JP3706852B2 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP3706852B2
JP3706852B2 JP2002302470A JP2002302470A JP3706852B2 JP 3706852 B2 JP3706852 B2 JP 3706852B2 JP 2002302470 A JP2002302470 A JP 2002302470A JP 2002302470 A JP2002302470 A JP 2002302470A JP 3706852 B2 JP3706852 B2 JP 3706852B2
Authority
JP
Japan
Prior art keywords
output
circuit
resonance
signal
dead time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002302470A
Other languages
English (en)
Other versions
JP2004140913A (ja
Inventor
智巳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002302470A priority Critical patent/JP3706852B2/ja
Publication of JP2004140913A publication Critical patent/JP2004140913A/ja
Application granted granted Critical
Publication of JP3706852B2 publication Critical patent/JP3706852B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング電源装置に関し、特に、位相シフト制御方式によるスイッチング電源装置に関する。
【0002】
【従来の技術】
従来より、スイッチング電源装置としていわゆるDC/DCコンバータが知られている。代表的なDC/DCコンバータは、スイッチング回路を用いて直流入力を一旦交流に変換した後、トランスを用いてこれを変圧(昇圧または降圧)し、さらに、出力回路を用いてこれを再び直流に変換する装置であり、これによって入力電圧とは異なる電圧を持った直流出力を得ることができる。ここで、大容量が要求されるスイッチング電源装置のスイッチング回路としては、いわゆるフルブリッジ型のスイッチング回路が用いられることが一般的であるが、この種のスイッチング回路において発生するスイッチング損失を低減可能な駆動方式として、いわゆる位相シフト制御方式が知られている(米国特許第4,864,479号公報参照)。
【0003】
位相シフト制御方式においては、フルブリッジ型のスイッチング回路を構成する4つのスイッチ素子の一方のアームの高位側スイッチ素子と他方のアームの低位側スイッチ素子の位相(一方のアームの低位側スイッチ素子と他方のアームの高位側スイッチ素子の位相も同様)が出力電圧に応じて制御され、これにより、一方のアームの高位側スイッチ素子と他方のアームの低位側スイッチ素子が同時にオン状態となる期間、並びに、一方のアームの低位側スイッチ素子と他方のアームの高位側スイッチ素子が同時にオン状態となる期間が出力電圧に応じて調整される。ここで、スイッチング回路(トランスの1次側)から出力回路(トランスの2次側)に伝送される電力は、一方のアームの高位側スイッチ素子と他方のアームの低位側スイッチ素子が同時にオン状態となる期間、並びに、一方のアームの低位側スイッチ素子と他方のアームの高位側スイッチ素子が同時にオン状態となる期間によって決まることから、上記位相を制御することにより、出力電圧を所望の値に安定させることが可能となる。
【0004】
この場合、同一のアームに属する2つのスイッチ素子については、これらが同時にオン状態となると入力電源が短絡され、大きな貫通電流が流れてしまう。このため、同一のアームに属する2つのスイッチ素子のうち、一方のスイッチ素子のオン期間と他方のスイッチ素子のオン期間との間には、これら2つのスイッチ素子がいずれもオフ状態となる期間が挿入される。このような期間は、一般的に「デッドタイム」と呼ばれている。
【0005】
また、位相シフト制御方式によるスイッチング電源装置においては、上記4つのスイッチ素子の容量成分及び/又は各スイッチ素子に付加された容量素子の容量成分と共振用インダクタンスによって共振回路が形成され、その共振特性を利用して、これらスイッチ素子がターンオンする際のスイッチングロスの低減が図られている。この共振回路は、同一のアームに属する一方のスイッチ素子がターンオフしてから他方のスイッチ素子がターンオンするまでの期間、すなわちデッドタイムにおいて共振動作を行い、これによってスイッチング回路を構成する4つのスイッチ素子のターンオン損失の低減が図られている。このように、位相シフト制御方式によるスイッチング電源装置においてデッドタイムは、ターンオン損失低減のための共振期間としても利用される。
【0006】
したがって、デッドタイムをどの程度の長さに設定するかは、上記共振回路の共振特性を考慮して定める必要があり、具体的には1回の共振動作が完了する期間と同じ長さに設定することが好ましい。デッドタイムの長さがこれよりも短いと、共振動作が完了する前に目的とするスイッチ素子がターンオンするため、ターンオン損失が大きくなるという問題が発生し、逆に、デッドタイムの長さがこれよりも長すぎると、共振動作が完了した後再び共振動作が再開するため、やはりターンオン損失が大きくなるという問題が発生してしまうからである。また、デッドタイムが必要以上に長いと、トランスの1次側から2次側への電力伝送能力が低下するという問題も発生する。
【0007】
しかしながら、上記共振回路の共振特性は、スイッチング電源装置の入力電圧Vinや出力電流Ioutによって変化し、具体的には入力電圧Vinが大きくなるほど、また、出力電流Ioutが小さくなるほど、共振に必要な時間が長くなる。したがって、入力電圧Vinが定格最大値Vin(max)まで上昇し、且つ、無負荷乃至は軽負荷状態となった場合においてもデッドタイム期間中に共振動作を完了させるためには、共振用インダクタンスを大きくすることにより、共振が完了する時間を短縮すればよい。
【0008】
【発明が解決しようとする課題】
しかしながら、共振用インダクタンスを大きくすると、トランスの1次側から2次側への伝送能力が低下するため、例えば、入力電圧Vinが定格最低値Vin(min)まで低下し、さらに出力電流Ioutが定格最大値Iout(max)に達した場合において、出力電圧Voを定格値に保持できなくなる可能性がある。
【0009】
このような問題を解決するための手法として、WO01/71896号公報にはトランスの1次側に可変インダクタを付加する技術が開示されているが、可変インダクタを用いると装置全体が大型化し、コストアップを招いてしまう。
【0010】
したがって、本発明の目的は、装置の大型化を抑制しつつスイッチングロスを低減可能な位相シフト制御方式によるスイッチング電源装置を提供することである。
【0011】
【課題を解決するための手段】
本発明のかかる目的は、入力端子と、出力端子と、トランスと、前記入力端子と前記トランスとの間に設けられ、第1及び第2のアームと、前記第1及び第2のアームに接続された共振回路とを含むフルブリッジ型のスイッチング回路と、前記出力端子と前記トランスとの間に設けられた出力回路と、前記スイッチング回路を位相シフト制御する制御回路とを備えるスイッチング電源装置であって、前記制御回路は、前記入力端子と前記スイッチング回路との間を流れる一次側電流、出力電流及び前記出力電流に比例した電流の少なくとも1つの電流が所定値以下となったときに、前記第1及び第2のアームの少なくとも一方のデッドタイムを延ばすことにより、前記デッドタイムを、前記共振回路の共振動作が完了する期間と同一又はそれより長くすることを特徴とするスイッチング電源装置によって達成される。
【0013】
本発明のかかる目的はまた、入力端子と、出力端子と、トランスと、前記入力端子と前記トランスとの間に設けられ、第1及び第2のアームと、前記第1及び第2のアームに接続された共振回路とを含むフルブリッジ型のスイッチング回路と、前記出力端子と前記トランスとの間に設けられた出力回路と、前記スイッチング回路を位相シフト制御する制御回路とを備えるスイッチング電源装置であって、前記制御回路は、入力電圧が所定値以上になったときに、前記第1及び第2のアームの少なくとも一方のデッドタイムを延ばすことにより、前記デッドタイムを、前記共振回路の共振動作が完了する期間と同一又はそれより長くすることを特徴とするスイッチング電源装置によって達成される。
【0014】
本発明のかかる目的はまた、入力端子と、出力端子と、トランスと、前記入力端子と前記トランスとの間に設けられ、第1及び第2のアームと、前記第1及び第2のアームに接続された共振回路とを含むフルブリッジ型のスイッチング回路と、前記出力端子と前記トランスとの間に設けられた出力回路と、前記スイッチング回路を位相シフト制御する制御回路とを備えるスイッチング電源装置であって、前記制御回路は、前記入力端子と前記スイッチング回路との間を流れる一次側電流の出力非伝送期間に現れるパルス成分のピーク値が所定値以上になったときに、前記第1及び第2のアームの少なくとも一方のデッドタイムを延ばすことにより、前記デッドタイムを、前記共振回路の共振動作が完了する期間と同一又はそれより長くすることを特徴とするスイッチング電源装置によって達成される。
【0015】
本発明によれば、第1のアーム及び/又は第2のアームの共振完了時間が長くなった場合であっても、これに連動してデッドタイムが長くなることから、ターンオン損失が大幅に低減される一方、共振完了時間が短くなった場合には、これに連動してデッドタイムも短くなることから、デッドタイム期間中の再共振が防止される。
【0016】
本発明においては、入力端子とスイッチング回路との間を流れる1次側電流の検出には、カレントトランスを用いることが好ましい。
【0017】
本発明の好ましい実施態様によれば、カレントトランスを用いた場合の高速応答性により、入力端子とスイッチング回路との間を流れる1次側電流に基づいて速やかにデッドタイムを変更することが可能となる。
【0018】
図1は、本発明の好ましい実施態様にかかるスイッチング電源装置の回路図である。
【0019】
図1に示すように、本実施態様にかかるスイッチング電源装置は、入力端子1,2間に与えられる入力電圧Vinを変圧して出力電圧Voutを生成し、これを出力端子3,4間に供給する装置であり、トランス10と、入力端子1,2とトランス10との間に接続されたスイッチング回路20と、トランス10と出力端子3,4との間に接続された出力回路30と、スイッチング回路20の動作を制御する制御回路40とを備えている。実使用時においては、図1に示すように入力端子1,2間には直流電源5が接続され、出力端子3,4間には直流負荷6が接続される。また、入力端子1,2間には入力電圧Vinを安定化させるための入力コンデンサ7が接続されているが、これについては入力端子1,2からみて直流電源5側に設けても構わない。尚、本明細書においては、スイッチング電源装置のうち制御回路40以外の部分を「主回路部」と呼ぶことがある。
【0020】
トランス10は、1次巻線11及び2次巻線12a,12bを備え、その巻数比は入力端子1,2間に与えられる入力電圧Vinの範囲及び出力端子3,4間に供給すべき出力電圧Voutの範囲に応じて設定される。また、図1に示すように、トランス10には、1次巻線11に対して直列な共振用インダクダンス13が存在している。詳細については後述するが、かかる共振用インダクダンス13は、スイッチング回路20において発生するスイッチングロスを低減するための共振回路の一部を構成する。
【0021】
スイッチング回路20は、入力端子1,2に与えられる直流である入力電圧Vinを交流に変換してこれをトランス10の1次巻線11に供給する役割を果たし、4つのスイッチ素子がフルブリッジ接続された構成を有する。フルブリッジの一対の入力側接続点は入力端子1,2にそれぞれ接続され、フルブリッジの一対の出力側接続点はトランス10の1次巻線11の両端間に接続されている。
【0022】
より具体的に説明すると、スイッチング回路20は、入力端子1,2間に直列接続されたスイッチ素子21a及びスイッチ素子22aと、同じく入力端子1,2間に直列接続されたスイッチ素子23a及びスイッチ素子24aとを備え、スイッチ素子21aとスイッチ素子22aとの接続点である接点Aはトランス10の1次巻線11の一端に接続され、スイッチ素子23aとスイッチ素子24aとの接続点である接点Bはトランス10の1次巻線11の他端に接続されている。これらスイッチ素子21a〜24aとしては、公知である種々のスイッチ素子を用いることができるが、FET(電界効果型トランジスタ)を用いることが好ましい。
【0023】
さらに、スイッチ素子21a〜24aには、それぞれダイオード21b〜24b及びコンデンサ21c〜24cが並列に接続されている。これらダイオード21b〜24b及びコンデンサ21c〜24cについては、スイッチ素子21a〜24aとは別個の素子であっても構わないし、スイッチ素子21a〜24aが持つ寄生成分であっても構わない。例えば、スイッチ素子21a〜24aとしてFETを用いる場合には、FETに寄生的に存在するボディダイオードをダイオード21b〜24bとして用い、FETのソース−ドレイン間容量をコンデンサ21c〜24cとして用いても構わない。但し、スイッチ素子21a〜24aとしてFETを用いた場合であっても、上記寄生成分に加えて、ダイオード21b〜24b及び/又はコンデンサ21c〜24cを別個の素子として付加しても構わない。
【0024】
尚、本明細書においては、スイッチ素子21aとスイッチ素子22aからなる直列回路を「第1のアーム」、スイッチ素子23aとスイッチ素子24aからなる直列回路を「第2のアーム」と呼ぶことがある。第1のアームの中点である接点Aは、共振用インダクダンス13を介してトランス10の1次巻線11の一端に接続されており、第2のアームの中点である接点Bは、トランス10の1次巻線11の他端に接続されている。
【0025】
出力回路30は、トランス10の2次巻線12a,12bに現れる交流電圧を整流・平滑して直流である出力電圧Voutを生成し、これを出力端子3,4間に供給する役割を果たし、トランス10の2次巻線12aの一端と整流出力点30aとの間に接続されたダイオード31と、トランス10の2次巻線12bの一端と整流出力点30aとの間に接続されたダイオード32と、整流出力点30aと出力端子3との間に接続された出力チョーク33と、一対の出力端子3,4間に接続された出力コンデンサ34とを備えている。また、出力端子4は、トランス10の2次側センタータップCに直接接続されている。このような構成を有する出力回路30のうち、ダイオード31,32はトランス10の2次巻線12a,12bに現れる交流電圧を整流する整流回路を構成し、出力チョーク33及び出力コンデンサ34は、整流出力点30aと2次側センタータップCとの間に現れる整流出力を平滑する平滑回路を構成する。
【0026】
制御回路40は出力コンデンサ34の両端間に現れる出力電圧Voutが予め定められた目標値となるよう、スイッチング回路20の動作を制御する回路であり、図1に示すようにパルス生成部100、デッドタイム設定部200及び電流検出部300によって構成される。
【0027】
また、図1に示すように、本実施態様にかかるスイッチング電源装置には、スイッチング回路20と入力端子2との間において入力コンデンサ7に流れる1次側電流Ipを検出するカレントトランス50が備えられており、その検出信号Sは制御回路40に供給される。尚、1次側電流Ipを検出する素子としてはカレントトランス以外の素子を用いても構わないが、電流量の変化に対する高速応答性を考慮すれば、カレントトランスを用いることが最も好ましい。
【0028】
詳細については後述するが、制御回路40は出力電圧Vout及び検出信号Sを受け、これらに基づき、位相シフト制御方式によって出力信号OUTA〜OUTDを生成する。生成された出力信号OUTA〜OUTDは、それぞれ絶縁回路61〜64を介してスイッチ素子21a〜24aの制御電極に供給される。
【0029】
次に、制御回路40を構成するパルス生成部100、デッドタイム設定部200及び電流検出部300について、この順に説明する。
【0030】
パルス生成部100は、出力電圧Voutに基づいて、位相シフト制御方式によりそれぞれ出力信号OUTA〜OUTDの原信号となる出力原信号OUTa〜OUTdを生成する回路部であり、以下の回路構成を有する。
【0031】
図2は、パルス生成部100の回路図である。
【0032】
図2に示すように、パルス生成部100は、クロック信号CLKを生成する発振器101と、クロック信号CLKに基づいて出力原信号OUTa,OUTbを生成するデータラッチ回路102と、のこぎり波RAMP−1を生成するランプ回路103と、ランプ回路をリセットするFET104と、出力電圧Voutを分圧する分圧回路105と、比較信号COMP−1〜COMP−3をそれぞれ生成する誤差アンプ106、コンパレータ107,108と、電圧源109,110と、クロック信号CLKを反転するインバータ111と、リセット信号RESET及びセット信号SETをそれぞれ生成する非論理和回路(NOR)112,113と、PWM信号を生成するPWMラッチ回路114と、出力原信号OUTc,OUTdをそれぞれ生成する排他的論理和回路(XOR)115及び排他的非論理和回路(XNOR)116とを備えている。
【0033】
発振器101はクロック信号CLKを生成する回路であり、生成されるクロック信号CLKの周波数は、周波数設定信号FREQ.SETによって設定することができる。
【0034】
データラッチ回路102は、クロック入力端子(CK)、データ入力端子(D)、反転出力端子(反転Q)及び非反転出力端子(Q)を備えており、クロック入力端子(CK)に供給されるクロック信号CLKの立ち上がりエッジに応答して、データ入力端子(D)に供給されている信号の論理レベルを保持する。図2に示すように、データラッチ回路102の反転出力端子(反転Q)はそのデータ入力端子(D)に接続されており、ここに現れる信号は出力原信号OUTaとして取り出される。また、データラッチ回路102の非反転出力端子(Q)に現れる信号は出力原信号OUTbとして取り出される。
【0035】
ランプ回路103は、その入力端103aと接地電位GNDとの間に接続されているFET104がオン状態である場合には、その出力であるのこぎり波RAMP−1を接地レベルとし、FET104がオフ状態である場合にはのこぎり波RAMP−1のレベルを所定の時定数にしたがって上昇させる。図2に示すように、FET104のゲート電極にはクロック信号CLKが供給されており、したがって、ランプ回路103はクロック信号CLKの周期に応答したのこぎり波RAMP−1を生成することができる。
【0036】
分圧回路105は、出力電圧Voutが供給される端子と接地電位GNDが供給される端子との間に直列に接続された抵抗105a,105bからなり、出力電圧Voutを分圧した誤差電圧E/A−を生成する。
【0037】
誤差アンプ106は、反転入力端子(−)及び非反転入力端子(+)を備えており、反転入力端子(−)には誤差電圧E/A−が供給され、非反転入力端子(+)には基準電圧Vrefが供給される。誤差アンプ106の出力である比較信号COMP−1の電圧レベルは、誤差電圧E/A−と基準電圧Vrefとの大小関係及びその電圧差に応じて定められ、誤差電圧E/A−が基準電圧Vrefよりも高ければ高いほど比較信号COMP−1の電圧は低くなり、逆に、誤差電圧E/A−が基準電圧Vrefよりも低ければ低いほど比較信号COMP−1の電圧は高くなる。ここで、基準電圧Vrefとは、制御回路40の内部で生成される電圧であり、出力電圧Voutの目標値に基づいて設定される。
【0038】
コンパレータ107,108も反転入力端子(−)及び非反転入力端子(+)を備えており、コンパレータ107の反転入力端子(−)及びコンパレータ108の非反転入力端子(+)には、誤差アンプ106の出力である比較信号COMP−1が共通に供給されている。コンパレータ107の非反転入力端子(+)には電圧源109の出力電圧V109が供給されており、これによりコンパレータ107においては、比較信号COMP−1のレベルが電圧源109の電圧V109よりも高い場合には、その出力である比較信号COMP−2はローレベルとなり、比較信号COMP−1のレベルが電圧源109の電圧V109よりも低い場合には、その出力である比較信号COMP−2はハイレベルとなる。本明細書においては、比較信号COMP−1のレベルが電圧源109の電圧V109よりも高い状態を「通常負荷状態」と呼び、逆に、比較信号COMP−1のレベルが電圧源109の電圧V109よりも低い状態を「軽負荷状態」若しくは「無負荷状態」と呼ぶことがある。
【0039】
一方、コンパレータ108の反転入力端子(−)にはのこぎり波RAMP−1に電圧源110による直流電圧V110を重畳した信号RAMP−2が供給されており、これにより、コンパレータ108においては、比較信号COMP−1のレベルが信号RAMP−2のレベルよりも高い場合には、その出力である比較信号COMP−3はハイレベルとなり、比較信号COMP−1のレベルが信号RAMP−2のレベルよりも低い場合には、その出力である比較信号COMP−3はローレベルとなる。特に限定されるものではないが、本実施態様においては、電圧源109の電圧V109と電圧源110の出力電圧V110は、実質的に等しく設定されている。
【0040】
コンパレータ107により生成される比較信号COMP−2は、非論理和回路(NOR)112の一方の入力端に供給され、非論理和回路(NOR)112の他方の入力端には、インバータ111よりクロック信号CLKの反転信号が供給される。さらに、コンパレータ108により生成される比較信号COMP−3は、非論理和回路(NOR)113の一方の入力端に供給され、非論理和回路(NOR)113の他方の入力端には、クロック信号CLKが供給される。図2に示すように、非論理和回路(NOR)112の出力はリセット信号RESETとして用いられ、非論理和回路(NOR)113の出力はセット信号SETとして用いられる。
【0041】
PWMラッチ回路114はRSフリップフロップ回路であり、リセット入力端子(R)、セット入力端子(S)及び反転出力端子(反転Q)を備えている。リセット入力端子(R)には非論理和回路(NOR)112の出力であるリセット信号RESETが供給され、セット入力端子(S)には非論理和回路(NOR)113の出力であるセット信号SETが供給される。これにより、リセット入力端子(R)に供給されるリセット信号RESETがハイレベルになると反転出力端子(反転Q)より出力されるPWM信号のレベルをハイレベルとし、セット入力端子(S)に供給されるセット信号SETがハイレベルになると反転出力端子(反転Q)より出力されるPWM信号のレベルをローレベルとする。
【0042】
PWMラッチ回路114により生成されるPWM信号は、排他的論理和回路(XOR)115及び排他的非論理和回路(XNOR)116の一方の入力端に共通に供給され、排他的論理和回路(XOR)115及び排他的非論理和回路(XNOR)116の他方の入力端には、出力原信号OUTaが共通に供給される。かかる排他的論理和回路(XOR)115の出力は出力原信号OUTcとして用いられ、排他的非論理和回路(XNOR)116の出力は出力原信号OUTdとして用いられる。
【0043】
以上がパルス生成部100の具体的な回路構成であり、次にその動作について説明する。
【0044】
図3は、通常負荷状態におけるパルス生成部100の動作を示すタイミング図である。同図において、(1)はクロック信号CLKの波形を示し、(2)は出力原信号OUTaの波形を示し、(3)は出力原信号OUTbの波形を示し、(4)は信号RAMP−2及び比較信号COMP−1の波形を示し、(5)は比較信号COMP−2の波形を示し、(6)は比較信号COMP−3の波形を示し、(7)はリセット信号RESETの波形を示し、(8)はセット信号SETの波形を示し、(9)はPWM信号の波形を示し、(10)は出力原信号OUTcの波形を示し、(11)は出力原信号OUTdの波形を示している。
【0045】
図3に示すように、通常負荷状態においては比較信号COMP−1のレベルが電圧源109の出力電圧V109よりも高いことから、コンパレータ107の出力である比較信号COMP−2のレベルはローレベルに固定される。一方、コンパレータ108の出力である比較信号COMP−3は、RAMP−2のレベルが比較信号COMP−1のレベルよりも低くなる期間、すなわち、クロック信号CLKの立ち上がりから所定の期間(クロック周期の前半)においてハイレベルとなり、RAMP−2のレベルが比較信号COMP−1のレベルよりも高くなる期間、すなわち、クロック周期の後半においてローレベルとなる。
【0046】
このため、PWMラッチ回路114は、クロック信号CLKの立ち上がりエッジに応答してリセットされ、RAMP−2のレベルが比較信号COMP−1のレベルを超えるタイミングにおいてセットされることになる。これにより、排他的論理和回路(XOR)115の出力である出力原信号OUTc及び排他的非論理和回路(XNOR)116の出力である出力原信号OUTdは、RAMP−2のレベルが比較信号COMP−1のレベルを超えるタイミングにおいて反転する波形となる。したがって、通常負荷状態においては出力原信号OUTaと出力原信号OUTdがともにハイレベルとなる期間、並びに、出力原信号OUTbと出力原信号OUTcがともにハイレベルとなる期間が存在することになり、その期間の長さは、比較信号COMP−1のレベルが高いほど長くなる。上述のとおり、比較信号COMP−1のレベルは出力電圧Voutが高いほど低く、出力電圧Voutが低いほど高くなるので、上記期間は、出力電圧Voutが低いほど長くなる。
【0047】
図4は、軽負荷状態若しくは無負荷状態におけるパルス生成部100の動作を示すタイミング図である。同図において(1)〜(11)は、図3の(1)〜(11)と同じ信号の波形を示している。
【0048】
図4に示すように、軽負荷状態若しくは無負荷状態においては、比較信号COMP−1のレベルが電圧源109の出力電圧V109よりも低いことから、コンパレータ107の出力である比較信号COMP−2のレベルはハイレベルに固定される。同様に、比較信号COMP−1のレベルがRAMP−2のレベルよりも常に低いことから、コンパレータ108の出力である比較信号COMP−3のレベルはローレベルに固定される。
【0049】
このため、PWMラッチ回路114はリセットされない状態となり、したがってその反転出力端子(反転Q)より出力されるPWM信号はローレベルに固定される。これにより、排他的論理和回路(XOR)115の出力である出力原信号OUTc及び排他的非論理和回路(XNOR)116の出力である出力原信号OUTdは、それぞれ出力原信号OUTa及び出力原信号OUTbの波形と一致することになる。したがって、軽負荷状態若しくは無負荷状態においては出力原信号OUTaと出力原信号OUTdがともにハイレベルとなる期間、並びに、出力原信号OUTbと出力原信号OUTcがともにハイレベルとなる期間は存在しなくなる。
【0050】
以上がパルス生成部100の動作である。
【0051】
次に、デッドタイム設定部200について説明する。
【0052】
図5は、デッドタイム設定部200の回路図である。
【0053】
図5に示すように、デッドタイム設定部200は、出力原信号OUTa〜OUTdを受けてそれぞれ出力信号OUTA〜OUTDを生成する遅延回路210,220,230,240を備えている。遅延回路210,220,230,240は互いに同一の回路構成を有しているため、図5においては、代表して遅延回路210についてのみその回路構成を示し、遅延回路220,230,240の具体的な回路構成については図示を省略してある。
【0054】
遅延回路210(遅延回路220,230,240も同様)は、論理積回路(AND)211と、コンパレータ212と、コンデンサ213と、電圧源214と、抵抗215〜217とを備えており、図5に示すように、論理積回路(AND)211の一方の入力端には出力原信号OUTa(遅延回路220,230,240においては、それぞれ出力原信号OUTb〜OUTd)が供給され、他方の入力端にはコンパレータ212の出力である212OUTが供給されている。また、抵抗215及びコンデンサ213は、出力原信号OUTa(遅延回路220,230,240においては、それぞれ出力原信号OUTb〜OUTd)が供給される端子と接地電位GNDとの間に直列接続されており、その接続点である接点Dは、コンパレータ212の非反転入力端子(+)に接続されている。さらに、抵抗216及び電圧源214は、コンパレータ212の反転入力端子(−)と接地電位GNDとの間に直列接続されており、抵抗217は、コンパレータ212の反転入力端子(−)と接地電位GNDとの間に接続されている。抵抗215と抵抗216との接続点、すなわちコンパレータ212の反転入力端子(−)は、接点Eを構成する。
【0055】
また、図5に示すように、接点Eには遅延量設定信号DSETが供給されている。遅延量設定信号DSETは、遅延回路210,220,230,240の遅延量を決定する信号であり、そのレベルが高いほど遅延回路210,220,230,240の遅延量が大きくなる。
【0056】
図6は、遅延回路210の動作を示すタイミング図である。同図において、(1)は出力原信号OUTaの波形を示し、(2)は接点D,Eのレベルを示し、(3)はコンパレータ212の出力である212OUTの波形を示し、(4)は出力信号OUTAの波形を示している。
【0057】
図6に示すように、出力原信号OUTaがローレベルからハイレベルに変化すると(時刻t0)、接点Dのレベルは抵抗215及びコンデンサ213より構成される時定数回路の時定数により決まる傾きをもって緩やかに上昇する。これにより接点Dのレベルが接点Eのレベルよりも高くなると(時刻t1)、コンパレータ212の出力である212OUTがローレベルからハイレベルに変化する。同様に、出力原信号OUTaがハイレベルからローレベルに変化した場合(時刻t2)にも、接点Dのレベルは抵抗215及びコンデンサ213より構成される時定数回路の時定数により決まる傾きをもって緩やかに低下し、これにより接点Dのレベルが接点Eのレベルよりも低くなると(時刻t3)、212OUTがハイレベルからローレベルに変化する。つまり、コンパレータ212の出力である212OUTは、出力原信号OUTaよりも図6に示すTdelay分だけ遅れた波形となる。
【0058】
このようにして生成された信号212OUTは、出力原信号OUTaとともに論理積回路(AND)211に供給され、出力信号OUTAが生成される。これにより、出力信号OUTAは、立ち上がりが出力原信号OUTaに比べてTdelay分だけ遅れ、立ち下がりが出力原信号OUTaに一致した波形となる。
【0059】
この場合、出力原信号OUTaの立ち上がりに対する出力信号OUTAの立ち上がりの遅れ、すなわちTdelayは、接点Eのレベルによって変化する。具体的には、接点Eのレベルが高くなれば、接点Dのレベルが接点Eのレベルを超えるのにより多くの時間が必要となることからTdelayは大きくなり、逆に、接点Eのレベルが低くなれば、接点Dのレベルが接点Eのレベルを超えるのに必要な時間が短くなることからTdelayは小さくなる。ここで、図5に示すように、接点Eには遅延量設定信号DSETが供給されているため、接点Eのレベルは遅延量設定信号DSETのレベルに連動する。したがって、遅延回路210は、遅延量設定信号DSETを高くするほど遅延量が大きくなり、遅延量設定信号DSETを低くするほど遅延量が小さくなる可変遅延回路として機能する。
【0060】
以上、遅延回路210の動作について説明したが、遅延回路220,230,240の動作についても同様であり、対応する出力原信号OUTb〜OUTdの立ち上がりをTdelay分だけ遅らせた出力信号OUTB〜OUTDをそれぞれ生成する。
【0061】
図7及び図8は、それぞれ通常負荷状態及び軽負荷状態若しくは無負荷状態における、出力原信号OUTa〜OUTdと出力信号OUTA〜OUTDとの関係を示すタイミング図である。同図において、(1)〜(4)はそれぞれ出力原信号OUTa〜OUTdの波形を示し、(5)〜(8)はそれぞれ出力信号OUTA〜OUTDの波形を示している。
【0062】
図7及び図8に示すように、出力信号OUTA〜OUTDは、その立ち上がりがそれぞれ出力原信号OUTa〜OUTdの立ち上がりよりもTdelay分だけ遅れた波形となることから、かかるTdelayは、出力信号OUTAと出力信号OUTBとの間のデッドタイム、並びに、出力信号OUTCと出力信号OUTDとの間のデッドタイムとなる。
【0063】
この場合、通常負荷状態においては、出力原信号OUTaと出力原信号OUTdがともにハイレベルとなる期間、並びに、出力原信号OUTbと出力原信号OUTcがともにハイレベルとなる期間が存在することから、図7に示すように、出力信号OUTAと出力信号OUTDがともにハイレベルとなる期間、並びに、出力信号OUTBと出力信号OUTCがともにハイレベルとなる期間が現れることになる。出力信号OUTAと出力信号OUTDがともにハイレベルとなる期間、並びに、出力信号OUTBと出力信号OUTCがともにハイレベルとなる期間は、出力伝送期間と呼ばれる。一方、軽負荷状態若しくは無負荷状態においては、出力原信号OUTaと出力原信号OUTdがともにハイレベルとなる期間、並びに、出力原信号OUTbと出力原信号OUTcがともにハイレベルとなる期間は存在しないことから、図8に示すように、出力信号OUTAと出力信号OUTDがともにハイレベルとなる期間、並びに、出力信号OUTBと出力信号OUTCがともにハイレベルとなる期間も現れない。
【0064】
ここで、デッドタイムの長さを決める遅延量設定信号DSETは、次に説明する電流検出部300によって生成される。
【0065】
図9は、電流検出部300の回路図である。
【0066】
図9に示すように、電流検出部300は、論理積回路(AND)310,320と、電圧源330と、トランジスタ331,332と、抵抗341,342と、ダイオード343と、コンデンサ344とを備えている。
【0067】
論理積回路(AND)310は、電源電位Vddと接地電位GNDとの間に直列接続されたPチャンネル型FET311及びNチャンネル型FET312と、同じく電源電位Vddと接地電位GNDとの間に直列接続されたPチャンネル型FET313及びNチャンネル型FET314と、コンパレータ315と、コンパレータ315の反転入力端子(−)とPチャンネル型FET311及びNチャンネル型FET312の接続点との間に設けられた抵抗316と、コンパレータ317の反転入力端子(−)とPチャンネル型FET313及びNチャンネル型FET314の接続点との間に設けられた抵抗317とを備えている。図9に示すように、Pチャンネル型FET311及びNチャンネル型FET312のゲート電極には、デッドタイム設定部200により生成される出力信号OUTAが共通に供給され、Pチャンネル型FET313及びNチャンネル型FET314のゲート電極には、デッドタイム設定部200により生成される出力信号OUTDが共通に供給される。
【0068】
かかる構成により、抵抗316と抵抗317の接続点である接点F1、すなわちコンパレータ315の反転入力端子(−)のレベルは、出力信号OUTA,OUTDがともにハイレベルである場合には接地電位GND、出力信号OUTA,OUTDがともにローレベルである場合には電源電位Vdd、出力信号OUTA,OUTDの一方がハイレベルで他方がローレベルである場合には電源電位Vddを抵抗316と抵抗317で分圧したレベルとなる。特に限定されるものではないが、抵抗316の抵抗値と抵抗317の抵抗値とは等しく設定され、これにより、出力信号OUTA,OUTDの一方がハイレベルで他方がローレベルである場合、接点F1のレベルはVdd/2となる。
【0069】
同様に、論理積回路(AND)320は、電源電位Vddと接地電位GNDとの間に直列接続されたPチャンネル型FET321及びNチャンネル型FET322と、同じく電源電位Vddと接地電位GNDとの間に直列接続されたPチャンネル型FET323及びNチャンネル型FET324と、コンパレータ325と、コンパレータ325の反転入力端子(−)とPチャンネル型FET321及びNチャンネル型FET322の接続点との間に設けられた抵抗326と、コンパレータ327の反転入力端子(−)とPチャンネル型FET323及びNチャンネル型FET324の接続点との間に設けられた抵抗327とを備えている。図9に示すように、Pチャンネル型FET321及びNチャンネル型FET322のゲート電極には、デッドタイム設定部200により生成される出力信号OUTBが共通に供給され、Pチャンネル型FET323及びNチャンネル型FET324のゲート電極には、デッドタイム設定部200により生成される出力信号OUTCが共通に供給される。
【0070】
かかる構成により、抵抗326と抵抗327の接続点である接点F2、すなわちコンパレータ325の反転入力端子(−)のレベルは、出力信号OUTB,OUTCがともにハイレベルである場合には接地電位GND、出力信号OUTB,OUTCがともにローレベルである場合には電源電位Vdd、出力信号OUTB,OUTCの一方がハイレベルで他方がローレベルである場合には電源電位Vddを抵抗326と抵抗327で分圧したレベルとなる。特に限定されるものではないが、抵抗326の抵抗値と抵抗327の抵抗値とは等しく設定され、これにより、出力信号OUTB,OUTCの一方がハイレベルで他方がローレベルである場合、接点F2のレベルはVdd/2となる。
【0071】
また、電圧源330はVdd/2未満の電圧V330を生成する回路であり、その電圧V330は、コンパレータ315の非反転入力端子(+)及びコンパレータ325の非反転入力端子(+)に供給される。さらに、コンパレータ315の出力である315OUTはトランジスタ331のベース電極に供給され、コンパレータ325の出力である325OUTはトランジスタ332のベース電極に供給される。トランジスタ331,332のエミッタ電極はいずれも接地されており、コレクタ電極はいずれも図9に示す接点Gに接続されている。
【0072】
抵抗341は検出信号Sが供給される端子と接地電位GNDとの間に接続され、抵抗342は抵抗341は検出信号Sが供給される端子と接点Gとの間に接続されている。さらに、ダイオード343のアノードは接点Gに接続されており、カソードのレベルは遅延量設定信号DSETとして取り出される。そして、コンデンサ344は、ダイオード343のカソードと接地電位GNDとの間に接続されている。
【0073】
ダイオード343及びコンデンサ344からなる部分はピークホールド回路として機能し、接点Gに現れる電位のピークを遅延量設定信号DSETとして出力する。ここで、接点Gに現れる電位は、トランジスタ331,332の少なくとも一方がオンしている期間においては接地電位GNDとなり、トランジスタ331,332の両方がオフしている期間においては検出信号Sのレベルと一致する。
【0074】
図10は、通常負荷状態における電流検出部300の動作を示すタイミング図である。同図において、(1)〜(4)はそれぞれ出力信号OUTA〜OUTDの波形を示し、(5)は接点F1のレベルを示し、(6)は接点F2のレベルを示し、(7)はコンパレータ315の出力である315OUTの波形を示し、(8)はコンパレータ325の出力である325OUTの波形を示している。
【0075】
通常負荷状態においては、図10に示すように、接点F1のレベルは出力信号OUTA,OUTDがともにハイレベルである場合のみ電圧源330の電圧V330を下回るため、コンパレータ315の出力である315OUTは、出力信号OUTA,OUTDがともにハイレベルである場合にハイレベルとなり、それ以外の状態においてはローレベルとなる。同様に、接点F2のレベルは出力信号OUTB,OUTCがともにハイレベルである場合のみ電圧源330の電圧V330を下回るため、コンパレータ325の出力である325OUTは、出力信号OUTB,OUTCがともにハイレベルである場合にハイレベルとなり、それ以外の状態においてはローレベルとなる。
【0076】
したがって、トランジスタ331は、315OUTがハイレベルとなった場合(出力信号OUTA,OUTDがともにハイレベルである場合)にオンし、トランジスタ332は、325OUTがハイレベルとなった場合(出力信号OUTB,OUTCがともにハイレベルである場合)にオンすることになる。すなわち、図9に示す接点Gは、出力伝送期間において接地電位GNDに接続されることになる。一方、出力伝送期間以外の期間(出力非伝送期間)においては、接点Gから見てトランジスタ331,332はハイインピーダンス状態となることから、検出信号Sのレベルと一致することになる。
【0077】
そして、ダイオード343及びコンデンサ344からなる部分はピークホールド回路として機能するため、最終的に生成される遅延量設定信号DSETは、出力非伝送期間における検出信号Sのピークレベルとほぼ一致することになる。
【0078】
図11は、軽負荷状態若しくは無負荷状態における電流検出部300の動作を示すタイミング図である。同図において(1)〜(8)は、図10の(1)〜(8)と同じ信号の波形を示している。
【0079】
図11に示すように、軽負荷状態若しくは無負荷状態においては、出力信号OUTA,OUTDがともにハイレベルとなる期間や出力信号OUTB,OUTCがともにハイレベルとなる期間が存在せず、全期間が出力非伝送期間となるため、接点F1,F2のレベルが電圧源330の電圧V330を下回ることはなく、したがって、コンパレータ315の出力である315OUT及びコンパレータ325の出力である325OUTは、ローレベルに保たれる。これにより、最終的に生成される遅延量設定信号DSETは、やはり検出信号Sのピークレベルと一致することになる。
【0080】
以上が、制御回路40に含まれるパルス生成部100、デッドタイム設定部200及び電流検出部300の回路構成及びその動作であり、以下、このような制御回路40により制御されるスイッチング電源装置の主回路部の動作について説明する。
【0081】
図12は、本実施態様にかかるスイッチング電源装置の通常負荷状態における動作を示すタイミング図である。同図において、(1)〜(4)はそれぞれ出力信号OUTA〜OUTDの波形を示し、(5)はトランス10の1次巻線11に現れる電圧Vmtの波形を示し、(6)はスイッチ素子22aの両端に現れる電圧V22aの波形を示し、(7)はスイッチ素子24aの両端に現れる電圧V24aの波形を示し、(8)は入力コンデンサに流れる1次側電流Ipの波形を示している。
【0082】
通常負荷状態においては、図12に示すように、出力信号OUTAとOUTDがともにハイレベルとなる期間及び出力信号OUTBとOUTCがともにハイレベルとなる期間が存在し、出力信号OUTAとOUTDがともにハイレベルである期間においてはトランス10の1次巻線11の電圧Vmtが正方向となり、また、出力信号OUTBとOUTCがいずれもハイレベルである期間においてはトランス10の1次巻線11の電圧Vmtが負方向となるため、これら期間において、1次側回路から2次側回路への電力伝送が行われる。
【0083】
また、出力信号OUTA及びOUTBからなる信号の組と出力信号OUTC及びOUTDからなる信号の組との位相差は、出力電圧Voutに基づいて決定される。つまり、上述のとおり、出力原信号OUTaと出力原信号OUTdがともにハイレベルとなる期間、並びに、出力原信号OUTbと出力原信号OUTcがともにハイレベルとなる期間の長さは、パルス生成部100による制御のもと、出力電圧Voutのレベルが高いほど短く設定され、出力電圧Voutのレベルが低いほど長く設定されることから、出力信号OUTAと出力信号OUTDがともにハイレベルとなる期間、並びに、出力信号OUTBと出力信号OUTCがともにハイレベルとなる期間についても、出力電圧Voutのレベルが高いほど短く、出力電圧Voutのレベルが低いほど長くなる。
【0084】
したがって、現在の出力電圧Voutが予め定められた出力電圧の目標値よりも低ければ低いほど、出力信号OUTAとOUTDがいずれもハイレベルである期間、並びに、出力信号OUTBとOUTCがいずれもハイレベルである期間は長くなり、電力伝送量が増大する。逆に、現在の出力電圧Voutが予め定められた出力電圧の目標値よりも高ければ高いほど、出力信号OUTAとOUTDがいずれもハイレベルである期間、並びに、出力信号OUTBとOUTCがいずれもハイレベルである期間は短くなり、電力伝送量が減少する。このように位相差を調節することにより、出力電圧Voutを予め定められた目標値に安定させることができる。
【0085】
また、スイッチ素子22aの両端に現れる電圧V22aは、スイッチ素子21aがオンしている期間(出力信号OUTAがハイレベルである期間)において入力電圧Vinと実質的に等しくなり、スイッチ素子22aがオンしている期間(出力信号OUTBがハイレベルである期間)においてゼロとなる。
【0086】
ここで、電圧V22aのVinからゼロへの変化は、出力信号OUTAの立ち下がりから出力信号OUTBの立ち上がりまでのデッドタイム期間中に行われ、電圧V22aのゼロからVinへの変化は、出力信号OUTBの立ち下がりから出力信号OUTAの立ち上がりまでのデッドタイム期間中に行われる。これらデッドタイム期間においては、出力信号OUTCまたはOUTDのみがハイレベルであり、他の出力信号はローレベルとなっていることから、コンデンサ21cと共振用インダクダンス13との間、並びに、コンデンサ22cと共振用インダクダンス13との間で共振動作が行われる。以下、コンデンサ21cと共振用インダクダンス13からなる共振回路及びコンデンサ22cと共振用インダクダンス13からなる共振回路を「第1の共振回路」と呼ぶ。
【0087】
同様に、スイッチ素子24aの両端に現れる電圧V24aは、スイッチ素子23aがオンしている期間(出力信号OUTCがハイレベルである期間)において入力電圧Vinと実質的に等しくなり、スイッチ素子24aがオンしている期間(出力信号OUTDがハイレベルである期間)においてゼロとなる。
【0088】
ここで、電圧V24aのVinからゼロへの変化は、出力信号OUTCの立ち下がりから出力信号OUTDの立ち上がりまでのデッドタイム期間中に行われ、電圧V24aのゼロからVinへの変化は、出力信号OUTDの立ち下がりから出力信号OUTCの立ち上がりまでのデッドタイム期間中に行われる。これらデッドタイム期間においては、出力信号OUTAまたはOUTBのみがハイレベルであり、他の出力信号はローレベルとなっていることから、コンデンサ23cと共振用インダクダンス13、出力チョーク33によるインダクタンス成分及び1次巻線11からなる合成インダクタとの間で共振動作が行われるとともに、コンデンサ24cと上記合成インダクタとの間で共振動作が行われる。以下、コンデンサ23cと上記合成インダクタからなる共振回路及びコンデンサ24cと上記合成インダクタからなる共振回路を「第2の共振回路」と呼ぶ。
【0089】
以上により、出力信号OUTAとOUTDがいずれもハイレベルである期間、並びに、出力信号OUTBとOUTCがいずれもハイレベルである期間において1次側電流Ipが流れ、それ以外の期間においては1次側電流Ipは実質的にゼロとなる。
【0090】
また、図示しないが、軽負荷状態若しくは無負荷状態においては、出力信号OUTAとOUTDがともにハイレベルとなる期間や出力信号OUTBとOUTCがともにハイレベルとなる期間が存在しなくなることから、トランス10の1次巻線11の電圧Vmtは常に実質的にゼロとなり、1次側回路から2次側回路への電力伝送は行われなくなる。
【0091】
次に、第1及び第2の共振回路の共振特性とデッドタイムとの関係について説明する。
【0092】
まず、デッドタイム期間中に行われる上記共振動作によって電圧V22a及びV24aがVinからゼロ(又はゼロからVin)に変化するのに必要な時間は、1次側電流Ip、出力電流Iout及び入力電流Vinによって変化する。
【0093】
具体的には、電圧V22aがVinからゼロ(又はゼロからVin)に変化するのに必要な時間を共振完了時間t(a)、コンデンサ21c,22cの容量をCa、共振用インダクダンス13のインダクタンス値をLr、第1の共振回路の特性インピーダンスをZa、第1の共振回路の角周波数をωa、第1の共振回路における共振動作の初期電流をI(a)とした場合、共振完了時間t(a)は、次式によって与えられる。
【0094】
【数1】
Figure 0003706852
また、電圧V24aがVinからゼロ(又はゼロからVin)に変化するのに必要な時間を共振完了時間t(b)、コンデンサ23c,24cの容量をCb、上記合成インダクタのインダクタンス値をLb、第2の共振回路の特性インピーダンスをZb、第2の共振回路の角周波数をωb、第2の共振回路における共振動作の初期電流をI(b)とした場合、共振完了時間t(b)は、次式によって与えられる。
【0095】
【数2】
Figure 0003706852
式(1),(2)から明らかなように、共振完了時間t(a),t(b)は、入力電圧Vinが高くなるほど長くなり、共振動作の初期電流I(a),I(b)が小さくなるほど長くなることが分かる。共振動作の初期電流I(a),I(b)は、出力電流Iout及びこれに比例する電流に連動するため、共振完了時間t(a),t(b)は、出力電流Iout及びこれに比例する電流が小さくなるほど長くなることが分かる。
【0096】
ここで、デッドタイムが共振完了時間t(a),t(b)よりも短いと、デッドタイム期間中に上記共振動作を完了することができないことからデッドタイム終了時にターンオン損失が発生し、逆に、デッドタイムが共振完了時間t(a),t(b)よりも過度に長いと、出力電流Ioutの定格最大値Iout(max)が低くなるとともに、場合によってはデッドタイム期間中に再共振が生じてしまう。以上を考慮すれば、デッドタイムの長さとしては、共振完了時間t(a),t(b)と実質的に一致させるか、これよりもやや長く設定することが好ましい。
【0097】
図13は、デッドタイムが共振完了時間t(a),t(b)よりも短い場合における本実施態様のスイッチング電源装置の動作波形である。
【0098】
図13に示すように、デッドタイムが共振完了時間t(a),t(b)よりも短い場合、デッドタイム期間中に上記共振動作を完了することができないことから、出力信号OUTA,OUTCの立ち上がりにおいて、スイッチ素子21a,23aのターンオンにより電圧V22a,V24aはほとんど瞬間的にVinに変化するとともに、出力信号OUTB,OUTDの立ち上がりにおいて、スイッチ素子22a,24aのターンオンにより電圧V22a,V24aはほとんど瞬間的にゼロに変化する。これにより、スイッチ素子21a〜24aにはターンオン損失が発生してしまう。
【0099】
図14は、デッドタイムが共振完了時間t(a)よりも短い場合においてスイッチ素子22aがターンオンした際の電流の流れを概略的に示す等価回路図である。図14に示すように、デッドタイムが共振完了時間t(a)よりも短い場合においてスイッチ素子22aがターンオンすると、スイッチ素子22aの両端間の電圧がゼロとなる前に短絡されるため、スイッチ素子22aがターンオンする直前の電圧V22aの値に応じたターンオン損失が発生する。この時、スイッチ素子21aの両端間の電圧V21aは、入力コンデンサ7、コンデンサ21c及びスイッチ素子22aを介して流れる電流により、ほとんど瞬間的に入力電圧Vinにクランプされる。
【0100】
図15は、デッドタイムが共振完了時間t(b)よりも短い場合においてスイッチ素子24aがターンオンした際の電流の流れを概略的に示す等価回路図である。図15に示すように、デッドタイムが共振完了時間t(b)よりも短い場合においてスイッチ素子24aがターンオンすると、スイッチ素子24aの両端間の電圧がゼロとなる前に短絡されるため、スイッチ素子24aがターンオンする直前の電圧V24aの値に応じたターンオン損失が発生する。この時、スイッチ素子23aの両端間の電圧V23aは、入力コンデンサ7、コンデンサ23c及びスイッチ素子23aを介して流れる電流により、ほとんど瞬間的に入力電圧Vinにクランプされる。尚、図15において、33’は、出力チョーク33の1次側回路への影響を等価的に表すインダクタンス成分を示している。したがって、上記合成インダクタンス成分は、共振用インダクダンス13、1次巻線11及びインダクタンス成分33’によって構成されることになる。
【0101】
デッドタイムが共振完了時間t(b)よりも短いと、図13に示すように、出力信号OUTC及び出力信号OUTDの立ち上がりにおいてパルス状の1次側電流Ipが発生する。かかるパルスのピークは、共振完了時間t(b)に比べてデッドタイムが短くなればなるほど大きくなる。本実施態様においては、かかるパルス状の1次側電流Ipをカレントトランス50を用いて検出することによって、デッドタイムを可変としている。つまり、共振完了時間t(b)の変化に応じてデッドタイムを変更することにより、デッドタイムが共振完了時間t(b)と実質的に同じか或いはこれよりもやや長くなるよう、デッドタイムをリアルタイムに変更している。以下、これについて説明する。
【0102】
まず、カレントトランス50によって検出された1次側電流Ipは、検出信号Sとして電流検出部300に供給されるが、図9乃至図11を用いて説明したように、電流検出部300の接点Gは出力伝送期間において接地電位GNDに接続されるため、図13に示すように、接点Gの電圧波形は出力信号OUTC及び出力信号OUTDの立ち上がりにおいて生じる1次側電流Ipのパルス波形を抽出した波形となる。
【0103】
このような電圧波形となる接点Gは、ダイオード343及びコンデンサ344からなるピークホールド回路の入力部に接続されていることから、電流検出部300の出力である遅延量設定信号DSETのレベルは、接点Gのピーク電圧にほぼ一致することになる。したがって、遅延量設定信号DSETのレベルは、共振完了時間t(b)に比べてデッドタイムが短くなればなるほど大きくなる。
【0104】
そして、かかる遅延量設定信号DSETは、図5に示すように遅延回路210,220,230,240に供給され、遅延回路210,220,230,240による遅延量は、遅延量設定信号DSETのレベルが高いほど大きくなる。つまり、遅延量設定信号DSETのレベルが高いほど、デッドタイムが大きくなる。
【0105】
このことは、共振完了時間t(b)に比べてデッドタイムが短くなった場合、これに応答してデッドタイムが伸張されることを意味する。したがって、遅延量設定信号DSETのレベルに対応した遅延回路210,220,230,240の遅延量を、遅延量設定信号DSETのレベルに対応した共振完了時間t(b)とほぼ同じかこれよりもやや長くなるよう、検出信号Sの出力レベルや抵抗341,342の抵抗値を設定すれば、入力電圧Vinや出力電流Ioutの変動に関わらず、デッドタイムを共振完了時間t(b)ほぼ同じかこれよりもやや長い期間とすることができる。
【0106】
これにより、入力電圧Vinの上昇や出力電流Ioutの低下により共振完了時間t(b)が長くなった場合であっても、これに連動してデッドタイムが長くなることから、ターンオン損失が大幅に低減される。一方、入力電圧Vinの低下や出力電流Ioutの上昇により共振完了時間t(b)が短くなった場合には、これに連動してデッドタイムも短くなることから、デッドタイム期間中の再共振が防止される。
【0107】
このように、本実施態様にかかるスイッチング電源装置においては、デッドタイム期間がリアルタイムに最適化されることから、従来のように共振用インダクタンスを大きくすることなく、入力電圧Vinが定格最大値Vin(max)まで上昇し、且つ、無負荷乃至は軽負荷状態となった場合においても、デッドタイム期間中に共振動作を完了させることができるので、変換効率を高めることが可能となる。
【0108】
図16は本発明の効果を示すグラフであり、入力電圧Vinを300V、コンデンサ23c,24cの容量を約2200pF、共振用インダクダンス13、1次巻線11及びインダクタンス成分33’からなる合成インダクタンス成分を約200μHに設定した場合において、本発明のようにデッドタイム期間を可変とした場合の効率と、従来のようにデッドタイム期間を固定した場合の効率とを示している。
【0109】
図16に示すように、出力電流Ioutが20A以上である場合には両者に実質的な差は現れなかったが、出力電流Ioutが20A未満である場合にはデッドタイム期間を可変とした場合の方が高効率となり、出力電流Ioutが約10Aである場合においては約2.5%の改善が見られた。
【0110】
本発明は、以上の実施態様に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【0111】
例えば、上記実施態様においては、出力非伝送期間において1次側電流Ipに現れるパルス成分を検出することによってデッドタイムを設定しているが、1次側電流Ipに現れるパルス成分の代わりに、または1次側電流Ipに現れるパルス成分とともに、出力電流Ioutを検出することによってデッドタイムを設定しても構わない。この場合、出力電流Ioutの値が大きくなればなるほど、デッドタイムを短く設定すればよい。出力電流Ioutに基づいてデッドタイムを設定する場合、出力電流Ioutを直接検出しても構わないし、トランス10とスイッチング回路20との間に流れる電流(出力電流Ioutに比例する)を検出することによりこれを間接的に検出しても構わない。
【0112】
さらに、1次側電流Ipに現れるパルス成分や出力電流Ioutに代えて、または1次側電流Ipに現れるパルス成分や出力電流Ioutとともに、入力電圧Vinを検出することによってデッドタイムを設定しても構わない。この場合、式(1),(2)から明らかなとおり、入力電圧Vinが大きくなればなるほど共振完了時間t(a),t(b)も大きくなることから、入力電圧Vinが大きくなればなるほど、デッドタイムを長く設定すればよい。
【0113】
また、上記実施態様においては、出力信号OUTAと出力信号OUTBとの間のデッドタイム、並びに、出力信号OUTCと出力信号OUTDとの間のデッドタイムの両方を可変としているが、本発明においてこれらの両方を可変とすることは必須でなく、少なくとも一方を可変とすればよい。上記実施態様においては、出力信号OUTC及び出力信号OUTDの立ち上がりにおいて発生するパルス状の1次側電流Ipを検出していることから、この場合には、出力信号OUTCと出力信号OUTDとの間のデッドタイムを可変とすることが好ましい。また、出力信号OUTAと出力信号OUTBとの間のデッドタイム、並びに、出力信号OUTCと出力信号OUTDとの間のデッドタイムの両方を可変とする場合であっても、これらデッドタイムを一様に調整する必要はなく、出力信号OUTAと出力信号OUTBとの間のデッドタイムの調整量と、出力信号OUTCと出力信号OUTDとの間のデッドタイムの調整量とが異なっていても構わない。具体的な調整量としては、式(1),(2)に基づき定めればよい。
【0114】
さらに、上記実施態様において示した具体的な回路はあくまで一例であり、これとは異なる構成を有する回路を用いてデッドタイムを可変としても構わない。したがって、例えば、1次側電流Ipや入力電圧Vinに基づきソフトウェア的な演算を行うことによって最適なデッドタイム期間を算出し、これに基づいてデッドタイムを可変としても構わない。
【0115】
【発明の効果】
以上説明したように、本発明によれば、共振完了時間に基づいてデッドタイム期間を可変としていることから、共振用インダクタンスを大きくすることなく、デッドタイム期間中に共振動作を完了させることができる。このため、従来よりも高い変換効率を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の好ましい実施態様にかかるスイッチング電源装置の回路図である。
【図2】パルス生成部100の回路図である。
【図3】通常負荷状態におけるパルス生成部100の動作を示すタイミング図である。
【図4】軽負荷状態若しくは無負荷状態におけるパルス生成部100の動作を示すタイミング図である。
【図5】デッドタイム設定部200の回路図である。
【図6】遅延回路210の動作を示すタイミング図である。
【図7】通常負荷状態における出力原信号OUTa〜OUTdと出力信号OUTA〜OUTDとの関係を示すタイミング図である。
【図8】軽負荷状態若しくは無負荷状態における出力原信号OUTa〜OUTdと出力信号OUTA〜OUTDとの関係を示すタイミング図である。
【図9】電流検出部300の回路図である。
【図10】通常負荷状態における電流検出部300の動作を示すタイミング図である。
【図11】軽負荷状態若しくは無負荷状態における電流検出部300の動作を示すタイミング図である。
【図12】図1に示すスイッチング電源装置の通常負荷状態における動作を示すタイミング図である。
【図13】デッドタイムが共振完了時間t(a),t(b)よりも短い場合における図1に示すスイッチング電源装置の動作波形である。
【図14】デッドタイムが共振完了時間t(a)よりも短い場合においてスイッチ素子22aがターンオンした際の電流の流れを概略的に示す等価回路図である。
【図15】デッドタイムが共振完了時間t(b)よりも短い場合においてスイッチ素子24aがターンオンした際の電流の流れを概略的に示す等価回路図である。
【図16】本発明の効果を示すグラフである。
【符号の説明】
1,2 入力端子
3,4 出力端子
10 トランス
11 1次巻線
12a,12b 2次巻線
13 共振用インダクダンス
20 スイッチング回路
21a〜24a スイッチ素子
21b〜24b ダイオード
21c〜24c コンデンサ
30 出力回路
31,32 ダイオード
33 出力チョーク
34 出力コンデンサ
40 制御回路
50 カレントトランス
61〜64 絶縁回路
100 パルス生成部
101 発振器
102 データラッチ回路
103 ランプ回路
104 FET
105 分圧回路
106 誤差アンプ
107,108 コンパレータ
109,110 電圧源
111 インバータ
112,113 非論理和回路(NOR)
114 PWMラッチ回路
115 排他的論理和回路(XOR)
116 排他的非論理和回路(XNOR)
200 デッドタイム設定部
210,220,230,240 遅延回路
211 論理積回路(AND)
212 コンパレータ
213 コンデンサ
214 電圧源
215〜217 抵抗
300 電流検出部
310,320 論理積回路(AND)
311,313,321,323 Pチャンネル型FET
312,314,322,324 Nチャンネル型FET
315,325 コンパレータ
316,317,326,327,341,342 抵抗
330 電圧源
331,332 トランジスタ
343 ダイオード
344 コンデンサ

Claims (4)

  1. 入力端子と、出力端子と、トランスと、前記入力端子と前記トランスとの間に設けられ、第1及び第2のアームと、前記第1及び第2のアームに接続された共振回路とを含むフルブリッジ型のスイッチング回路と、前記出力端子と前記トランスとの間に設けられた出力回路と、前記スイッチング回路を位相シフト制御する制御回路とを備えるスイッチング電源装置であって、前記制御回路は、前記入力端子と前記スイッチング回路との間を流れる一次側電流、出力電流及び前記出力電流に比例した電流の少なくとも1つの電流が所定値以下となったときに、前記第1及び第2のアームの少なくとも一方のデッドタイムを延ばすことにより、前記デッドタイムを、前記共振回路の共振動作が完了する期間と同一又はそれより長くすることを特徴とするスイッチング電源装置。
  2. 入力端子と、出力端子と、トランスと、前記入力端子と前記トランスとの間に設けられ、第1及び第2のアームと、前記第1及び第2のアームに接続された共振回路とを含むフルブリッジ型のスイッチング回路と、前記出力端子と前記トランスとの間に設けられた出力回路と、前記スイッチング回路を位相シフト制御する制御回路とを備えるスイッチング電源装置であって、前記制御回路は、入力電圧が所定値以上になったときに、前記第1及び第2のアームの少なくとも一方のデッドタイムを延ばすことにより、前記デッドタイムを、前記共振回路の共振動作が完了する期間と同一又はそれより長くすることを特徴とするスイッチング電源装置。
  3. 入力端子と、出力端子と、トランスと、前記入力端子と前記トランスとの間に設けられ、第1及び第2のアームと、前記第1及び第2のアームに接続された共振回路とを含むフルブリッジ型のスイッチング回路と、前記出力端子と前記トランスとの間に設けられた出力回路と、前記スイッチング回路を位相シフト制御する制御回路とを備えるスイッチング電源装置であって、前記制御回路は、前記入力端子と前記スイッチング回路との間を流れる一次側電流の出力非伝送期間に現れるパルス成分のピーク値が所定値以上になったときに、前記第1及び第2のアームの少なくとも一方のデッドタイムを延ばすことにより、前記デッドタイムを、前記共振回路の共振動作が完了する期間と同一又はそれより長くすることを特徴とするスイッチング電源装置。
  4. 前記入力端子と前記スイッチング回路との間を流れる1次側電流を検出するカレントトランスをさらに備えることを特徴とする請求項3に記載のスイッチング電源装置。
JP2002302470A 2002-10-17 2002-10-17 スイッチング電源装置 Expired - Fee Related JP3706852B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302470A JP3706852B2 (ja) 2002-10-17 2002-10-17 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302470A JP3706852B2 (ja) 2002-10-17 2002-10-17 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2004140913A JP2004140913A (ja) 2004-05-13
JP3706852B2 true JP3706852B2 (ja) 2005-10-19

Family

ID=32450522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302470A Expired - Fee Related JP3706852B2 (ja) 2002-10-17 2002-10-17 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP3706852B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294001B2 (en) 2013-02-13 2016-03-22 Denso Corporation Power converter with dead-time control function

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781744B2 (ja) * 2005-08-05 2011-09-28 ローム株式会社 電源装置及びこれを用いた電気機器
JP4797663B2 (ja) * 2006-02-03 2011-10-19 Tdk株式会社 スイッチング電源装置
JP2011130577A (ja) * 2009-12-17 2011-06-30 Shihen Tech Corp 直流電源装置
WO2012144249A1 (ja) * 2011-04-18 2012-10-26 三菱電機株式会社 電力変換装置およびそれを備えた車載電源装置
US9397579B2 (en) 2011-07-15 2016-07-19 O2Micro Inc Full-bridge switching DC/DC converters and controllers thereof
US9559594B2 (en) * 2013-06-24 2017-01-31 Covidien Lp Dead-time optimization of resonant inverters
JP6307829B2 (ja) * 2013-10-04 2018-04-11 セイコーエプソン株式会社 回路装置及び電子機器
JP6171205B2 (ja) * 2013-11-29 2017-08-09 新電元工業株式会社 電源装置、検査装置、及び電源装置の最適化方法
JP5926766B2 (ja) * 2014-01-17 2016-05-25 オーツー マイクロ, インコーポレーテッド Dc/dcコンバータ
JP6029619B2 (ja) * 2014-06-16 2016-11-24 オリジン電気株式会社 コンバータ及びコンバータの制御方法
JP6340299B2 (ja) * 2014-10-17 2018-06-06 ローム株式会社 スイッチ駆動回路及びこれを用いたスイッチング電源装置
JP6662151B2 (ja) * 2016-03-31 2020-03-11 住友電気工業株式会社 Dc/dc変換装置、コンピュータプログラム及びdc/dc変換装置の制御方法
EP3522350B1 (en) 2016-09-29 2021-12-29 Mitsubishi Electric Corporation Power conversion device
JP2019009848A (ja) * 2017-06-21 2019-01-17 日立オートモティブシステムズ株式会社 Dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP6932633B2 (ja) 2017-12-25 2021-09-08 Fdk株式会社 スイッチング電源装置
JP7135513B2 (ja) * 2018-07-06 2022-09-13 株式会社デンソー Dc-dcコンバータ用半導体モジュール
JP7409169B2 (ja) * 2019-06-18 2024-01-09 株式会社オートネットワーク技術研究所 絶縁型dcdcコンバータ
WO2023100318A1 (ja) * 2021-12-02 2023-06-08 Tdk株式会社 スイッチング制御装置、スイッチング電源装置および電力供給システム
JP7357710B2 (ja) * 2022-03-03 2023-10-06 三菱電機株式会社 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294001B2 (en) 2013-02-13 2016-03-22 Denso Corporation Power converter with dead-time control function

Also Published As

Publication number Publication date
JP2004140913A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3706852B2 (ja) スイッチング電源装置
US10263528B2 (en) Resonant converter with adaptive switching frequency and the method thereof
JP6528561B2 (ja) 高効率力率改善回路およびスイッチング電源装置
US8665611B2 (en) Controller for a resonant switched-mode power converter
US8456868B2 (en) Controller for a resonant switched-mode power converter
US6269012B1 (en) Energy efficient power supply with light-load detection
US9184664B2 (en) Semiconductor device provided with switching power supply device with intermittent oscillation control
EP2283569A1 (en) Current-mode control switching regulator and operations control method thereof
JP3839737B2 (ja) 直流電圧変換回路
JPH0654528A (ja) ゼロボルトスイッチングパワーコンバータのパワースイッチのためのドライブ回路
KR101739552B1 (ko) 홀드-업 타임 확장 회로 및 이를 포함하는 컨버터
JP6279080B2 (ja) 電力変換装置
KR20080046113A (ko) 승압/강압형 스위칭 레귤레이터 및 그 동작 제어방법
JP2017506868A (ja) バーストモード制御
CN111726005A (zh) 相移全桥转换器、操作相移全桥转换器的方法和ac/dc转换器
JP2004364433A (ja) 直流電圧変換回路
US20240146184A1 (en) Switching control circuit, control circuit, and power supply circuit
JP2015216763A (ja) スイッチング電源回路
JP2002119053A (ja) スイッチングレギュレータ
US7019986B2 (en) Power conversion apparatus and dead time generator
TWI766061B (zh) 開關調節器
WO2013021857A1 (ja) スイッチング電源装置
JP3694256B2 (ja) スイッチング電源装置及びこれに用いられる制御回路
JP3610321B2 (ja) スイッチング電源装置及びこれに用いられる制御回路、並びに、スイッチング電源装置の制御方法
JP7400188B2 (ja) 制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Ref document number: 3706852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees