WO2013021857A1 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
WO2013021857A1
WO2013021857A1 PCT/JP2012/069424 JP2012069424W WO2013021857A1 WO 2013021857 A1 WO2013021857 A1 WO 2013021857A1 JP 2012069424 W JP2012069424 W JP 2012069424W WO 2013021857 A1 WO2013021857 A1 WO 2013021857A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching element
power supply
circuit
low
Prior art date
Application number
PCT/JP2012/069424
Other languages
English (en)
French (fr)
Inventor
細谷達也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013527969A priority Critical patent/JP5937597B2/ja
Priority to GB1400965.8A priority patent/GB2507676B/en
Priority to CN201280037503.5A priority patent/CN103718446B/zh
Publication of WO2013021857A1 publication Critical patent/WO2013021857A1/ja
Priority to US14/176,405 priority patent/US9397575B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3385Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters

Definitions

  • the present invention relates to a switching power supply device including a switching element and a switching control circuit, and in particular, is an invention that makes it possible to apply a general-purpose current mode IC to a high-performance power conversion circuit.
  • FIG. 1 is a circuit diagram of a switching power supply device disclosed in Patent Document 1.
  • a switching power supply device 1 is an application of a flyback converter circuit.
  • a main switching element Q1 is repeatedly turned on and off alternately, energy is stored in the transformer 1 when turned on, and power is supplied to a load when turned off. Is supplied.
  • the switching power supply device 1 employs a so-called voltage clamping system that clamps a surge voltage applied to the main switching element Q1, and realizes a zero voltage switching operation of the main switching element Q1 and the sub switching element Q2. It is.
  • the switching power supply device 1 includes an FET Q1 as a main switching element, a primary winding N1 of a transformer T, and a DC power supply E connected in series, and a series circuit of an FET Q2 as a sub-switching element and a capacitor C1.
  • the transformer T is connected between both ends of the primary winding N1.
  • the gate of the FET Q1 is connected to one end of the first drive winding N3 via the switching control IC2.
  • the source of the FET Q2 is connected to the drain of the FET Q1, and the gate is connected to one end of the second drive winding N4 of the transformer T via the sub switching element control circuit (sub control circuit) 3.
  • the gate and source of the FET Q2 are connected between both ends of the second drive winding N4 via the sub control circuit 3.
  • the sub control circuit 3 includes a transistor Q3, a capacitor C2, a resistor R1, a capacitor C3, a resistor R2, and an inductor 4.
  • the capacitor C2 and the resistor R1 constitute a time constant circuit.
  • the switching power supply device 1 includes a rectifier diode Do and a smoothing capacitor C4 on the secondary side of the transformer T.
  • switching control IC 2 as shown in FIG. 1 is prepared for each application of various power conversion circuits and the IC is properly used depending on the specification and application, various ICs are required as the number of applications increases. Development and manufacturing of individual ICs require a great deal of processes and costs. As the number of types increases, IC logistics and inventory management also becomes complicated, resulting in a problem that the cost unit price of the IC increases.
  • An object of the present invention is to provide a switching power supply device that can simply configure the entire circuit without providing an individual switching control IC for each circuit configuration of the switching power supply device.
  • the switching power supply device of the present invention comprises: A power supply voltage input section to which an input power supply voltage is input; A DC voltage output unit for outputting a DC voltage; A transformer (T) having a primary winding (np) and a secondary winding (ns); A low-side switching element (Q1) connected in series to the primary winding (np) and applying a voltage of the power supply voltage input unit to the primary winding (np) when turned on; A switching control circuit for controlling the low-side switching element (Q1); A rectifying / smoothing circuit that rectifies and smoothes a voltage output from the secondary winding (ns) and outputs an output voltage (Vo) to the DC voltage output unit; A feedback voltage signal generation circuit for generating a feedback voltage signal based on the output voltage (Vo), The switching control circuit includes: Drive voltage signal output means for outputting a drive voltage signal for turning on the low-side switching element (Q1) when detecting reversal of the voltage polarity of the transformer (T); A reference voltage generating circuit for
  • the transformer (T) includes a low-side drive winding (nb1),
  • the drive voltage signal output means is preferably configured to detect inversion of the voltage polarity of the transformer (T) based on the voltage of the low side drive winding (nb1).
  • the reference voltage generation circuit includes a capacitor and a constant current circuit that charges the capacitor with a substantially constant current based on the drive voltage signal. It is preferable to provide a circuit that discharges the charge of the capacitor by the voltage of the drive voltage signal that turns off the low-side switching element (Q1).
  • a full-wave rectifier circuit that inputs a commercial AC power supply voltage and performs full-wave rectification is provided, and an output voltage of the full-wave rectifier circuit is input to a power supply voltage input unit.
  • the transformer includes a high-side drive winding (nb2), A high-side switching element control circuit that controls the low-side switching element (Q1) and the high-side switching element (Q2) so that the two switching elements are alternately turned on and off with a slight dead time when both of the switching elements are turned off. It is preferable to provide.
  • the high side switching element control circuit is: A turn-on that turns on the high-side switching element (Q2) by supplying a voltage generated in the high-side driving winding (nb2) to the control terminal of the high-side switching element (Q2) when the low-side switching element (Q1) is turned off.
  • a signal transmission circuit A bidirectional constant-current charge / discharge circuit connected to the high-side drive winding (nb2) and configured to make a voltage generated in the high-side drive winding (nb2) constant and charge / discharge the capacitor; Switching that turns off the high-side switching element (Q2) when the voltage of the capacitor exceeds a threshold value in the high-side drive winding (nb2) during the off period of the low-side switching element (Q1) It is preferable to include an element (Q3).
  • the low-side drive winding (nb1) is preferably provided with a rectifying / smoothing circuit that rectifies and smoothes the voltage generated in the low-side drive winding (nb1) to generate a DC power supply voltage for the switching control circuit.
  • one type of control IC can be used for various power conversion circuits of a switching power supply device without providing an individual switching control IC for each configuration of the power conversion circuit of the switching power supply device. Further, the entire circuit can be configured simply.
  • FIG. 1 is a circuit diagram of a switching power supply device disclosed in Patent Document 1.
  • FIG. FIG. 2 is a circuit diagram of the switching power supply apparatus 101 according to the first embodiment of the present invention.
  • FIG. 3 shows the relationship among the gate-source voltage Vgs1 of the low-side switching element Q1, the gate-source voltage Vgs2 of the high-side switching element Q2, the drain-source voltage Vds1 of the low-side switching element Q1, and the voltage Vcb2 of the capacitor Cb2.
  • FIG. FIG. 4 is a waveform diagram showing the relationship between the voltage Vnb2 of the high-side drive winding nb2 and the voltage Vcb2 of the capacitor Cb2.
  • FIG. 5 is a circuit diagram of the switching power supply apparatus 102 according to the second embodiment.
  • FIG. 6 is a circuit diagram of the switching power supply apparatus 103 according to the third embodiment.
  • FIG. 7 is a circuit diagram of the switching power supply device 104 according to the fourth embodiment.
  • FIG. 8 is a circuit diagram of the switching power supply device 105 according to the fifth embodiment.
  • FIG. 9 is a circuit diagram of the switching power supply device 106 according to the sixth embodiment.
  • FIG. 10 is a circuit diagram of the switching power supply device 107 according to the seventh embodiment.
  • FIG. 11 is a circuit diagram of the switching power supply device 108 according to the eighth embodiment.
  • FIG. 12 is a circuit diagram of the switching power supply device 109 according to the ninth embodiment.
  • FIG. 13 is a circuit diagram of the switching power supply device 110 according to the tenth embodiment.
  • FIG. 14 is a circuit diagram of the switching power supply device 111 according to the eleventh embodiment.
  • FIG. 2 is a circuit diagram of the switching power supply apparatus 101 according to the first embodiment.
  • the voltage of the DC input power supply Vi is input between the input terminals PI (+)-PI ( ⁇ ) of the switching power supply device 101.
  • a predetermined DC voltage is output to the load Ro connected between the output terminals PO (+) and PO ( ⁇ ) of the switching power supply device 101.
  • a first series circuit in which the capacitor Cr, the inductor Lr, the primary winding np of the transformer T, and the low-side switching element Q1 are connected in series is formed between the input terminals PI (+) and PI ( ⁇ ). .
  • the low-side switching element Q1 is composed of an FET, and the drain terminal is connected to the primary winding np of the transformer T.
  • a second series circuit in which a high-side switching element Q2, a capacitor Cr, and an inductor Lr are connected in series is configured.
  • a first rectifying and smoothing circuit including diodes Ds and Df and a capacitor Co is configured.
  • the first rectifying / smoothing circuit performs full-wave rectification and smoothing of the AC voltage output from the secondary windings ns1 and ns2, and outputs it to the output terminals PO (+) ⁇ PO ( ⁇ ).
  • the transformer T includes not only the primary winding np, the secondary windings ns1 and ns2, but also the low-side driving winding nb1 and the high-side driving winding nb2.
  • a rectifying and smoothing circuit including a diode Db and a capacitor Cb is connected to the low-side drive winding nb1 of the transformer T.
  • a DC voltage obtained by the rectifying / smoothing circuit is supplied as a power supply voltage to the VCC terminal of the switching control IC 84.
  • the switching control IC 84 is a general-purpose IC that operates in a current mode having an IS terminal (current detection terminal).
  • a feedback circuit is provided between the output terminals PO (+) and PO ( ⁇ ) and the switching control IC 84.
  • the feedback path is simply represented by a single line (Feed back).
  • the divided voltage value of the output voltage Vo between the output terminals PO (+)-PO ( ⁇ ) A feedback signal is generated by comparison with the reference voltage, and the feedback voltage is input to the FB terminal of the switching control IC 84 in an insulated state.
  • the feedback voltage input to the FB terminal increases as the output voltage Vo decreases.
  • a series circuit of a constant current circuit CC1 and a capacitor Cb1 is connected to the OUT terminal of the switching control IC 84, and the charging voltage of the capacitor Cb1 is connected to the IS terminal (current detection terminal).
  • the switching control IC 84 sets the OUT terminal to the high level. To do. As a result, the low-side switching element Q1 is turned on.
  • the OUT terminal of the switching control IC 84 is connected to the control terminal of the low-side switching element Q1 via the resistor R12.
  • the constant current circuit CC1 charges the capacitor Cb1 with a constant current by the voltage of the OUT terminal of the switching control IC 84.
  • the comparator in the switching control IC 84 compares the voltage of the capacitor Cb1 with the voltage of the FB terminal, and when the voltage of the IS terminal exceeds the voltage of the FB terminal, the voltage of the OUT terminal is changed from the high level to the low level. Therefore, the lower the voltage at the FB terminal, the shorter the charging time of the capacitor Cb1. That is, the ON time of the low side switching element Q1 is shortened, and the output voltage Vo is made constant.
  • the diode D9 constitutes a discharge path for the charge of the capacitor Cb1. That is, when the output voltage of the switching control IC 84 becomes low level (when Q1 is turned off), the charge in the capacitor Cb1 is discharged through the diode D9.
  • the circuit comprising the switching control IC 84, which is a current mode IC, the constant current circuit CC1, and the capacitor Cb1 functions as a voltage-time conversion circuit. Then, the voltage of the feedback signal generated by detecting the output voltage Vo and comparing it with the reference voltage (target voltage) is converted by the voltage-time conversion circuit, and the low-side switching element Q1 is turned on for that time.
  • a second switching control circuit 61 is provided between the high-side drive winding nb2 of the transformer T and the high-side switching element Q2.
  • the second switching control circuit 61 corresponds to a “high-side switching element control circuit” recited in the claims. Specifically, the first end of the high-side drive winding nb2 of the transformer T is connected to the connection point (source terminal of the high-side switching element Q2) between the low-side switching element Q1 and the high-side switching element Q2, and the high-side drive A second switching control circuit 61 is connected between the second end of the winding nb2 and the gate terminal of the high-side switching element Q2.
  • the second switching control circuit 61 forcibly turns off the high-side switching element Q2 when the same time as the on-time of the low-side switching element Q1 has elapsed after the high-side switching element Q2 is turned on.
  • the second switching control circuit 61 includes a diode bridge rectifier circuit including four diodes D1, D2, D3, and D4, and a connection point between the diodes D1 and D3 and a connection point between the diodes D2 and D4.
  • This is a bidirectional constant current circuit composed of a constant current circuit CC2 connected between the output terminals of the diode bridge rectifier circuit.
  • the discharge time of the capacitor Cb2, that is, the on time of the low side switching element Q1 and the charging time of the capacitor Cb2, that is, the on time of the high side switching element Q2 become equal.
  • FIG. 3 shows the relationship among the gate-source voltage Vgs1 of the low-side switching element Q1, the gate-source voltage Vgs2 of the high-side switching element Q2, the drain-source voltage Vds1 of the low-side switching element Q1, and the voltage Vcb2 of the capacitor Cb2.
  • the capacitor Cb2 Since the capacitor Cb2 is charged and discharged with a constant current having the same current value, the slopes of the charging voltage Vcb2 are equal. That is, the charge / discharge current ratio Di is 1: 1. Therefore, the on time of the high side switching element Q2 is equal to the on time of the low side switching element Q1.
  • T Q1ON (1) and T Q2ON (1) are equalized by the above-described operation.
  • Vds1 and Vcb2 are waveform diagrams indicated by dotted lines.
  • T Q1ON (2) and T Q2ON (2) are equalized by the above-described operation.
  • FIG. 4 is a waveform diagram showing the relationship between the voltage Vnb2 of the high side drive winding nb2 and the voltage Vcb2 of the capacitor Cb2.
  • a general transistor usually has a withstand voltage of about -5V, and the design margin is taken into consideration.
  • charging / discharging can be performed in a wide range from -4V to 0.6V.
  • Increasing the voltage fluctuation range for the capacitor Cb2 increases resistance to disturbance noise, and also reduces errors with respect to temperature changes and variations in the electrical characteristics of components, allowing stable operation. .
  • a so-called current mode IC is used, and a current-time conversion circuit is provided only by providing a constant current circuit for charging a capacitor with a substantially constant current based on a drive voltage signal of the low-side switching element Q1. Since the ON time of the low-side switching element Q1 can be controlled according to the feedback voltage, the entire circuit can be configured simply.
  • the low-side switching element Q1 and the high-side switching element Q2 can be alternately turned on / off in a symmetrical waveform with substantially the same on-time.
  • the on-time detection of the low-side switching element Q1 and the circuit for turning on and off the high-side switching element Q2 can be integrated, and the second switching control circuit can be configured with a minimum number of discrete components.
  • the low-side switching element Q1 and the high-side switching element Q2 are turned on using a voltage change generated in the transformer winding as a trigger, and are alternately turned on / off with a minimum dead time. That is, both switching elements are not turned on simultaneously, and high reliability can be ensured. Further, since the dead time is the minimum value that can achieve the ZVS (zero voltage switching) operation, high power conversion efficiency can be obtained.
  • FIG. 5 is a circuit diagram of the switching power supply apparatus 102 according to the second embodiment.
  • the configuration of the second switching control circuit 62 is different from the switching power supply device 101 shown in FIG.
  • the constant current circuit is shown more specifically. That is, the base of the first transistor Q11 is connected to the collector of the second transistor Q12, the emitter of the first transistor Q11 is connected to the base of the second transistor Q12, and between the collector and base of the first transistor Q11.
  • the resistor R12 is connected to the second transistor Q12, and the resistor R11 is connected between the emitter and base of the second transistor Q12, thereby forming one constant current circuit.
  • the second switching control circuit can be configured with the minimum number of discrete components.
  • a series circuit of a resistor R6 and a diode D6 is connected in parallel to the resistor R5. Therefore, a charging path for turning on the high-side switching element Q2 by charging the input capacitance of the high-side switching element Q2 with a voltage generated in the high-side driving winding nb2, and an input capacitance of the high-side switching element Q2 It is possible to give a difference in impedance by changing a discharge path when discharging electric charges. Therefore, the delay time from the time when the voltage change occurs in the high side drive winding nb2 can be adjusted, and the high side switching element Q2 can be designed to be turned on at an optimal timing.
  • FIG. 6 is a circuit diagram of the switching power supply apparatus 103 according to the third embodiment. 2 differs from the switching power supply device 101 shown in FIG. 2 in the configuration of the low-side switching control circuit and the configuration of the second switching control circuit 63.
  • a constant voltage circuit including a resistor R13 and a Zener diode Dz4 is configured at the OUT terminal of the switching control IC 84.
  • the Zener diode Dz4 is connected to a time constant circuit including a resistor R14 and a capacitor Cb1.
  • a resistance dividing circuit including resistors R15 and R16 is connected to both ends of the capacitor Cb1.
  • the output voltage of this resistance divider circuit is input to the IS terminal of the switching control IC 84.
  • the time constant circuit may be charged with a constant voltage.
  • the voltage of the capacitor Cb1 for setting the time constant may be divided by resistance and input to the IS terminal of the switching control IC.
  • capacitors C1, C2, C3, and C4 are connected in parallel to the diodes D1, D2, D3, and D4, respectively.
  • the capacitor does not necessarily need to be connected in parallel with all of the diodes D1 to D4. If the capacitor is connected in parallel with at least one, the distortion of the charge / discharge current can be corrected.
  • FIG. 7 is a circuit diagram of the switching power supply device 104 according to the fourth embodiment. What is different from the switching power supply device 101 shown in FIG. 2 is the configuration of the second switching control circuit 65.
  • capacitors C1 and C2 are connected in parallel to the diodes D1 and D2, respectively.
  • Resistors R3 and R4 are connected in parallel to the diodes D3 and D4, respectively.
  • the impedance (time constant) of the charging path and discharging path for the capacitor Cb2 can be made different by making the resistance values of the resistors R3 and R4 different. Therefore, a slight difference in on-time between the low-side switching element Q1 and the high-side switching element Q2 can be corrected. Further, by adjusting the resistance value using the resistors R3 and R4, it is possible to correct a slight difference in on-time required when the input voltage or the output voltage changes. That is, the resistance value is adjusted using the resistors R3 and R4 by utilizing the change in the voltage of the high-side drive winding nb2.
  • the input / output voltage is changed by adding the voltage of the high-side drive winding nb2 and the current determined by the resistor R3 or the resistor R4 to the current determined by the constant current circuit and superimposing the current to charge or discharge the capacitor Cb2. Correction can be performed. As a result, the ON times of the low-side switching element Q1 and the high-side switching element Q2 can be equalized with higher accuracy.
  • the resistor may be connected in parallel with at least one of the diodes D1 to D4. Note that a capacitor may be connected instead to a portion where the resistors are not connected in parallel.
  • FIG. 8 is a circuit diagram of the switching power supply device 105 according to the fifth embodiment. What is different from the switching power supply device shown in FIG. 2 in the first embodiment is the configuration on the secondary side of the transformer T.
  • a diode bridge circuit composed of diodes D21, D22, D23, and D24 and a capacitor Co are connected to the secondary winding ns of the transformer T. In this way, full-wave rectification may be performed by the diode bridge circuit.
  • FIG. 9 is a circuit diagram of the switching power supply device 106 according to the sixth embodiment. What is different from the switching power supply device shown in FIG. 2 in the first embodiment is the configuration on the secondary side of the transformer T.
  • diodes Ds and Df and capacitors Co1 and Co2 are connected to both ends of the secondary windings ns1 and ns2 of the transformer T, and the connection point between the capacitors Co1 and Co2 is the secondary windings ns1 and ns2. Connected to the connection point.
  • a capacitor Co3 is connected between the output terminals PO (+)-PO (-).
  • a voltage doubler rectifier circuit may be used.
  • FIG. 10 is a circuit diagram of the switching power supply device 107 according to the seventh embodiment.
  • the first embodiment is different from the switching power supply device shown in FIG. 2 in the position of the capacitor Cr.
  • the resonance capacitor Cr only needs to be inserted into the current path through which current flows in the inductor Lr when the low-side switching element Q1 is off. Therefore, the capacitor Cr is connected to one end of the primary winding np and the high voltage as shown in FIG. It may be connected between the source of the side switching element Q2.
  • FIG. 11 is a circuit diagram of the switching power supply device 108 according to the eighth embodiment.
  • the first embodiment is different from the switching power supply device shown in FIG. 2 in the position of the capacitor Cr.
  • the resonance capacitor Cr may be inserted into the current path through which a current flows through the inductor Lr when the low-side switching element Q1 is turned off. Therefore, the capacitor Cr may be connected between the drain of the high-side switching element Q2 and the input terminal PI (+) as shown in FIG.
  • FIG. 12 is a circuit diagram of the switching power supply device 109 according to the ninth embodiment.
  • the first embodiment is different from the switching power supply device shown in FIG. 2 in that a series circuit of a capacitor Cr1 and an inductor Lr is provided between the drain of the switching element Q2 and one end of the primary winding np of the transformer T. Instead, the capacitor Cr2 is provided between the connection point between the capacitor Cr1 and the inductor Lr and the ground line.
  • the capacitor Cr1 is provided so that the inductor Lr, the primary winding np, the high-side switching element Q2, and the capacitor Cr1 form a closed loop. Further, Cr2 is connected in series with the high-side switching element Q2 and the capacitor Cr1.
  • the capacitor Cr2 By connecting the capacitor Cr2, the current supplied from the power supply voltage Vi flows during both the on-time of the low-side switching element Q1 and the on-time of the high-side switching element Q2, and the low-side switching element Q1 Compared with a circuit configuration in which only the on-time flows, the effective current of the current supplied from the power supply voltage Vi is reduced. Thereby, the conduction loss due to the current supplied from the power supply voltage Vi can be reduced.
  • FIG. 13 is a circuit diagram of the switching power supply device 110 according to the tenth embodiment.
  • the first embodiment is different from the switching power supply device shown in FIG. 2 in the positions of the high-side switching element Q2 and the capacitor Cr.
  • the resonance capacitor Cr only needs to be inserted in the current path through which current flows in the inductor Lr when the low-side switching element Q1 is off. Therefore, the capacitor Cr is connected to the drain of the high-side switching element Q2 and the input as shown in FIG. It may be connected between the terminal PI ( ⁇ ).
  • FIG. 14 is a circuit diagram of the switching power supply device 111 according to the eleventh embodiment.
  • the switching power supply device 111 functions as a power factor correction converter (PFC converter).
  • the switching power supply device 111 includes a diode bridge circuit DB that inputs an AC voltage of a commercial AC power supply AC and performs full-wave rectification.
  • a capacitor Ci as a low-pass filter is provided.
  • the low-side switching element Q1 is composed of an FET, and the drain terminal is connected to the primary winding np of the transformer T.
  • a rectifying and smoothing circuit including a diode Ds and a capacitor Co is configured. This rectifying / smoothing circuit rectifies and smoothes the AC voltage output from the secondary winding ns1, and outputs it to the output terminals PO (+)-PO (-).
  • a rectifying / smoothing circuit including a diode Db and a capacitor Cb is connected to the low-side drive winding nb1 of the transformer T.
  • a DC voltage obtained by the rectifying / smoothing circuit is supplied as a power supply voltage to the VCC terminal of the switching control IC 84.
  • a feedback circuit is provided between the output terminals PO (+) and PO ( ⁇ ) and the switching control IC 84.
  • the return path is simply represented by a single line (FeedFeback).
  • a series circuit of a constant current circuit CC1 and a capacitor Cb1 is connected to the OUT terminal of the switching control IC 84, and the charging voltage of the capacitor Cb1 is connected to the IS terminal (current detection terminal).
  • the switching control circuit connected to the gate of the low-side switching element Q1 is the same as that shown in the first embodiment.
  • the OUT terminal becomes high level, and the switching element Q1 is turned on.
  • the high level voltage at the OUT terminal is applied to the constant current circuit CC1, and the capacitor Cb1 is charged with a constant current.
  • the OUT terminal is inverted to a low level.
  • the switching element Q1 is turned off. Further, the charge of the capacitor Cb1 is discharged through the diode D9.
  • the switching element Q1 is interrupted, and the on-time changes according to the feedback voltage. Since the on-time of the switching element Q1 is constant in the frequency order of the commercial AC power supply, the peak value of the current flowing in the power conversion circuit changes according to the fluctuation of the input voltage of the commercial AC power supply, and the peak value envelope is sinusoidal. Wavy. At this time, the external shape of the input current that flows through the low-pass filter is sinusoidal, and the input current contains almost no harmonic current component, and the converter has the ability to greatly suppress the harmonic current component of the input current. Operates as a rate improvement (PFC) converter.
  • PFC rate improvement
  • a rectifier circuit using a diode is configured in the circuit on the secondary side of the transformer T.
  • a rectifying FET may be provided for synchronous rectification. This can reduce the loss of the secondary side circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 ハイサイドスイッチング素子(Q2)のターンオフにより駆動巻線(nb1)に誘起される逆起電力の電圧がスイッチング制御用IC(84)のZT端子に入力されることにより、スイッチング制御用IC(84)のOUT端子はハイレベルになる。これにより、ローサイドスイッチング素子(Q1)がターンオンする。定電流回路(CC1)は、OUT端子の電圧によりキャパシタ(Cb1)を定電流充電する。スイッチング制御用IC(84)内のコンパレータはIS端子の電圧がFB端子の電圧を超えたときOUT端子の電圧をローレベルに反転する。したがって、FB端子に入力される電圧に応じてローサイドスイッチング素子(Q1)のオン時間が制御され、出力電圧Voは定電圧化される。このようにして1種の制御ICを多様なスイッチング電源装置の電力変換回路に活用し、また、全体の回路を簡素に構成する。

Description

スイッチング電源装置
 本発明はスイッチング素子およびスイッチング制御回路を備えたスイッチング電源装置に関し、特に汎用の電流モードICを高性能な電力変換回路に適用することを可能とする発明である。
 図1は特許文献1に示されているスイッチング電源装置の回路図である。図1において、スイッチング電源装置1は、フライバックコンバータ回路を応用したものであり、主スイッチング素子Q1がオンとオフとを交互に繰り返し、オン時にトランス1にエネルギが蓄積され、オフ時に負荷に電力が供給される。また、スイッチング電源装置1は、主スイッチング素子Q1に掛かるサージ電圧をクランプする、所謂電圧クランプ方式を採用したものであり、主スイッチング素子Q1および副スイッチング素子Q2のゼロ電圧スイッチング動作が実現されるものである。
 具体的には、スイッチング電源装置1は、主スイッチング素子としてのFETQ1、トランスTの1次巻線N1および直流電源Eが直列に接続され、副スイッチング素子としてのFETQ2およびキャパシタC1の直列回路が、トランスTの1次巻線N1の両端間に接続されている。
 ここで、FETQ1のゲートは、スイッチング制御用IC2を介して、第1の駆動巻線N3の一端に接続される。また、FETQ2のソースは、FETQ1のドレインに接続され、ゲートは、副スイッチング素子制御回路(副制御回路)3を介して、トランスTの第2の駆動巻線N4の一端に接続されている。
 また、FETQ2のゲートおよびソースは、副制御回路3を介して第2の駆動巻線N4の両端間に接続されている。副制御回路3は、トランジスタQ3、キャパシタC2、抵抗R1、キャパシタC3、抵抗R2およびインダクタ4を備えている。このうち、キャパシタC2および抵抗R1は時定数回路を構成している。
 また、スイッチング電源装置1は、トランスTの2次側に、整流ダイオードDoおよび平滑コンデンサC4を備えている。
特開2001-37220号公報
 図1に示されるようなスイッチング制御用IC2を様々な電力変換回路のアプリケーションごとに準備して仕様や用途によってICを使い分けるとすると、アプリケーションの増加に伴って多種のICが必要となる。個々のICの開発、製造には多大なプロセスや費用が必要となる。種類が増加するとICの物流や在庫の管理も複雑化し、結果、ICのコスト単価が増大するという問題が生じる。
 特に、2石のスイッチング素子を用いたハーフブリッジ構成の電流共振型電力変換回路や力率改善機能を有した絶縁型電力変換回路(PFCコンバータ)においては、スイッチング素子が導通するオン期間において、電力変換回路を流れる電流波形が必ずしも時間に比例して電流値が単調増加する波形とはならないことから、汎用の電流モードICは利用できないという課題がある。
 本発明は、スイッチング電源装置の回路構成ごとに個別のスイッチング制御用ICを設けることなく、また、全体の回路を簡素に構成できるスイッチング電源装置を提供することを目的とするものである。
(1)本発明のスイッチング電源装置は、
 入力電源電圧が入力される電源電圧入力部と、
 直流電圧が出力される直流電圧出力部と、
 1次巻線(np)、および2次巻線(ns)を備えたトランス(T)と、
 前記1次巻線(np)に直列接続されて、オンにより前記電源電圧入力部の電圧を前記1次巻線(np)に印加するローサイドスイッチング素子(Q1)と、
 前記ローサイドスイッチング素子(Q1)を制御するスイッチング制御回路と、
 前記2次巻線(ns)から出力される電圧を整流平滑して前記直流電圧出力部へ出力電圧(Vo)を出力する整流平滑回路と、
 前記出力電圧(Vo)に基づく帰還電圧信号を発生する帰還電圧信号発生回路とを備え、
 前記スイッチング制御回路は、
 前記トランス(T)の電圧極性の反転を検出したとき前記ローサイドスイッチング素子(Q1)をターンオンさせる駆動電圧信号を出力する駆動電圧信号出力手段と、
 前記駆動電圧信号が出力されてからの時間経過にともなって電圧が変化する基準電圧(三角波電圧信号)を発生する基準電圧発生回路と、
 前記基準電圧が前記帰還電圧信号に達することにより、前記駆動電圧信号を前記ローサイドスイッチング素子(Q1)がターンオフする電圧に切り替えるターンオフ制御手段と、を備えたことを特徴とする。
(2)前記トランス(T)は、ローサイド駆動巻線(nb1)を備え、
 駆動電圧信号出力手段は、前記ローサイド駆動巻線(nb1)の電圧に基づいて前記トランス(T)の電圧極性の反転を検出する構成であることが好ましい。
(3)前記基準電圧発生回路は、キャパシタと、前記駆動電圧信号を基にして前記キャパシタを略一定電流で充電する定電流回路とで構成され、
 ローサイドスイッチング素子(Q1)をターンオフする前記駆動電圧信号の電圧によって前記キャパシタの電荷を放電する回路を備えることが好ましい。
(4)例えばPFCコンバータを構成する場合は、商用交流電源電圧を入力して全波整流する全波整流回路を備え、この全波整流回路の出力電圧を電源電圧入力部に入力する。
(5)前記トランスはハイサイド駆動巻線(nb2)を備え、
 前記ローサイドスイッチング素子(Q1)とハイサイドスイッチング素子(Q2)とを2つのスイッチング素子が共にオフとなるわずかなデッドタイムを挟んで交互にオン、オフするように制御するハイサイドスイッチング素子制御回路を備えることが好ましい。
(6)ハイサイドスイッチング素子とローサイドスイッチング素子を備えるコンバータを構成する場合には、
 前記ハイサイドスイッチング素子制御回路は、
 前記ローサイドスイッチング素子(Q1)のオフ時に前記ハイサイド駆動巻線(nb2)に発生する電圧を前記ハイサイドスイッチング素子(Q2)の制御端子へ供給してハイサイドスイッチング素子(Q2)をターンオンさせるターンオン信号伝達回路と、
 前記ハイサイド駆動巻線(nb2)に接続され、このハイサイド駆動巻線(nb2)に生じる電圧を定電流化してキャパシタに対して充放電する双方向定電流充放電回路と、
 前記ローサイドスイッチング素子(Q1)のオフ期間に前記ハイサイド駆動巻線(nb2)に前記キャパシタの電圧がしきい値を超えることにより状態を遷移して前記ハイサイドスイッチング素子(Q2)をターンオフするスイッチング素子(Q3)とを備えていることが好ましい。
(7)ローサイド駆動巻線(nb1)には、このローサイド駆動巻線(nb1)に生じる電圧を整流平滑して前記スイッチング制御回路に対する直流電源電圧を発生する整流平滑回路を備えることが好ましい。
 本発明によれば、スイッチング電源装置の電力変換回路の構成ごとに個別のスイッチング制御用ICを設けることなく、1種の制御ICを多様なスイッチング電源装置の電力変換回路に活用することができ、また、全体の回路を簡素に構成できる。
図1は特許文献1に示されているスイッチング電源装置の回路図である。 図2は本発明の第1の実施形態に係るスイッチング電源装置101の回路図である。 図3は、ローサイドスイッチング素子Q1のゲート・ソース間電圧Vgs1、ハイサイドスイッチング素子Q2のゲート・ソース間電圧Vgs2、ローサイドスイッチング素子Q1のドレイン・ソース間電圧Vds1、およびキャパシタCb2の電圧Vcb2の関係を示す波形図である。 図4はハイサイド駆動巻線nb2の電圧Vnb2とキャパシタCb2の電圧Vcb2の関係を示す波形図である。 図5は第2の実施形態に係るスイッチング電源装置102の回路図である。 図6は第3の実施形態に係るスイッチング電源装置103の回路図である。 図7は第4の実施形態に係るスイッチング電源装置104の回路図である。 図8は第5の実施形態に係るスイッチング電源装置105の回路図である。 図9は第6の実施形態に係るスイッチング電源装置106の回路図である。 図10は第7の実施形態に係るスイッチング電源装置107の回路図である。 図11は第8の実施形態に係るスイッチング電源装置108の回路図である。 図12は第9の実施形態に係るスイッチング電源装置109の回路図である。 図13は第10の実施形態に係るスイッチング電源装置110の回路図である。 図14は第11の実施形態に係るスイッチング電源装置111の回路図である。
《第1の実施形態》
 第1の実施形態に係るスイッチング電源装置について、図2~図4を参照して説明する。
 図2は第1の実施形態に係るスイッチング電源装置101の回路図である。このスイッチング電源装置101の入力端子PI(+)-PI(-)間に直流入力電源Viの電圧が入力される。そして、スイッチング電源装置101の出力端子PO(+)-PO(-)間に接続される負荷Roへ所定の直流電圧が出力される。
 入力端子PI(+)-PI(-)間には、キャパシタCr、インダクタLr、トランスTの1次巻線npおよびローサイドスイッチング素子Q1が直列に接続された第1の直列回路が構成されている。ローサイドスイッチング素子Q1はFETからなり、ドレイン端子がトランスTの1次巻線npに接続されている。
 トランスTの1次巻線npの両端には、ハイサイドスイッチング素子Q2とキャパシタCrおよびインダクタLrが直列に接続された第2の直列回路が構成されている。
 トランスTの2次巻線ns1,ns2には、ダイオードDs,DfおよびキャパシタCoからなる第1の整流平滑回路が構成されている。この第1の整流平滑回路は2次巻線ns1,ns2から出力される交流電圧を全波整流し平滑して、出力端子PO(+)-PO(-)へ出力する。
 トランスTは1次巻線np、2次巻線ns1,ns2だけでなく、ローサイド駆動巻線nb1およびハイサイド駆動巻線nb2を有している。
 トランスTのローサイド駆動巻線nb1には、ダイオードDbおよびキャパシタCbによる整流平滑回路が接続されている。この整流平滑回路によって得られる直流電圧がスイッチング制御用IC84のVCC端子に電源電圧として供給される。
 前記スイッチング制御用IC84は、IS端子(電流検出端子)を備えた電流モードで動作する一般的な汎用のICである。
 出力端子PO(+),PO(-)とスイッチング制御用IC84との間には帰還回路が設けられている。図2では帰還の経路のみを簡易的に一本の線(Feed back)で表しているが、具体的には出力端子PO(+)-PO(-)間の出力電圧Voの分圧値と基準電圧との比較によって帰還信号を発生し、絶縁状態でスイッチング制御用IC84のFB端子へフィードバック電圧を入力する。このFB端子へ入力されるフィードバック電圧は出力電圧Voが低いほど高くなる。
 スイッチング制御用IC84のOUT端子には定電流回路CC1およびキャパシタCb1の直列回路が接続されていて、キャパシタCb1の充電電圧がIS端子(電流検出端子)に入力されるように接続されている。
 ハイサイドスイッチング素子Q2のターンオフによりローサイド駆動巻線nb1に誘起される逆起電力の電圧がZT端子(ゼロ電圧タイミング検出端子)に入力されることにより、スイッチング制御用IC84はOUT端子をハイレベルにする。これにより、ローサイドスイッチング素子Q1がターンオンする。スイッチング制御用IC84のOUT端子は、抵抗R12を介してローサイドスイッチング素子Q1の制御端子に接続されている。
 定電流回路CC1は、スイッチング制御用IC84のOUT端子の電圧によりキャパシタCb1を定電流で充電する。スイッチング制御用IC84内のコンパレータはキャパシタCb1の電圧とFB端子の電圧とを比較し、IS端子の電圧がFB端子の電圧を超えたときOUT端子の電圧をハイレベルからローレベルとする。したがって、FB端子の電圧が低くなるほど、キャパシタCb1の充電時間は短くなる。すなわち、ローサイドスイッチング素子Q1のオン時間が短くなって、出力電圧Voは定電圧化される。
 なお、ダイオードD9はキャパシタCb1の電荷の放電経路を構成する。すなわち、スイッチング制御用IC84の出力電圧がローレベルになったとき(Q1がターンオフするとき)、キャパシタCb1の電荷はダイオードD9を介して放電される。
 このようにして、電流モードICであるスイッチング制御用IC84、定電流回路CC1およびキャパシタCb1による回路は、電圧-時間変換回路として作用する。そして、出力電圧Voを検出して基準電圧(目標電圧)との比較により発生される帰還信号の電圧が前記電圧-時間変換回路で変換されて、その時間だけローサイドスイッチング素子Q1がオンされる。
 トランスTのハイサイド駆動巻線nb2とハイサイドスイッチング素子Q2との間には第2のスイッチング制御回路61が設けられている。この第2のスイッチング制御回路61は特許請求の範囲に記載の「ハイサイドスイッチング素子制御回路」に相当する。具体的には、トランスTのハイサイド駆動巻線nb2の第1端はローサイドスイッチング素子Q1とハイサイドスイッチング素子Q2との接続点(ハイサイドスイッチング素子Q2のソース端子)に接続され、ハイサイド駆動巻線nb2の第2端とハイサイドスイッチング素子Q2のゲート端子との間に第2のスイッチング制御回路61が接続されている。
 次に述べるように、第2のスイッチング制御回路61はハイサイドスイッチング素子Q2がターンオンした後、ローサイドスイッチング素子Q1のオン時間と同じ時間が経過した時に強制的にハイサイドスイッチング素子Q2をターンオフさせる。
 前記第2のスイッチング制御回路61は、4つのダイオードD1,D2,D3,D4から構成されるダイオードブリッジ整流回路と、ダイオードD1,D3の接続点とダイオードD2,D4の接続点との間、つまりこのダイオードブリッジ整流回路の出力端間に接続された定電流回路CC2とで構成された双方向定電流回路である。
 ローサイドスイッチング素子Q1がターンオンすると、ハイサイド駆動巻線nb2に誘起される負電圧で、キャパシタCb2→ダイオードD3→定電流回路CC2→ダイオードD2→ハイサイド駆動巻線nb2の経路で、キャパシタCb2が定電流によって負方向に放電される。
 その後、ローサイドスイッチング素子Q1がターンオフすると、ハイサイド駆動巻線nb2に誘起される正電圧で抵抗R5を介してハイサイドスイッチング素子Q2に正電圧が印加されて、Q2がターンオンする。また、ハイサイド駆動巻線nb2→ダイオードD1→定電流回路CC2→ダイオードD4→キャパシタCb2の経路で、キャパシタCb2が定電流によって正方向に充電される。キャパシタCb2の電圧がトランジスタのしきい値電圧である約0.6Vを超えた時点でトランジスタ(特許請求の範囲に記載の「スイッチング素子」)Q3がオンし、これにより、ハイサイドスイッチング素子Q2がターンオフする。
 以上の動作によって、前記キャパシタCb2の放電時間すなわちローサイドスイッチング素子Q1のオン時間と、キャパシタCb2の充電時間すなわちハイサイドスイッチング素子Q2のオン時間は等しくなる。
 図3は、ローサイドスイッチング素子Q1のゲート・ソース間電圧Vgs1、ハイサイドスイッチング素子Q2のゲート・ソース間電圧Vgs2、ローサイドスイッチング素子Q1のドレイン・ソース間電圧Vds1、およびキャパシタCb2の電圧Vcb2の関係を示す波形図である。
 ローサイドスイッチング素子Q1がオンすると、ハイサイド駆動巻線nb2に負電圧が誘起され、キャパシタCb2の充電電圧Vcb2はしきい値電圧の約0.6Vから低下していく。その後、ローサイドスイッチング素子Q1がターンオフすると、ハイサイド駆動巻線nb2に正電圧が誘起され、キャパシタCb2の充電電圧Vcb2は上昇していく。このキャパシタCb2の充電電圧Vcb2がしきい値電圧の約0.6Vを超えると、トランジスタQ3がオンする。これにより、ハイサイドスイッチング素子Q2のゲート電位が0Vになって、ハイサイドスイッチング素子Q2はターンオフする。キャパシタCb2は同じ電流値の定電流で充放電されるので、充電電圧Vcb2の傾きは等しい。すなわち充放電電流比率Diは1:1である。そのため、ハイサイドスイッチング素子Q2のオン時間はローサイドスイッチング素子Q1のオン時間に等しくなる。
 図3においてTQ1ON(1)とTQ2ON(1)は上述の動作により等しくなっている。ここでローサイドスイッチング素子Q1のオン時間が長くなりTQ1ON(2)となったとき、Vds1およびVcb2は点線で示された波形図となる。このときもTQ1ON(2)とTQ2ON(2)は上述の動作により等しくなっている。
 図4は、前記ハイサイド駆動巻線nb2の電圧Vnb2と前記キャパシタCb2の電圧Vcb2の関係を示す波形図である。
 このように、ローサイドスイッチング素子Q1のオン時間が変化すれば、それに追従して、ハイサイドスイッチング素子Q2のオン時間が変化する。
 なお、キャパシタCb2の電荷が放電されることで、トランジスタQ3のベース・エミッタに逆バイアス電圧が掛かるが、一般的なトランジスタでは通常-5V程度までの耐圧を有していて、設計余裕を考慮しても-4V~0.6Vまでの広い範囲で充放電を行うことができる。キャパシタCb2に対する電圧の変動幅を大きくすると、外乱ノイズへの耐量が大きくなり、また温度変化や部品の電気特性のばらつきなどに対しても誤差が小さくなり、安定して動作することが可能になる。
 第1の実施形態によれば、いわゆる電流モードICを用い、ローサイドスイッチング素子Q1の駆動電圧信号を基にしてキャパシタを略一定電流で充電する定電流回路を外部に設けるだけで電流-時間変換回路が構成でき、フィードバック電圧に応じてローサイドスイッチング素子Q1のオン時間を制御できるので、全体の回路を簡素に構成できる。
 それ以外に、次のような効果を奏する。
(a)ローサイドスイッチング素子Q1とハイサイドスイッチング素子Q2とはほぼ同じオン時間で対称波形で交互にオン・オフ動作させることができる。
(b)ローサイドスイッチング素子Q1のオン時間の検出とハイサイドスイッチング素子Q2のターンオンおよびターンオフさせる回路を一体化することができ、最小の部品数のディスクリート部品で第2のスイッチング制御回路を構成できる。
(c)ハイサイドスイッチング素子Q2のトランスTの1次巻線に接続されているグランド端子電位はローサイドスイッチング素子Q1のスイッチングによって変動するが、第2のスイッチング制御回路61は、ハイサイド駆動巻線nb2に発生する交流電圧を用いて動作する回路であるため、グランド端子電位の変動にかかわらず誤動作が生じにくい。
(d)トランス巻線に発生する電圧変化をトリガに用いてローサイドスイッチング素子Q1およびハイサイドスイッチング素子Q2はターンオンをし、最小のデッドタイムを挟んで交互にオン・オフ動作する。すなわち両スイッチング素子が同時にオンすることがなく、高い信頼性を確保することができる。また、デッドタイムは、ZVS(ゼロ電圧スイッチング)動作を達成できる最小値となるので、高い電力変換効率が得られる。
《第2の実施形態》
 図5は第2の実施形態に係るスイッチング電源装置102の回路図である。
 図2に示したスイッチング電源装置101と異なるのは、第2のスイッチング制御回路62の構成である。この図5の例では、定電流回路をより具体的に表している。すなわち、第1のトランジスタQ11のベースが第2のトランジスタQ12のコレクタに接続され、第1のトランジスタQ11のエミッタが第2のトランジスタQ12のベースに接続され、第1のトランジスタQ11のコレクタとベース間に抵抗R12が接続され、第2のトランジスタQ12のエミッタとベース間に抵抗R11が接続されることによって、一つの定電流回路が構成されている。
 この構成によれば、最小の部品数のディスクリート部品で第2のスイッチング制御回路を構成できる。
 なお、図5に示した例では、抵抗R6とダイオードD6との直列回路が抵抗R5に対して並列に接続されている。そのため、ハイサイド駆動巻線nb2に発生した電圧でハイサイドスイッチング素子Q2の入力容量に電荷を充電してハイサイドスイッチング素子Q2をターンオンする際の充電経路と、ハイサイドスイッチング素子Q2の入力容量から電荷を放電する際の放電経路とを変えてインピーダンスに差を持たせることができる。そのため、ハイサイド駆動巻線nb2に電圧変化が発生した時点からの遅延時間を調整することができ、ハイサイドスイッチング素子Q2を最適なタイミングでターンオンできるように設計できる。
《第3の実施形態》
 図6は第3の実施形態に係るスイッチング電源装置103の回路図である。
 図2に示したスイッチング電源装置101と異なるのは、ローサイドのスイッチング制御回路の構成および第2のスイッチング制御回路63の構成である。
 この実施形態のローサイドのスイッチング制御回路において、スイッチング制御用IC84のOUT端子には、抵抗R13およびツェナーダイオードDz4からなる定電圧回路が構成されている。このツェナーダイオードDz4には、抵抗R14およびキャパシタCb1による時定数回路が接続されている。キャパシタCb1の両端には、抵抗R15,R16による抵抗分割回路が接続されている。そしてこの抵抗分割回路の出力電圧がスイッチング制御用IC84のIS端子に入力されるように構成されている。
 このように、定電圧で時定数回路を充電するようにしてもよい。また、時定数設定用のキャパシタCb1の電圧を抵抗分圧してスイッチング制御用ICのIS端子に入力するようにしてもよい。
 この実施形態の第2のスイッチング制御回路63には、ダイオードD1,D2,D3,D4のそれぞれに並列にキャパシタC1,C2,C3,C4が接続されている。
 このように、定電流回路CC2の入出力電流を整流するダイオードにキャパシタを並列接続することにより、整流ダイオードに逆方向電圧が印加されている期間において、キャパシタC1,C2,C3,C4に電荷を蓄え、ハイサイド駆動巻線nb2の電圧が変化するデッドタイムにおいて、キャパシタC1,C2,C3,C4に蓄えられた電荷を放電することができ、結果的にダイオードよりも進み位相で電流を流すことができる。これによりキャパシタCb2への充放電の電流量を調整することが可能となり、デッドタイム、特にキャパシタCb2への充放電電流の方向が変化する際における充放電電流の歪みをキャパシタC1,C2,C3,C4で補正できる。なおキャパシタは、必ずしもダイオードD1~D4の全てと並列に接続する必要はなく、少なくとも1つと並列に接続すれば、充放電電流の歪みを補正することができる。
《第4の実施形態》
 図7は第4の実施形態に係るスイッチング電源装置104の回路図である。
 図2に示したスイッチング電源装置101と異なるのは、第2のスイッチング制御回路65の構成である。この例では、ダイオードD1,D2のそれぞれに並列にキャパシタC1,C2が接続されている。また、ダイオードD3,D4のそれぞれに並列に抵抗R3,R4が接続されている。
 この抵抗R3,R4の抵抗値を異ならせることによって、キャパシタCb2に対する充電経路と放電経路のインピーダンス(時定数)を異ならせることができる。そのため、ローサイドスイッチング素子Q1とハイサイドスイッチング素子Q2の若干のオン時間の差分を補正することができる。また、抵抗R3,R4を用いて抵抗値を調整することにより、入力電圧若しくは出力電圧が変化した際に必要となる若干のオン時間の差分を補正することができる。すなわち、ハイサイド駆動巻線nb2の電圧が変化することを利用して、抵抗R3,R4を用いて抵抗値を調整する。定電流回路により決まる電流にハイサイド駆動巻線nb2の電圧と抵抗R3または抵抗R4により決まる電流を加算して重畳し、キャパシタCb2に対する充電または放電の電流とすることにより、入出力電圧が変化した際の補正を行うことができる。これらにより、ローサイドスイッチング素子Q1とハイサイドスイッチング素子Q2のオン時間をより高精度に等しくできる。なお、抵抗はダイオードD1~D4の少なくとも1つと並列に接続すればよい。なお抵抗を並列に接続しない箇所には、代わりにキャパシタを接続してもよい。
《第5の実施形態》
 図8は第5の実施形態に係るスイッチング電源装置105の回路図である。
 第1の実施形態で図2に示したスイッチング電源装置と異なるのは、トランスTの二次側の構成である。
 第5の実施形態では、トランスTの2次巻線nsに、ダイオードD21,D22,D23,D24によるダイオードブリッジ回路及びキャパシタCoが接続されている。
 このようにダイオードブリッジ回路で全波整流してもよい。
《第6の実施形態》
 図9は第6の実施形態に係るスイッチング電源装置106の回路図である。
 第1の実施形態で図2に示したスイッチング電源装置と異なるのは、トランスTの二次側の構成である。
 第6の実施形態では、トランスTの2次巻線ns1,ns2の両端に、ダイオードDs,DfおよびキャパシタCo1,Co2が接続され、キャパシタCo1,Co2の接続点が2次巻線ns1,ns2の接続点に接続されている。そして出力端子PO(+)-PO(-)間にキャパシタCo3が接続されている。
 このように倍電圧整流回路としてもよい。
《第7の実施形態》
 図10は第7の実施形態に係るスイッチング電源装置107の回路図である。
 第1の実施形態で図2に示したスイッチング電源装置と異なるのはキャパシタCrの位置である。
 共振キャパシタCrは、ローサイドスイッチング素子Q1のオフ時にインダクタLrに電流が流れる、その電流の経路に挿入されていればよいので、キャパシタCrは図10のように、1次巻線npの一端とハイサイドスイッチング素子Q2のソースとの間に接続されていてもよい。
《第8の実施形態》
 図11は第8の実施形態に係るスイッチング電源装置108の回路図である。
 第1の実施形態で図2に示したスイッチング電源装置と異なるのは、キャパシタCrの位置である。
 共振キャパシタCrは、ローサイドスイッチング素子Q1のオフ時にインダクタLrに電流が流れる、その電流の経路に挿入されていればよい。そのため、キャパシタCrは図11のように、ハイサイドスイッチング素子Q2のドレインと入力端子PI(+)との間に接続されていてもよい。
《第9の実施形態》
 図12は第9の実施形態に係るスイッチング電源装置109の回路図である。
 第1の実施形態で図2に示したスイッチング電源装置と異なるのは、スイッチング素子Q2のドレインとトランスTの1次巻線npの一端との間にキャパシタCr1とインダクタLrの直列回路を設けるだけでなく、キャパシタCr1とインダクタLrとの接続点とグランドラインとの間にキャパシタCr2を設けた点である。
 インダクタLr、1次巻線np、ハイサイドスイッチング素子Q2、キャパシタCr1が閉ループを構成するように、キャパシタCr1が設けられている。また、ハイサイドスイッチング素子Q2およびキャパシタCr1に対して直列にCr2が接続されている。
 このように、キャパシタCr2を接続することにより、電源電圧Viから供給される電流は、ローサイドスイッチング素子Q1のオン時間とハイサイドスイッチング素子Q2のオン時間の双方の期間において流れ、ローサイドスイッチング素子Q1のオン時間しか流れない回路構成と比較して、電源電圧Viから供給される電流の実効電流が低減される。これにより、電源電圧Viから供給される電流による導通損を低減することができる。
《第10の実施形態》
 図13は第10の実施形態に係るスイッチング電源装置110の回路図である。
 第1の実施形態で図2に示したスイッチング電源装置と異なるのは、ハイサイドスイッチング素子Q2およびキャパシタCrの位置である。
 共振キャパシタCrは、ローサイドスイッチング素子Q1のオフ時にインダクタLrに電流が流れる、その電流の経路に挿入されていればよいので、キャパシタCrは図14のように、ハイサイドスイッチング素子Q2のドレインと入力端子PI(-)との間に接続されていてもよい。
《第11の実施形態》
 図14は第11の実施形態に係るスイッチング電源装置111の回路図である。このスイッチング電源装置111は力率改善コンバータ(PFCコンバータ)として作用するものである。
 このスイッチング電源装置111は、商用交流電源ACの交流電圧を入力して全波整流するダイオードブリッジ回路DBを備える。また、ローパスフィルタとしてのコンデンサCiを備える。ローサイドスイッチング素子Q1はFETからなり、ドレイン端子がトランスTの1次巻線npに接続されている。トランスTの2次巻線ns1には、ダイオードDsおよびキャパシタCoからなる整流平滑回路が構成されている。この整流平滑回路は2次巻線ns1から出力される交流電圧を整流し平滑して、出力端子PO(+)-PO(-)へ出力する。
 トランスTのローサイド駆動巻線nb1には、ダイオードDbおよびキャパシタCbによる整流平滑回路が接続されている。この整流平滑回路によって得られる直流電圧がスイッチング制御用IC84のVCC端子に電源電圧として供給される。
 出力端子PO(+),PO(-)とスイッチング制御用IC84との間には帰還回路が設けられている。図14では帰還の経路のみを簡易的に一本の線(Feed back)で表している。
 スイッチング制御用IC84のOUT端子には定電流回路CC1およびキャパシタCb1の直列回路が接続されていて、キャパシタCb1の充電電圧がIS端子(電流検出端子)に入力されるように接続されている。
 ローサイドスイッチング素子Q1のゲートに接続されているスイッチング制御回路は第1の実施形態で示したものと同じである。
 いま、キャパシタCb1の充電電圧がFB端子への入力電圧より低ければ、OUT端子がハイレベルになり、スイッチング素子Q1はターンオンする。また、このOUT端子のハイレベルの電圧は定電流回路CC1に印加されて、キャパシタCb1は定電流で充電される。キャパシタCb1の電位がFB端子の電位を超えればOUT端子はローレベルに反転する。これによってスイッチング素子Q1はターンオフする。また、キャパシタCb1の電荷はダイオードD9を介して放電される。
 その後、キャパシタCb1の電荷放電によりIS端子の電位がFB端子の電位より低下すればOUT端子がハイレベルとなって、スイッチング素子Q1は再びターンオンする。
 以上の動作の繰り返しによって、スイッチング素子Q1は断続され、そのオン時間はフィードバック電圧に応じて変化することになる。商用交流電源の周波数オーダーではスイッチング素子Q1のオン時間は一定であるので、商用交流電源の入力電圧の変動に応じて電力変換回路に流れる電流のピーク値が変化し、ピーク値の包絡線が正弦波状となる。このときローパスフィルタを介して流入する入力電流の外形は正弦波状となっており、入力電流には、高調波電流成分がほとんど含まれなくなり、コンバータは入力電流の高調波電流成分を大きく抑制する力率改善(PFC)コンバータとして動作する。
 なお、以上に示した各実施形態では、トランスTの二次側の回路にダイオードによる整流回路を構成したが、このダイオードに代えて整流用のFETを設けて同期整流してもよい。このことにより、二次側の回路の損失を低減することができる。
Cb1,Cb2…キャパシタ
CC1,CC1…定電流回路
D1~D4,D6,D9…ダイオード
Db…ダイオード
DB…ダイオードブリッジ回路
Ds,Df…ダイオード
Dz4…ツェナーダイオード
Lr…インダクタ
nb1…ローサイド駆動巻線
nb2…ハイサイド駆動巻線
np…1次巻線
ns1,ns2…2次巻線
Q1…ローサイドスイッチング素子
Q2…ハイサイドスイッチング素子
T…トランス
Vi…直流入力電源
Vo…出力電圧
61~63…第2のスイッチング制御回路
65…第2のスイッチング制御回路
101~111…スイッチング電源装置

Claims (7)

  1.  入力電源電圧が入力される電源電圧入力部と、
     直流電圧が出力される直流電圧出力部と、
     1次巻線、および2次巻線を備えたトランスと、
     前記1次巻線に直列接続されて、オンにより前記電源電圧入力部の電圧を前記1次巻線に印加するローサイドスイッチング素子と、
     前記ローサイドスイッチング素子を制御するスイッチング制御回路と、
     前記2次巻線から出力される電圧を整流平滑して前記直流電圧出力部へ出力電圧を出力する整流平滑回路と、
     前記出力電圧に基づく帰還電圧信号を発生する帰還電圧信号発生回路とを備え、
     前記スイッチング制御回路は、
     前記トランスの電圧極性の反転を検出したとき前記ローサイドスイッチング素子をターンオンさせる駆動電圧信号を出力する駆動電圧信号出力手段と、
     前記駆動電圧信号が出力されてからの時間経過にともなって電圧が変化する基準電圧を発生する基準電圧発生回路と、
     前記基準電圧が前記帰還電圧信号に達することにより、前記駆動電圧信号を前記ローサイドスイッチング素子がターンオフする電圧に切り替えるターンオフ制御手段と、を備えた、スイッチング電源装置。
  2.  前記トランスは、ローサイド駆動巻線を備え、
     駆動電圧信号出力手段は、前記ローサイド駆動巻線の電圧に基づいて前記トランスの電圧極性の反転を検出する、請求項1に記載のスイッチング電源装置。
  3.  前記基準電圧発生回路は、キャパシタと、前記駆動電圧信号を基にして前記キャパシタを略一定電流で充電する定電流回路とで構成され、
     前記ローサイドスイッチング素子をターンオフする前記駆動電圧信号の電圧によって前記キャパシタの電荷を放電する回路を備えた、請求項1または2に記載のスイッチング電源装置。
  4.  商用交流電源電圧を入力し、全波整流して前記電源電圧入力部に入力する全波整流回路を備えた、請求項1~3のいずれかに記載のスイッチング電源装置。
  5.  前記トランスはハイサイド駆動巻線を備え、
     前記ローサイドスイッチング素子とハイサイドスイッチング素子とを2つのスイッチング素子が共にオフとなるわずかなデッドタイムを挟んで交互にオン、オフするように制御するハイサイドスイッチング素子制御回路を備えた、請求項1~4のいずれかに記載のスイッチング電源装置。
  6.  前記ハイサイドスイッチング素子制御回路は、
     前記ローサイドスイッチング素子のオフ時に前記ハイサイド駆動巻線に発生する電圧を前記ハイサイドスイッチング素子の制御端子へ供給してハイサイドスイッチング素子をターンオンさせるターンオン信号伝達回路と、
     前記ハイサイド駆動巻線に接続され、このハイサイド駆動巻線に生じる電圧を定電流化してキャパシタに対して充放電する双方向定電流充放電回路と、
     前記ローサイドスイッチング素子のオフ期間に前記ハイサイド駆動巻線に前記キャパシタの電圧がしきい値を超えることにより状態を遷移して前記ハイサイドスイッチング素子をターンオフするスイッチング素子とを備えた、請求項5に記載のスイッチング電源装置。
  7.  前記ローサイド駆動巻線に、このローサイド駆動巻線に生じる電圧を整流平滑して前記スイッチング制御回路に対する直流電源電圧を発生する整流平滑回路を備えた、請求項1~6のいずれかに記載のスイッチング電源装置。
PCT/JP2012/069424 2011-08-11 2012-07-31 スイッチング電源装置 WO2013021857A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013527969A JP5937597B2 (ja) 2011-08-11 2012-07-31 スイッチング電源装置
GB1400965.8A GB2507676B (en) 2011-08-11 2012-07-31 Switching power supply device
CN201280037503.5A CN103718446B (zh) 2011-08-11 2012-07-31 开关电源装置
US14/176,405 US9397575B2 (en) 2011-08-11 2014-02-10 Switching power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-175803 2011-08-11
JP2011175803 2011-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/176,405 Continuation US9397575B2 (en) 2011-08-11 2014-02-10 Switching power supply device

Publications (1)

Publication Number Publication Date
WO2013021857A1 true WO2013021857A1 (ja) 2013-02-14

Family

ID=47668369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069424 WO2013021857A1 (ja) 2011-08-11 2012-07-31 スイッチング電源装置

Country Status (5)

Country Link
US (1) US9397575B2 (ja)
JP (1) JP5937597B2 (ja)
CN (1) CN103718446B (ja)
GB (1) GB2507676B (ja)
WO (1) WO2013021857A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019322A (ja) * 2014-07-07 2016-02-01 三菱電機株式会社 直流変換装置の制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038031B (zh) * 2014-07-01 2016-05-25 矽力杰半导体技术(杭州)有限公司 一种供电电压产生电路和开关电源
CN106119080A (zh) * 2016-07-06 2016-11-16 车团结 一种核酸提取仪及其电源系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289542A (ja) * 1995-04-17 1996-11-01 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP2001037220A (ja) * 1998-10-29 2001-02-09 Murata Mfg Co Ltd スイッチング電源装置
JP2002209381A (ja) * 2000-11-10 2002-07-26 Fuji Electric Co Ltd Dc/dcコンバータとその制御方法
JP2006109566A (ja) * 2004-10-01 2006-04-20 Fuji Electric Device Technology Co Ltd Dc−dcコンバータ
JP2008125217A (ja) * 2006-11-10 2008-05-29 Fuji Electric Device Technology Co Ltd スイッチング電源装置
JP2008228382A (ja) * 2007-03-09 2008-09-25 Fuji Electric Device Technology Co Ltd スイッチング電源装置
JP2008289336A (ja) * 2007-05-21 2008-11-27 Murata Mfg Co Ltd スイッチング電源装置
WO2010119760A1 (ja) * 2009-04-14 2010-10-21 株式会社村田製作所 スイッチング電源装置
WO2010119761A1 (ja) * 2009-04-14 2010-10-21 株式会社村田製作所 スイッチング電源装置
WO2011105258A1 (ja) * 2010-02-23 2011-09-01 株式会社村田製作所 スイッチング電源装置
WO2011111483A1 (ja) * 2010-03-09 2011-09-15 株式会社村田製作所 スイッチング電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172883B1 (en) * 1999-01-22 2001-01-09 Dell Usa, L.P. Redirected sequential flyback regulator
JP2005278376A (ja) * 2004-03-26 2005-10-06 Shindengen Electric Mfg Co Ltd スイッチング電源装置
TWI474601B (zh) * 2009-10-08 2015-02-21 Acbel Polytech Inc High conversion efficiency of the pulse mode resonant power converter
JP2011105258A (ja) 2009-11-20 2011-06-02 Fuji Heavy Ind Ltd 縦置式無段変速装置
JP2011111483A (ja) 2009-11-25 2011-06-09 Sumitomo Dow Ltd ポリカーボネート系樹脂組成物およびそれからなる成形品
JP5589701B2 (ja) * 2010-09-15 2014-09-17 富士電機株式会社 力率改善電流共振コンバータ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289542A (ja) * 1995-04-17 1996-11-01 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP2001037220A (ja) * 1998-10-29 2001-02-09 Murata Mfg Co Ltd スイッチング電源装置
JP2002209381A (ja) * 2000-11-10 2002-07-26 Fuji Electric Co Ltd Dc/dcコンバータとその制御方法
JP2006109566A (ja) * 2004-10-01 2006-04-20 Fuji Electric Device Technology Co Ltd Dc−dcコンバータ
JP2008125217A (ja) * 2006-11-10 2008-05-29 Fuji Electric Device Technology Co Ltd スイッチング電源装置
JP2008228382A (ja) * 2007-03-09 2008-09-25 Fuji Electric Device Technology Co Ltd スイッチング電源装置
JP2008289336A (ja) * 2007-05-21 2008-11-27 Murata Mfg Co Ltd スイッチング電源装置
WO2010119760A1 (ja) * 2009-04-14 2010-10-21 株式会社村田製作所 スイッチング電源装置
WO2010119761A1 (ja) * 2009-04-14 2010-10-21 株式会社村田製作所 スイッチング電源装置
WO2011105258A1 (ja) * 2010-02-23 2011-09-01 株式会社村田製作所 スイッチング電源装置
WO2011111483A1 (ja) * 2010-03-09 2011-09-15 株式会社村田製作所 スイッチング電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019322A (ja) * 2014-07-07 2016-02-01 三菱電機株式会社 直流変換装置の制御方法

Also Published As

Publication number Publication date
JPWO2013021857A1 (ja) 2015-03-05
CN103718446B (zh) 2017-03-29
GB2507676B (en) 2018-05-30
CN103718446A (zh) 2014-04-09
GB2507676A (en) 2014-05-07
US20140254207A1 (en) 2014-09-11
GB201400965D0 (en) 2014-03-05
US9397575B2 (en) 2016-07-19
JP5937597B2 (ja) 2016-06-22

Similar Documents

Publication Publication Date Title
US8891255B2 (en) Switching power supply apparatus including simultanous control of multiple outputs
US9812856B2 (en) Modulation mode control circuit, switch control circuit including the modulation mode control circuit and power supply device including the switch control circuit
JP5532121B2 (ja) スイッチング電源装置
JP6386549B2 (ja) 高効率共振変換器のための装置および方法
US9729063B2 (en) Voltage adjustment system and method for parallel-stage power converter
JP5230181B2 (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
US8988901B2 (en) Switching power supply device
US8837174B2 (en) Switching power-supply apparatus including switching elements having a low threshold voltage
US10298136B2 (en) Flyback converter, control circuit and control method therefor
US9136699B2 (en) Dynamic damper and lighting driving circuit comprising the dynamic damper
WO2013146339A1 (ja) スイッチング電源装置
JP5397534B2 (ja) スイッチング電源装置
KR100829121B1 (ko) 비씨엠모드로 동작하는 단일전력단 역률개선 회로
JP5549659B2 (ja) スイッチング電源装置
KR100681689B1 (ko) 스위칭 전원장치
JPWO2005074113A1 (ja) スイッチング電源装置
JP2013141383A (ja) アクティブ降圧型パワーファクター修正装置
JP2004140913A (ja) スイッチング電源装置
US10277113B2 (en) Switching power supply with output power estimation
JP5937597B2 (ja) スイッチング電源装置
JP6393962B2 (ja) スイッチング電源装置
KR101456654B1 (ko) 공용코어 역률보정 공진 컨버터
TWI586092B (zh) 單級交流至直流轉換器
US11329566B2 (en) DC power supply circuit that enhances stability of output voltage
US20220416676A1 (en) Method of Operating Isolated Resonant Converter with Synchronous Rectifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1400965

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120731

WWE Wipo information: entry into national phase

Ref document number: 1400965.8

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2013527969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821729

Country of ref document: EP

Kind code of ref document: A1