JPH1147552A - 弗化硫黄の分解法および分解用反応剤 - Google Patents

弗化硫黄の分解法および分解用反応剤

Info

Publication number
JPH1147552A
JPH1147552A JP9225851A JP22585197A JPH1147552A JP H1147552 A JPH1147552 A JP H1147552A JP 9225851 A JP9225851 A JP 9225851A JP 22585197 A JP22585197 A JP 22585197A JP H1147552 A JPH1147552 A JP H1147552A
Authority
JP
Japan
Prior art keywords
reactant
gas
sulfur fluoride
decomposition
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9225851A
Other languages
English (en)
Other versions
JP3718739B2 (ja
Inventor
Chiaki Izumikawa
千秋 泉川
Kazumasa Tezuka
和正 手塚
Kazuto Ito
和人 伊藤
Hitoshi Atobe
仁志 跡辺
Toraichi Kaneko
虎一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Iron Powder Co Ltd
Dowa Holdings Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Dowa Iron Powder Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Dowa Iron Powder Co Ltd, Dowa Mining Co Ltd filed Critical Showa Denko KK
Priority to JP22585197A priority Critical patent/JP3718739B2/ja
Priority to EP98114762A priority patent/EP0895801A3/en
Priority to TW087113033A priority patent/TW415853B/zh
Priority to KR1019980032194A priority patent/KR19990023454A/ko
Publication of JPH1147552A publication Critical patent/JPH1147552A/ja
Priority to US09/770,402 priority patent/US6416726B2/en
Application granted granted Critical
Publication of JP3718739B2 publication Critical patent/JP3718739B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)

Abstract

(57)【要約】 【課題】 環境に有害な弗化硫黄を簡単な処法で効率良
く分解し無害化する。 【解決手段】 単体状炭素,アルカリ土類金属の一種ま
たは二種以上,場合によってはさらにアルカリ金属の一
種または二種以上を含有する固形状の反応剤と気体状の
弗化硫黄を300℃以上で接触させ,該弗化硫黄中のフ
ッ素成分を該反応剤に固定することからなる弗化硫黄の
分解方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は,弗化硫黄の分解法
およびそのための分解剤に関する。本明細書において,
弗化硫黄はフッ素と硫黄を必須の構成元素とし容易に気
化する化合物を言う。弗化硫黄の代表例には6フッ化硫
黄(SF6)がある。容易に気化するとは,常温常圧で気
体状のもの,および常温では液体であるが他の不活性ガ
スが同伴すると0.01容量%以上のその蒸気を含む混
合ガスを生成するものを言う。
【0002】
【従来の技術】弗化硫黄,特に6フッ化硫黄は熱的に安
定であるので,例えば半導体製造プロセスにおけるエッ
チング用或いはクリーニング用のガスとして利用されて
いる。しかし,弗化硫黄は一般にGWP値が大きく,大
気中に放出されると分解されないまま大気中に滞留する
ために地球温暖化への影響が懸念されている物質の一つ
であり,使用後には分解することが好ましいとされてい
る。したがって,使用済の弗化硫黄は無害物質に分解さ
れることが必要である。
【0003】しかし,これまでのところ,弗化硫黄例え
ば6フッ化硫黄(SF6)を効率よく且つ無害物質に完全
に分解する方法は知られていない。
【0004】
【発明が解決しようとする課題】したがって,本発明
は,高い効率で且つ簡便な操作で弗化硫黄を分解でき,
且つ分解した弗素も効率よく回収することができる弗化
硫黄の分解法およびそのための分解剤を提供しようとす
るものである。
【0005】
【課題を解決するための手段】前記の課題は,単体状炭
素とアルカリ土類金属の一種または二種以上を含有する
固体状の反応剤に,弗化硫黄を気体状で300℃以上の
温度で接触させることからなる弗化硫黄の分解法によっ
て解決できることがわかった。
【0006】そのさい,該反応剤との接触温度を450
℃以上とすると硫黄酸化物例えばSO2の副生を抑制で
きることがわかった。
【0007】さらに,単体状炭素およびアルカリ土類金
属の一種または二種以上に加えて,さらにアルカリ金属
の一種または二種以上を適量含有する固体状の反応剤を
使用すると,アルカリ金属を含有しない場合に比べて,
低域の温度域から硫黄酸化物の副生を抑制できること,
より具体的には350℃以上からSO2の副生を抑制で
きることがわかった。
【0008】
【発明の実施の形態】本発明に従う弗化硫黄の分解法
は,単体状炭素,アルカリ土類金属の一種または二種以
上,場合によってはさらに,アルカリ金属の一種または
二種以上を含有する固形状の分解用反応剤を使用する点
に特徴がある。この分解用反応剤は,単体状炭素,アル
カリ土類金属および必要に応じてアルカリ金属を含有し
た固形物からなり,それら元素の含有割合が,アルカリ
土類金属を1.0としたときの原子比で,単体状炭素が
0.25〜4.0,アルカリ金属が0〜0.3であるのが
よい。原子比で表しているのは,アルカリ土類金属類ま
たはアルカリ金属類が各種の化合物例えば酸化物や炭酸
塩等の形態で含有する場合における化合物中の金属成分
の含有割合が重要であるからである。
【0009】このような反応剤に弗化硫黄ガスを適当な
温度で接触させると弗化硫黄が分解し,分解によって生
成した弗素は反応剤に固定され,また分解によって硫黄
酸化物が発生するのを抑制することができる。すなわ
ち,本発明法によると,有害な分解生成ガス例えば弗素
ガス,弗化炭素ガス,SOX 等の副生物を発生をさせな
いで弗化硫黄を効率よく分解することができる。分解ガ
ス中にこのような副生物を発生させないためには,反応
条件,例えば反応温度,分解に供する原料ガス中の弗化
硫黄濃度や他の成分例えば酸素等の存在の有無,反応剤
の形態や反応剤の成分比,ガス供給速度等の条件を適切
に調整することが必要となるが,最も重要な条件は,後
記の実施例に示すように,反応温度である。
【0010】すなわち,反応温度を300℃以上とする
と弗化硫黄中の弗素が反応剤に完全に固定され,弗素成
分は排ガス中に同伴しないようになることがわかった。
また反応剤中の炭素と弗素が反応して弗化炭素が発生す
るようなことも抑制されることがわかった。さらに反応
温度を450℃以上とすると被処理ガス中の酸素または
反応剤中の酸素と硫黄が反応して硫黄酸化物が発生する
ようなことも抑制されることがわかった。しかし,後記
の実施例に示すように反応条件によっては反応温度が低
い領域では若干の硫黄酸化物が発生することもある。
【0011】排ガスは場合によってはCOを一部含むも
のとなる。COを含む場合には,酸化処理してから系外
に排出すればよい。先述のように反応温度が低い場合,
例えばアルカリ金属無しの反応剤では450℃未満,ア
ルカリ金属入りの反応剤では350℃未満では,SO2
の発生を見ることもあるが,この場合には脱硫処理して
系外に排出すればよい。また,反応剤中の単体状炭素と
フッ素が反応して弗化炭素が生成しうることも予想され
たが,後記の実施例に示した条件では弗化炭素は実質上
発生しないことがわかった。
【0012】以下に本発明法で用いる反応剤について説
明する。
【0013】反応剤中の単体状炭素は,アルカリ土類金
属と併存することにより前記(1) や(2) 式のように弗化
硫黄の分解に寄与するものと考えられる。反応剤中の単
体状炭素の含有量は分解反応の進行につれて変動するこ
とはあるが,少なくとも分解反応初期にはアルカリ土類
金属を1.0としたときの原子比で0.25以上含有する
ことが好ましく,この比が0.25未満では,弗化硫黄
の分解が十分に進行しないことがある。しかし,該比が
4.0より大きくなるような量で単体状炭素が含有され
ていると,これに伴ってアルカリ土類金属量が低下して
分解反応が十分に行われなくなる。したがって,反応剤
中の単体状炭素量はアルカリ土類金属を1.0としたと
きの原子比で0.25〜4.0の範囲であるのがよく,好
ましくは0.5〜3.0の範囲,さらに好ましくは1.0
〜2.0の範囲であるのがよい。また,この反応剤中の
単体状炭素量は分解反応初期から反応途中も維持される
ことが望ましい。ここで,単体状炭素とは単体状で存在
する固体炭素であり,特定の化合物中の炭素は単体状炭
素ではないものとする。特定化合物中の炭素としては例
えば炭酸塩中の炭素がある。以下,特に断らない限り,
反応剤中の炭素と言えば単体状で配合されている炭素を
意味する。
【0014】反応剤中の単体状炭素はチャー炭,活性
炭,カーボンブラックまたはコークス粉の形態で配合す
ることができる。また炭素繊維や黒鉛,更には無機炭素
質が主成分として含まれているものであってもよい。反
応剤が造粒品の場合には,これらの炭素質の粉体を他の
原料(アルカリ土類金属化合物,場合によってはさらに
アルカリ金属化合物)と共に造粒すればよい。また,焼
成品からなる反応剤を得る場合には,これら炭素質の粉
体原料を他の原料(アルカリ土類金属化合物,或いはア
ルカリ金属土類金属化合物とアルカリ金属化合物)に配
合して焼成することができる。
【0015】反応剤中のアルカリ土類金属は,単体状炭
素と共存することにより例えば前記(1) 式や(2) 式のよ
うに弗化硫黄を分解する作用を果たし,弗化硫黄中の弗
素をCaF2の形で固定する役割を果たす。このように
アルカリ土類金属は本発明の反応剤の基本成分である。
このため,本明細書ではアルカリ土類金属の含有量を基
準として単体状炭素量,さらにはアルカリ金属量の相対
割合を規定しており,したがって,反応剤中の実際のア
ルカリ土類金属量は,単体状炭素の含有量と,さらには
アルカリ金属の含有量との関係で決まる。その相対量が
少な過ぎると反応の経過につれて,分解反応に寄与する
アルカリ土類金属の炭素量に対する相対比が低下し,高
い分解率を得ることができなくなる。しかし,逆にアル
カリ土類金属の相対量が多すぎると,炭素との相対比が
高くなりすぎて,やはり高い分解率を得ることができな
くなる。
【0016】アルカリ土類金属としては,Be,Mg,
Ca,Sr,Ba,Raであればよく,これらの酸化
物,水酸化物または炭酸塩等の塩類として反応剤中に含
有させることができる。これらアルカリ土類金属のうち
好ましいものはCaとMgであり,また,これらはその
原料および分解反応生成物に毒性がないので取り扱いや
すい。その原料としては,CaまたはMgの酸化物,水
酸化物または炭酸塩などの酸素を含んだ形態の方が安定
で取り扱いやすく,これらの原料の具体例としては,生
石灰,消石灰,大理石,炭酸マグネシウム,ドロマイト
等があり,特に酸化物の形で反応剤中に含有されるのが
好ましい。
【0017】このようにCaまたはMgを酸素含有化合
物の形態で反応剤中に含有させる場合には,弗化硫黄の
分解反応において,この酸素含有化合物中の酸素がCと
反応したり,弗化硫黄中の硫黄と置き変わったり,また
は気相中の酸素が反応剤中のCと反応したりするとき
に,反応剤がより活性になることがその原因であろうと
推察されるが,酸素含有化合物の形態でCaまたはMg
が反応剤中に存在すると一層有利に弗化硫黄を分解する
ことができる。
【0018】前記の単体状炭素およびアルカリ土類金属
に加えてアルカリ金属が反応剤中に共存すると,共存し
ない場合に比べて分解温度を低下させても,高い分解率
で弗化硫黄を分解することができるようになり,また,
硫黄酸化物が発生しない反応温度域を低温側に移動さ
せ,同じく弗化炭素類が発生しない反応温度域を低温側
に移動させることができるようになる。アルカリ金属と
しては,Li,Na,K,Rb,Csなどがあるが,K
がこのような作用を顕著に果たすことが判明している。
反応剤中のアルカリ金属量としては,アルカリ土類金属
を1.0としたときの原子比で0〜0.3の範囲であれば
よく,この比が0.3より多くなるように含有しても,
その効果は飽和すること,また単体状炭素およびアルカ
リ土類金属の含有量が相対的に低下することから,好ま
しいことではない。
【0019】アルカリ金属としての例えばKを反応剤中
に含有させるには,水酸化物,炭酸塩,リン酸塩,アル
ミン酸塩,硝酸塩または硫酸塩等の化合物の形態で配合
すればよく,これら化合物を単独で或いは複合して,粉
状のものはそのまま,塊状のものは100μm以下に粉
砕して配合すればよい。また,これら化合物の水溶液で
添加することもできる。
【0020】これら単体状炭素,アルカリ土類金属,場
合によってはさらにアルカリ金属の合計量は反応剤全体
の50重量%以上であることが望ましい。この合計量が
50重量%未満でも弗化硫黄の分解は可能であるが,効
率よく分解するには50重量%以上であるのがよい。残
余の成分としては,アルカリ土類金属およびアルカリ金
属が化合物として配合されている場合の当該化合物中の
成分や化合物があり,この残余の成分の殆んどが酸素で
あるのが好ましいが,水分,CO2 その他原料から同伴
する不純物を含むこともできる。
【0021】以上のように,本発明の弗化硫黄の反応剤
は,単体状炭素とアルカリ土類金属を必須の成分として
含有し,任意成分としてアルカリ金属成分を含有するこ
ともできる固形物である。この固形状反応剤は分解に供
する弗化硫黄ガスとの接触機会を高める上では,粒状で
あるのが好ましい。粒状品とするには,前記した各原料
の粉体を混合し,適量の水と共に,或いは,場合によっ
ては適切なバインダーを加えて造粒し,次いで乾燥して
水分を蒸発させるという工程で造粒品とすればよい。
【0022】最も好ましい粒状品は焼成された粒状物で
ある。すなわち,粉状炭素質原料,粉状アルカリ土類金
属化合物,さらに必要に応じて粉状アルカリ金属化合物
を混合し,この混合粉体を焼成してなる焼成品,或いは
粉状炭素質原料と粉状アルカリ土類金属化合物の混合粉
体を焼成してなる焼成品にアルカリ金属化合物の溶液を
被着または含浸させ,揮発分(溶媒液)を乾燥除去して
なる焼成品である。この焼成品を得るための出発材料と
ししての各原料は,先に述べたような炭素質原料,アル
カリ土類金属化合物,アルカリ金属化合物を使用すれば
よい。
【0023】代表的な焼成品としては,炭素質粉体と消
石灰(さらにはカリウム化合物)を含む混練物を,炭素
が残存しながら消石灰の逆消化反応が進行するに十分な
条件で焼成したもの,或いは炭素質粉体と炭酸カルシウ
ム(さらはカリウム化合物)を含む混練物を,炭素が残
存しながら炭酸カルシウムの分解反応が進行するに十分
な条件で焼成したものがある。混練物中にカリウム化合
物を配合するさいにはカリウム化合物は粉状でも水溶液
状であってもよい。
【0024】該混練物はいずれも粒径が100μm以下
の原料が均一に混ざり合った造粒物であるのがよく,こ
の造粒物の作製にあたっては,配合原料を秤量し,混練
にあたっては適量の水を添加する。この水の添加をアル
カリ金属含有の水溶液で置き換えることもできる。混練
機としては,混合・造粒が同時に行えるものが便宜であ
るが,混合と造粒を分けて行うものであってもよい。例
えば,ヘンシェルミキサーや縦型ミキサーを用いると混
合と造粒を同時に行うことができるが,原料の混合をヘ
ンシェルミキサーやV型混合機で行い,次いで造粒を皿
型造粒機やドラムペレタイザーで行ってもよい。
【0025】混練・造粒にさいしては水または該水溶液
の他に適量のバインダーを配合することもできる。バイ
ンダーとしてはポリビニールアルコール(PVA)のよ
うな有機バインダーが使用できる。また,アルミ酸化物
系や珪素酸化物系の無機バインダーも使用できるが,得
られる当該分解用反応剤の性能に影響を与えないような
量とする必要がある。
【0026】この混練・造粒物の焼成は,水分や揮発性
成分が除去され適度な強度を有する焼成品が得られるよ
うな条件で行うのが良いが,配合原料中の炭素の酸化消
耗を防止するうえでは不活性雰囲気下で加熱処理するの
が好ましく,不活性雰囲気下であれば高温での処理が可
能となり,高強度の焼成品が得られる。焼結に使用する
設備としてはロータリーキルン等の連続式のものが使用
できるが,固定式の炉で行うこともできる。
【0027】本発明に従う分解用反応剤は含有水分量が
少ないもの,また分解反応中に水分が発生しないものが
特に好ましく,不活性雰囲気中で800℃に加熱したと
きの水分放出量が15重量%以下であるものが好まし
い。
【0028】次に前記の反応剤を用いて弗化硫黄を分解
処理する方法および装置について説明する。
【0029】本発明に従う弗化硫黄の分解処理は,前記
反応剤を装填した反応容器に被処理ガスである弗化硫黄
含有ガスを通気することによって行うことができる。そ
のさい,反応剤の温度ひいては反応温度を300℃以上
に維持すると共に,反応雰囲気としては非酸化性雰囲気
或いは弱酸化性雰囲気で行うことができる。アルカリ金
属を含有する反応剤では,アルカリ金属を含有しないも
のに比べて反応剤の活性が高まるので,反応雰囲気とし
ては非酸化性雰囲気であっても目的が達成できる場合も
あるが,弱酸化性雰囲気例えば0.01〜25vol.%の酸
素を被処理ガス中に含有する雰囲気で処理することもで
きる。被処理ガス中の弗化硫黄の濃度は特に限定される
ものではなく,弗化硫黄ガス100%でも分解できる
が,不活性ガス更には酸素含有ガスで希釈されていても
よい。このように,分解に供する被処理ガス中の弗化硫
黄の濃度,被処理ガス中の酸素含有ガス濃度,SV(空
塔速度),LV(線速度),他のガスとの混合状態,本
発明反応剤の成分比や形態,さらには,副生物例えば硫
黄酸化物や弗化炭素類の抑制の程度に応じて,好ましい
分解温度が設定されることになる。
【0030】この分解処理は,前記反応剤を装填した反
応容器と,この反応容器内に通ずるように設けられた被
処理ガス導入口と,該反応容器内から反応後のガスを排
出するように設けられたガス排出口と,該反応容器を収
容する炉と,この炉内の雰囲気温度を300℃以上に高
めるための熱源と,前記の被処理ガス導入口と弗化硫黄
含有ガス源とを接続する管路と,所望により,前記のガ
ス排出口に連通するように配管接続された排ガス酸化器
と,を備えた弗化炭素類の分解装置によって行うことが
できる。
【0031】図1は,本発明法を実施する装置の一例を
示したものである。図中の1は金属製の反応容器(管)
であり,この中に前記の反応剤からなる反応剤2が装填
される。図例のものは管状の反応容器1を縦型にしたも
のであり,反応剤2は容器内に固定した通気性床3の上
に装填されている。反応容器1の金属管としてはステン
レス鋼またはニッケル基合金からなる管を使用すること
ができる。
【0032】反応容器1は加熱炉4内に設置される。図
示の加熱炉4は,通電により発熱する発熱体を用いた電
気ヒータ5を熱源としたもので,この電気ヒータ5によ
って炉内雰囲気6の温度が所要の温度に昇温し,この炉
内の熱が金属製反応容器壁を介して反応剤2に伝達され
る。炉内雰囲気6の温度を所要の温度に高めることがで
きるものであれば,熱源としては電気ヒータに限られる
ものではない。例えば燃焼排ガスなどの高温ガスを熱源
とすることもできる。
【0033】このようにして加熱炉4内に設置される反
応容器1には被処理ガス導入口7が設けられ,この被処
理ガス導入口7は弗化硫黄を収容する容器8に配管接続
される。容器8は必要に応じて加熱手段9により間接加
熱できるようにしておき,この加熱により容器8内の弗
化硫黄のガス圧を高める。また,容器8からのガス放出
管10には流量調整弁11を介装する。図1の実施例で
は,容器8に加えて,酸素ガスボンベ12と窒素ガスボ
ンベ13を別置きし,これらから,酸素ガスと窒素ガス
をそれぞれ流量調整弁14,15を介装したガス放出管
16,17を経ていったんガスヘッダー18に導くと共
にこのヘッダー18に弗化硫黄を導くことにより,弗化
硫黄ガスにキャリヤとしての窒素ガスを混合すると共に
必要に応じて酸素ガスを添加できるようにして,ヘッダ
ー18で混合された被処理ガスをガス供給管19を経て
反応容器1の被処理ガス導入口7に送り込むようにして
ある。
【0034】なおこの例に限らず,弗化硫黄,窒素およ
び酸素を予め混合してなる混合ガスを一つの容器内に準
備し,この混合ガスを直接的に被処理ガス導入口7に送
り込むようにしてもよいし,弗化硫黄容器8に窒素ガス
を送り込み,この窒素ガスによって弗化硫黄を容器から
強制的に送り出し,その放出管路に酸素ガスを添加する
ようにしてもよい。いずれにしても,必要に応じて酸素
ガス導入管を容器8自身または容器8から被処理ガス導
入7に至るまでの配管に接続するようにするのがよい。
【0035】他方,反応容器1のガス排出口20には排
ガス管路21が接続され,この排ガス管路21はハロゲ
ン吸収ビン22に接続され,このビン22にガス放出管
23が取付けられている。また,排ガス管路21にはサ
ンプリング管24が取付けられ,このサンプリング管2
4でサンブリングされた排ガスはガス分析器25に送ら
れる。
【0036】排ガス管路21には分岐管26が設けら
れ,この分岐管26から,脱硫器27と酸化器28に通
ずる管路を設け,これらの機器を通過した後のガスが再
び排ガス管路21に戻る戻り管29が必要に応じて設け
られる。すなわち,排ガス中にSOX が同伴する場合に
は,通常のSOX 分解触媒を装填した脱硫器27で分解
処理し,また排ガス中にCOが同伴する場合には,白
金,パラジウム等のような貴金属触媒或いはホプカライ
ト触媒などを装填した酸化器28でCOをCO2に酸化
してから,排ガス管路21に戻すようにする。
【0037】図1の装置において,反応容器1内の反応
剤2には加熱炉4内の雰囲気温度が容器壁を通じて伝達
され,反応による熱収支と,導入ガスと排出ガスによっ
て出入する熱容量の収支によって温度が変化するが,図
示のように,反応剤2のほぼ中心に挿入された温度セン
サー(熱電対)31によって,反応帯域の温度を温度測
定器32で検出し,この温度が所定の温度に維持される
ように,熱源5からの供給熱量を制御する。また,加熱
炉4内の炉内雰囲気6の温度も温度センサー33によっ
て検出しその検出値に基づいて加熱炉自体の温度制御も
適宜行う。
【0038】このようにして,被処理ガス中の弗化硫黄
はほぼ完全に(100%近い分解率で)分解し,分解し
たフッ素は反応剤中のアルカリ土類金属と反応してフッ
化アルカリ土類金属となり,排ガス中にはこれらの弗化
硫黄およびフッ素は実質上残存しなくなる。また,排ガ
ス中にSOX やCOが同伴する場合には,脱硫器27や
酸化器28によってこれらを無害処理することができ
る。
【0039】図2は,半導体製造工程で使用された使用
済弗化硫黄を本発明によって分解処理する場合の例を示
したものである。半導体製造工程から出る使用済弗化硫
黄37は一般に管路38を経てルーチンな処理工程36
に送られている。本発明の適用にさいし,この弗化硫黄
供給管38を反応容器1の被処理ガス導入口7に接続す
る。図示の例では,該供給管38から三方弁39を介し
て分岐管40を取付け,この分岐管40を被処理ガス導
入口7に接続したものである。そして,この分岐管40
に窒素ガス供給管41を連結し,窒素ガス源42から窒
素ガスを分岐管40内に流量可変に圧送できるようにし
てある。これにより,三方弁39を切り換えたさいに,
分岐管40の側に原料ガスが流れ難くても,窒素ガス源
42から必要量の窒素ガスを送気することにより,原料
ガスを被処理ガス導入口7に向けてを実質的に同一流量
で搬送することができる。
【0040】図3と図4は,反応容器1の内部に加熱源
を設置して,容器の内部から反応剤2に熱を伝達するよ
うにした本発明例を示したものである。両図において,
44は反応容器1を取り巻く耐熱性の炉材,7は容器へ
の被処理ガス導入口,20は容器からのガス排出口であ
る。
【0041】図3の場合には,反応剤2の充填層の内部
に,通電により発熱する発熱体43を配置したものであ
り,発熱体43は耐食耐熱性のカバーで被覆してある。
本例によると,反応剤2の充填層内部から熱が伝達され
るので,反応剤を所望の温度まで高めるための昇温速度
を高めることができまた熱損失も少なくなる。
【0042】図4の場合には,反応容器1の内部を,反
応剤2の充填層と加熱層に分け,容器1内に導入された
被処理ガスは加熱層を経てから反応剤充填層に流れるよ
うにしたものである。加熱層では,通電により発熱する
発熱体46を容器蓋45に取付けてある。被処理ガスは
加熱層を通過するさいに熱を付与されると共に反応剤2
にも熱が伝達される。本例では,容器内に電気ヒーター
を入れたので,熱の利用効率が高くなると共に発熱体4
6が反応剤や反応後のガスに接触しないので劣化が少な
いという利点がある。
【0043】図5は,加熱源をもつ反応容器1に導入す
る前の被処理ガスと,反応容器2から出た排ガスとを熱
交換するための熱交換器48を配置した本発明例を示し
たものである。この熱交換器48を配置することによ
り,排ガスが有する顕熱を被処理ガスに付与することに
より,熱の回収が図られるので,加熱源の熱消費を低く
することができる。
【0044】上に説明した本発明装置の場合,装填した
反応剤が消耗し尽きると,分解反応は終了する。この反
応終点は排ガス中に弗化硫黄が検出され始めた時点をも
って知ることができる。反応が終了すれば,装置の稼働
を停止し,新たに反応剤を装填して反応を開始するとい
うバッチ方式で,同一装置で順次弗化硫黄の分解を行う
ことができる。このバッチ方式を連続化するために,複
数の同様の装置を並設し,一方の装置が稼働している間
に他の装置の反応剤の入れ換えを行ない,一方の装置が
停止したときに他方の装置にガス流路を切り替えるとい
う複塔切替方式を採用こともできる。また,反応容器内
への反応剤の連続または断続供給と,使用済反応剤の反
応容器内からの連続または断続排出ができるようにした
ものを使用すれば,同一装置で長時間連続稼働ができ
る。
【0045】
【実施例】
〔実施例1〕図1に示したものと同じ原理の装置(脱硫
器と酸化器を除く)を使用して本発明法を実施した。す
なわち,通電により発熱する発熱体(カンタル合金を使
用)を装着した管状炉(電気容量0.4KW)の軸中心
に沿って,内径16mm,長さ300mmのインコネル
600からなる反応管を貫通させ,この反応管内の炉中
心部に,弗化硫黄分解用の反応剤35ccを装填した。
【0046】この反応剤は,原料としてチャー炭,消石
灰および水酸化カリウムを用いて作製した粒状物であ
り,次のようにして作製した。
【0047】粒度250μm以下のチャー炭,粒度25
0μm以下の消石灰,および水酸化カリウム(無添加を
含む)の配合比を変えてヘンシエルミキサーで混合し,
水を添加して造粒したあと,110℃で4時間の乾燥処
理し,窒素雰囲気中で800℃で8時間の熱処理を行っ
て脱水焼成し,得られた焼成品を整粒して粒径が10m
m以下の平均粒径約3mmのペレットを得た。
【0048】原料のチャー炭は,固定炭素78%,揮発
分9%,灰分3%,水分10%のものを使用し,原料の
消石灰はJIS R9001の規格品を使用し,水酸化
カリウムは一級試薬を使用した。製造されたペレットを
分析したところ,この反応剤ペレットは単体状炭素
(C)と酸化カルシウム(CaO)が主成分であり,カ
リウムを加えたものは若干のカリウムを含有している。
これらのうち,代表的なものとして次のAとBの二種を
選んで,本実施例に使用した。反応剤ペレットAおよび
B中のC,Ca,Kの原子比と,これら成分の,全体に
対する合計重量%は次のとおりである。
【0049】 原子比C/Ca 原子比K/Ca Ca,C,Kの合計重量% 反応剤A 1.56/1 0.04/1 79重量% 反応剤B 1.56/1 0/1 79重量%
【0050】分解に供する弗化硫黄として6弗化硫黄
(NF6)を使用し,図1に示したように,この6弗化硫
黄に酸素ガスを添加し,窒素ガスをキャリヤとして前記
の反応管に導入した。 そのさい 被処理ガスの流量 :0.17 L/min 被処理ガス中の弗化硫黄濃度:5vol.% 被処理ガスの空塔速度 :146または291Hr-1 被処理ガス中の酸素濃度 :0vol.%または5vol.% の一定とした。ただし一部の試験では,被処理ガス中に
CF4 を混在させた。
【0051】また,いずれの例でも被処理ガスの導入に
さいしては,発熱体への通電を開始し,反応剤の中心部
の温度が所定の温度になったことを確かめた上で行なっ
た。反応の間は,反応剤の中心部(反応剤の嵩のうち最
も高温となる部位)に挿入した熱電対で計測される温度
がその温度に維持されるように管状炉の通電量を制御し
た。反応のあいだ維持したこの温度のことを反応温度と
呼ぶ。
【0052】反応管から排出される排ガスの一部は図1
に示したようにサンプリングしてガス分析器に導き,残
部は苛性ソーダ溶液を入れたフッ素吸収ビンを通じたあ
と系外に排出した。排ガスの分析は,弗化硫黄,その他
のフッ素化合物,O2,SO2,CO2,COについて行っ
た。
【0053】反応剤AまたはBを使用し,反応温度と空
塔速度を変えて前記の条件で6弗化硫黄の分解を行った
結果を表1に示した。表1におけるSF6の分解率は反
応開始30分後の分解率であり,反応開始から30分経
過した時点の排ガスサンプルから,排ガス中に残存して
いる弗化硫黄を測定し,被処理ガス中の弗化硫黄に対す
る排ガス中の弗化硫黄の100分率をもって表したもの
である。
【0054】
【表1】
【0055】表1の結果から,いずれの試験No.のもの
も反応温度が300℃以上でSF6が分解しているが,
K入り反応剤Aでは350℃以上で分解率99.7%以
上となり,Kなし反応剤Bでは450℃以上で分解率9
5.3%以上となっており,いずれも100%近い分解
が生じていることがわかる。
【0056】反応温度と副生成物との関係を見ると,こ
の反応条件下ではK入り反応剤Aでは350℃以下でS
2の生成が見られ,Kなし反応剤Bでは450℃以下
でSO2の生成が見られるが,CF4 の発生はどの試験
例でも見られないことがわかる。
【0057】
【発明の効果】以上説明したように,本発明によると弗
化硫黄が比較的低温で且つ簡単な処法で効率的に分解す
ることができ,分解したフッ素も無害物として固定でき
る。すなわち,本発明の弗化硫黄の分解法は簡易な分解
装置で実施でき,処理操作が簡易で,分解効率も高く,
しかも, 分解生成物がCaF2等の安定した弗化物とな
り,後処理が容易である。また反応剤の廉価性の点で
も,これまでのものにはない効果を奏し,とくに,半導
体製造工程で発生する使用済弗化硫黄の分解に多大の貢
献ができる。
【図面の簡単な説明】
【図1】本発明法を実施する装置の一例を示した機器配
置系統図である。
【図2】本発明法を実施する被処理ガス導入部の他の例
を示した機器配置系統図である。
【図3】本発明法に従い反応剤を反応容器内から加熱す
る例を示す反応容器部の略断面図である。
【図4】本発明法に従い反応剤を反応容器内から加熱す
る他の例を示す反応容器部の略断面図である。
【図5】本発明の実施にさいし,反応容器に入る前の被
処理ガスと反応容器を出た排ガスを熱交換する例を示す
図である。
【符号の説明】
1 反応容器 2 反応剤 3 通気性床 4 加熱炉 5 電気ヒーター 6 加熱炉の炉内雰囲気 7 被処理ガス導入口 8 弗化硫黄源 12 酸素ガス源 13,34,42 窒素ガス源 19 40 被処理ガス導入管路 20 ガス排出口 21 排ガス管路 27 脱硫器 27 酸化器 43,46 通電により発熱する発熱体
───────────────────────────────────────────────────── フロントページの続き (72)発明者 手塚 和正 岡山県岡山市築港栄町7番地 同和鉄粉工 業株式会社内 (72)発明者 伊藤 和人 岡山県岡山市築港栄町7番地 同和鉄粉工 業株式会社内 (72)発明者 跡辺 仁志 神奈川県川崎市川崎区扇町5─1 昭和電 工株式会社川崎工場内 (72)発明者 金子 虎一 神奈川県川崎市川崎区扇町5─1 昭和電 工株式会社川崎工場内

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 単体状炭素とアルカリ土類金属の一種ま
    たは二種以上を含有する固体状の反応剤に,弗化硫黄を
    気体状で300℃以上の温度で接触させることからなる
    弗化硫黄の分解法。
  2. 【請求項2】 該反応剤との接触温度を450℃以上と
    して硫黄酸化物の副生を抑制する請求項1に記載の弗化
    硫黄の分解法。
  3. 【請求項3】 固体状の反応剤は,さらにアルカリ金属
    の一種または二種以上を含有する請求項1または2記載
    の弗化硫黄の分解法。
  4. 【請求項4】 該反応剤との接触温度を350℃以上と
    して硫黄酸化物の副生を抑制する請求項3に記載の弗化
    硫黄の分解法。
  5. 【請求項5】 単体状炭素,アルカリ土類金属および必
    要に応じてアルカリ金属を含有した固形物からなり,こ
    れら元素の含有割合が,アルカリ土類金属を1.0とし
    たときの原子比で,単体状炭素が0.25〜4.0,アル
    カリ金属が0〜0.3である弗化硫黄の分解用反応剤。
  6. 【請求項6】 アルカリ土類金属はカルシウムまたはマ
    グネシウムであり,該固形物中にその酸化物,水酸化物
    または炭酸塩の形態で配合される請求項5に記載の弗化
    硫黄の分解用反応剤。
  7. 【請求項7】 アルカリ金属はカリウムであり,該固形
    物中にその水酸化物,炭酸塩,リン酸塩,アルミン酸
    塩,硝酸塩または硫酸塩の形態で配合される請求項5ま
    たは6に記載の弗化硫黄の分解用反応剤。
  8. 【請求項8】 単体状炭素は,チャー炭,活性炭,カー
    ボンブラックまたはコークス粉の形態で配合される請求
    項5,6または7に記載の弗化硫黄の分解用反応剤。
JP22585197A 1997-08-07 1997-08-07 弗化硫黄の分解法および分解用反応剤 Expired - Fee Related JP3718739B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22585197A JP3718739B2 (ja) 1997-08-07 1997-08-07 弗化硫黄の分解法および分解用反応剤
EP98114762A EP0895801A3 (en) 1997-08-07 1998-08-05 Method for decomposing nitrogen fluoride or sulfur fluoride and decomposing reagent used therefor
TW087113033A TW415853B (en) 1997-08-07 1998-08-07 A method for decomposing nitrogen fluoride or sulfur fluoride, and reagent for decomposing thereof
KR1019980032194A KR19990023454A (ko) 1997-08-07 1998-08-07 불화질소 또는 불화유황의 분해방법 및 그것에 이용되는 분해용반응제
US09/770,402 US6416726B2 (en) 1997-08-07 2001-01-29 Method for decomposing nitrogen fluoride or sulfur fluoride and decomposing reagent used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22585197A JP3718739B2 (ja) 1997-08-07 1997-08-07 弗化硫黄の分解法および分解用反応剤

Publications (2)

Publication Number Publication Date
JPH1147552A true JPH1147552A (ja) 1999-02-23
JP3718739B2 JP3718739B2 (ja) 2005-11-24

Family

ID=16835845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22585197A Expired - Fee Related JP3718739B2 (ja) 1997-08-07 1997-08-07 弗化硫黄の分解法および分解用反応剤

Country Status (1)

Country Link
JP (1) JP3718739B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058063A (ja) * 2008-09-04 2010-03-18 Chubu Electric Power Co Inc フッ化物ガスの分解処理方法、分解処理剤及び分解処理装置
JP2011121000A (ja) * 2009-12-10 2011-06-23 Chubu Electric Power Co Inc ガス処理方法、ガス処理装置、およびガス処理剤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058063A (ja) * 2008-09-04 2010-03-18 Chubu Electric Power Co Inc フッ化物ガスの分解処理方法、分解処理剤及び分解処理装置
JP2011121000A (ja) * 2009-12-10 2011-06-23 Chubu Electric Power Co Inc ガス処理方法、ガス処理装置、およびガス処理剤

Also Published As

Publication number Publication date
JP3718739B2 (ja) 2005-11-24

Similar Documents

Publication Publication Date Title
US6022489A (en) Reagent for decomposing fluorocarbons
US6146606A (en) Reactive agent and process for decomposing nitrogen fluoride
US6630421B1 (en) Reactive agent and process for decomposing fluorine compounds and use thereof
JP3789277B2 (ja) フッ素化合物の分解用反応剤、分解方法及びその用途
JP3592886B2 (ja) 弗化炭素類の分解方法および分解用反応剤
JP3249986B2 (ja) フロンの分解処理法および装置
US6416726B2 (en) Method for decomposing nitrogen fluoride or sulfur fluoride and decomposing reagent used therefor
JP4264076B2 (ja) 弗化炭素類の分解装置
JP2004249285A (ja) フッ素化合物の分解方法
JP3718739B2 (ja) 弗化硫黄の分解法および分解用反応剤
EP1587604B1 (en) Process for decomposing fluorine compounds
EP1123727A1 (en) Perfluoro compounds decomposition method and decomposition apparatus therefor
JP4016532B2 (ja) フッ化窒素の分解用反応剤及び分解法
JP3713366B2 (ja) 弗化窒素の分解方法および分解用反応剤
JP3919328B2 (ja) 含フッ素化合物ガスの分解剤およびその製造法
WO1998001217A1 (fr) Procede et equipement de decompositions d'hydrocarbures fluores
JP2005095730A (ja) フッ素化合物の分解処理剤および分解処理方法
JP3734963B2 (ja) 混合溶融塩による有機塩素化合物等の無害化処理方法
JP2006035218A (ja) 土壌の処理装置
JP5342805B2 (ja) HFC−134aの無害化処理方法および炭酸カルシウムの製造方法
JP2000218131A (ja) 有機塩素系化合物含有ガスの処理方法
JP2001009407A (ja) 焼却灰および土壌中の有機塩素化合物の分解方法
JPH10165764A (ja) 三弗化窒素ガスの除害剤及び除害方法
JP2001232155A (ja) 有機塩素系化合物の分解方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees