JP3680751B2 - Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子 - Google Patents

Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子 Download PDF

Info

Publication number
JP3680751B2
JP3680751B2 JP2001100931A JP2001100931A JP3680751B2 JP 3680751 B2 JP3680751 B2 JP 3680751B2 JP 2001100931 A JP2001100931 A JP 2001100931A JP 2001100931 A JP2001100931 A JP 2001100931A JP 3680751 B2 JP3680751 B2 JP 3680751B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
group iii
iii nitride
nitride compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001100931A
Other languages
English (en)
Other versions
JP2001345281A (ja
Inventor
正好 小池
雄太 手銭
敏夫 平松
誠二 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2001100931A priority Critical patent/JP3680751B2/ja
Publication of JP2001345281A publication Critical patent/JP2001345281A/ja
Application granted granted Critical
Publication of JP3680751B2 publication Critical patent/JP3680751B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、III族窒化物系化合物半導体の製造方法に関する。特に、横方向エピタキシャル成長(ELO)を用いる、III族窒化物系化合物半導体の製造方法に関する。尚、III族窒化物系化合物半導体とは、例えばAlN、GaN、InNのような2元系、AlxGa1-xN、AlxIn1-xN、GaxIn1-xN(いずれも0<x<1)のような3元系、AlxGayIn1-x-yN(0<x<1, 0<y<1, 0<x+y<1)の4元系を包括した一般式AlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)で表されるものがある。なお、本明細書においては、特に断らない限り、単にIII族窒化物系化合物半導体と言う場合は、伝導型をp型あるいはn型にするための不純物がドープされたIII族窒化物系化合物半導体をも含んだ表現とする。
【従来の技術】
【0002】
III族窒化物系化合物半導体は、例えば発光素子とした場合、発光スペクトルが紫外から赤色の広範囲に渡る直接遷移型の半導体であり、発光ダイオード(LED)やレーザダイオード(LD)等の発光素子に応用されている。また、そのバンドギャップが広いため、他の半導体を用いた素子よりも高温において安定した動作を期待できることから、FET等トランジスタへの応用も盛んに開発されている。また、ヒ素(As)を主成分としていないことで、環境面からも様々な半導体素子一般への開発が期待されている。このIII族窒化物系化合物半導体では、通常、サファイアを基板として用い、その上に形成している。
【0003】
【発明が解決しようとする課題】
しかしながら、サファイア基板上にIII族窒化物系化合物半導体を形成すると、サファイアとIII族窒化物系化合物半導体との格子定数のミスフィットにより転位が発生し、このため素子特性が良くないという問題がある。このミスフィットによる転位は半導体層を縦方向(基板面に垂直方向)に貫通する貫通転位であり、III族窒化物系化合物半導体中に109cm-2程度の転位が伝搬してしまうという問題がある。これは組成の異なるIII族窒化物系化合物半導体各層を最上層まで伝搬する。これにより例えば発光素子の場合、LDの閾値電流、LD及びLEDの素子寿命などの素子特性が良くならないという問題があった。また、他の半導体素子としても、欠陥により電子が散乱することから、移動度(モビリティ)の低い半導体素子となるにとどまっていた。これらは、他の基板を用いる場合も同様であった。
【0004】
これについて、図12の模式図で説明する。図12は、基板91と、その上に形成されたバッファ層92と、更にその上に形成されたIII族窒化物系化合物半導体層93を示したものである。基板91としてはサファイアなど、バッファ層92としては窒化アルミニウム(AlN)などが従来用いられている。窒化アルミニウム(AlN)のバッファ層92は、サファイア基板91とIII族窒化物系化合物半導体層93とのミスフィットを緩和させる目的で設けられているものであるが、それでも転位の発生を0とすることはできない。この転位発生点900から、縦方向(基板面に垂直方向)に貫通転位901が伝播し、それはバッファ層92、III族窒化物系化合物半導体層93をも貫いていく。こうして、III族窒化物系化合物半導体層93の上層に、所望の様々なIII族窒化物系化合物半導体を積層して半導体素子を形成しようとすると、III族窒化物系化合物半導体層93の表面に達した転位902から、半導体素子を貫通転位が更に縦方向に伝搬していくこととなる。このように、従来の技術では、III族窒化物系化合物半導体層を形成する際、転位の伝搬を阻止できないという問題があった。
【0005】
本発明は上記の課題を解決するためになされたものであり、その目的は、貫通転位の発生を抑制したIII族窒化物系化合物半導体を製造することである。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に記載の発明は、基板上にIII族窒化物系化合物半導体をエピタキシャル成長により得るIII族窒化物系化合物半導体の製造方法において、少なくとも1層のIII族窒化物系化合物半導体から成り、最上層を第1のIII族窒化物系化合物半導体とする基底層をエッチングにより、基板面から遠ざかるにしたがってその水平断面積が0に近づくよう、点状、ストライプ状又は格子状等の島状態とする工程と、島状態の第1のIII族窒化物系化合物半導体の頂上付近のみを露出させるようマスクを形成する工程と、マスクから露出した第1のIII族窒化物系化合物半導体の頂上付近を核として、第2のIII族窒化物系化合物半導体を縦及び横方向エピタキシャル成長させる工程とを有することを特徴とする。尚、本明細書で基底層とは、単層のIII族窒化物系化合物半導体層の場合と、III族窒化物系化合物半導体層を少なくとも1層含む多重層を一括して表現するために用いる。また、ここで島状態とは、エッチングにより形成された段差の上段の様子を概念的に言うものであって、必ずしも各々が分離した領域を言うものでなく、ウエハ上全体をストライプ状又は格子状に形成するなどのように極めて広い範囲において段差の頂上部が連続していても良いものとする。また、段差の側面とは必ずしも基板面及びIII族窒化物系化合物半導体表面に対して斜面となるものを言うものでなく、一部垂直の面があっても、または曲面でも良い。この際、段差の底部に底面の無い、断面がV字状のものでも良い。基板面から遠ざかるにしたがってその水平断面積が0に近づくとは、以下に具体例を挙げるが、頂上部から高さが低くなるにしたがって水平断面積が太くなっていれば形状は任意である。これらは特に言及されない限り以下の請求項でも同様とする。
【0007】
また、請求項2に記載の発明は、基板面から遠ざかるにしたがってその水平断面積が0に近づくような島状態が、三角柱を横倒しして多数並べた状態であることを特徴とする。一例は図3の(c)であるが本発明はこれに限定されない。
【0008】
また、請求項3に記載の発明は、基板面から遠ざかるにしたがってその水平断面積が0に近づくような島状態が、錐状の島を多数形成した状態であることを特徴とする。一例は角錐で図3の(d)であるが、本発明はこれに限定されない。
【0009】
また、請求項4に記載の発明は、第1のIII族窒化物系化合物半導体と第2のIII族窒化物系化合物半導体とが同組成であることを特徴とする。尚、ここで同組成とは、ドープ程度の差(モル比1パーセント未満の差)は無視するものとする。
【0010】
また、請求項5に記載の発明は、マスクがタングステン(W)その他の導電性の金属であることを特徴とする。
【0011】
また、請求項6に記載の発明は、請求項1乃至請求項5のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法により製造したIII族窒化物系化合物半導体層上に形成されたことを特徴とするIII族窒化物系化合物半導体素子である。
【0012】
また、請求項7に記載の発明は、請求項1乃至請求項5のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法により製造したIII族窒化物系化合物半導体層上に、異なるIII族窒化物系化合物半導体層を積層することにより得られることを特徴とするIII族窒化物系化合物半導体発光素子である。
【0013】
また、請求項8に記載の発明は、請求項1乃至請求項5のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法に加えて、基板からマスクまでの略全部除去することにより、III族窒化物系化合物半導体基板を得ることを特徴とするIII族窒化物系化合物半導体基板の製造方法である。
【0014】
【作用及び発明の効果】
本発明のIII族窒化物系化合物半導体の製造方法の概略を図1及び図2を参照しながら説明する。尚、図1及び図2では、理解を助けるため基板1及びバッファ層2を有する図を示しているが、本発明は、縦方向に貫通転位を有するIII族窒化物系化合物半導体から、縦方向の貫通転位の軽減された領域を有するIII族窒化物系化合物半導体層を得るものであり、基板1及びバッファ層2は本発明に必須の要素ではない。以下、基板1面上に、バッファ層2を介して形成された、縦方向(基板面に垂直方向)に貫通転位を有する第1のIII族窒化物系化合物半導体層31を用いて本発明を適用する例で、本発明の作用効果の要部を説明する。
【0015】
図1の(a)のように、第1のIII族窒化物系化合物半導体層31を点状、ストライプ状又は格子状等の島状態にエッチングし、基板1面から遠ざかるにしたがってその水平断面積が0に近づく形状に形成する。次に、第1のIII族窒化物系化合物半導体層31上にエッチ可能なマスク4を形成する(図1の(b))。次に、マスク4の、第1のIII族窒化物系化合物半導体層31の頂上部Tを覆う部分のみを選択エッチして、第1のIII族窒化物系化合物半導体層31の頂上部Tを露出させる(図1の(c))。次に露出した第1のIII族窒化物系化合物半導体層31の頂上部Tを核として、第2のIII族窒化物系化合物半導体32を縦及び横方向エピタキシャル成長させる(図2の(d)、(e))。このとき第2のIII族窒化物系化合物半導体32には、露出した第1のIII族窒化物系化合物半導体層31の頂上部T部分に伝播している貫通転位のみを伝播するので、その貫通転位の密度を小さくすることができる。さらに、初期のエピタキシャル成長面が基板に対して斜面となっているならば(例えば図2の(d)のように)、貫通転位はその伝播方向が基板面に垂直ではなくなるので、第2のIII族窒化物系化合物半導体32の上の部分には実質的に貫通転位の伝播を遮断できる。
【0016】
基板面から遠ざかるにしたがってその水平断面積が0に近づくような島状態として、三角柱を横倒しして多数並べたもの(例えば図3の(c))は、テーパエッチングにより容易に形成可能である(請求項2)。また、基板面から遠ざかるにしたがってその水平断面積が0に近づくような島状態として、錐状の島を多数形成した状態(例えば図3の(d))であるならば、露出した第1のIII族窒化物系化合物半導体層31の頂上部T部分の基板面に対する面積は極めて小さいものとすることができる(請求項3)。
【0017】
また、第1のIII族窒化物系化合物半導体と第2のIII族窒化物系化合物半導体とが同組成であるならば、速いエピタキシャル成長は容易に実現可能である(請求項4)。
【0018】
マスクが導電性の金属で形成されていれば、第1のIII族窒化物系化合物半導体と第2のIII族窒化物系化合物半導体が共に導電性であるとき、第1のIII族窒化物系化合物半導体から導電性のマスクをとして第2のIII族窒化物系化合物半導体への導通が可能となる(請求項5)。
【0019】
上記の工程で得られたIII族窒化物系化合物半導体層に素子を形成することで、欠陥の少ない、移動度の大きい層を有する半導体素子とすることができる(請求項6)。上記の工程で得られたIII族窒化物系化合物半導体層の上層に発光素子を形成することで、素子寿命、或いはLDの閾値の改善された発光素子とすることができる(請求項7)。
【0020】
また、上記の工程で得られたIII族窒化物系化合物半導体層の、横方向エピタキシャル成長した部分32のみをその他の層から分離することで、転位等結晶欠陥の著しく抑制された結晶性の良いIII族窒化物系化合物半導体を得ることができる(請求項8)。尚「略全部除去」とは、製造上の簡便さから、一部貫通転位の残った部分を含んでいたとしても本発明に包含されることを示すものである。
【0021】
【発明の実施の形態】
図1及び図2に本発明のIII族窒化物系化合物半導体の製造方法の実施の形態の一例の概略を示す。基板1と、バッファ層2と、第1のIII族窒化物系化合物半導体層31とを形成し、テーパ状にエッチングをする(図1の(a))。頂上部Tの頂角は小さいほど良い。次に、第1のIII族窒化物系化合物半導体層31上にエッチ可能なマスク4を例えばスパッタにより形成する(図1の(b))。次に、マスク4の、第1のIII族窒化物系化合物半導体層31の頂上部Tを覆う部分のみを選択エッチして、第1のIII族窒化物系化合物半導体層31の頂上部Tを露出させる(図1の(c))。頂上部Tを露出させる方法はマスク4の選択エッチングの他、リフトオフ法により頂上部Tのマスク4を除去する方法が採用できる。その他、別のマスクを用いた蒸着により頂上部Tにマスク4が存在しない様形成しても良い。次に露出した第1のIII族窒化物系化合物半導体層31の頂上部Tを核として、第2のIII族窒化物系化合物半導体32を縦及び横方向エピタキシャル成長させる(図2の(d)、(e))。このとき第2のIII族窒化物系化合物半導体32には、露出した第1のIII族窒化物系化合物半導体層31の頂上部T部分に伝播している貫通転位のみを伝播する。即ち、第2のIII族窒化物系化合物半導体32に伝播する貫通転位は第1のIII族窒化物系化合物半導体層31の頂上部T部分に伝播している貫通転位のみであり、その密度は極めて小さくなる。これは、基板面の面積と、第1のIII族窒化物系化合物半導体層31の頂上部Tの面積(基板面に垂直投影したときの正射影の面積)との比で決まる。即ち、頂上部Tの面積(基板面に垂直投影したときの正射影の面積)が小さいほど第2のIII族窒化物系化合物半導体32に伝播する貫通転位は減少する。また、頂上部Tの頂角が小さいほど、頂上部Tの面積(基板面に垂直投影したときの正射影の面積)は容易に小さくすることができる。
【0022】
また、基底層として基板上に形成されたバッファ層、及びこのバッファ層上にエピタキシャル成長したIII族窒化物系化合物半導体層を1周期として、複数周期形成された層を使用するものでも良い。いずれも頂上部Tからのエピタキシャル成長により形成されるIII族窒化物系化合物半導体層32は、縦方向に伝搬する貫通転位の抑制された領域とすることができる。
【0023】
上記の発明の実施の形態としては、次の中からそれぞれ選択することができる。
【0024】
基板上にIII族窒化物系化合物半導体を順次積層を形成する場合は、基板としてはサファイア、シリコン(Si)、炭化ケイ素(SiC)、スピネル(MgAl2O4)、ZnO、MgOその他の無機結晶基板、リン化ガリウム又は砒化ガリウムのようなIII-V族化合物半導体あるいは窒化ガリウム(GaN)その他のIII族窒化物系化合物半導体等を用いることができる。
【0025】
III族窒化物系化合物半導体層を形成する方法としては有機金属気相成長法(MOCVD又はMOVPE)が好ましいが、分子線気相成長法(MBE)、ハライド気相成長法(Halide VPE)、液相成長法(LPE)等を用いても良く、各層を各々異なる成長方法で形成しても良い。
【0026】
例えばサファイア基板上にIII族窒化物系化合物半導体積層する際、結晶性良く形成させるため、サファイア基板との格子不整合を是正すべくバッファ層を形成することが好ましい。他の基板を使用する場合もバッファ層を設けることが望ましい。バッファ層としては、低温で形成させたIII族窒化物系化合物半導体AlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)、より好ましくはAlxGa1-xN(0≦x≦1)が用いられる。このバッファ層は単層でも良く、組成等の異なる多重層としても良い。バッファ層の形成方法は、380〜420℃の低温で形成するものでも良く、逆に1000〜1180℃の範囲で、MOCVD法で形成しても良い。また、DCマグネトロンスパッタ装置を用いて、高純度金属アルミニウムと窒素ガスを原材料として、リアクティブスパッタ法によりAlNから成るバッファ層を形成することもできる。同様に一般式AlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1、組成比は任意)のバッファ層を形成することができる。更には蒸着法、イオンプレーティング法、レーザアブレーション法、ECR法を用いることができる。物理蒸着法によるバッファ層は、200〜600℃で行うのが望ましい。さらに望ましくは300〜500℃であり、さらに望ましくは350〜450℃である。これらのスパッタリング法等の物理蒸着法を用いた場合には、バッファ層の厚さは、100〜3000Åが望ましい。さらに望ましくは、100〜400Åが望ましく、最も望ましくは、100〜300Åである。多重層としては、例えばAlxGa1-xN(0≦x≦1)から成る層とGaN層とを交互に形成する、組成の同じ層を形成温度を例えば600℃以下と1000℃以上として交互に形成するなどの方法がある。勿論、これらを組み合わせても良く、多重層は3種以上のIII族窒化物系化合物半導体AlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)を積層しても良い。一般的には緩衝層は非晶質であり、中間層は単結晶である。緩衝層と中間層を1周期として複数周期形成しても良く、繰り返しは任意周期で良い。繰り返しは多いほど結晶性が良くなる。
【0027】
バッファ層及び上層のIII族窒化物系化合物半導体は、III族元素の組成の一部は、ボロン(B)、タリウム(Tl)で置き換えても、また、窒素(N)の組成一部をリン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)で置き換えても本発明を実質的に適用できる。また、これら元素を組成に表示できない程度のドープをしたものでも良い。例えば組成にインジウム(In)、ヒ素(As)を有しないIII族窒化物系化合物半導体であるAlxGa1-xN(0≦x≦1)に、アルミニウム(Al)、ガリウム(Ga)よりも原子半径の大きなインジウム(In)、又は窒素(N)よりも原子半径の大きなヒ素(As)をドープすることで、窒素原子の抜けによる結晶の拡張歪みを圧縮歪みで補償し結晶性を良くしても良い。この場合はアクセプタ不純物がIII族原子の位置に容易に入るため、p型結晶をアズグローンで得ることもできる。このようにして結晶性を良くすることで本願発明と合わせて更に貫通転位を100乃至1000分の1程度にまで下げることもできる。バッファ層とIII族窒化物系化合物半導体層とが2周期以上で形成されている基底層の場合、各III族窒化物系化合物半導体層に主たる構成元素よりも原子半径の大きな元素をドープすると更に良い。なお、発光素子として構成する場合は、本来III族窒化物系化合物半導体の2元系、若しくは3元系を用いることが望ましい。
【0028】
n型のIII族窒化物系化合物半導体層を形成する場合には、n型不純物として、Si、Ge、Se、Te、C等IV族元素又はVI族元素を添加することができる。また、p型不純物としては、Zn、Mg、Be、Ca、Sr、Ba等II族元素又はIV族元素を添加することができる。これらを複数或いはn型不純物とp型不純物を同一層にドープしても良い。
【0029】
基板上に積層するIII族窒化物系化合物半導体層の結晶軸方向が予想できる場合は、III族窒化物系化合物半導体層のa面({11−20}面)又はm面({1−100}面)に垂直となるようストライプ状にマスク或いはエッチングを施すことも有用となる。これにより成長面を予想することも可能となる。なお、島状、格子状等に、上記ストライプ及びマスクを任意に設計して良い。
【0030】
III族窒化物系化合物半導体のエッチングのためのマスクは、多結晶シリコン、多結晶窒化物半導体等の多結晶半導体、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化チタン(TiOX)、酸化ジルコニウム(ZrOX)等の酸化物、窒化物、チタン(Ti)、タングステン(W)のような高融点金属、これらの多層膜をもちいることができる。これらの成膜方法は蒸着、スパッタ、CVD等の気相成長法の他、任意である。
【0031】
III族窒化物系化合物半導体のエッチングエッチングをする場合は反応性イオンビームエッチング(RIBE)が望ましいが、任意のエッチング方法を用いることができる。基板面に垂直な側面を有する段差を形成するのでないものとして、異方性エッチングにより例えば段差の底部に底面の無い、断面がV字状のものを形成しても良い。これには、ハードベークレジストの形状により、ハードベークレジスト下部にも反応性イオンビームエッチング(RIBE)が及ぶ性質(アンダーカット)を利用できる。
【0032】
導電性金属のマスクのエッチングをする場合は、硝酸系溶液によるメタルエッチを用いることができる。その他、レジストをIII族窒化物系化合物半導体の頂上部のみに形成し、導電性金属のマスクを蒸着させたのちレジストごとリフトオフにより導電性金属のマスクを部分的に除き、III族窒化物系化合物半導体の頂上部のみ露出させても良い。
【0033】
上記の貫通転位の抑制されたIII族窒化物系化合物半導体にFET、発光素子等の半導体素子を形成することができる。発光素子の場合は、発光層は多重量子井戸構造(MQW)、単一量子井戸構造(SQW)の他、ホモ構造、ヘテロ構造、ダブルヘテロ構造のものが考えられるが、pin接合或いはpn接合等により形成しても良い。
【0034】
上述の、貫通転位の抑制された第2のIII族窒化物系化合物半導体32を、例えば基板1、バッファ層2、及び第1のIII族窒化物系化合物半導体31、マスク4から分離してIII族窒化物系化合物半導体基板とすることができる。この基板上にIII族窒化物系化合物半導体素子を形成することが可能であり、或いはより大きなIII族窒化物系化合物半導体結晶を形成するための基板として用いることができる。除去方法としては、メカノケミカルポリッシングの他、任意である。
【0035】
以下、発明の具体的な実施例に基づいて説明する。実施例として発光素子をあげるが、本発明は下記実施例に限定されるものではなく、任意の素子に適用できるIII族窒化物系化合物半導体の製造方法を開示している。
【0036】
本発明のIII族窒化物系化合物半導体は、有機金属化合物気相成長法(以下「MOVPE」と示す)による気相成長により製造された。用いられたガスは、アンモニア(NH3)とキャリアガス(H2又はN2)とトリメチルガリウム(Ga(CH3)3,以下「TMG」と記す)とトリメチルアルミニウム(Al(CH3)3,以下「TMA」と記す)、トリメチルインジウム(In(CH3)3,以下「TMI」と記す)、シクロペンタジエニルマグネシウム(Mg(C5H5)2、以下「Cp2Mg」と記す)である。
【0037】
〔第1実施例〕
本実施例の工程を図1及び図2に示す。有機洗浄及び熱処理により洗浄したa面を主面とし、単結晶のサファイア基板1上に、温度を400℃まで低下させて、H2を10L/min、NH3を5L/min、TMAを20μmol/minで約3分間供給してAlNのバッファ層2を約40nmの厚さに形成した。次に、サファイア基板1の温度を1000℃に保持し、H2を20L/min、NH3を10L/min、TMGを300μmol/minで導入し、膜厚約2μmのGaN層31を形成した。
【0038】
次に、反応性イオンビームエッチング(RIBE)を用いた選択ドライエッチングにより、GaN層31を断面の底辺2μm、断面の高さ2μmの横倒し三角柱を並べた状態にエッチングした(図1の(a))。この時、三角柱の断面の角は約60度であった。底辺の角度は10度から80度が望ましく、更には30度から70度が好ましい。次に、タングステン(W)を全面にスパッタリングし、マスク4を形成した(図1の(b))。
【0039】
次に、断面の底辺2μm、断面の高さ2μmの横倒し三角柱状の頂上部Tのみを露出させるため、タングステン(W)から成るマスク4を硝酸系メタルエッチング液により選択エッチングした(図1の(c))。こうして、高さ0.5μmのGaN層31の頂上部Tが露出した。尚、GaN層31の頂上部Tにレジストを形成した後、金属マスクを蒸着させ、レジストごと頂上部T付近のみ金属マスクをリフトオフにより除去して、GaN層31の頂上部Tのみを露出させても良い。
【0040】
次に、サファイア基板1の温度を1150℃に保持し、H2を20L/min、NH3を10L/min、TMGを2μmol/minで導入し、GaN層31の高さ0.5μmの頂上部Tを核としてGaN層32を横方向エピタキシャル成長により形成した(図2の(d))。こうして横方向エピタキシャル成長によりマスク4上方もGaN層32に覆われ、表面が平坦となった(図2の(e))。こののち、H2を20L/min、NH3を10L/min、TMGを300μmol/minで導入し、GaN層32を成長させ、GaN層31とGaN層32とを合計3μmの厚さとした。GaN層32は、GaN層31に比して貫通転位が著しく抑えられた。
【0041】
〔第2実施例〕
本実施例では、多重層から成る基底層を用いた。有機洗浄及び熱処理により洗浄したa面を主面とし、単結晶のサファイア基板1上に、温度を400℃まで低下させて、H2を10L/min、NH3を5L/min、TMAを20μmol/minで約3分間供給して第1のAlN層(第1の緩衝層)21を約40nmの厚さに形成した。次に、サファイア基板1の温度を1000℃に保持し、H2を20L/min、NH3を10L/min、TMGを300μmol/minで導入し、膜厚約0.3μmのGaN層(中間層)22を形成した。次に温度を400℃まで低下させて、H2を10L/min、NH3を5L/min、TMAを20μmol/minで約3分間供給して第2のAlN層(第2の緩衝層)23を約40nmの厚さに形成した。次に、サファイア基板1の温度を1000℃に保持し、H2を20L/min、NH3を10L/min、TMGを300μmol/minで導入し、膜厚約1.5μmのGaN層31を形成した。こうして、膜厚約40nmの第1のAlN層(第1の緩衝層)21、膜厚約0.3μmのGaN層(中間層)22、膜厚約40nmの第2のAlN層(第2の緩衝層)23、膜厚約1.5μmのGaN層31から成る基底層20を形成した。一般的には緩衝層は非晶質であり、中間層は単結晶である。緩衝層と中間層を1周期として複数周期形成しても良く、繰り返しは任意周期で良い。繰り返しは多いほど結晶性が良くなる。
【0042】
次に第1実施例と同様に断面の底辺2μm、断面の高さ1.8μmの横倒し三角柱状に基底層20をエッチングし(図4の(a))、タングステンマスク4をスパッタリングにより形成した(図4の(b))後、タングステンマスクの選択エッチングによりGaN層31の高さ0.5μmの頂上部のみを露出させた(図4の(c))。
【0043】
次に、サファイア基板1の温度を1150℃に保持し、H2を20L/min、NH3を10L/min、TMGを2μmol/minで導入し、GaN層31の高さ0.5μmの高さの頂上部を核としてGaN層32を横方向エピタキシャル成長により形成し(図5の(d))、GaN層31とGaN層32とを合計3μmの厚さとした(図5の(e))。GaN層32は、GaN層31に比して貫通転位が著しく抑えられた。
【0044】
〔第3実施例〕
本実施例では、第1実施例において、GaN層31を形成する際、TMIをドープしてGaN:In層31とした。インジウム(In)のドープ量は約1×1016/cm3とした。こののち、第1実施例とほぼ同様にエッチング、タングステンマスク4形成及び選択エッチングによりGaN:In層31の頂上部を露出させ、GaNの横方向エピタキシャル成長を行った。GaN:In層31を核として横方向成長したGaN層32は第1実施例のそれよりも貫通転位がやや小さくなった。
【0045】
〔第4実施例〕
第1実施例と同様に形成したウエハ上に、次のようにして図6に示すレーザダイオード(LD)100を形成した。但し、GaN層32の形成の際、シラン(SiH4)を導入して、GaN層32をシリコン(Si)ドープのn型GaNから成る層とした。尚、図を簡略とするため、GaN層31、タングステンマスク4及びGaN層32を合わせて単にGaN層103と記載する。
【0046】
サファイア基板101、AlNから成るバッファ層102、GaN層とタングステンマスクとn型GaN層の積層したGaN層103から成るウエハ上に、シリコン(Si)ドープのAl0.08Ga0.92Nから成るnクラッド層104、シリコン(Si)ドープのGaNから成るnガイド層105、MQW構造の発光層106、マグネシウム(Mg)ドープのGaNから成るpガイド層107、マグネシウム(Mg)ドープのAl0.08Ga0.92Nから成るpクラッド層108、マグネシウム(Mg)ドープのGaNから成るpコンタクト層109を形成した。次にpコンタクト層109上に金(Au)から成る電極110Aを、GaN層とn型GaN層の2段のGaN層103が露出するまで一部エッチングしてアルミニウム(Al)から成る電極110Bを形成した。レーザダイオード(LD)100の素子部の要部は、GaN層103の横方向エピタキシャル成長領域の上部である、貫通転位の抑制された領域に形成した。このようにして形成したレーザダイオード(LD)100は素子寿命及び発光効率が著しく向上した。
【0047】
〔第5実施例〕
第1実施例と同様に形成したウエハ上に、次のようにして図7に示す発光ダイオード(LED)200を形成した。但し、GaN層32の形成の際、シラン(SiH4)を導入して、GaN層32をシリコン(Si)ドープのn型GaNから成る層とした。尚、図を簡略とするため、GaN層31、タングステンマスク4及びGaN層32を合わせて単にGaN層203と記載する。
【0048】
サファイア基板201、AlNから成るバッファ層202、GaN層とタングステンマスクとn型GaN層の積層したGaN層203から成るウエハ上に、シリコン(Si)ドープのAl0.08Ga0.92Nから成るnクラッド層204、発光層205、マグネシウム(Mg)ドープのAl0.08Ga0.92Nから成るpクラッド層206、マグネシウム(Mg)ドープのGaNから成るpコンタクト層207を形成した。次にpコンタクト層207上に金(Au)から成る電極208Aを、GaN層とn型GaN層の2段のGaN層203が露出するまで一部エッチングしてアルミニウム(Al)から成る電極208Bを形成した。このようにして形成した発光ダイオード(LED)200は素子寿命及び発光効率が著しく向上した。
【0049】
〔第6実施例〕
本実施例では基板としてn型シリコン(Si)基板を用いた。n型シリコン(Si)基板301上に温度1150℃で、H2を10L/min、NH3を10L/min、TMGを100μmol/min、TMAを10μmol/min、H2ガスにより0.86ppmに希釈されたシラン(SiH4)を0.2μmol/minで供給し、膜厚2μmのシリコン(Si)ドープのAl0.15Ga0.85Nから成る層3021を形成した。次に、反応性イオンビームエッチング(RIBE)を用いた選択ドライエッチングにより、断面の底辺の幅2μm、高さ2μmの横倒し三角柱状にエッチングした(図8の(a))。この後、第1実施例同様タングステンマスク4の形成(図8の(b))、選択エッチングにより、Al0.15Ga0.85Nから成る層3021の高さ0.5μmの頂上部を露出させた(図8の(c))。
【0050】
次に、n型シリコン基板301の温度を1150℃に保持し、H2を20L/min、NH3を10L/min、TMGを2μmol/min、TMAを0.2μmol/min、H2ガスにより希釈されたシラン(SiH4)を4nmol/minで供給し、n-Al0.15Ga0.85N層3021の高さ0.5μmの頂上部を核としてn-Al0.15Ga0.85N層3022を横方向エピタキシャル成長により形成した(図9の(d))。こうして横方向エピタキシャル成長によりタングステンマスク4上部も覆われ、表面が平坦となったのち、H2を10L/min、NH3を10L/min、TMGを100μmol/min、TMAを10μmol/min、H2ガスにより希釈されたシラン(SiH4)を0.2μmol/minで供給し、n-Al0.15Ga0.85N層3022を成長させ、n-Al0.15Ga0.85N層3021とn-Al0.15Ga0.85N層3022を合計3μmの厚さとした(図9の(e))。以下、3μmの厚さの、n-Al0.15Ga0.85N層3021とタングステンマスク4とn-Al0.15Ga0.85N層3022とを合わせてn-Al0.15Ga0.85N層302と記載する。
【0051】
上記のようにn型シリコン基板301に形成されたn-Al0.15Ga0.85N層302上にシリコン(Si)ドープのGaNから成るnガイド層303、MQW構造の発光層304、マグネシウム(Mg)ドープのGaNから成るpガイド層305、マグネシウム(Mg)ドープのAl0.08Ga0.92Nから成るpクラッド層306、マグネシウム(Mg)ドープのGaNから成るpコンタクト層307を形成した。次にpコンタクト層307上に金(Au)から成る電極308Aを、シリコン基板301裏面にアルミニウム(Al)から成る電極308Bを形成した(図10)。レーザダイオード(LD)300の素子部の要部は、n-Al0.15Ga0.85N層302の横方向エピタキシャル成長領域の上部である、貫通転位の抑制された領域に形成した。このようにして形成したレーザダイオード(LD)300は素子寿命及び発光効率が著しく向上した。
【0052】
〔第7実施例〕
本実施例でも基板としてn型シリコン(Si)基板を用いた。第6実施例のn型シリコン基板301に形成されたn-Al0.15Ga0.85N層302と同様に、n型シリコン基板401に形成されたn-Al0.15Ga0.85N層402のウエハを用意し、発光層403、マグネシウム(Mg)ドープのAl0.15Ga0.85Nから成るpクラッド層404を形成した。次にpクラッド層404上に金(Au)から成る電極405Aを、シリコン基板401裏面にアルミニウム(Al)から成る電極405Bを形成した(図11)。このようにして形成した発光ダイオード(LED)400は素子寿命及び発光効率が著しく向上した。
【0053】
〔エッチングの変形〕
図3の(a)のように、エッチングは底部が平面であっても良い。また、図3の(b)のように頂上部その他の壁面が曲面で形成されていても良い。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係るIII族窒化物系化合物半導体の製造工程の前半を示す断面図。
【図2】本発明の第1の実施例に係るIII族窒化物系化合物半導体の製造工程の後半を示す断面図。
【図3】本発明のエッチング状態の他の例を示す断面図(a)及び(b)、斜視図(c)、(d)。
【図4】本発明の第2の実施例に係るIII族窒化物系化合物半導体の製造工程の前半を示す断面図。
【図5】本発明の第2の実施例に係るIII族窒化物系化合物半導体の製造工程の後半を示す断面図。
【図6】本発明の第4の実施例に係るIII族窒化物系化合物半導体発光素子の構造を示す断面図。
【図7】本発明の第5の実施例に係るIII族窒化物系化合物半導体発光素子の構造を示す断面図。
【図8】本発明の第6の実施例に係るIII族窒化物系化合物半導体の製造工程の前半を示す断面図。
【図9】本発明の第6の実施例に係るIII族窒化物系化合物半導体の製造工程の後半を示す断面図。
【図10】本発明の第6の実施例に係るIII族窒化物系化合物半導体発光素子の構造を示す断面図。
【図11】本発明の第7の実施例に係るIII族窒化物系化合物半導体発光素子の構造を示す断面図。
【図12】 III族窒化物系化合物半導体を伝搬する貫通転位を示す断面図。
【符号の説明】
1、101、201、301、401 基板
2、102、202 バッファ層
31 第1のIII族窒化物系化合物半導体(層)
32 第2のIII族窒化物系化合物半導体(層)
4 マスク
103、203 n-GaN層
104、204、302、402 n-AlGaNクラッド層
105、303 n-GaNガイド層
106、205、304、403 発光層
107、305 p-GaNガイド層
108、206、306、404 p-AlGaNクラッド層
109、207、307 p-GaN層
110A、208A、308A、405A p電極
110B、208B、308B、405B n電極

Claims (8)

  1. 基板上にIII族窒化物系化合物半導体をエピタキシャル成長により得るIII族窒化物系化合物半導体の製造方法において、
    少なくとも1層のIII族窒化物系化合物半導体から成り、最上層を第1のIII族窒化物系化合物半導体とする基底層をエッチングにより、基板面から遠ざかるにしたがってその水平断面積が0に近づくよう、点状、ストライプ状又は格子状等の島状態とする工程と、
    島状態の第1のIII族窒化物系化合物半導体の頂上付近のみが露出するようなマスクを形成する工程と、
    前記マスクから露出した第1のIII族窒化物系化合物半導体の頂上付近を核として、第2のIII族窒化物系化合物半導体を縦及び横方向エピタキシャル成長させる工程とを有することを特徴とするIII族窒化物系化合物半導体の製造方法。
  2. 基板面から遠ざかるにしたがってその水平断面積が0に近づくような島状態が、三角柱を横倒しして多数並べた状態であることを特徴とする請求項1に記載のIII族窒化物系化合物半導体の製造方法。
  3. 基板面から遠ざかるにしたがってその水平断面積が0に近づくような島状態が、錐状の島を多数形成した状態であることを特徴とする請求項1に記載のIII族窒化物系化合物半導体の製造方法。
  4. 前記第1のIII族窒化物系化合物半導体と前記第2のIII族窒化物系化合物半導体とが同組成であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法。
  5. 前記マスクがタングステン(W)その他の導電性の金属であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法。
  6. 請求項1乃至請求項5のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法により製造したIII族窒化物系化合物半導体層上に形成されたことを特徴とするIII族窒化物系化合物半導体素子。
  7. 請求項1乃至請求項5のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法により製造したIII族窒化物系化合物半導体層上に、異なるIII族窒化物系化合物半導体層を積層することにより得られることを特徴とするIII族窒化物系化合物半導体発光素子。
  8. 請求項1乃至請求項5のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法に加えて、前記基板から前記マスクまでの略全部除去することにより、III族窒化物系化合物半導体基板を得ることを特徴とするIII族窒化物系化合物半導体基板の製造方法。
JP2001100931A 2000-03-31 2001-03-30 Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子 Expired - Fee Related JP3680751B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100931A JP3680751B2 (ja) 2000-03-31 2001-03-30 Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-99948 2000-03-31
JP2000099948 2000-03-31
JP2001100931A JP3680751B2 (ja) 2000-03-31 2001-03-30 Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子

Publications (2)

Publication Number Publication Date
JP2001345281A JP2001345281A (ja) 2001-12-14
JP3680751B2 true JP3680751B2 (ja) 2005-08-10

Family

ID=26589294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100931A Expired - Fee Related JP3680751B2 (ja) 2000-03-31 2001-03-30 Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子

Country Status (1)

Country Link
JP (1) JP3680751B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876319B2 (ja) * 2001-03-09 2012-02-15 ソニー株式会社 表示装置およびその製造方法
KR101372698B1 (ko) 2002-12-16 2014-03-11 독립행정법인 과학기술진흥기구 수소화합물 기상 성장법에 의한 평면, 비극성 질화 갈륨의 성장
JP2004273661A (ja) * 2003-03-07 2004-09-30 Sumitomo Chem Co Ltd 窒化ガリウム単結晶基板の製造方法
FI20045482A0 (fi) * 2004-12-14 2004-12-14 Optogan Oy Matalamman dislokaatiotiheyden omaava puolijohdesubstraatti, ja menetelmä sen valmistamiseksi
JP4363415B2 (ja) * 2006-06-08 2009-11-11 ソニー株式会社 結晶膜、結晶基板および半導体装置
JP5903714B2 (ja) * 2007-07-26 2016-04-13 ソイテックSoitec エピタキシャル方法およびこの方法によって成長させられたテンプレート
JP5204046B2 (ja) * 2009-06-25 2013-06-05 シャープ株式会社 窒化物半導体ウェハ、窒化物半導体発光素子および窒化物半導体発光素子の製造方法
TWI569464B (zh) * 2015-10-22 2017-02-01 隆達電子股份有限公司 化合物半導體薄膜結構
CN113628953A (zh) * 2021-06-17 2021-11-09 中国电子科技集团公司第十三研究所 氮化物材料的制备方法及氮化物半导体器件

Also Published As

Publication number Publication date
JP2001345281A (ja) 2001-12-14

Similar Documents

Publication Publication Date Title
JP4432180B2 (ja) Iii族窒化物系化合物半導体の製造方法、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体
KR100527075B1 (ko) Ⅲ족 질화물계 화합물 반도체의 제조방법 및 ⅲ족 질화물계화합물 반도체 소자
KR100500863B1 (ko) Iii족 질화물계 화합물 반도체의 제조 방법 및iii족 질화물계 화합물 반도체 소자
JP3876518B2 (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP4005275B2 (ja) 窒化物半導体素子
JP2001313259A (ja) Iii族窒化物系化合物半導体基板の製造方法及び半導体素子
JP2001267242A (ja) Iii族窒化物系化合物半導体及びその製造方法
US7163876B2 (en) Method for manufacturing group-III nitride compound semiconductor, and group-III nitride compound semiconductor device
JP2000106455A (ja) 窒化物半導体構造とその製法および発光素子
JP2000323417A (ja) Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子
JP3384782B2 (ja) 窒化物系半導体素子およびその製造方法
JP2000232239A (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP4406999B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP2002280314A (ja) Iii族窒化物系化合物半導体の製造方法、及びそれに基づくiii族窒化物系化合物半導体素子
JP3680751B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP4698053B2 (ja) Iii族窒化物系化合物半導体の製造方法
JP4051892B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP4523097B2 (ja) Iii族窒化物系化合物半導体レーザダイオード
JP3753948B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP4016566B2 (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP2001196702A (ja) Iii族窒化物系化合物半導体発光素子
JP5080820B2 (ja) 窒化物半導体構造とその製造方法および発光素子
JP4487654B2 (ja) Iii族窒化物系化合物半導体発光素子
JP4517770B2 (ja) 窒化物半導体素子
JP2007134742A (ja) 窒化物半導体構造とその製造方法および発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees