにより、融解して分解処理剤が塊状になることを防止することができる。従って、分解処理剤中の酸化マグネシウム及び酸化カルシウムはフロン類、ハロン類とほぼ等量で(定量的に)反応することができる。即ち、分解処理剤中に酸化マグネシウムと酸化カルシウムが合わせて2nモル含有されている場合には、この分解処理剤で約nモルのフロン12を分解処理することができる。同様に、ハロン1301の場合には約nモルを分解処理することができ、六フッ化硫黄の場合には約0.5nモルを分解処理することができる。
【0027】
分解処理剤が塊状とならないのは、以下の式にしたがって一部の塩化マグネシウムが酸化マグネシウムに戻るためと考えられる。[日化誌、74,46(1971)]また、フッ化マグネシウムと臭化マグネシウムも同様にして酸化マグネシウムに戻ることが予想される。
【0028】
【化1】
Figure 0003827892
以上のように、この実施形態によれば次のような効果が発揮される。
【0029】
・ 分解処理剤に含有される酸化マグネシウムと酸化カルシウムの量を合わせて50重量%以上とすることにより、分解処理剤の単位重量当たりの分解処理量を向上させることができる。さらに、その含有量を75重量%以上とすることにより、分解処理剤の単位重量当たりの分解処理量を一層向上させることができる。
【0030】
・ 分解処理剤に含有される酸化マグネシウムと酸化カルシウムは、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)]の値がモル比で0.67以下となるように設定される。このため、800〜1400℃の温度下でフロン類、ハロン類及び六フッ化硫黄と接触させたときに、融解して分解処理剤が塊状になるのを防ぐことができ、その機能を持続的に発揮させることができる。従って、フロン類、ハロン類及び六フッ化硫黄をほぼ定量的に分解処理することができる。
【0031】
・ 分解処理剤の粒度を1〜8mmの範囲に設定することにより、分解処理剤にガスを流す際に圧力損失が大きくなりすぎるのを防ぐとともに、接触効率を良好に保つことができ、フロン類、ハロン類及び六フッ化硫黄を分解処理する能力を向上させることができる。さらに、2〜5mmに粒度を設定することにより、上記の効果を一層向上させることができる。
【0033】
・ フロン類、ハロン類及び六フッ化硫黄の分解処理は、フロン類、ハロン類及び六フッ化硫黄を800〜1400℃の温度下で分解処理剤に接触させることによって行われる。このため、酸化マグネシウムと酸化カルシウムのフロン類、ハロン類及び六フッ化硫黄との反応性が低下するのを防止しつつ、分解処理能力の低下を防止することができる。
【0034】
・ 分解処理剤が粒状に形成されるため、フロン類、ハロン類及び六フッ化硫黄の通気性及びフロン類、ハロン類及び六フッ化硫黄との接触効率を向上させることができる、
・ 分解処理剤は、粉末状の組成物と水とを混合して造粒することによって、あるいは塊状の組成物を破砕して粒状とすることによって形成される。このため、分解処理剤を容易かつ確実に粒状に形成することができる。
【0035】
・ 分解処理剤は、温室効果ガスやオゾン層破壊物質として作用するフロン類、ハロン類及び六フッ化硫黄を分解処理することができる。このため、大気中へ排出されるフロン類、ハロン類及び六フッ化硫黄の減少に寄与することができ、地球環境の保全に役立つことができる。
【0036】
フロン類、ハロン類及び六フッ化硫黄の濃度を10〜100vol%に設定することにより、加熱の際のエネルギーコストを低減することができる。さらに、この濃度を30〜100vol%に設定することにより上記の効果を一層向上させることができる。
(第2実施形態)
次に、この発明の第2実施形態について、前記第1実施形態と異なる点を中心に説明する。
【0037】
第2実施形態の分解処理剤は、焼成により酸化マグネシウムと酸化カルシウムを生成する化合物を少なくとも含有する粉末状又は塊状の組成物を使用して形成される。その中でも特に、焼成により酸化マグネシウムと酸化カルシウムを生成する化合物として少なくともドロマイトを含有する塊状の組成物を焼成し、破砕して粒状とすることによって形成した分解処理剤は、安価に製造することができる点から好ましい。
【0038】
ドロマイトは、Mg (1−x) Ca CO (ただし0<x<1)で表される複合炭酸塩であり、ドロマイトを焼成して得られる主として酸化マグネシウムと酸化カルシウムを含有するものは軽焼ドロマイトとよばれている。ドロマイトは、約800℃で炭酸マグネシウムが熱分解して酸化マグネシウムが生成され、約900℃で炭酸カルシウムが熱分解して酸化カルシウムが生成される。
【0039】
組成物中にドロマイトを含有する場合の焼成温度は、900〜1200℃が好ましい。この焼成温度が900℃未満であると、ドロマイト中の炭酸カルシウムの熱分解が十分に起こらず、1200℃を超えると、フロン類、ハロン類及び六フッ化硫黄及びその分解物との反応性が低い酸化マグネシウムが生成されるため好ましくない。
【0040】
第2実施形態の分解処理剤によれば、組成物中にドロマイトを含有する場合には900〜1200℃で焼成して形成される。このため、ドロマイト中の炭酸カルシウムを確実に熱分解することができるとともに、フロン類、ハロン類及び六フッ化硫黄及びその分解物との反応性が低い酸化マグネシウムが生成されるのを防ぐことができる。
【0053】
【実施例】
以下に、前記各実施形態をさらに具体化した実施例について説明する。
ず、フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法の特性を調べるために使用した図1に示す分解処理装置を説明する。
【0054】
円筒状の反応器としてのアルミナ管21は縦長又は横長(本実施例では横長)に配置されている。アルミナ管21の両端の開口は蓋22により密閉され、アルミナ管21内にはロックウール層23間に挟まれた状態で分解処理剤である試料24が充填されている。
【0055】
また、アルミナ管21の周囲には加熱装置としての電気炉25が配設され、アルミナ管21内の試料24を加熱できるようになっている。加熱装置はアルミナ管21の内部に配設してもよいが、温度制御の点から電気による外部加熱が好ましい。
【0056】
アルミナ管21の上流側には、フロン類、ハロン類又は六フッ化硫黄が充填されたガス供給源としてのボンベ26が配設されている。このボンベ26は、第1導入管27によって第1流量計28を介してアルミナ管21に接続され、ボンベ26内のフロン類、ハロン類又は六フッ化硫黄をアルミナ管21内に導入できるようになっている。
【0057】
また、アルミナ管21の上流側にはポンプ29が配設され、第2導入管30によってアルミナ管21に接続されている。そして、活性炭が充填された吸着槽31とシリカゲルが充填された乾燥槽32とを順に通過した空気を、第2流量計33を介して、アルミナ管21内に導入できるようになっている。
【0058】
アルミナ管21の下流側には、吸収液34としての0.5Nの水酸化ナトリウム水溶液が貯留された吸収タンク35が配設されている。この吸収タンク35は排出管36によってアルミナ管21に接続され、アルミナ管21内から排出されるガスは吸収タンク35を介して図示しないテドラーバッグに回収されるようになっている。
【0059】
そして、この分解処理装置を使用する場合には、アルミナ管21内を所定温度に加熱した状態で第1導入管27を経由してボンベ26内のフロン類、ハロン類又は六フッ化硫黄をアルミナ管21内に導入する、あるいはそのフロン類、ハロン類又は六フッ化硫黄と同時に第2導入管30を経由して空気もアルミナ管21内に導入する。すると、フロン類、ハロン類又は六フッ化硫黄がアルミナ管21内の試料24に接触してフロン類、ハロン類又は六フッ化硫黄の分解処理が行われる。
【0060】
なお、この実施例ではバッチ式の分解処理装置を使用したが、その他のバッチ式の分解処理装置でも、連続式の分解処理装置でももちろんよい。その他のバッチ式の分解処理装置としては、等量(化学量論的)の分解処理剤とフロン類、ハロン類及び六フッ化硫黄を反応器内に封入して反応させるタイプのものを使用することができる。また、連続式の分解処理装置としては、アルミナ管を縦型に配置して上方から分解処理剤を導入し、下方からフロン類、ハロン類及び六フッ化硫黄を導入し、アルミナ管内において両者を向流で接触させて反応させるタイプのものを使用することができる。
【0061】
(参考例1)
参考例1においては、以下の方法で形成した試料24を使用した。まず、水酸化マグネシウム(米山薬品株式会社製)200gに水160mlを加えて混合し、ディスクペレッタ(不二パウダル社製、F−5型)で直径3mmのディスクを用いて造粒した後、110℃で5時間乾燥して直径3mmの円柱状の成形体を得た。そして、この成形体を1000℃で1時間焼成し、さらに篩にかけて2〜4mmの粒径をなす102gの試料24を得た。
【0062】
得られた試料24のうち25gをアルミナ管21内に充填するとともに、ボンベ26にはフロン12を充填した。そして、アルミナ管21内を電気炉25により1000℃にまで加熱した状態で、フロン12を80ml/分の流量で1時間アルミナ管21内に導入した。
【0063】
そして、試料24にフロン12を通気した後に、試料24中の塩素量とフッ素量、吸収タンク35に貯留された吸収液34中の塩素量とフッ素量、テドラーバッグに回収されたガス中のフロン12の濃度を測定した。その結果を表1に示す。
【0064】
試料24中の塩素量の測定は次のようにして行った。まず、試料24を遊星ミル(フリッチュ社製、P−7型)で粉砕し、この粉砕体0.5gを純水100mlに添加して攪拌する。そして、濾過洗浄を数回繰り返した後、濾液を下水試験法に準じてK2Cr24を指示薬に用いて0.1NのAgNO3で滴定して塩素量を測定した。
【0065】
試料24中のフッ素量の測定は次のようにして行った。まず、試料24の粉砕体0.5gをNaOH5gとともにニッケルるつぼに入れて600℃で溶融し、さらに50mlの温水を加えて温浴中で数十分間加熱して溶解させる。そして、るつぼ内を洗浄しながらNo.5Cの濾紙で濾過し、濾液を1リットルにメスアップしてイオンクロマトグラム法でフッ素量を測定した。測定条件は、日本ダイオニクス社製DX−100を用い、AS4A−SCカラムで1.8mMNa2CO3/1.7mMNaHCO3の混合溶液を溶離液とし、150ml/分の流速でクロマトグラム法にて行った。
【0066】
吸収タンク35に貯留された吸収液34中の塩素量、フッ素量はそれぞれAgNO3滴定法、イオンクロマトグラム法で測定した。
テドラーバッグに回収されたガス中のフロン12の濃度は、ガスクロマトグラム法で測定した。以下に測定条件を示す。
【0067】
装置:日立製263−70型、カラム充填剤:1mのクロモソルブ102、カラム温度:80℃、N流量:50ml/分、インジェクション温度:200℃、検出器温度:200℃、検出器:ECD
(実施例2)
実施例2では、参考例1の試料10.5gと粒径3〜5mmの生石灰(上田石灰製造株式会社製)14.5gを混合した組成物を試料24としてアルミナ管21内に充填した。また、参考例1において、アルミナ管21内の温度を800℃に設定するとともに、フロン12の流量を40ml/分、空気の流量を40ml/分として2時間アルミナ管21内に導入した。その他は参考例1と同様にして行い、各種測定を行った。その結果を表1に示す。
(実施例3)
実施例3では、水酸化カルシウム56gと水酸化マグネシウム80.6gに水110mlを加えて混合し、参考例1と同様の方法で造粒、乾燥、焼成して103gの試料24を形成した。そして、そのうちの25gをアルミナ管21内に充填した。また、参考例1において、アルミナ管21内の温度を1100℃に設定するとともに、フロン12の流量を40ml/分、空気の流量を40ml/分として2時間アルミナ管21内に導入した。その他は参考例1と同様にして行い、各種測定を行った。その結果を表1に示す。
(比較例1)
比較例1では、粒径3〜5mmの生石灰25gのみを試料24としてアルミナ管21内に充填した。その他は参考例1と同様にして行い、各種測定を行った。
その結果を表1に示す。
(実施例4)
実施例4では、粒径2〜4mmの軽焼ドロマイト25g(上田石灰製造株式会社製、焼成温度1000℃、CaO含有量63.0モル%、MgO含有量31.5モル%)を試料24としてアルミナ管21内に充填した。また、参考例1において、アルミナ管21内の温度を900度に設定し、その他は参考例1と同様にして行い、各種測定を行った。その結果を表1に示す。
(実施例5)
実施例5では、実施例4の軽焼ドロマイト25gと試薬一級シリカゲル(米山薬品株式会社製)10gを混合した組成物を試料24としてアルミナ管21内に充填した。また、参考例1において、アルミナ管21内の温度を1400℃に設定するとともに、フロン12の流量を40ml/分、空気の流量を40ml/分とした。その他は参考例1と同様にして行い、各種測定を行った。その結果を表1に示す。
(実施例6)
実施例6では、参考例1の試料7gと粒径3〜5mmの生石灰18gを混合した組成物を試料24としてアルミナ管21内に充填した。また、参考例1において、アルミナ管21内の温度を800℃に設定するとともに、フロン12に代えてハロン1301を流量80ml/分で1時間アルミナ管21内に導入した。試料24中及び吸収液34中の塩素量とフッ素量は参考例1と同様に測定し、テドラーバッグに回収されたガス中のハロン1301の濃度はガスクロマトグラム法により以下に示す測定条件で測定した。その結果を表2に示す。
【0068】
装置:日立製263−70型、カラム充填剤:1mのクロモソルブ102、カラム温度:50℃、N流量:50ml/分、インジェクション温度:180℃、検出器温度:200℃、検出器:ECD
(実施例7)
実施例7では、実施例3の試料25gを試料24としてアルミナ管21内に充填した。また、実施例6において、アルミナ管21内の温度を900℃に設定するとともに、ハロン1301の流量を40ml/分、空気の流量を40ml/分として2時間アルミナ管21内に導入した。その他は実施例6と同様にして行い、各種測定を行った。その結果を表2に示す。
参考例2
参考例2では、参考例1の試料25gを試料24としてアルミナ管21内に充填した。また、実施例6において、アルミナ管21内の温度を1000℃に設定するとともに、ハロン1301の流量を20ml/分、空気の流量を60ml/分として3時間アルミナ管21内に導入した。その他は実施例6と同様にして行い、各種測定を行った。その結果を表2に示す。
(比較例2)
比較例2では、粒径3〜5mmの生石灰25gのみを試料24としてアルミナ管21内に充填した。その他は実施例6と同様にして行い、各種測定を行った。
その結果を表2に示す。
(実施例9)
実施例9では、参考例1の試料10.5gと粒径3〜5mmの生石灰14.5gを混合した組成物を試料24としてアルミナ管21内に充填した。また、参考例1において、アルミナ管21内の温度を1200℃に設定するとともに、フロン12に代えて六フッ化硫黄を流量80ml/分で30分間アルミナ管21内に導入した。試料24中及び吸収液34中のフッ素量は参考例1と同様に測定し、テドラーバッグに回収されたガス中の六フッ化硫黄の濃度はガスクロマトグラム法により以下に示す測定条件で測定した。その結果を表3に示す。
【0069】
装置:日立製263−70型、カラム充填剤:3mのポラパックQ、カラム温度:50℃、N2流量:40ml/分、インジェクション温度:180℃、検出器温度:200℃、検出器:ECD
(実施例10)
実施例10では、実施例4の軽焼ドロマイト25gを試料24としてアルミナ管21内に充填した。また、実施例9において、アルミナ管21内の温度を1000℃に設定するとともに、六フッ化硫黄の流量を40ml/分、空気の流量を40ml/分として1時間アルミナ管21内に導入した。その他は実施例9と同様にして行い、各種測定を行った。その結果を表3に示す。
(比較例3)
比較例3では、粒径3〜5mmの生石灰25gのみを試料24としてアルミナ管21内に充填した。その他は実施例9と同様にして行い、各種測定を行った。その結果を表3に示す。
【0070】
なお、表1〜3中の()内の数値は導入フロン類、ハロン類及び六フッ化硫黄の相当%を示す。
【0071】
【表1】
Figure 0003827892
【0072】
【表2】
Figure 0003827892
【0073】
【表3】
Figure 0003827892
表1〜3の結果より、テドラーバッグに回収されたガス中のフロン類、ハロン類及び六フッ化硫黄の濃度が、実施例1〜10においては1ppm以下と極めて低濃度である一方、比較例1〜3においては10000ppm以上と高濃度であることが示された。
【0074】
また、実施例1〜10においては、試料24中の塩素量と吸収液34中の塩素量の和、及び試料24中のフッ素量と吸収液34中のフッ素量の和がほぼ導入されたフロン類、ハロン類及び六フッ化硫黄の量と等しいことから、フロン類、ハロン類及び六フッ化硫黄がほぼ完全に分解処理されていることが示された。
【0075】
さらに、実施例1〜10においては、フロン類、ハロン類及び六フッ化硫黄との反応後の試料24に融解は認められなかった。一方、比較例1〜3においては、反応後の試料24に融解が認められ、アルミナ管21への付着が起きていた。
【0076】
次に、前記実施形態から把握できる技術的思想について以下に記載する。
・ 酸化マグネシウム、酸化カルシウム及び焼成により酸化マグネシウムと酸化カルシウムの少なくとも一方を生成する化合物から選ばれた少なくとも一種を含有する塊状の組成物を焼成、破砕して粒状に形成したことを特徴とする請求項1又は請求項2に記載のフロン類、ハロン類及び六フッ化硫黄の分解処理剤。
【0077】
このように構成した場合、容易かつ確実に粒状に形成することができる。
【0078】
【発明の効果】
この発明は、以上のように構成されているため、次のような効果を奏する。
請求項1に記載の発明のフロン類、ハロン類及び六フッ化硫黄の分解処理剤によれば、高温度下でフロン類、ハロン類及び六フッ化硫黄と接触させたときに、融解して塊状になるのを防ぐことができ、その機能を持続的に発揮させることができる。
【0079】
請求項に記載の発明によれば、請求項1に記載の発明の効果に加え、フロン類、ハロン類及び六フッ化硫黄の通気性及びフロン類、ハロン類及び六フッ化硫黄との接触効率を向上させることができる。
【0080】
請求項に記載の発明によれば、請求項1又は請求項2に記載の発明の効果に加え、容易かつ確実に粒状に形成することができる。
【0081】
請求項に記載の発明によれば、請求項から請求項のいずれか一項に記載の発明の効果に加え、ドロマイト中の炭酸カルシウムを確実に熱分解することができるとともに、有機ハロゲン化合物及びその分解物との反応性が低い酸化マグネシウムが生成されるのを防ぐことができる。
【0082】
請求項に記載の発明のフロン類、ハロン類及び六フッ化硫黄の分解処理方法によれば、酸化マグネシウム又は酸化マグネシウムと酸化カルシウムのフロン類、ハロン類及び六フッ化硫黄との反応性が低下するのを防止しつつ、分解処理能力の低下を防止することができる。
【図面の簡単な説明】
【図1】 フロン類、ハロン類及び六フッ化硫黄の分解処理装置を示す概略断面図。

Claims (5)

  1. 酸化マグネシウムと酸化カルシウムとを含有し、その含有量が合わせて50重量%以上であるとともに、[酸化カルシウム/(酸化マグネシウム+酸化カルシウム)](モル比)が0.67以下であることを特徴とするフロン類、ハロン類及び六フッ化硫黄の分解処理剤。
  2. 粒状であることを特徴とする請求項1に記載のフロン類、ハロン類及び六フッ化硫黄の分解処理剤。
  3. 酸化マグネシウム、酸化カルシウム及び焼成により酸化マグネシウムと酸化カルシウムの少なくとも一方を生成する化合物から選ばれた少なくとも一種を含有する粉末状の組成物を水と混合し、造粒、焼成して形成したことを特徴とする請求項1又は請求項2に記載のフロン類、ハロン類及び六フッ化硫黄の分解処理剤。
  4. 900〜1200℃の温度で焼成したドロマイトを含有することを特徴とする請求項1から請求項3のいずれか一項に記載のフロン類、ハロン類及び六フッ化硫黄の分解処理剤。
  5. 請求項1から請求項4のいずれか一項に記載の分解処理剤と、フロン類、ハロン類及び六フッ化硫黄から選ばれる少なくとも一種とを、800〜1400℃の温度で接触させて反応させることを特徴とするフロン類、ハロン類及び六フッ化硫黄の分解処理方法。
JP26260099A 1999-09-16 1999-09-16 フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法 Expired - Fee Related JP3827892B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26260099A JP3827892B2 (ja) 1999-09-16 1999-09-16 フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26260099A JP3827892B2 (ja) 1999-09-16 1999-09-16 フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法

Publications (2)

Publication Number Publication Date
JP2001079344A JP2001079344A (ja) 2001-03-27
JP3827892B2 true JP3827892B2 (ja) 2006-09-27

Family

ID=17378058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26260099A Expired - Fee Related JP3827892B2 (ja) 1999-09-16 1999-09-16 フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法

Country Status (1)

Country Link
JP (1) JP3827892B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305410A (ja) * 2005-04-26 2006-11-09 Ueda Sekkai Seizo Kk 難分解性フロンガスの分解方法
JP4902969B2 (ja) * 2005-06-08 2012-03-21 研一 秋鹿 クロロフルオロカーボンの分解処理方法およびそのための分解処理剤
JP5529374B2 (ja) * 2007-12-26 2014-06-25 中部電力株式会社 ガスの化学的処理方法
JP7188329B6 (ja) * 2019-09-09 2023-01-05 住友大阪セメント株式会社 重金属等不溶化材及びその製造方法、重金属等不溶化材の品質管理方法並びに重金属等不溶化方法
CN112370943A (zh) * 2020-11-02 2021-02-19 湖南省国鸿氟化学有限公司 一种避免产生二次污染的氟利昂蒸汽净化装置

Also Published As

Publication number Publication date
JP2001079344A (ja) 2001-03-27

Similar Documents

Publication Publication Date Title
JP4952250B2 (ja) ハロゲン系ガスの除去方法及びハロゲン系ガスの除去剤
EP1440724B1 (en) Method for removing halogen containing gas
JPH0576313B2 (ja)
KR100967598B1 (ko) 고온 응용을 위한 할로겐화물 소거제
KR100384274B1 (ko) 불소 화합물 분해용 반응제, 분해방법 그의 용도
JP3827892B2 (ja) フロン類、ハロン類及び六フッ化硫黄の分解処理剤及び分解処理方法
JP3073321B2 (ja) 有害ガスの浄化方法
JP3249986B2 (ja) フロンの分解処理法および装置
JP4357018B2 (ja) ハロゲン化ガスの処理剤を用いた無害化方法
EP1587604B1 (en) Process for decomposing fluorine compounds
JP3592886B2 (ja) 弗化炭素類の分解方法および分解用反応剤
JP4417545B2 (ja) 有機ハロゲン化合物の分解処理装置
JP5217819B2 (ja) ハロゲン系ガスの除去剤およびハロゲン系ガスの除去方法
CN101322872B (zh) 一种氟利昂燃烧水解过程中提高氟利昂分解速率的方法
KR19990023454A (ko) 불화질소 또는 불화유황의 분해방법 및 그것에 이용되는 분해용반응제
JP2681034B2 (ja) フロンの無害化方法
JP2003088724A (ja) 粉状ダイオキシン類発生抑制剤又は塩化水素除去剤
Takeuchi et al. Effect of solid reactant conditions on adsorption of halon decomposition gases
JPH1147552A (ja) 弗化硫黄の分解法および分解用反応剤
JP5342805B2 (ja) HFC−134aの無害化処理方法および炭酸カルシウムの製造方法
JP5074439B2 (ja) ハロゲンガスの処理剤及びその製造方法並びにこれを用いた無害化方法
Rampersadh Removal of hydrogen fluoride from gas streams
KR20000076620A (ko) 불화질소 분해용 반응제 및 이를 이용한 분해 방법
JPH1147551A (ja) 弗化窒素の分解方法および分解用反応剤
JPH09253480A (ja) 有害成分吸収体

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Ref document number: 3827892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees