JP3703515B2 - 光学情報担体を製造する方法及び該方法を実施する装置 - Google Patents

光学情報担体を製造する方法及び該方法を実施する装置 Download PDF

Info

Publication number
JP3703515B2
JP3703515B2 JP33641394A JP33641394A JP3703515B2 JP 3703515 B2 JP3703515 B2 JP 3703515B2 JP 33641394 A JP33641394 A JP 33641394A JP 33641394 A JP33641394 A JP 33641394A JP 3703515 B2 JP3703515 B2 JP 3703515B2
Authority
JP
Japan
Prior art keywords
length
exposure
information
output
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33641394A
Other languages
English (en)
Other versions
JPH07320308A (ja
Inventor
ルイス マリー プット ポール
アントニカス マリア ホエベナールズ アルベリカス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25662845&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3703515(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from BE9301461A external-priority patent/BE1007912A4/nl
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JPH07320308A publication Critical patent/JPH07320308A/ja
Application granted granted Critical
Publication of JP3703515B2 publication Critical patent/JP3703515B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Head (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、情報単位を有してなる情報をマスタ・ディスクに記録することにより光学情報記録担体を製造する方法に関する。
【0002】
更に詳述すると、この発明は上記の様な製造方法であって、マスタ・ディスクを走査する照射ビームの出力が情報によって制御されると共に上記マスタ・ディスクのフォトレジスト層を露光して長短の露光領域のパターンを形成し、次いで上記フォトレジストを現像して情報領域のパターンを形成するものにおいて、各露光領域の露光の開始及び持続時間が対応する情報単位により決定されるような方法に関する。また、この発明は上記のような方法を実施する装置にも関する。
【0003】
【従来の技術】
情報単位とは、情報の流れにおけるマスタ・ディスク上の単一の特徴により表される部分である。例えば、デジタル情報信号が交互に値「0」及び値「1」を有し、値「1」を持つ信号部分が、当該信号が値「1」である時間長により決まる長さの露光領域になる場合、上記情報信号の当該部分が情報単位である。露光領域はその長さが前記照射ビームによりフォトレジスト層上に形成される照射スポットの直径の2倍よりも小さい場合に短いと呼ばれるが、上記直径とは照射スポット内における局部強度が当該スポット内の最大強度の半分に等しいような直径方向上の2点間の距離である。対物レンズにより形成されるエアリー(Airy)強度分布に関していうと、上記直径は照射ビームの波長と対物レンズの開口数との商の半分に等しい。また、情報領域とはマスタ・ディスク上の複製工程により他の情報担体へ転写することが可能な特性を持つ領域をいい、これら他の情報担体上の当該領域も情報領域と呼ばれる。また、以下においては特に言及しない限り何の限定も伴わない「領域」なる文言は露光領域を指す。
【0004】
光学情報担体を製造する上記方法においては、フォトレジスト層の露光により先ずマスタ・ディスクに情報が書き込まれる。次いで、フォトレジスト層は現像され、結果として例えばピット(窪み)の形の情報領域が露光された領域に形成される。尚、以下においては上記情報領域を単に「ピット」と呼ぶこともあるが、これらの領域が隆起部を有していてもよいことは明かであろう。次いで、前記マスタ・ディスクには金属層が設けられる。この金属層が前記フォトレジスト層から取り外されると、ピットの陰画パターンを持つ押型となる。そして、当該押型のピットパターンは多数の情報担体に、例えばプラスチック成形工程等の複製工程により転写され、これら情報担体には次いで1以上の層が設けられて、これら情報担体を反射的に又は書込可能にする。ユーザ(使用者)により書込ができない情報担体においては、上記ピットパターンは記録されたユーザ情報を表す。また、書込可能な情報担体においては、前記ピットパターンはユーザ情報を表すのみならず、情報を読み出し又は書き込みために使用される照射ビームを当該情報担体上で案内するトラッキング情報をも表す。
【0005】
情報担体上の情報密度はピットを互いに接近させて配置することにより増加させることができる。しかしながら、より高密度に詰め込まれたピットの場合は当該情報担体を読み取る際に発生される信号の品質が劣化し、結果として情報を読み取る信頼性が低下する。この品質の劣化は、なかでも、ジッタの増加(即ち、信号の不規則な変化の増加)として現れる。高密度の場合に、情報担体から十分に少ないジッタで情報信号を取り出すことを可能にするために、マスタ・ディスクのピットは非常に正確に規定された位置及び形状を有していなければならない。情報密度の上昇を制限する問題の一つは、マスタ・ディスクに情報を記録する際に一定の出力の照射ビームを用いると、短いピットが長いピットよりも狭くなる点にある。
【0006】
米国特許第5040165号公報は、上述した問題の解決を狙った光学情報担体の製造方法を開示している。この方法においては、フォトレジスト層を露光する照射ビームの出力を、長い領域の記録に対するよりも短い領域の記録に対して25%〜100%高く選定している。しかしながら、この方法を用いて製造された情報担体のテストによれば、意図したジッタの低減が達成されていないことが判った。更に、短い領域を記録するための出力と長い領域を記録するための出力との間の比がマスタ・ディスクに使用されるフォトレジストの型及び状態に大きく依存し、したがって異なるマスタ・ディスクから得られる情報担体の品質が異なることが判った。
【0007】
【発明の目的及び概要】
従って、本発明の目的は本明細書の冒頭で述べたような形式の方法であって、上述したような既知の方法の欠点を有さないような方法を提供することにある。
【0008】
上記目的を達成するため、本発明による方法は、露光線量が各記録領域の長さにわたって略一定な所定の値を有し、該値が上記長さとは無関係であることを特徴としている。
【0009】
本発明は、フォトレジスト層のコントラスト曲線の形状が情報担体のピットの最終的な形状を決定するという事実の認識に基づいている。コントラスト曲線はフォトレジストの現像率を、所定の位置に入力する単位面積当たりの照射の時間積分量である露光線量の関数として表すものである。光学記録用に現在まで使用されているフォトレジストは、かなり線形なコントラスト曲線、即ち2倍多い露光線量が2倍高い現像率となるような特性、を有する。高密度で光学記録を行う際に、小さな良好に規定されたピットを形成することができるように、高コントラストのフォトレジストを使用することが検討されている。高コントラストのフォトレジストの第1の特徴はその閾値にある。この閾値より少ない露光線量は無視できるほどの低い現像率しか生じない。高コントラストのフォトレジストの第2の特徴は、上記閾値以上では現像率が露光線量の関数として非常に急激に増加する点にある。前記既知の方法は短い領域と長い領域とを書き込むのに2つの異なる強度を使用するが、通常これは2つの異なる露光線量となる。このことは短い領域及び長い領域に対しては異なる現像率になることにつながり、この現像率の差はコントラストが増加すると増加する。従って、フォトレジストの現像後に形成される短い及び長いピットの形状、即ち長さ、幅及び/又は深さ、は露光中に使用される照射出力の差に重大に依存する。
【0010】
前記既知の方法の第2の欠点はコントラスト曲線の形状の変化に敏感である点にあり、これは以下のように理解される。所定の露光線量により変化されるフォトレジスト材料の量は、温度に対して比較的鈍感である。逆に、現像率、即ち上記の変化された材料が現像剤中に溶解する率、は温度及び当該フォトレジストの特性の両方に大きく依存すると共に現像剤の濃度にも依存する。コントラスト曲線の形状はフォトレジストと現像剤との特性により決まるから、フォトレジストの温度、組成及び経年に大きく依存する。そして、コントラスト曲線は露光線量と現像率との間の関係を与えることになるから、コントラスト曲線の変化は結果として現像率の変化となる。高コントラストのフォトレジストのコントラスト曲線は非常に急峻であるから、これらのフォトレジストの場合の現像率の変化は、かなりのもので、正確な露光線量に大きく依存する。このような理由により、前記既知の方法においてはピットの形状を満足がゆくように制御することはできなかった。
【0011】
しかしながら、本発明に基づく方法は、フォトレジスト層の露光のやり方の結果、コントラスト曲線の正確な形状には非常に不感的となる。この目的のため、照射ビームの出力は、露光線量が露光領域の長さにわたり略一定の値を有すると共に該値が異なる長さの領域に対して同一となるように、制御される。ここで、略同一とは約+/−3%以内に等しいことを意味する。この点に関しては、各領域の立上り部と立下り部とは無視され、露光は露光される領域の中心線に沿って測定される。等しい露光線量の結果として、各領域に対する現像率もコントラスト曲線の形状に無関係に等しい。コントラスト曲線の形状が予想された形状からずれた場合、短い領域及び長い領域の両方の領域の現像率は同様に変化する。この現像率の変化は、フォトレジスト層用の現像時間を適切に延長又は短縮することにより簡単に補正することができる。このように、短い及び長いピットにはコントラスト曲線の形状に無関係に所望の形状が付与される。結果として、ジッタは減少され、その結果、ピットの長さ及びピット間の距離を情報担体上の情報密度を増加させるために減少させることができる。
【0012】
照射ビームは、ある強度分布の照射スポットをフォトレジスト層上に形成する。書き込み中には、照射スポットはフォトレジスト層上を移動される。従って、フォトレジスト層の任意の位置における露光線量は上記分布と、その変位との合成(convolution)により決まる。小さな領域が露光される場合、照射スポットの変位は、変位が照射スポットの寸法よりも大きい長い領域とは対照的に、当該照射スポットの寸法に対して小さい。上記合成の効果の結果、小さな領域における露光線量は長い領域における露光線量よりも少なくなる。従って、本発明による方法の特別の実施例は、短い領域の露光の間の照射ビームの出力を長い領域の露光の間の前記照射ビームの出力より高くして、前記短い及び長い領域の露光の線量が略等しくなるようにしたことを特徴としている。上記出力の露光すべき領域の長さの関数としての値は、局部的な露光線量は全ての領域に対して略同一の一定の所定値を有さなければならないという要件から求まる。
【0013】
ある状況においては、本発明の最後に述べた実施例では、長い情報単位が書き込まれた場合にフォトレジスト層では比較的短い露光領域に、従って比較的短いピットになる場合がある。このことは、フォトレジスト層の僅かに長い時間の現像により補正することができる。しかしながら、この場合には短い領域も長い時間現像されてしまうので、短いピットも長くなり過ぎる。従って、本発明による方法の一実施例は、長い領域の露光の持続時間が対応する情報単位の持続時間よりも長く選定されることを特徴としている。上記延長の程度はコントラスト曲線の傾斜とは無関係であり、長い領域に対しては数%から約20%の間、又短い領域に対しては零である。
【0014】
本発明による方法の特別な実施例は、長い領域の露光が、対応する情報単位の開始点よりも前に開始されることを特徴としている。フォトレジストへの記録は対称な工程であるから、露光時間の延長は領域の公称位置に対して対称でなければならない(即ち、露光は情報単位により予め決められたものよりも早く開始し遅く終了しなければならない)。
【0015】
照射スポットの強度分布は、通常、低い強度の(通常は環状の)サイドローブにより囲まれた高い強度のセンタローブを有している。書き込み中は、照射スポットはフォトレジスト層上を移動するから、その結果として当該フォトレジスト層上の幾つかの位置はセンタローブと1以上のサイドローブとの両方により順次照射される。本発明の方法の特別な実施例により上記のような位置における照射ビームの出力が減少されると、露光領域の長さにわたり一定の露光線量を得ることが可能となる。
【0016】
情報担体の情報密度を増加させねばならない場合は、マスタ・ディスク上の領域は互いにもっと接近して記録しなければならない。第1の領域が露光される場合、それに隣接する第2の領域及びフォトレジスト層のこれら領域の間の部分の両方が、照射スポットの寸法により低い線量で露光されてしまう。この中間領域においては露光線量はコントラスト曲線の閾値よりも低いままであり、情報領域の情報とはならないであろう。前記第2の領域においては、先の低い線量が当該第2の領域を形成するために施すべき(又は既に施された)露光線量に加算されることになる。この加算の結果、これら2つの領域が互いに離れている場合におけるよりも、第2の領域に対する露光線量が高くなってしまう。コントラスト曲線の急峻さのため、上記の第2の領域の露光線量の僅かな増加が現像率の顕著な増加となってしまう。結果として、互いに接近して位置する情報領域は、互いに離れて位置する情報領域よりも、大きくなってしまう。そして、この歪がジッタを増加させてしまう。本方法は、上述したような影響を補正するために2つの態様で変形することができる。
【0017】
本発明による方法の第1の変形例は、隣接する2つの領域を記録する際に各領域の互いに最も近接する部分が、これら2つの領域の間の距離の単調には減少しない関数であるような照射ビームの出力で記録されることを特徴としている。書き込み中に、照射ビームの出力は、隣接する領域からの距離に依存して領域内の露光線量が所要の一定値を有するように制御され、これにより領域間の距離に依存する歪が発生しないようにする。
【0018】
また、本発明による方法の第2の変形例は、2つの領域の間を通過する際には照射ビームがこれら領域を記録する出力よりも低い出力を有し、該出力が前記2つの領域の間の距離とは単調には減少しない関係を有していることを特徴としている。このようなやり方により、隣接する領域に他の領域からの距離に無関係に一定の付加的な露光が付与される。かくして、全ての領域が同じ歪をもつようになるので、ジッタは減少する。上記付加的な露光線量は、前記一定の所定の露光線量の約3%より少なくなくてはならない。
【0019】
また、本発明によれば、上記方法を実施する装置であって、照射ビームを用いた露光により短い及び長い露光された領域のパターンとして情報をマスタ・ディスクに記録する記録装置を有し、該記録装置が前記照射ビームを発生する照射源と、強度変調器と、該変調器と組み合わされる制御装置と、前記照射ビームを用いて前記マスタ・ディスク上に照射スポットを形成する光学系と、該照射スポットと前記マスタ・ディスクとを相対的に移動させる手段とを有しているような装置が提供される。そして、該装置は、前記制御装置が前記変調器を、前記露光の線量が露光領域の長さにわたり該長さに無関係な略一定な所定の値を有するように、制御するようになっていることを特徴としている。このような装置はマスタ記録器とも呼ばれる。
【0020】
本発明による装置の特別な実施例は、前記制御装置が情報の単位の持続時間と、露光の開始、持続時間又は出力の中の少なくとも何れか一つとの間の関係を記憶したメモリを有していることを特徴としている。
【0021】
本発明による装置の好ましい実施例においては、前記制御装置は記録すべき情報の情報単位にコードを割り当てる符号化回路を有し、該コードが前記情報単位の長さを表すと共に前記メモリのアドレスに関連付けられている。上記情報は通常直列データ流として供給されるが、上記コードは並列データ流として提供される。かくして、当該コードは前記情報よりも低いクロック周波数で並列に処理される。結果として、前記制御装置用の部品は非常に高いクロック周波数用としては設計する必要がなく、標準の部品でよい。
【0022】
高密度で情報を記録するため、本発明による装置は好ましくは前記光学系がフィルタを有していることを特徴とするとよい。フィルタは、照射の振幅又は位相に対し、当該照射スポットのセンタローブの寸法が減少されるように作用するので、露光領域も小さくなる。
【0023】
本発明による装置の特別な実施例は、上記フィルタが楕円形位相板を有していることを特徴としている。楕円形位相板は強度分布のサイドローブの書き込み方向の出力を円形位相板に較べて低減させることができるので、本発明による書き込み手法はより良い結果をもたらす。
【0024】
ここで、ヨーロッパ特許出願公開第0411525号が、光学系の瞳の直径と等しい長さを持つ長方形の位相板を開示していることに注意されたい。しかしながら、このような位相板によっては、2つの方向において小さな寸法を持たなければならないようなマスタ記録器用に適した照射スポットを形成することはできない。
【0025】
また、本発明による方法を用いて製造される光学情報担体は、情報領域の長さが対応する情報単位の長さから10%未満しかずれていないことが判った。このズレは、本発明による方法を用いないで製造された情報担体のものよりも小さい。このような少ないズレによれば、当該情報担体から得られる読出信号のジッタが減少する。
【0026】
また、本発明による方法を用いて製造される光学情報担体は、隣接する情報領域の間の距離が、これら領域に対応する情報単位の間の距離から50nm未満しかずれていないことが判った。このように、一層正確に規定された隣接する情報領域間の距離は、一層正確に規定された情報領域の長さの様に、ジッタを減少させる。
【0027】
また、本発明による方法を用いて製造される光学情報担体は、更に、情報領域の幅のばらつきが30nm未満であることが判った。良好に規定された幅の情報領域は良好に規定された大きさの読出信号となる。このこともジッタを減少させる。
【0028】
【実施例】
図1は、光学情報担体を製造する装置を示している。この装置は、概ね、情報処理ユニット1と、マスタ・ディスク3に情報を記録する装置(即ち、マスタ記録器)2と、マスタ・ディスクを処理すると共に該マスタ・ディスクを用いて押型5を作成する装置4と、該押型の版(凹凸)を情報担体7に形成する複写装置6とを有している。情報担体上に記録すべき情報8は前記情報処理ユニット1の入力端に供給される。該情報は、例えばトラッキング溝又はトラッキングピットのような形態に記録されるべきトラッキング情報と、情報担体上の所定の位置を識別することができるようにするアドレス情報と、読み取りエラーの後での訂正を可能にする情報と、もし必要なら当該情報担体のユーザにより読み取ることができるデータとを含んでいる。情報処理ユニット1はマスタ記録器2を制御するための信号9を前記入力情報8から抽出する。これら制御信号の助けにより、マスタ記録器2はマスタ・ディスク3に前記情報をフォトレジスト層中の露光領域のパターンとして記録する。露光領域ではビームの照射は吸収されるので、フォトレジストの材料が局部的に変化され、該フォトレジスト層の溶解度が変化する。上記溶解度(従って、フォトレジスト層の現像率)は露光線量の増加に伴い上昇する。
【0029】
前記マスタ記録器は当該装置の必須部分であるので、以下に更に詳細に説明する。マスタ・ディスク3のフォトレジスト層は装置4において現像され、これにより露光パターンはフォトレジスト層中のピット及び/又は溝の形の情報領域のパターンに変換される。次いで、金属層が上記フォトレジスト層上に付着される。このフォトレジスト層から取り除かれると、上記金属層はピットのパターンの凹凸を持つ押型5となる。このような押型を用いて、複写装置6はピットのパターンの凹凸を、例えばプラスチック成形工程又はいわゆる2Pプロセス等の光重合に基づく複製工程を用いて、情報担体に形成する。単一のマスタ・ディスク3からは複数の押型5を作成することができ、又各押型を用いて数百〜数千の情報担体7を作成することができるので、単一のマスタ・ディスクを用いて数千〜数百万の同一の情報担体を製造することが可能である。本方法は、単一の押型から複数の押型が作成されるような複数の複写段階を有していてもよい。
【0030】
図2は、円形のマスタ・ディスク3に書き込みを行うマスタ記録器2の一実施例を示している。尚、本実施例の僅かな変形により、このような記録器は例えば方形光学情報カードを作成するための方形マスタ又は光学テープを作成するための長尺マスタ等の他の形態のマスタに書き込むように適応化することができることは明らかであろう。マスタ記録器2は、照射ビーム13を発生する例えばアルゴンレーザのような照射源12を有している。この照射ビームの出力は電子光学的又は音響光学的変調器14により制御装置10の出力信号11に応じてパルス変調されるが、この制御装置は前記情報処理ユニット1からの信号9を入力する入力端子を有している。制御装置10は信号9を、変調器14を制御するに適した信号に変換する。例えば半導体レーザのように高速で変調することが可能な照射源が使用された場合は、当該レーザを制御装置10により直接制御することができ、照射源12と変調器14とは単一の装置を形成する。
【0031】
変調器からの強度変調された照射ビーム15は、例えばビーム拡幅器16、ミラー17及び対物レンズ18によりマスタ・ディスク3のフォトレジスト層20上に照射スポット19を形成するようにフォーカス(合焦)される。マスタ・ディスクを回転軸21の廻りに回転させ、同時に光学素子17及び18をディスクの半径方向に移動させることにより、同心的又は螺旋状のトラックをフォトレジスト層に書き込むことが可能である。照射スポットとフォトレジスト層との相互間の上記移動の結果、情報単位の時間長と、対応する露光時間とは、情報単位の長さと露光長さとに変換することができる。記録中においては、照射ビームは対物レンズ18がフィードバックによりマスタ・ディスクの垂直移動23に追従するようにすることにより前記フォトレジスト層上に合焦したままに維持される。マスタ・ディスクが一定の角速度で回転する場合は、照射ビームの出力は、一定の露光線量を維持するために、書き込まれるべきトラックの半径の線形関数として増加されねばならない。出力のこの低速の変化は変調器14により実行される。
【0032】
フォトレジスト層への領域の記録の際における照射スポット19とマスタ・ディスク3との間の相互変位の効果を、図3を参照して説明する。フォトレジスト層に領域を記録する際、フォトレジスト層は照射スポット19により照射される。図3の破線25は、照射スポットの強度分布を位置の関数として表している。フォトレジスト層上の照射スポットの移動方向における位置xが水平軸に沿ってプロットされており、強度Iが垂直軸に沿ってプロットされている。強度曲線は、円形開口を持つレンズにより形成される回折が限られた照射スポットの特性であるいわゆるエアリー分布を持つが、図の強度は簡略化のために釣り鐘状の曲線として表されている。曲線25は領域を露光するために照射ビームがオンされた時点の分布を示し、曲線26は矢印27により表される変位の後の露光の終了時点の分布を示している。フォトレジスト層の露光領域における露光線量は、強度分布と、その変位との合成(convolution)である。位置の関数としての露光線量である線量分布は図では実線28により表され、この分布に関しては露光線量Eが垂直軸に沿ってプロットされている。図示の状況では露光領域の長さは、図においてwで示される照射スポットの強度分布の直径に比較して短い。
【0033】
図3は比較的長い領域の露光の状況を示している。この場合、露光が開始された際の強度分布は破線29で示され(強度分布25と同一の形状を有する)、当該分布の中心が矢印31により示す移動を行った後の終了時の強度分布は曲線30で示される。上記移動の長さは強度分布29の直径の2倍よりも大きい。曲線32により表される対応する線量分布は、曲線28の最大値よりも僅かに高い平坦な最大値部分を有する。曲線32の最大露光線量には、強度分布が当該強度分布の直径の約2倍よりも大きな距離にわたり移動した領域においてのみ到達する。
【0034】
現像工程においてはフォトレジスト層の露光領域は現像液中で溶解される。フォトレジストのコントラスト曲線は、図4のaに示すように、溶解率(現像率とも呼ぶ)と露光線量との間の関係を支配する。同図の右上象限は、比較的低いコントラストを持つフォトレジストの典型的なコントラスト曲線35を示し、この場合露光線量Eは水平軸に沿ってプロットされ、現像率Dは垂直軸に沿ってプロットされている。閾値36は、それ以下では露光により無視できる程の小さな現像率しか得られないような露光線量を表している。右下象限は2つの領域の線量分布、即ちフォトレジスト層上の位置xの関数としての露光線量、を示している。この場合、第1の領域の線量分布37の最大値は第2の領域の線量分布38の最大値よりも僅かに高く、この差は図3を参照して説明したように発生し得る。右上象限のコントラスト曲線を用いることにより、右下象限の露光線量は左上象限に示す現像率へと変換することができ、これら現像率もフォトレジスト層上の位置xの関数として表されている。
【0035】
このように、線量分布37及び38は各々現像分布39及び40となる。現像中においては、フォトレジスト層は現像分布に比例した率で溶解する。現像分布39及び40の位置においては、この結果フォトレジスト層中にピットの形状の情報領域が得られ、それらの深さ、長さ及び幅は前記コントラスト曲線の形状及び現像時間に依存する。ピットの正確な形状は現像分布の形状によって完全に決定されるものではなく、現像工程における他の因子にも依存する。これらの因子の一つは、現像率の方向が現像されるべき表面に対して常に垂直であるがために、現像工程の初期には現像率の方向はフォトレジスト層に垂直であるが、その後は既に形成されたピットの傾斜した壁に対して垂直になるという点である。一般的に、フォトレジスト層の厚さは情報領域、即ちピット、の比較的小さな所望の深さと等しいから、短い現像時間でフォトレジスト層の厚さに等しい深さのピットを得ることができる。結果として、時間的に延長された露光は、深さを変えることにはならず、ピットの長さ及び幅のみがフォトレジスト層上の所定の位置において現像率に比例して増加する。
【0036】
ピットの長さは種々の方法で定義することができる。例えば、ピットのフォトレジスト層の厚さと等しい部分の長さとして、又はピットのフォトレジスト層の厚さの半分に等しい深さとなる前縁及び後縁の位置間に位置する部分の長さとして定義することができる。ある現像工程に関しては、適用される定義に依存する値のこの深さdには時間t内に到達し、このことはDを現像率とした場合t=d/Dを意味する。現像分布39及び40における時間t内に深さdまで現像される各点は図4のaにライン41で示すいわゆる現像ライン上に位置する。工程を終了した後では、現像されたピットは矢印42及び43で示す長さを有する。もっと長い現像時間の場合、現像ラインに関してはtとDとの積は一定であるから(この現像ラインは深さdなる特定の一定値に関係する)、ライン41はもっと低い現像率Dに位置する。結果として、得られるピットの長さは増加する。ピットの壁の傾斜は分布39及び40のライン41と交差する部分の傾斜により決まる。コントラスト曲線35の比較的低い閾値36のために、2つの分布37及び38のサイドローブ即ちマイナーローブはピットを長くさせる可能性がある。図4のaにおける分布37及び38の露光線量の僅かな差は、結果として、矢印42及び43で示すような2つの異なる長さのピットとなる。コントラスト曲線35は、前記現像ラインを図の右下象限における露光線量ライン44に関係付ける。線量分布37及び38との交差部45及び46は最終的に形成されるピットの長さを表している。矢印45及び46の長さは矢印42及び43の長さに各々等しい。
【0037】
図4のaと同様に、図4のbも露光線量と現像率との関係を示すが、この場合は低いコントラストの代わりに高いコントラストを持つフォトレジストに関するものである。高いコントラストはコントラスト曲線35’の傾斜と高い閾値36’として現れる。図4のbの線量分布37及び38は図4のaの各線量分布と同じである。しかしながら、この場合は結果として得られる現像分布39’及び40’が前記分布39及び40からは各々大きくずれている。先ず第1に、急峻なコントラスト曲線の結果ピットの壁は急峻となり、従って狭いピットとなる。更に、高い閾値36’のため2つの分布37及び38のサイドローブはピットを長くすることがない。結果として、このようにして形成されたピットは一層小さく且つ高密度に詰め込むことができるので、情報担体の情報密度は増加する。第2に、分布37と38との最大露光線量の間の比較的小さな差にも拘らず、2つの分布39’と40’の最大現像率の間にはかなりの差がある。小さな差がかくも強い効果を引き起こす事実は、コントラスト曲線35’の急峻さと、露光線量ライン44’が分布37及び38の最大値に接近して横たわることとによる。従って、高コントラストのフォトレジストが用いられる場合は、結果として得られるピットの長さ及び幅は露光された領域における露光線量の正確な値に大きく依存する。
【0038】
現像分布39’により形成されるピットは分布40’により形成されるピットよりも長く且つ幅広になる。更に、2つのピットの形状の間の差は現像工程の正確な条件に依存する。このことは、特別な現像工程として現像ライン41’が現像分布39’と交差し且つ分布40’より上に位置する図4のbに示す極端な場合から明かである。分布39’は所要の深さまで現像されたピットとなるが、分布40’は必要な深さを有しないようなピットとなる。マスタ・ディスクにおける結果としてのピットの深さ、幅及び長さの変化は複製工程により情報担体に転写され、当該情報担体の読み出しの際にはジッタの増加につながる。露光線量の差は、現像工程中における現像時間の変化により補正することはできない。
【0039】
ピットの形状は、露光線量によるのみならず、現像工程のパラメータによっても影響を受ける。フォトレジスト層に用いられるフォトレジストのエイジング、フォトレジストの原料成分の濃度の変化及び現像剤の濃度の変化等の全てが、コントラスト曲線35及び35’の傾斜及び閾値の変化につながる。この結果、現像分布39、40及び39’、40’が各々変化する。これらの変化は、現像時間を長くしたり短くしたりすることによっては部分的にしか補正することができない。
【0040】
通常、マスタ・ディスクに記録すべき情報単位は異なる持続時間を有し、異なる長さの露光領域となる。任意の長さの露光領域の露光線量は、照射スポットの強度分布と当該照射スポットの変位との合成から図3を参照して前述したように決定することができる。その後、種々の領域のための現像率を、図4のa及びbのコントラスト曲線35及び35’を各々介して決定することができる。フォトレジスト層中の露光領域の所望の長さは、所望の情報密度及び情報符号化方法により支配される。高密度を得るために、最短の領域の長さが最小にされる。幾つかの状況においては、照射スポットの直径の2倍よりも短い(即ち、エアリー強度分布の場合、照射波長と対物レンズ18の開口数との商よりも短い)長さの領域を記録するのが望ましい。デジタル信号を符号化する通常の方法は、いわゆる8/14変調(EFM)である。以下においては、EFM符号化が例示として使用されるが、本発明はこの符号化方法に限定されるものではない。EFM符号化においては、デジタル情報信号における情報単位の時間長は一定の基本時間の整数倍であり、該整数倍は3から11の間である。情報信号の基本時間に等しい維持時間を持つ部分はビットセルと呼ばれる。上記基本時間は、フォトレジスト層上における照射スポットの移動速度を介して、基本長さに変換することができる。従って、各情報単位及びそれらに対応する情報領域を、長さに応じて、I3ないしI11で示す。尚、いわゆるコンパクトディスク(CD)に記録される情報はEFM符号化されている。
【0041】
図5は208nmなる基本長を持つEFM領域I3ないしI11の現像分布を示し、これらに関してはエアリー強度分布と、記録すべき領域の長さに無関係にパルス中では一定である出力とを持つパルス状照射スポット及び高コントラストのフォトレジストが使用されている。これらの分布は、波長が458nmの照射ビームと0.45なる開口数の対物レンズ18とを用いて高情報密度でマスタ・ディスク上に記録を行う際に得られた。図示の分布は上記照射スポットにより書き込まれるトラックの軸に適用されるもので、xは該軸に沿う距離である。この図は、中央においては(即ち、x=0に関しては)短い領域I3、I4及びI5が長い領域に較べて比較的低い現像率を有することを示している。このことは、短い領域が、図3に曲線32で示すような最大露光線量に到達するI16及びそれより長い各領域よりも低い最大露光線量しか受けていないという事実に起因している。
【0042】
図3を参照して前述したように合成効果(convolution effect)の結果、短い領域に対する現像率は長い領域に対するものよりもかなり低い。もし現像ライン48が図5に示すようなレベルに位置する場合は、I3、I4及びI5用に形成されるピットの長さは対応する情報単位(即ち、EFM符号の基本長の3、4及び5倍)よりもかなり短くみえるが、それより長いピットの長さは僅かに短か過ぎるだけである。短いピットの長さからのズレと長いピットのそれからのズレとの間の矛盾は、これらのピットにより発生される読出信号を非常に信頼性のないものにしてしまう。前記米国特許第5040165号は、短いピットの長さを、照射ビームの出力をこのような短い領域を記録する際に長い領域を記録する際におけるよりも高くすることにより、改善する方法を開示している。これによれば、短い領域に関して高い最大露光線量及び高い最大現像率を得ることができる。この既知の方法は、ピットの長さの改善は果たすが、ピット形状の正確な露光線量と現像工程のパラメータの値とへの強い依存性という問題は依然として残る。
【0043】
本発明によれば、ピット即ち情報領域の所望の長さ及び幅からのズレは、短い領域及び長い領域の両方を含む全ての領域の線量分布に略同一の最大露光線量を付与することにより大幅に低減される。この結果として、全ての現像分布の最大現像率は同一になり、従って現像工程に依存するようなピットの長さ及び幅の好ましくない変化は発生しない。ここで、略同一とは約3%以内の同一を意味する。露光線量が全ての領域に対して高過ぎ又は低過ぎるようになる場合は、もし線量が閾値より上ならば、僅かに現像時間を減少又は増加させて結果として所望の形状のピットが得られるようにすることにより、補正をすることが可能である。また、本発明による露光方法はピット形状の現像工程パラメータへの依存性も減少させる。また、本露光方法は全ての線量分布37、38が露光線量ライン44との交差位置において同一の傾斜を持つことを保証する。全ての現像分布がコントラスト曲線の変化の結果低くなった場合は、現像条件が同じままであるなら、ピットは同程度に狭く且つ短くなる。現像工程の間には、各ピットの長さは現像時間を公称現像時間に対して僅かに増加させることにより、所望の長さが得られるように同じ量だけ後で増加させることができる。
【0044】
図6は、EFM符号化信号I3ないしI11に関し本発明による第1の書き込み手法を使用して得られた現像分布を示し、この手法においては各露光領域における最大露光線量が等化されている。この場合、照射ビームの出力は図7に示すようなやり方で情報単位の長さに依存し、この図においては情報単位の基本長の数が水平軸に沿ってプロットされる一方、照射ビームの正規化出力Pが垂直軸に沿ってプロットされている。I6より短い領域用の出力は、領域の長さが減少するにつれて増加されている。この増加は指数関数により数学的に近似することができる。図においては、I3用の出力はI11用の出力より15%高くなっている。等しい露光線量とするための出力の大きさは、照射スポットの強度分布と、その変位との合成から算出することができる。図7に示した例におけるレーザビームの出力は、当該レーザビームにおいて変調器14の透過度を変化させることにより変調される。また、レーザビームの出力はレーザ照射の短パルスの繰り返し周波数を変化することによっても変化させることが可能である。この場合、上記繰り返し周波数は非常に高いので、上記のような一連の短パルスはマスタ・ディスク上に単一の長パルスと略同様の照射パターンを生じさせる。I3のような短い情報単位はI11のような長い情報単位よりも高い繰り返し周波数の短パルスで以て記録される。高い繰り返し周波数は、短い情報単位を記録するのに必要とされるような照射ビームの平均出力を増加させる。
【0045】
上記第1の手法の他の利点は、現像工程のパラメータの変化に対する非敏感性以外に、前記米国特許第5040165号の教示とは逆にピットの幅がピットの長さとは無関係となる点にある。如何なる書き込み手法もなしに記録した場合のように短いピットが長いピットよりも狭い場合は、短いピットにより生成される読出信号は比較的小さくなる。前記米国特許から既知の書き込み手法の結果としてのように短いピットが長いピットよりも幅広の場合は、短いピットから発生する読出信号の振幅は大きくなるが、該読出信号のジッタも比較的大きくなってしまう。更に、この大きな幅の結果として情報担体のトラックは互いに十分に接近して配置することができず、このことが情報密度の上昇を制限してしまう。本発明による前記第1の手法が使用された場合のように短いピットと長いピットが等しい幅を持つ場合は、読出信号のジッタは最小となる。
【0046】
ある状況下においては情報領域の基本長、対物レンズの開口数及び照射ビームの波長に依存して、前記第1の書き込み手法において、結果として得られる短いピットの長さが大き過ぎるか又は短いピットの長さが短過ぎる事態が発生する場合がある。この問題を解決するため、本発明は第2の書き込み手法を提供する。この手法によれば、長い領域用の露光時間が先ず僅かに増加される。第2に、情報領域の公称位置を維持するために、各長い情報単位の前縁及び後縁の両方において露光が対称に延長される。第3に、もし必要なら、最短の情報領域が所望の長さの情報単位を持つようになるまで現像時間が増加又は減少される。現像時間のこのような減少又は増加は、各々、図6における現像ライン49の上方への又は下方への移動に相当する。この結果、全ての情報領域が短縮されるか又は延長される。図8は上記第2の手法を用いて得られた領域I3ないしI11に関する現像分布を示している。また、図9は上記に対応する照射ビームの出力を情報単位の長さの関数として示している。第2の手法が用いられていない図7と比較して、この第2の手法を用いた場合は領域I4及びそれより長い領域用の実際の露光が情報単位の始点以前、即ち図の水平軸上の長さ「0」以前に開始することが明瞭に判る。照射出力が短パルスのビームにより供給される場合は、平均出力はこれらパルスの繰り返し周波数を変化させることにより調整することができる。また、長い情報単位に対する露光の早期化は短パルスの位相の変化により達成することができる。
【0047】
今までのところでは、孤立した各領域が露光される際に発生する効果のみについて考察した。情報密度が上昇すると、領域自身のみならず領域間の距離も小さくなるので問題が発生する。この場合、隣接する領域の線量分布は重なり合い(オーバーラップし)、結果としての情報領域の形状は隣接する領域間の距離に依存するようになる。図10は上記効果を一連の隣接する線量分布I3の対に関して示し、ここでは各対の2つの分布の間に中間領域が位置し、これら中間領域が図示のように基本長の倍数の長さを有している。これら分布は、前述したマスタ記録器に関しては開口数が0.45であると共に波長が458nmであり且つ情報単位の基本長が162nmの場合に相当する。最も顕著な影響は、中間領域における比較的高い露光線量である。更に、領域間の距離が減少するにつれて、露光領域自体に最大線量の増加が見られる。図11は高コントラストのフォトレジストの場合における図10の線量分布に対応する現像分布を示している。コントラスト曲線の閾値の結果、中間領域における前記の比較的高い露光線量は現像率の増加にはつながっていない。逆に、互いに最も接近した領域の上述した僅かに高い最大露光線量が、上記コントラスト曲線の傾斜のために、最大現像率の大幅な増加につながっている。結果として、互いに接近したピットは大きくなり過ぎる。
【0048】
上記問題は本発明による第3の手法により解決することができ、この手法によれば領域を記録するための照射ビームの出力は、当該領域の長さにわたって所望の一定の露光線量が得られるように、前に書き込まれた領域及び次に書き込まれるべき領域までの距離に適応化される。従って、3つの連続する露光領域及び2つの中間の領域の長さの各組み合わせに対して、中央の露光領域を書き込むために必要な出力を算出する必要がある。各中間領域の長さ以外に、各露光領域自身の長さに関しても許容性がなければならない。何故なら、前記第1の手法によれば照射ビームの出力(従って、重なり合いの効果)は領域の長さに依存するからである。図12は上記第3の手法に基づいて一連の領域を記録するための照射ビームの出力Pを概念的に示し、ここでは明瞭化のためにパルス内の公称出力はパルスの長さとは無関係であると仮定する。パルス54は、隣接するパルスからは線量分布が重なり合わない程に遠く離れているので、公称出力を持つ。
【0049】
パルス55はパルス54からは大きな距離隔てられているので左側部分では公称出力を有する。しかし、その右側部分では当該パルスの線量分布は次のパルス56の線量分布と重なり合うので、出力は僅かに減少されねばならない。同様に、パルス56の左側部分の出力も減少されねばならない。出力低減の程度は照射スポットの強度分布の形状とパルス間の距離とから決定することができる。パルス56と、それに続くパルス57との間の比較的短い距離のため、図示のように、これら両パルスは長い距離にわたり比較的大きな出力低減を呈する。パルス57の最大出力は公称値には到達しない。何故なら、このパルスは比較的短く且つ両側の隣接するパルスが接近して位置しているからである。なお、パルス出力は図示のように必ずしもステップ状に低減する必要はない。例えば、出力低減は、直線又は滑らかな曲線に従うようにしてもよい。この第3の手法の実施を簡略化するため、重なり合いの効果が最も強い最も離隔距離が短いようなパルス対のみに出力低減を適用するようにしてもよい。
【0050】
以下に述べる第4の手法は、互いの距離が短いために情報領域が大きくなり過ぎる効果の他の解決法を提供する。この手法においては、中間の領域は計画的に照射される。書き込むべき各領域の間で供給される露光線量の大きさは、これら領域間の距離に伴い増加すると共にコントラスト曲線の閾値以下に留まるようにする。これらの中間領域の露光は、結果として、隣接する領域の位置にサイドローブを持つような線量分布となる。かくして、隣接する領域の付加的な露光が先行する領域の線量分布のサイドロープと当該中間領域の線量分布のサイドロープの両方によりもたらされることになる。両領域の間の距離が増加するにつれて、上記付加的露光に対する前者の効果は減少するが、本発明によれば第2の効果が増加するので、記録すべき領域の付加的露光は領域間の距離とは無関係となる。中間領域の露光中における照射ビームの出力は照射スポットの強度分布から決定することができる。このように、各記録領域は開始部及び終了部で付加的な露光線量を受ける。この付加的露光線量は、一定の所定の値の当該露光線量の約3%よりも小さくなければならない。結果として、得られる各情報領域は開始部及び終了部が僅かに幅広になる。この広がりは長い情報領域及び短い情報領域の両方を含む全ての情報領域に対して同一であるから、ジッタの劣化を生じることはない。上記第4の手法の前記第3の手法と較べた場合の利点は、中間領域に供給される出力が露光領域間の距離のみに依存し、第3の手法におけるように書き込まれるべき領域の長さには依存しない点にある。かくして、この手法によればマスタ記録器における出力制御が簡単になる。
【0051】
図13は上記第4の手法により一連の領域を記録する際の照射ビームの出力を概念的に示している。この場合、全てのパルスは公称出力を有し、該公称出力は図を明瞭にするためにパルスの長さとは無関係であると仮定する。パルス59とパルス60との間の中間領域において、出力はパルス59の終了部とパルス60の開始部とにおいて前述した所要の付加的露光を行うために比較的低い値61に維持される。パルス60と次のパルス62との間の距離はパルス59とパルス60との間の距離よりも短いので、パルス60とパルス62との間における出力63は結果として上記出力61より低い。また、パルス62と64との間並びにパルス64と65との間の距離は非常に短いので付加的露光は必要ではない。図14は上記第4の手法を用いて得られた一連の隣接する線量分布I3の対を示し、各対は図示したような長さの中間領域を各々有している。この場合、各記録領域内の最大露光線量は等しく且つ2つの記録領域間の距離とは無関係である。他方、中間領域(即ち、x=0の周辺)における露光線量は、図10に示したような本手法を用いない場合に較べて増加されている。中間領域における露光線量は図15に示すようなものであり、この図において垂直軸に沿ってプロットした各値は図14におけるものと同一の単位で表されている。また、最も短い中間領域(即ち、I3)用の線量は零である。
【0052】
図16は、図14に示した露光線量に対応する現像分布を急峻なコントラスト曲線を持つフォトレジストに関して示したものである。この場合、図示の全ての現像分布は分布間の距離に無関係に同一の形状を有している。従って、この場合現像によって生成される各情報領域は同一の大きさを持つことになる。図14から明らかなように、分布間における現像率はこれらの位置における比較的高い露光線量にも拘らず略零である。このような利点は高コントラストのフォトレジストの比較的高い閾値により得られる。
【0053】
上述した第3及び第4の手法を有効に組み合わせて第5の手法を得ることができる。この手法は、第1に、中間領域における照射ビームの出力が比較的低い値を有すると共に該値が中間領域の長さが増加するにつれて増加し、第2に、書き込むべき領域の開始部及び終了部における出力が公称値よりも僅かに低い一定値を有する点に特徴がある。中間領域の露光は、第4の手法に関して説明したように、各領域の開始部及び終了部に一定の付加的な露光を与えることになる。開始部及び終了部における一定量の出力の低減は上記付加的露光を補償し、露光線量が各領域の長さにわたり、これら領域間の距離に無関係に一定となることを保証する。結果として得られる各情報領域は隣接する領域との距離には無関係に等しい幅を持つことになる。この第5の手法における出力制御は第4の手法における場合と同様に簡単である。何故なら、中間領域における出力はこれら中間領域の長さにのみ依存し、また記録すべき全ての領域用の出力は領域の長さ及び隣接する領域からの距離には無関係に同様な方法で補正されるからである。
【0054】
図6及び図8は、第1及び第2の手法に基づいて記録された領域の現像分布が平坦な最大部を有さず、領域の長さに依存する僅かなズレを呈することを示している。これらのズレは、得られる情報領域の幅に先ず影響する。例えば図8の情報領域I11のような現像分布の場合、x=0に対する現像率はx=0.6μmに対するよりも僅かに高い。x方向即ち書き込み方向に垂直な方向(即ち、図の面に垂直な方向)における現像分布は情報領域の幅を決定する。従って、この分布はx=0においてはx=0.6μmの場合よりも幅が広い。その結果、得られる情報領域はx=0ではx=0.6μmの場合よりも幅が広い。このような一定でない幅の情報領域は読出信号のジッタを増加させる結果となる。この原因は、強度分布のサイドローブが当該強度分布とその変位との合成に対して持つ影響と、及び高い非線形なコントラスト曲線とに在ることが判った。このことを、図17を参照して説明する。この図の上半分は領域の記録の間におけるフォトレジスト層上の照射スポットの強度分布を示し、該分布はピーク67の開始位置からピーク69により示される終了位置まで矢印68により表される距離にわたって移動する。当該分布の基部は2つのサイドローブ70、71を有し、これらはエアリー分布の最初の明るいリングの特徴である。記録中の左側のサイドローブ70の移動は矢印72により示され、右側のサイドローブの移動は矢印73により示されている。
【0055】
また、図の下側半分はフォトレジスト層上の対応する露光線量を線量分布として示している。この線量分布は、強度分布のサイドローブ70及び71による露光により、サイドローブ74、75を有する。該線量分布の部分76は、矢印68と72との重なり合いから明らかなように、強度分布のサイドローブ70とピーク67との両方による露光により発生する。該線量分布の部分77はピーク67とサイドローブ71との和である。また、当該線量分布の中央の持ち上がった部分78は、矢印68、72及び73の重なり合いから明らかなように、強度分布のサイドローブ70、サイドローブ71及びピーク67による露光によって生じる。この強度分布は略回転的に対称であるから、隣接する部分76及び77より僅かに高い中央の部分における露光線量が、該中央部分の位置において図の面に垂直な方向に僅かに広がった線量分布になることは明かであろう。強度分布のサイドローブ70、71による露光の重なり合いによって生じる該線量分布の比較的小さな広がりが、コントラスト曲線の急峻な傾斜の結果として現像分布のかなりの広がりとなってしまう。その結果、得られる情報領域は端部におけるよりも中間において幅広となってしまう。図17に示すよりも小さな照射スポットの変位の場合は、線量分布が中央の窪みを伴って現れ、該窪みは得られた情報領域の局部的なくびれとなる。このような幅の変化もジッタを増加させる。
【0056】
上述したような幅の変化による問題は、フィルタされた対物レンズを持つマスタ記録器において増加的に発生する。フィルタすることの目的は、対物レンズからの放出される照射の振幅又は位相を、当該照射スポットの最大強度の半分における断面が狭くなるように変化させ、これにより高密度の記録を可能にすることにある。しかしながら、フィルタすることは、照射スポットの強度分布のサイドローブにおける出力を増加させてしまう。この結果、露光線量の変化(即ち、情報領域の幅の変化)を増加させてしまう。図18は、フォトレジスト中に前記第2の手法を用いて記録された162nmなる基本長を持つEFM情報単位に関して現像分布の変化の一例を示したものである。この場合、上記フォトレジストは急峻なコントラスト曲線を有し、波長は458nmであり、対物レンズの開口数は0.45であり、フィルタは対物レンズの瞳の中央に位置された円形の180度位相板を有すると共に該瞳の半径の0.3倍に等しい半径を有している。この場合、サイドローブが、結果として得られる情報領域の幅及び長さの両方に影響を与えることは明かである。
【0057】
サイドローブの情報領域への悪影響は、本発明による第6の手法を用いれば補償することができる。この第6の手法は、強度分布のサイドローブにより発生される領域の中央の付加的露光線量を補償する。強度分布の各サイドローブの高さと、これらサイドローブからピークへの距離とは、波長、対物レンズの開口数、対物レンズの瞳にわたる強度分布及び、もし在るなら、位相板の形状から、かなり正確に算出することができる。強度分布と当該強度分布の移動との合成を用いれば、領域の長さにわたって一定の露光線量を得るために、移動中の全ての時点における必要な出力を計算することが可能である。図17におけるサイドローブ74及び75のような線量分布のサイドローブに対する補正は必要ではない。何故なら、これらサイドローブはコントラスト曲線の閾値よりも小さく、無視できる程の現像率しか発生しないからである。
【0058】
図19は第6の手法の効果の2つの例を示している。この図の上半分は、比較的短い領域と比較的長い領域とを記録するための2つの強度分布80、81の各開始位置を各々示している。矢印82、83は記録中における強度分布のピークの移動を各々示す。また、矢印84、85及び86、87は、これら強度分布の左側及び右側サイドローブの移動を表している。また、この図の下半分は照射ビームの出力Pの対応する変化を、短い領域及び長い領域を記録するためのフォトレジスト層上の照射スポットの移動の関数として示している。両出力分布88及び89における破線は当該書き込み手法が何ら用いられなかった場合の出力を表している。短い領域用の出力分布88は、当該分布の開始部及び終了部の出力が破線で示すように当該書き込み手法が用いられない時の分布の場合に較べて低いことを示している。出力が低減されている2つの領域の長さは矢印82、84及び82、86の重なり合いの長さに各々対応している。長い領域が記録される場合は、出力分布89は全長にわたって低減される。当該分布の中央の付加的な窪み90は矢印83、85及び87の3重の重なり合いを補償している。この3重の重なりは図17の線量分布における持ち上がった部分78に相当する。
【0059】
上記第6の手法は、照射スポットの強度分布のサイドロープの影響を補償する。しかしながら、この補償はサイドローブがもっと顕著になった場合は、あまり効果がない。上記のための許容さが対物レンズ用のフィルタの設計においてなされるべきである。かくして、前記位相板は好ましくは円形ではなくて楕円形とする。図20は対物レンズの瞳92を示し、この瞳の中には180度位相板93が配置され、この位相板は各々が半径rを持つ2つの半円形部分94、95と長さlを持つ長方形部分96とを有している。この形状のため、サイドローブ中の出力の一部は図10の水平方向から垂直方向へ、又は(書き込み工程に関しては)書き込み方向からこれに垂直な方向へと移送される。この最後に述べた方向においては、サイドローブは現像工程には殆ど影響しない。何故なら、この方向における全露光線量はコントラスト曲線の閾値以下に留まるからである。楕円形位相板の他の利点は、それにより発生される強度損失が中央ローブを同様に狭くするための円形の位相板により発生される損失よりも小さいという点にある。本発明によれば、瞳半径の分数としての位相板のパラメータr及びlは0<r<0.4及び0<l<0.5の範囲内であり、好ましくはr=0.18及びl=0.3である。最後に述べた場合における水平方向(即ち書き込み方向)のサイドローブの最大強度は、垂直方向(即ち、書き込み方向に垂直な方向)におけるサイドローブの最大強度の約40%に過ぎない。
【0060】
楕円形位相板は円形位相板と同様な方法で強度分布の中央ローブを狭くするので、短い記録領域は一層短くなり得る。しかしながら、長い領域が露光される場合は、比較的に強いサイドローブが中央ローブと重なり合うので、露光領域は長くなる。この延長は、長い領域を延長することができる前述の第2の手法を用いて得られる延長の代わりに又はそれに加えて有利に利用することが可能である。図21は位相板の、比較的長い情報単位I9の現像分布に対する影響を示している。この場合、実線98は位相板無しで得られる現像分布を表し、破線99は円形位相板を用いて得られる分布を示し、点線100は楕円形位相板を用いて得られる分布を示しているが、これらの何れの場合にも本発明による手法は用いられていない。この図は円形位相板により発生する分布の延長を明瞭に示している。楕円形位相板により発生する延長は、書き込み方向のサイドローブが小さいため僅かに小さい。現像分布のピークにおける落ち込みは円形位相板の場合は17%であり、楕円形位相板の場合は8%に過ぎない。結果として、第6の手法による分布100の補償は、分布99の場合よりも容易である。一点鎖線101は円形位相板を用いて得られる補償された分布を表している。例えばトラッキング溝のような非常に長い構造を記録する場合は、狭い溝を得るために、楕円形位相板を該位相板の主軸が書き込み方向に延びるように当該板の面内において90度にわたり回転させるのが望ましい。
【0061】
本発明による各書き込み手法は、各々単独でも又は2以上の手法を組み合わせても使用することができる。当該書き込み手法によれば、λ/(2NA)の程度の長さの情報領域を得ることができる。また、これらの手法を用いれば、全ての情報領域の長さが、対応する情報単位の長さから50nm未満しかずれないような情報担体を得ることができる。本発明による第2の手法が用いられた場合は長さの標準偏差は14nm未満であり、第2の手法が1以上の他の手法と組み合わされて使用された場合は、標準偏差は10nm未満となる。中間領域の長さも所望の長さから同様のずれしか持たない。情報担体上の情報領域及び中間領域の長さのズレは時間間隔解析器を用いて測定することができる。このような測定によれば情報単位の長さを求めることもできるので、情報領域の長さが判らない情報担体に関して前記のようなズレを決定することもできる。情報領域の幅のばらつきは30nm未満である。即ち、情報担体上の一番広い情報領域と一番狭い情報領域との間の差は、極僅かの不正確に形成された情報領域は別として、30nm未満である。ばらつきの下限として、正確に等しい幅の情報領域を示す前記文献の図から限界の例として1nmがとられるかもしれない。しかしながら、上記のような図は実際の状況を表したものではなく、前記文献は本発明が解決する問題を未だ認識していない。本発明により得られる情報領域の長さ及び幅の小さなズレは、情報担体を読み取る場合に発生される読出信号のジッタを許容できる程に小さくする。
【0062】
本発明による書き込み手法を実施するためには、図2に示したマスタ記録器2は特別なやり方で適応化されねばならない。制御装置10は、記録すべき情報を表す入力信号9を、当該装置により制御される変調器14が露光領域の長さにわたって露光線量が一定となるような照射ビーム15の出力変調を生じるような出力信号11に変換しなければならない。図22は、露光線量を前記第2の書き込み手法に従って制御するような制御装置10の一例を示している。この場合、解析回路103は入力信号9中の情報単位から、どの時点で情報単位が開始するかを示すトリガ信号104と、当該情報単位の長さを表す長さ信号105とを取り出す。パルス整形回路106は、次いで、前記トリガ信号と長さ信号との助けによりパルス状信号107を発生する。信号107中の各パルスの開始は前記トリガ信号に対して当該情報単位の長さにより決まる時間間隔だけ早められる。前述した図9は、EFM符号化情報単位用の出力パルスの長さに依存する早期化の一例を示している。また、出力パルスの長さは情報単位の長さに依存して延長されているが、これについても図9が一例を示している。振幅回路108は前記長さ信号105を振幅信号109に変換するが、この振幅信号により照射ビームの出力が例えば図9に示したような具合に制御される。最後に、振幅変調器110がパルス状出力信号11を発生するが、該信号のパルス開始時点及び長さは信号107に依存し、その振幅は振幅信号109に依存する。EFM符号化情報単位の場合、これらのパルスは図9に示したような形状を持つであろう。そして、出力信号11が照射ビームの出力を制御すべく変調器14を制御する。
【0063】
図23は第2の実施例である制御装置10’を示し、該装置は前記第2、第5及び第6の書き込み手法に基づいて露光線量を制御する。この図において、解析回路112は入力信号9から、該入力信号9中の情報単位の長さ及び開始時点を表わす第1の長さ信号113と、先行する情報単位と現在の情報単位との間の公称距離を表す第2の長さ信号114とを取り出す。第1の長さ信号113はメモリ回路115の入力端子に供給され、該回路には異なる長さ及び振幅のパルス波形が記憶されている。長さ信号の値に応じて、パルス波形が選択され、信号116中に出力パルスとして出力される。共に第2の手法に関して先に説明したように、上記出力パルスの開始点は当該情報単位の開始点に対してずらされ、また出力パルスの長さは該情報単位の長さに対して増加されている。また、上記出力パルスの振幅は当該パルスの長さにわたって第5及び第6の手法に関して前述したような態様で変化される。一方、第2の長さ信号114は振幅回路117に供給され、該振幅回路は前記第5の手法に従って当該長さを、振幅が第2の長さ信号の値に依存し且つ記録領域間の照射ビームの出力表す信号118に変換する。そして、加算回路119は信号116及び118を加算して出力信号11を形成する。
【0064】
次ぎに、図24は第3の実施例である制御装置10"を示し、該装置は書き込み手法の適応に関して大きな柔軟性を有している。更に、該装置は書き込むべき情報単位を、データが幾つかの処理段階で直列的ではなく並列的に処理されるので、実時間的に高速で処理することができるという利点を有している。該装置において、入力信号9の情報単位はシフトレジスタ120に入力される。該シフトレジスタの大きさは12個のセルのもので、EFM信号の処理に適している。しかしながら、このシフトレジスタは特定の符号に必要とされる如何なる大きさを有していてもよい。前記情報単位は当該シフトレジスタを介してクロック信号cl1のクロックパルス当たり1ビットの割合でシフトされる。各クロックパルス毎に、当該レジスタの各セルの内容は出力端子Q1ないしQ12に得られる。これら出力端子Q1ないしQ12は符号化回路121の入力端子に接続されている。該符号化回路は、上記出力端子Q11の値がQ12の値と異なる毎に出力信号122を発生する。その時点で当該符号化回路はQ11までの出力信号における連続した2進数「1」又は「0」の数を検出する。例えば、信号Q8からQ12が「01110」なる値を有していたとすると、この符号化回路は記録すべき情報単位I3を検出する。また、この符号化回路は当該回路の入力信号の組み合わせに対して該回路内に組み込まれたルックアップテーブルを用いて特定コード(ユニークコード)を割り当てる。上記ルックアップテーブルは、入力信号9で生じ得る「1」の各系列及び「0」の各系列に対して1つの入口(エントリー)を有する。
【0065】
上記コードは並列出力信号122として第2のルックアップテーブル123に伝送される。このルックアップテーブル123は、各コードに対して、変調器14への出力信号11として伝送されるべき一連の振幅値を特定する。出力信号11に十分な時間分解能を与えることができるように、入力信号9の各ビットセルは32個の連続した副ビットセルに分割される。従って、ルックアップテーブル123は、入力端子の各コードに対して、当該コードに属するビットセルの数の32倍に等しい数の振幅値を出力124に与えることになる。ルックアップテーブル123の出力は、前記クロック信号cl1と同期されたクロック信号cl2によりクロックされる。このルックアップテーブル123に入力されるコードは好ましくはアドレス及び長さ値を有する。上記アドレスはルックアップテーブル中の当該コードに関連する最初の振幅値の位置を指示し、長さ値は当該コードに関連する振幅値の数を示す。一旦新しいコードがルックアップテーブル123に伝送されると、読出は、伝送されたアドレスから開始し、伝送された長さ値により示される数のクロックサイクルの後終了する。当該コードに関連する振幅値の読出が完了すると、次のコードがルックアップテーブル123の入力端子に準備され、かくして次の読出サイクルを開始することができる。上記振幅値は、例えば3値振幅制御用の高、中間及び低のような記号的値である。当該制御は、好ましくは、各々が8ビットに符号化された256個のレベルを使用する。これら振幅値は32ビットの並列出力信号124として、即ち4つの振幅値が並列に、伝送される。従って、クロック信号cl2はクロック信号cl1より32/4=8倍速いことになる。
【0066】
上記出力信号124はデマルチプレクサ125において32ビット幅から8ビット幅へとデマルチプレクスされるが、該デマルチプレクサは前記クロック信号cl1に同期され且つcl1よりも32倍速いクロック信号cl3で動作する。上記デマルチプレクサの8ビット並列出力信号126は比較的小さく且つ高速なルックアップテーブル127に入力され、該ルックアップテーブルはその入力端子の記号的振幅値を出力端子における実際の振幅値に変換する。このルックアップテーブル127の出力信号128は高速のデジタル/アナログ変換器129に供給され、該変換器はデジタル入力値をアナログ出力値に変換する。この変換速度はクロック信号cl1の周波数の32倍に等しい。上記アナログ出力値は変調器14を、従って照射ビームの出力を、制御するための出力信号11を構成する。上記デマルチプレクサ125、ルックアップテーブル127及びD/A変換器129は、高速のいわゆるビデオRAM-DACの形の単一ユニットとして市販されている。
【0067】
ルックアップテーブル123において記号的値を使用することには、書き込み手法を入力信号中の全ての情報単位に対して振幅の正確な値に関係なく実施することができるという利点が有る。振幅の値はルックアップテーブル127に記憶されているので、どちらかというと込み合っているルックアップテーブル123を変更することなく、特定の記録及び現像条件に容易に適応することができる。このような柔軟性が必要でない場合は、実際の振幅をルックアップテーブル123に記憶させ、ルックアップテーブル127は不要とすることができる。上記においては、制御装置10"の機能を照射ビームの出力を変更するのみの前記第1の手法の実施に関して説明したが、本発明による他の手法を当該制御装置に同様に実施することができる。第2の書き込み手法はルックアップテーブル123中のコードに関係する振幅値の数を増加させることにより実施することができ、これにより該手法に必要とされる前縁及び後縁の値を用意することができる。これに応じて、ルックアップテーブル123中の中間領域用の振幅値の数は減少されねばならない。第3の手法においては、振幅は記録すべき領域の長さと、先行及び後続する中間領域の長さとに依存する。従って、この実施には、記録すべき最長の領域長さと最長の中間領域の長さの2倍との和に等しい長さの(EFM入力信号に対しては33ビットセルの)シフトレジスタを設ける必要がある。前記符号化回路は記録すべき領域と2つの隣接する中間領域との各組み合わせに対して特定コード(ユニークコード)を付与しなければならない。
【0068】
図25は本発明の第4実施例である制御装置10'''を示し、該装置においては前記第3の実施例のシフトレジスタ120がカウンタ130に置換されている。このカウンタは入力信号9中の連続する2進数「0」又は「1」の数を計数する。上記入力信号中の「0」から「1」への遷移において計数が開始する。また、次の「1」から「0」への遷移において、上記計数は停止し、第1のレジスタ131の内容は第2のレジスタ132へ転送され、次ぎに情報単位の長さを表す計数値がカウンタ130から上記第1のレジスタ131へと転送され、カウンタ130が零に設定される。入力信号における前記「1」から「0」への遷移においては、カウンタ130が入力信号中の連続する「0」の数の計数を開始する。後続する「0」から「1」への遷移において、上記「0」の数は、レジスタ131の内容がレジスタ132へ転送された後、当該レジスタ131へ転送される。結果として、レジスタ131、レジスタ132及びカウンタ130の各出力は、記録すべき情報領域の長さ、先行する中間領域の長さ及び後続する中間領域の長さを各々示すか、又は中間領域の長さ、先行する情報領域の長さ及び後続する情報領域の長さを各々示す。当該制御装置が前記第1の書き込み手法に適応化された場合、即ち情報領域を書き込む照射ビームの出力が隣接する中間領域の長さに無関係に修正される場合は、上記カウンタ又は前記レジスタの中の1個の出力のみが必要となる。一方、当該制御装置が、出力線量が隣接する中間領域の長さに依存する前記第3の書き込み手法に適応化される場合は、カウンタ130、レジスタ131及びレジスタ132の各出力が必要とされる。
【0069】
図25において、カウンタ130、レジスタ131及びレジスタ132の出力は第1のルックアップテーブル133に供給され、ここにおいてアドレスを形成する。当該アドレスに属するルックアップテーブルの入口(エントリー)は、前述した制御装置の第3実施例の符号化回路121におけるルックアップテーブルの入口に匹敵するように、アドレス及び長さ値を含む。これらアドレス及び長さ値は先入先出(FIFO)バッファ134を介して第2のルックアップテーブル135に転送される。この場合、各アドレス値は当該第2のルックアップテーブルの特定のロケーションを指示する。各ロケーションには、即ち各情報領域又は各中間領域に対しては、照射ビーム出力に対応する振幅値の系列が記憶されている。上記系列の長さは前記第1のルックアップテーブルにより与えられた長さ値に等しい。これら振幅値は、第3の実施例におけるルックアップテーブル123におけるように、例えば256個のレベルに符号化された記号的値である。当該制御装置の時間分解能は、入力信号9の各ビットセルに対して例えば32個のような複数の振幅値を設けることにより増加することができる。一つのビットセルの持続時間が例えば250nsである場合は、第2のルックアップテーブルは、この250nsの間に32個の8ビット値を出力する。第2のルックアップテーブルのクロック周波数は、出力値を32ビット並列で出力することにより低減される。
【0070】
第2のルックアップテーブルの振幅値は、デマルチプレクサと、第3のルックアップテーブルと、デジタル/アナログ変換器との組み合わせ(いわゆるビデオRAM-DAC)136に入力される。上記デマルチプレクサは32ビット幅の入力信号を4つの直列の8ビット幅信号に変換し、これにより当該信号のクロック周波数を係数4だけ増加させる。これらの8ビット幅の信号により表される記号的振幅値は第3のルックアップテーブルにより実際の振幅値に変換される。上記高速のデジタル/アナログ変換器は、これらのデジタルの実際の振幅値を、入力信号9におけるビットセルの速度の32倍の速度で、アナログの振幅値に変換する。そして、これらのアナログ振幅値が変調器14、従って照射ビームの出力を制御するための出力信号11を構成する。
【0071】
図25において、位相ロックループ(PLL)回路137は入力信号9のビットセル周波数の32倍の周波数を持つクロック信号138を発生する。このクロック信号138は前記RAM-DAC136の入力として使用される。また、第1のルックアップテーブル133の出力側の前記FIFOバッファ134は、ルックアップテーブル133からのアドレス及び長さ値がルックアップテーブル135に入力される前にバッファする。このバッファは上記回路137により導入されるクロック信号138のタイミングの変化を補償する。バッファ134は、更に、第1のルックアップテーブル133によりアドレス及び長さ値が発生される速度と、これら値が第2のルックアップテーブル135の入力端で必要とされる速度との間の差を補償する。例えば、入力信号9においてI11情報単位にI3中間領域が続く場合は、このI11領域用のアドレス及び長さ値が該I11の終了の直後に発生され、それから3ビットセル時間後に、I3中間領域用のアドレス及び長さ値が発生される。上記I11のアドレス及び長さ値が第2のルックアップテーブル135に入力される場合は、該テーブルが全ての振幅値を出力するのに11ビットセル時間掛かる。全ての振幅値が出力された後にのみ、I3のアドレス及び長さ値が第2のルックアップテーブルに入力することができる。従って、上記I3のアドレス及び長さ値はバッファ134で約8ビットセル時間だけ待たなければならない。
【0072】
当該制御装置の上記第4の実施例も書き込み手法及びコードへの適用に関して前記第3の実施例と同様の柔軟性を有している。
【0073】
上述した説明から、本発明による各手法は如何なる所望の組み合わせでも使用することができ、且つ、マスタ記録器2の制御装置10で実施することができることが明かであろう。通常は、記録すべき情報の密度が上昇するにつれて、もっと多くの手法が用いられなければならないであろう。尚、上述したこれらの手法を用いれば、従来のコンパクトディスク用のマスタ・ディスクを記録するように設計されたマスタ記録器を用いて、従来のコンパクトディスクの情報密度よりも4倍高い情報密度を持つマスタ・ディスクを記録することが可能となることが判った。
【0074】
上述した本発明による各手法は高コントラストフォトレジストが使用された場合に特に高い作用効果を奏するが、これら手法は低いコントラストのフォトレジストが用いられた場合にも上記よりは低いながら作用効果を奏する。マスタ・ディスクへの情報の記録は、本質的に、基板上のフォトレジスト層に照射ビームを用いて形成される接近して離隔された精細構造を持つ特別の形態の書き込みパターンであるが、このような基板は例えば回折格子を製造するためにも使用される。従って、前述したような方法及び情報担体は、このような方法及び基板をも含むと理解されたい。
【図面の簡単な説明】
【図1】 図1は、光学情報担体を製造する装置の一例を示す概念図、
【図2】 図2は、マスタ・ディスクに情報を記録する装置の一例を示す概念図、
【図3】 図3は、照射ビームの強度及び露光線量をマスタ・ディスクの位置の関数として示すグラフ、
【図4】 図4は、露光線量と現像率との関係を示し、同図のaは低コントラストのフォトレジストに対する関係、同図のbは高コントラストのフォトレジストに対する関係を示すグラフ、
【図5】 図5は、本発明による書き込み手法を用いないで記録されたEFM情報単位に対する現像分布を示すグラフ、
【図6】 図6は、本発明による第1の書き込み手法を用いて記録されたEFM情報単位に対する現像分布を示すグラフ、
【図7】 図7は、本発明の第1の書き込み手法による照射ビームの出力を書き込むべき領域の長さの関数として示すグラフ、
【図8】 図8は、本発明による第2の書き込み手法を用いて記録されたEFM情報単位に対する現像分布を示すグラフ、
【図9】 図9は、本発明の第2の書き込み手法による照射ビームの出力を書き込むべき領域の長さの関数として示すグラフ、
【図10】 図10は、異なる距離隔てた2つの短い領域の一連の対の露光線量分布を示すグラフ、
【図11】 図11は、図10の線量分布に対応する現像分布を示すグラフ、
【図12】 図12は、本発明の第3の書き込み手法による照射ビームの出力を書き込むべき一連の領域に関して示すグラフ、
【図13】 図13は、本発明の第4の書き込み手法による照射ビームの出力を書き込むべき一連の領域に関して示すグラフ、
【図14】 図14は、本発明の第4の書き込み手法による露光線量分布を、異なる距離隔てた2つの短い領域の一連の対に関して示すグラフ、
【図15】 図15は、図14の中間領域における露光線量分布を示すグラフ、
【図16】 図16は、図14の線量分布に対応する現像分布を示すグラフ、
【図17】 図17は、強度分布のサイドローブの影響を説明するための強度分布及び線量分布を示すグラフ、
【図18】 図18は、フィルタされた照射ビームを用いて記録されたEFM情報単位の現像分布を示すグラフ、
【図19】 図19は、本発明の第5の書き込み手法による照射ビームの強度分布及び出力を示すグラフ、
【図20】 図20は、楕円形位相板を備えるマスタ記録器用の対物レンズの瞳を示す概念図、
【図21】 図21は、位相板を用いた場合と用いない場合とにおけるI9信号の現像分布を示すグラフ、
【図22】 図22は、本発明におけるマスタ記録器の制御装置の第1の実施例のブロック図、
【図23】 図23は、本発明におけるマスタ記録器の制御装置の第2の実施例のブロック図、
【図24】 図24は、本発明におけるマスタ記録器の制御装置の第3の実施例のブロック図、
【図25】 図25は、本発明におけるマスタ記録器の制御装置の第4の実施例のブロック図である。
【符号の説明】
2…マスタ記録器、 3…マスタ・ディスク、
10…制御装置、 12…照射源、
14…変調器、 15…照射ビーム、
18…対物レンズ、 19…照射スポット(照射ビーム)、
20…フォトレジスト層。

Claims (13)

  1. 情報単位を有する情報をマスタ・ディスクに記録することにより光学情報担体を製造する方法であって、前記マスタ・ディスクを走査する照射ビームは前記情報により出力が変調されると共に前記マスタ・ディスクのフォトレジスト層を露光して短い及び長い露光された領域のパターンを形成し、次いで前記フォトレジスト層は現像されて情報領域のパターンを形成し、前記露光される領域の各々に関する前記露光の開始及び持続時間は対応する情報単位により決定されるような光学情報担体を製造する方法において、
    前記露光の線量は記録される前記各領域の長さにわたって略一定の所定の値を有し、該所定の値は前記記録される各領域の長さとは無関係に略一定であることを特徴とする光学情報担体を製造する方法。
  2. 請求項1に記載の方法において、前記短い領域の露光の間の前記照射ビームの出力を前記長い領域の露光の間の前記照射ビームの出力より高くして、前記短い領域及び長い領域の露光の線量が略等しくなるようにしたことを特徴とする光学情報担体を製造する方法。
  3. 請求項2に記載の方法において、前記長い領域の露光の持続時間が対応する情報単位の持続時間よりも長くされることを特徴とする光学情報担体を製造する方法。
  4. 請求項3に記載の方法において、前記長い領域の露光が対応する情報単位の始点よりも前に開始されることを特徴とする光学情報担体を製造する方法。
  5. 請求項1に記載の方法であって、前記照射ビームにより形成されると共にセンタローブと複数のサイドローブとを有するような照射スポットを使用する光学情報担体を製造する方法において、前記照射ビームの出力が、前記センタローブと前記サイドローブの何れかとにより露光がなされる位置において低減されることを特徴とする光学情報担体を製造する方法。
  6. 請求項1に記載の方法において、隣接する2つの領域を記録する際に各領域の互いに最も近接する部分が、これら2つの領域の間の距離の単調には減少しない関数であるような前記照射ビームの出力で記録されることを特徴とする光学情報担体を製造する方法。
  7. 請求項1又は請求項6に記載の方法において、隣接して記録される2つの領域の間を通過する際に前記照射ビームがこれら領域を記録する出力よりも低い出力を有し、該出力が前記2つの領域の間の距離と単調には減少しない関係を有していることを特徴とする光学情報担体を製造する方法。
  8. 光学情報担体を製造する装置であって、照射ビームを用いた露光により短い及び長い露光された領域のパターンとして情報をマスタ・ディスクに記録する記録装置を有し、該記録装置が前記照射ビームを発生する照射源と、強度変調器と、該変調器と組み合わされる制御装置と、前記照射ビームを用いて前記マスタ・ディスク上に照射スポットを形成する光学系と、該照射スポットと前記マスタ・ディスクとを相対的に移動させる手段とを有しているような装置において、
    前記制御装置が前記変調器を、前記露光の線量が露光される前記各領域の長さにわたって略一定の所定の値を有し、該所定の値が前記露光される各領域の長さとは無関係に略一定となるように、制御するようになっていることを特徴とする光学情報担体を製造する装置。
  9. 請求項8に記載の装置において、前記制御装置が前記情報の単位の持続時間と、前記露光の開始、持続時間又は出力の中の少なくとも何れか一つとの間の関係を記憶したメモリを有していることを特徴とする光学情報担体を製造する装置。
  10. 請求項9に記載の装置において、前記制御装置が記録すべき前記情報の情報単位にコードを割り当てる符号化回路を有し、該コードが前記情報単位の長さを表すと共に前記メモリのアドレスに関連付けられていることを特徴とする光学情報担体を製造する装置。
  11. 請求項8に記載の装置において、前記制御装置が当該制御装置内でのコードの伝送速度の差を補償するためのバッファを有していることを特徴とする光学情報担体を製造する装置。
  12. 請求項8に記載の装置において、前記光学系がフィルタを有していることを特徴とする光学情報担体を製造する装置。
  13. 請求項12に記載の装置において、前記フィルタが楕円形位相板を有していることを特徴とする光学情報担体を製造する装置。
JP33641394A 1993-12-24 1994-12-22 光学情報担体を製造する方法及び該方法を実施する装置 Expired - Lifetime JP3703515B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BE9301461A BE1007912A4 (nl) 1993-12-24 1993-12-24 Werkwijze voor het maken van een optische informatiedrager, inrichting voor het uitvoeren van de werkwijze en een optische informatiedrager verkregen met behulp van de werkwijze.
NL09301461 1994-08-05
EP94202262 1994-08-05
NL94202262.5 1994-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005152186A Division JP2005327457A (ja) 1993-12-24 2005-05-25 光学情報担体

Publications (2)

Publication Number Publication Date
JPH07320308A JPH07320308A (ja) 1995-12-08
JP3703515B2 true JP3703515B2 (ja) 2005-10-05

Family

ID=25662845

Family Applications (2)

Application Number Title Priority Date Filing Date
JP33641394A Expired - Lifetime JP3703515B2 (ja) 1993-12-24 1994-12-22 光学情報担体を製造する方法及び該方法を実施する装置
JP2005152186A Pending JP2005327457A (ja) 1993-12-24 2005-05-25 光学情報担体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2005152186A Pending JP2005327457A (ja) 1993-12-24 2005-05-25 光学情報担体

Country Status (8)

Country Link
US (2) US5605782A (ja)
EP (1) EP0660314B1 (ja)
JP (2) JP3703515B2 (ja)
KR (1) KR100397686B1 (ja)
CN (1) CN1087464C (ja)
AT (1) ATE198386T1 (ja)
DE (1) DE69426482T2 (ja)
TW (1) TW308686B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991761A (ja) * 1995-09-28 1997-04-04 Sony Corp 光記録媒体
WO1997049083A1 (en) * 1996-06-21 1997-12-24 Kabushiki Kaisha Toshiba Optical disk and method of manufacturing the same
US5768235A (en) * 1996-10-08 1998-06-16 Imation Corp. Control signal for recording a disc according to a clock signal, data signal, and an index signal
JPH10334503A (ja) * 1997-05-28 1998-12-18 Sony Corp 光ディスク原盤の露光装置
US6693869B1 (en) 1999-03-31 2004-02-17 Microsoft Corporation Locating information on an optical media disc to maximize the rate of transfer
JP3762847B2 (ja) * 1999-04-13 2006-04-05 株式会社日立製作所 情報の記録方法及び情報の記録装置
NL1015155C2 (nl) * 2000-05-11 2001-11-13 Tno Elektronenstraallithografie.
NL1015524C2 (nl) * 2000-06-26 2001-12-28 Otb Group Bv Werkwijze ter vervaardiging van een substraat om te worden toegepast in een stampervervaardigingsproces, alsmede substraat verkregen volgens een dergelijke werkwijze.
DE10233152A1 (de) * 2002-07-22 2004-02-12 Abb Patent Gmbh Drehwinkelsensor
KR20050085346A (ko) * 2002-12-06 2005-08-29 코닌클리케 필립스 일렉트로닉스 엔.브이. 타원형 스폿 프로파일을 사용하여 기록형 광 기록매체에정보를 기록하는 장치 및 방법
US7022247B2 (en) * 2003-03-26 2006-04-04 Union Semiconductor Technology Corporation Process to form fine features using photolithography and plasma etching
TWI249739B (en) * 2004-07-16 2006-02-21 Mediatek Inc Writing pulse generation method for CD-ROM drive
US8874837B2 (en) * 2011-11-08 2014-10-28 Xilinx, Inc. Embedded memory and dedicated processor structure within an integrated circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827944B2 (ja) * 1985-03-20 1996-03-21 日立マクセル株式会社 光ディスクの製造方法
KR0145722B1 (ko) * 1987-07-07 1998-10-15 나가이 아쯔시 광정보기록매체 및 그 제조방법
JP2684657B2 (ja) * 1987-11-13 1997-12-03 ヤマハ株式会社 光ディスク記録方法
US5040165A (en) * 1988-03-03 1991-08-13 Hitachi Maxell, Ltd. Optical information recording medium and method of fabricating the same
JPH027248A (ja) * 1988-06-24 1990-01-11 Sharp Corp 光ディスク原盤への信号記録方法
JP2723986B2 (ja) * 1989-08-02 1998-03-09 株式会社日立製作所 光ディスク原盤の作製方法
JP3225563B2 (ja) * 1991-11-13 2001-11-05 ソニー株式会社 カッティング装置
DE69226259T2 (de) * 1991-11-20 1998-11-19 Sony Corp Gerät für optische platten
CA2110233C (en) * 1992-12-02 1999-01-12 Mitsui Toatsu Chemicals, Incorporated Optical information recording medium and composition for optical information recording film

Also Published As

Publication number Publication date
DE69426482D1 (de) 2001-02-01
KR950020435A (ko) 1995-07-24
US5605782A (en) 1997-02-25
EP0660314B1 (en) 2000-12-27
JPH07320308A (ja) 1995-12-08
CN1119323A (zh) 1996-03-27
TW308686B (ja) 1997-06-21
JP2005327457A (ja) 2005-11-24
CN1087464C (zh) 2002-07-10
ATE198386T1 (de) 2001-01-15
KR100397686B1 (ko) 2004-02-25
EP0660314A1 (en) 1995-06-28
DE69426482T2 (de) 2001-07-12
US5790512A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP2005327457A (ja) 光学情報担体
KR20010032729A (ko) 광 정보 기록 매체, 광 정보 기록 장치 및 광 정보 기록방법
US5602810A (en) Tracking error generating method using sampling of servo pits and switching of differential signals
EP1001410B1 (en) Optical recording medium and master for manufacturing same
JP2000231745A (ja) 光記録媒体、光記録媒体製造用原盤及びその製造方法
US5684783A (en) Reproducing apparatus having a detector for simultaneously scanning adjacent tracks of an optical recording medium
JPH11185257A (ja) 光情報記録装置、光情報記録方法及び光情報記録媒体
EP0814464B1 (en) Method of manufacturing an optical disk
US5654953A (en) Optical disk and method of manufacturing the same
JP3274986B2 (ja) ピット長調整装置および光ディスク原盤露光装置および光ディスクドライブ装置
JP4524909B2 (ja) 光ディスク原盤製造方法、及び光ディスク原盤露光装置
JPH09106545A (ja) 光ディスク原盤露光装置
JP4320916B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
EP0813739B1 (en) Method and means for changing pit depth on an optical recordable medium
JP3955991B2 (ja) 原盤露光装置及び原盤露光方法
JPH11149670A (ja) 露光方法及びこれを用いた露光装置、ならびに原盤及び光ディスク
JP4174188B2 (ja) 光情報記録媒体の原盤露光装置
JPH04344324A (ja) ピット長調整装置及びその応用装置
JPH06208723A (ja) 光ディスク及びその製造方法
JPH0785504A (ja) 光ディスク及び光ディスク原盤のカッティング方法並びに光ディスク原盤のカッティング装置
JP2005158243A (ja) 原盤露光装置及び原盤露光方法
JP2005251311A (ja) 原盤露光装置、原盤露光方法及び情報記録媒体の製造方法
JP2000306274A (ja) 光ディスク用原盤の記録装置
JPH11144247A (ja) 光ディスク原盤露光装置
JPH117647A (ja) 光ディスク原盤の露光装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term