JP3575477B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP3575477B2
JP3575477B2 JP2002166558A JP2002166558A JP3575477B2 JP 3575477 B2 JP3575477 B2 JP 3575477B2 JP 2002166558 A JP2002166558 A JP 2002166558A JP 2002166558 A JP2002166558 A JP 2002166558A JP 3575477 B2 JP3575477 B2 JP 3575477B2
Authority
JP
Japan
Prior art keywords
fuel
electrode
electrolyte membrane
solid electrolyte
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002166558A
Other languages
English (en)
Other versions
JP2004014314A (ja
Inventor
英和 木村
秀 渡辺
務 吉武
貞則 黒島
新 中村
祐一 島川
隆志 眞子
英人 今井
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002166558A priority Critical patent/JP3575477B2/ja
Priority to TW092114236A priority patent/TWI256170B/zh
Priority to EP03730700A priority patent/EP1515386A4/en
Priority to CA002488162A priority patent/CA2488162A1/en
Priority to PCT/JP2003/006801 priority patent/WO2003105264A1/ja
Priority to KR1020047019685A priority patent/KR100747366B1/ko
Priority to CNB038131986A priority patent/CN1316667C/zh
Priority to US10/727,549 priority patent/US20040241516A1/en
Publication of JP2004014314A publication Critical patent/JP2004014314A/ja
Application granted granted Critical
Publication of JP3575477B2 publication Critical patent/JP3575477B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1065Polymeric electrolyte materials characterised by the form, e.g. perforated or wave-shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に関し、特に固体電解質膜を用いた燃料電池に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、パーフルオロスルフォン酸膜等のイオン交換膜を電解質とし、このイオン交換膜の両面に燃料極および酸化剤極の各電極を接合して構成され、燃料極に水素、酸化剤極に酸素あるいは空気を供給して電気化学反応により発電する装置である。この反応を起こすために、通常、固体高分子型燃料電池は、イオン交換膜と、その両面に形成される触媒物質が担持された炭素微粒子と固体高分子電解質との混合体からなる触媒層と、燃料および酸化ガスの供給と拡散を目的とする多孔質性炭素材料からなるガス拡散層(供給層)と、炭素あるいは金属の導電性薄板からなる集電体とで構成されている。
【0003】
また近年では、上記と同様の構成で、燃料としてメタノールなどの有機液体燃料を直接燃料極に供給する直接メタノール固体高分子型燃料電池の研究開発も活発に行われている。
【0004】
上記の構成において、燃料極に供給された燃料は、拡散層(供給層)中の細孔を通過して触媒に達し、触媒により燃料が分解されて、電子と水素イオンが生成される。電子は電極中の触媒担体とガス拡散層(供給層)とを通って外部回路へ導き出され、外部回路より酸化剤極に流れ込む。一方、水素イオンは電極中の電解質および両電極間の固体高分子電解質膜を通って酸化剤極に達し、酸化剤極に供給された酸素と外部回路より流れ込む電子と反応して水を生じる。この結果、外部回路では燃料極から酸化剤極へ向かって電子が流れ、電力が取り出される。
【0005】
しかしながら、この基本的構成の固体高分子型燃料電池単体の電池電圧は、各電極における酸化還元電位差に相当することから、理想的な開放電圧であっても高々1.23Vである。このため、様々な機器に搭載する駆動電源としては電池出力に関し、必ずしも充分とは言えない。例えば、携帯用機器の駆動電源に燃料電池を使用する場合、それらの機器の多くは電源として1.5〜4V程度以上の入力電圧を必要とする。このため、単位セルを直列に接続し、電池の電圧を上げる必要がある。
【0006】
そこで、電池電圧を上昇させるために、単位セルを積層することにより充分な電圧を確保することが考えられるが、このようにすると電池全体が厚みを帯びることから、薄型化が要請される携帯機器などの駆動電源としては好ましいとは言えない。
【0007】
電池の薄型化を実現する技術として、例えば特開平8−273696号公報には、同一平面状に複数のセルを組み込んだ燃料電池とこの燃料電池を複数枚重ねるスタック構造が開示されている。
【0008】
また、特開平8−171925号公報には、一枚の電解質膜の一方の面側に複数の酸化剤電極が配置され、当該電解質膜の他方の面側に複数の燃料電極が配置されることにより、複数の単位セルを同一平面上に有する燃料電池が開示されている。
【0009】
上記公報の技術は、複数のセル間を電気的に接続することにより高出力化が可能であるので、機器駆動のための電源電圧を得るという点において一定の効果を奏している。
【0010】
【発明が解決しようとする課題】
しかしながら、特開平8−273696号公報に記載の技術においては、平面内の配された各単位セルの燃料極と酸化剤極の向きは共通ではないため、各単位セル毎に燃料および酸化剤ガスを供給する必要がある。また、各単位セル内の燃料または酸化剤ガスが隣接する単位セルに流入することを防ぐため、密閉性を有する保持機構を必要とする。このため、燃料電池セル間隔は、燃料・酸化剤ガス供給機構や保持機構の大きさに依存し、充分な小型化を達成することが難しかった。さらに、構成部品数が多くなるなど、小型化およびコストの面から改善の余地を有していた。
【0011】
また、特開平8−171925号公報に記載の技術においては、ある単位セルの燃料極において生成した水素イオンが、その単位セルの酸化剤極ではなく、隣接する単位セルの酸化剤極へ移動し(電気的リーク)、電圧が低下してしまうという課題を有していた。特に、各単位セルの間隔を電解質膜の厚さと同程度まで接近させる場合は、電気的リークが顕著となり、電圧の低下が避けられなかった。
【0012】
上記事情に鑑み、本発明は、簡素な構造を有し、高出力かつ小型化・薄型化された固体高分子型燃料電池を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決する本発明によれば、固体電解質膜と、該固体電解質膜の一方の面に配置された第一の燃料極および第一の燃料極に隣接して設けられた第二の燃料極と、該固体電解質膜の他方の面に第一および第二の燃料極とそれぞれ対向して配置された第一の酸化剤極および第二の酸化剤極と、第一の燃料極、第一の酸化剤極および固体電解質膜により構成された第一の単位セルと、第二の燃料極、第二の酸化剤極および固体電解質膜により構成された第二の単位セルとを電気的に直列に接続する導電部材と、を含み、第一および第二の単位セル間の領域に、導電部材から離隔して設けられた低イオン伝導性領域が形成されたことを特徴とする燃料電池が提供される。
【0014】
本発明の燃料電池は、一枚の固体電解質膜を共有した二以上の単位セルが電気的に接続されることにより構成されている。このため、単位セル同士を保持・固定する部材を必要としないため、簡素な構造で高出力が得られる燃料電池が実現する。
【0015】
さらに、上記固体電解質膜の一方の面には燃料極が、他方の面には酸化剤極が配置されているため、各単位セル毎に燃料あるいは酸化剤を供給する流路などを設ける必要がなく、上記二以上の単位セルに対し一挙に燃料あるいは酸化剤を供給することが可能である。したがって、機構を簡素化することができるため、燃料電池の小型化を図ることが可能となる。
【0016】
また、本発明の燃料電池においては、各単位セル同士の間隔を狭めることにより、さらに燃料電池の小型化を図ることができる。しかしながら、このような場合、上記したように電気的リークが生じることから、電圧が低下してしまうという課題が生じる。
【0017】
そこで本発明の燃料電池においては、固体電解質膜上における単位セル間の領域に、低イオン伝導性領域を設けることにより、上記電気的リークが生じることを防止している。このため、各単位セルの間隔を、固体電解質膜の厚さと同程度とした場合においても電圧の低下が抑制されるため、小型かつ薄型で高出力の燃料電池が実現する。ここで、本発明における低イオン伝導性領域とは、他の領域と比較して、水素イオンの伝導性が低い領域をいう。
【0018】
また本発明によれば、固体電解質膜と、該固体電解質膜の一方の面に配置された第一の燃料極および第一の燃料極に隣接して設けられた第二の燃料極と、該固体電解質膜の他方の面に第一および第二の燃料極とそれぞれ対向して配置された第一の酸化剤極および第二の酸化剤極と、第一の燃料極、第一の酸化剤極および固体電解質膜により構成された第一の単位セルと、第二の燃料極、第二の酸化剤極および固体電解質膜により構成された第二の単位セルとを電気的に直列に接続する導電部材と、を含み、第一および第二の単位セル間の領域に、固体電解質膜に溝部が形成されてなる低イオン伝導性領域が形成されたことを特徴とする燃料電池が提供される。
【0019】
また本発明によれば、固体電解質膜と、該固体電解質膜の一方の面に配置された第一の燃料極および第一の燃料極に隣接して設けられた第二の燃料極と、該固体電解質膜の他方の面に第一および第二の燃料極とそれぞれ対向して配置された第一の酸化剤極および第二の酸化剤極と、第一の燃料極、第一の酸化剤極および固体電解質膜により構成された第一の単位セルと、第二の燃料極、第二の酸化剤極および固体電解質膜により構成された第二の単位セルとを電気的に直列に接続する導電部材と、を含み、第一および第二の単位セル間の領域に、導電部材から離隔して設けられるとともに固体電解質膜に凹部が形成されてなる低イオン伝導性領域が設けられたことを特徴とする燃料電池が提供される。
【0020】
このような構成とすることにより低イオン伝導性領域を設けることができ、固体電解質膜を介した単位セル間の水素イオンの移動を抑制することができるため、電圧低下が効果的に抑制された高出力の燃料電池が実現する。
【0021】
また本発明によれば、上記の燃料電池において、上記溝部に絶縁性樹脂が充填されたことを特徴とする燃料電池が提供される。
【0022】
また本発明によれば、上記の燃料電池において、上記凹部に絶縁性樹脂が充填されたことを特徴とする燃料電池が提供される。
【0023】
上記溝部あるいは凹部を絶縁性樹脂によって充填することにより、固体電解質膜を介した単位セル間の水素イオンの移動をより一層抑制することが可能となり、出力の一層高い燃料電池を得ることが可能となる。
【0024】
上記絶縁性樹脂としては、フッ素系樹脂、ポリイミド系樹脂、フェノール系樹脂、エポキシ系樹脂のいずれかを用いることが好ましい。これらの樹脂を用いることにより、上記溝部または凹部に対し、簡便かつ確実に絶縁性樹脂を充填することができる。
【0029】
【発明の実施の形態】
以下、図2を参照して、本実施形態の燃料電池の構成および動作について説明する。
図2(a)は、本実施形態の燃料電池の構造を模式的に表した斜視図であり、図2(b)は、図2(a)中のA−A’断面図である。図2(a)および(b)に示されるように、一枚の固体高分子電解質膜114の一方の面に燃料極102a、bが配され、固体高分子電解質膜114の他方の面には酸化剤極108a、bが配されている。また、燃料極102a、b上には集電体120、121が、酸化剤極108a、b上には集電体122、123が接続されている。また、集電体121および122は、接続電極124により電気的に接続されている。なお、燃料極102a、bおよび酸化剤極108a、bは、図示しない基体および触媒層から構成される。
【0030】
以上のように構成された燃料電池において、図2(b)に示されるように、燃料極102a、bには燃料125が、酸化剤極108a、bには空気あるいは酸素などの酸化剤126が供給される。本実施形態の燃料電池においては、複数の単位セルの燃料極102a、b、酸化剤極108a、bがそれぞれ固体高分子電解質膜114を境にして同じ側に配されている。したがって、燃料を供給する燃料流路および酸化剤を供給する酸化剤流路はそれぞれ一系統で足りるため、燃料電池の構造を簡素化することが可能となる。ここで、固体高分子電解質膜114は、燃料極側と酸化剤極側を隔てる隔壁の役割を有していることから、燃料125が酸化剤極側に進入することはなく、また酸化剤126が燃料極側に進入することもない。
【0031】
固体高分子電解質膜114は、燃料極102a、bと酸化剤極108a、bとを隔てるとともに、両者の間で水素イオンを移動させる役割を有する。このため、固体高分子電解質膜114は、水素イオンの導電性が高い膜であることが好ましい。また、化学的に安定であって機械的強度が高いことが好ましい。固体高分子電解質膜114を構成する材料としては、
スルホン基、リン酸基、ホスホン基、ホスフィン基などの強酸基や、カルボキシル基などの弱酸基などの極性基を有する有機高分子が好ましく用いられる。こうした有機高分子として、
スルフォン化ポリ(4−フェノキシベンゾイル−1,4−フェニレン)、アルキルスルフォン化ポリベンゾイミダゾールなどの芳香族含有高分子;
ポリスチレンスルホン酸共重合体、ポリビニルスルホン酸共重合体、架橋アルキルスルホン酸誘導体、フッ素樹脂骨格およびスルホン酸からなるフッ素含有高分子などの共重合体;
アクリルアミド−2−メチルプロパンスルフォン酸のようなアクリルアミド類とn−ブチルメタクリレートのようなアクリレート類とを共重合させて得られる共重合体;
スルホン基含有パーフルオロカーボン(ナフィオン(デュポン社製)、アシプレックス(旭化成社製));
カルボキシル基含有パーフルオロカーボン(フレミオンS膜(旭硝子社製));
などが例示される。
【0032】
有機液体燃料を使用する場合であって、上記スルフォン化ポリ(4−フェノキシベンゾイル−1,4−フェニレン)、アルキルスルフォン化ポリベンゾイミダゾールなどの芳香族含有高分子を選択した場合には、当該有機液体燃料の透過を抑制でき、クロスオーバーによる電池効率の低下を抑えることができる。
【0033】
燃料極102a、bおよび酸化剤極108a、bは、たとえば、触媒を担持した炭素粒子と固体高分子電解質の微粒子とを含む膜を基体上に形成した構成とすることができる。基体表面は撥水処理してもよい。
【0034】
基体としては、燃料極、酸化剤極ともにカーボンペーパー、カーボンの成形体、カーボンの焼結体、焼結金属、発泡金属などの多孔性基体を用いることができる。また、基体の撥水処理にはポリテトラフルオロエチレンなどの撥水剤を用いることができる。
【0035】
燃料極の触媒としては、白金、白金、ロジウム、パラジウム、イリジウム、オスミウム、ルテニウム、レニウム、金、銀、ニッケル、コバルト、リチウム、ランタン、ストロンチウム、イットリウムなどが例示され、これらを単独または二種類以上組み合わせて用いることができる。一方、酸化剤極の触媒としては、燃料極の触媒と同様のものが用いることができ、上記例示物質を使用することができる。なお、燃料極および酸化剤極の触媒は同じものを用いても異なるものを用いてもよい。
【0036】
触媒を担持する炭素粒子としては、アセチレンブラック(デンカブラック(電気化学社製)、XC72(Vulcan社製)など)、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーンなどが例示される。炭素粒子の粒径は、たとえば、0.01〜0.1μm、好ましくは0.02〜0.06μmとする。
【0037】
燃料125としては、メタノール、エタノール、ジエチルエーテルなどの有機液体燃料や水素含有ガスを用いることができる。
【0038】
燃料極102a、bおよび酸化剤極108a、bの作製方法は特に制限がないが、たとえば以下のようにして作製することができる。
【0039】
まず燃料極102a、bおよび酸化剤極108a、bの触媒の炭素粒子への担持は、一般的に用いられている含浸法によって行うことができる。次に、触媒を担持させた炭素粒子と固体高分子電解質粒子を溶媒に分散させ、ペースト状とした後、これを基体に塗布、乾燥させることによって燃料極102a、bおよび酸化剤極108a、bを得ることができる。ここで、炭素粒子の粒径は、たとえば0.01〜0.1μmとする。また、触媒粒子の粒径は、たとえば1nm〜10nmとする。また、固体高分子電解質粒子の粒径は、たとえば0.05〜1μmとする。炭素粒子と固体高分子電解質粒子とは、たとえば、重量比で2:1〜40:1の範囲で用いられる。また、ペースト中の水と溶質との重量比は、たとえば、1:2〜10:1程度とする。基体へのペーストの塗布方法については特に制限がないが、たとえば、刷毛塗り、スプレー塗布、およびスクリーン印刷等の方法を用いることができる。ペーストは、約1μm〜2mmの厚さで塗布される。ペーストを塗布した後、使用するフッ素樹脂に応じた加熱温度および加熱時間で加熱し、燃料極102a、bまたは酸化剤極108a、bが作製される。加熱温度および加熱時間は、用いる材料によって適宜に選択されるが、たとえば、加熱温度100℃〜250℃、加熱時間30秒間〜30分とすることができる。
【0040】
固体高分子電解質膜114は、用いる材料に応じて適宜な方法を採用して作製することができる。たとえば、固体高分子電解質膜114を有機高分子材料で構成する場合、有機高分子材料を溶媒に溶解または分散した液体を、ポリテトラフルオロエチレン等の剥離性シート等の上にキャストして乾燥させることにより得ることができる。
【0041】
以上のようにして作製した固体高分子電解質膜114を、燃料極102a、bおよび酸化剤極108a、bで挟み、ホットプレスし、電極−電解質接合体を得る。このとき、両電極の触媒が設けられた面と固体電解質膜とが接するようにする。ホットプレスの条件は、材料に応じて選択されるが、固体電解質膜や電極表面の電解質膜を有機高分子で構成する場合、これらの高分子の軟化温度やガラス転位温度を超える温度とすることができる。具体的には、例えば、温度100〜250℃、圧力1〜100kg/cm、時間10秒〜300秒とする。
【0042】
上記のようにして得られた電極−電解質接合体を、集電体120〜123により挟持する。その後、集電体121および122を接続電極124により電気的に接続することにより、直列接続された燃料電池を得ることができる。なお、集電体120〜123および接続電極124は導電性を有する部材であり、例えばステンレスやチタンなどを用いることができる。
【0043】
上記の説明においては、簡単のため、単位セルが二つの場合について説明したが、これに限られるものではなく、三つ以上の単位セルを用いた形態についても適用することができる。
【0044】
また、本実施形態の燃料電池においては、上記した従来技術における密閉性を有する保持機構を必要としないため、各単位セル同士を近付けて配置させ、省スペースを図ることにより、高密度実装を実現できる。
【0045】
しかしながら、各単位セル同士を固体高分子電解質膜114の厚さ程度まで近付けて配置させた場合には、ある単位セルの燃料極において生成した水素イオンが、その単位セルの酸化剤極ではなく、隣接する単位セルの酸化剤極へ移動してしまうこと(電気的リーク)が生じ得る。このように移動する水素イオンは電圧降下の原因となる。そこで本実施形態では、この電気的リークを防止するため、単位セルと単位セルとの間の領域に溝加工を施している。また、図3のように穴加工を施すこともできる。
【0046】
図2(a)は、溝部302が設けられた形態の斜視図であり、図中のA−A’断面図が図2(b)である。また、図3(a)は、凹部303が設けられた形態の斜視図であり、図中のA−A’断面図が図3(b)である。溝部302または凹部303を設けることにより、燃料極102aで生成した水素イオンが隣接する単位セルの酸化剤極108bへ移動する際のイオン伝導性を降下させることができる。このため、電気的リークを抑え、燃料極102aで生成した水素イオンを効果的に酸化剤極108aに導くことができる。さらに、溝部302または凹部303を絶縁性を有する樹脂などで充填することもできる。このような形態を図4、図5に示す。図4(a)は、溝部に絶縁性フィルム304が挟まれた形態の斜視図を示しており、図中のA−A’断面図が図4(b)である。また、図5(a)は、凹部に絶縁性樹脂305が充填された形態の斜視図を示しており、図中のA−A’断面図が図5(b)である。このような構成を採用することにより、電気的リークをより一層抑制することが可能となる。
【0047】
なお、絶縁性フィルム304および絶縁性樹脂305としては、フッ素系樹脂、ポリイミド系樹脂、フェノール系樹脂、エポキシ系樹脂などの材料を用いることができる。
【0048】
上記より、図2〜図5に示される実施の形態においては、燃料電池のセル間隔を固体高分子電解質膜の膜厚以下とすることができるため、より高密度な実装を実現することができる。
【0049】
【実施例】
(参照例)
図1を参照して、本参照例について説明する。
【0050】
触媒には炭素微粒子(デンカブラック;電気化学社製)に粒子径3〜5nmの白金(Pt)−ルテニウム(Ru)合金を重量比で50%担持させた触媒担持炭素微粒子を使用した。なお、合金組成は50at%Ruで、合金と炭素微粉末の重量比は1:1とした。この触媒担持炭素微粒子1gにアルドリッチ・ケミカル社製5wt%ナフィオン溶液18mlを加え、50℃にて3時間超音波混合機で攪拌し触媒ペーストとした。このペーストをカーボンペーパー(東レ製:TGP−H−120)上にスクリーン印刷法で2mg/cm塗布し、120℃で乾燥させて電極を得た。
【0051】
次に、1枚の固体高分子電解質膜114(デュポン社製ナフィオン(登録商標)、膜厚150μm)に対し、上記で得た電極を120℃で熱圧着して燃料極102および酸化剤極108とし、二組の単位セルを作成した。なお、この二つの単位セルの間隔は3mmとした。
【0052】
上記二つの単位セルをステンレス製の集電体120〜123で挟持した。さらに、集電体121および集電体122を接続電極124を介して直列に接続した。さらに、テトラフルオロエチレン樹脂製の燃料容器を燃料極102側に取り付けた。二つの燃料極102は、この燃料容器に覆われ、かつ固体高分子電解質膜114とこの燃料容器とで密閉された状態となるようにした。
【0053】
この燃料電池の内部に10%メタノール水溶液を2ml/minで流し、外部を大気中に曝して電池特性を測定したところ、電流密度100mA/cm時の電池電圧が0.9Vであった。この電圧は、一つの単位セルで測定した場合の2倍の電圧に相当することから、二つの単位セルが直列接続されていることが確認された。
【0054】
上記参照例においては、単位セル間に充分な間隔を確保しているため、電気的リークがほとんど生じず、良好な結果が得られている。ところが、単位セル間の間隔を固体高分子電解質膜の厚さと同程度まで狭めると、電気的リークが顕著となることから、電圧降下が生じる。
【0055】
以下に、単位セル間の間隔を固体高分子電解質膜の厚さと同程度まで狭めても、上記参照例と同等の性能を有する実施例を示す。
【0056】
(実施例1)
図2を参照して、本実施例について説明する。
【0057】
触媒には炭素微粒子(デンカブラック;電気化学社製)に粒子径3〜5nmの白金(Pt)−ルテニウム(Ru)合金を重量比で50%担持させた触媒担持炭素微粒子を使用した。なお、合金組成は50at%Ruで、合金と炭素微粉末の重量比は1:1とした。この触媒担持炭素微粒子1gにアルドリッチ・ケミカル社製5wt%ナフィオン溶液18mlを加え、50℃にて3時間超音波混合機で攪拌し触媒ペーストとした。このペーストをカーボンペーパー(東レ製:TGP−H−120)上にスクリーン印刷法で2mg/cm塗布し、120℃で乾燥させて電極を得た。
【0058】
次に、1枚の固体高分子電解質膜114(デュポン社製ナフィオン(登録商標)、膜厚150μm)に対し、上記で得た電極を120℃で熱圧着して燃料極102a、bおよび酸化剤極108a、bとし、二組の単位セルを作成した。なお、この二つの単位セルの間隔は0.2mmとした。さらに、この二つの単位セルの間に、幅0.05mm、深さ0.1mmの溝部302を設けた。
【0059】
上記二つの単位セルをステンレス製の集電体120〜123で挟持した。さらに、集電体121および集電体122を接続電極124を介して直列に接続した。さらに、テトラフルオロエチレン樹脂製の燃料容器を燃料極側に取り付けた。燃料極102a、bは、この燃料容器に覆われ、かつ固体高分子電解質膜114とこの燃料容器とで密閉された状態となるようにした。
【0060】
(実施例2)
図4を参照して本実施例について説明する。
【0061】
本実施例における固体高分子電解質膜114は、図2における固体高分子電解質膜114上に設けられた溝部302に、ポリイミドからなる絶縁性フィルム304(デュポン社製カプトン(登録商標))を挟み、接着させたものである。その他の構成は実施例1と同様である。
【0062】
(比較例1)
本比較例における固体高分子電解質膜は、図2における固体高分子電解質膜114上に設けられた溝部302を設けないものであり、その他の構成は実施例1と同様である。
【0063】
実施例1、実施例2および比較例1の液体燃料供給型燃料電池の内部に10%メタノール水溶液を2ml/minで流し、外部を大気中に曝して電池特性を測定した。その結果を表1に示した。
【0064】
【表1】
Figure 0003575477
【0065】
表中、電池電圧は電流密度100mA/cm時のものである。比較例1の電池よりも実施例1の電池の方が電圧が高いのは、比較例1の電池において生じていた電気的リークが、固体高分子電解質膜114上に設けられた溝部302(図2)により抑制された結果であると考えられる。また、実施例2の電池電圧は実施例1よりもさらに高く、0.9Vを示した。この電圧は、燃料電池セル単体で測定した場合の2倍の電圧に相当することから、絶縁性フィルム304(図4)により電気的リークが完全に抑えられていることが確認された。
【0066】
上記より、実施例1および2の電池は、単位セルの間隔が0.2mmという極めて高密度な実装が可能であることが判明した。
【0067】
(実施例3)
図3を参照して本実施例について説明する。
【0068】
触媒には炭素微粒子(デンカブラック;電気化学社製)に粒子径3〜5nmの白金(Pt)−ルテニウム(Ru)合金を重量比で50%担持させた触媒担持炭素微粒子を使用した。なお、合金組成は50at%Ruで、合金と炭素微粉末の重量比は1:1とした。この触媒担持炭素微粒子1gにアルドリッチ・ケミカル社製5wt%ナフィオン溶液18mlを加え、50℃にて3時間超音波混合機で攪拌し触媒ペーストとした。このペーストをカーボンペーパー(東レ製:TGP−H−120)上にスクリーン印刷法で2mg/cm塗布し、120℃で乾燥させて電極を得た。
【0069】
次に、1枚の固体高分子電解質膜114(デュポン社製ナフィオン(登録商標)、膜厚150μm)に対し、上記で得た電極を120℃で熱圧着して燃料極102a、bおよび酸化剤極108a、bとし、二組の単位セルを作成した。なお、この二つの単位セルの間隔は0.2mmとした。さらに、この二つの単位セルの間に、直径0.1mm、深さ0.1mmの凹部303を設けた。
【0070】
上記二つの単位セルをステンレス製の集電体120〜123で挟持した。さらに、集電体121および集電体122を接続電極124を介して直列に接続した。さらに、テトラフルオロエチレン樹脂製の燃料容器を燃料極側に取り付けた。燃料極102a、bは、この燃料容器に覆われ、かつ固体高分子電解質膜114とこの燃料容器とで密閉された状態となるようにした。
【0071】
(実施例4)
図5を参照して本実施例について説明する。
【0072】
本実施例における固体高分子電解質膜114は、図3における固体高分子電解質膜114上に設けられた凹部303に、絶縁性樹脂305(エポキシ性樹脂)を充填したものである。その他の構成は実施例3と同様である。
【0073】
実施例3、実施例4、凹部303(図3)や絶縁性樹脂305(図5)を有しない比較例1の液体燃料供給型燃料電池の内部に10%メタノール水溶液を2ml/minで流し、外部を大気中に曝して電池特性を測定した。その結果を表2に示した。
【0074】
【表2】
Figure 0003575477
【0075】
表中、電池電圧は電流密度100mA/cm時のものである。比較例1の電池よりも実施例3の電池の方が電圧が高いのは、比較例1の電池において生じていた電気的リークが、固体高分子電解質膜上に設けられた凹部303(図3)により抑制された結果であると考えられる。また、実施例4の電池電圧は実施例3よりもさらに高く、0.9Vを示した。この電圧は、燃料電池セル単体で測定した場合の2倍の電圧に相当することから、絶縁性樹脂305(図5)により電気的リークが完全に抑えられていることが確認された。
【0076】
上記より、実施例3および4の電池は、単位セルの間隔が0.2mmという極めて高密度な実装が可能であることが判明した。
【0077】
なお、電気的に接続する単位セル数を増やすことによって電圧あるいは電流を高くすることが可能であり、接続方法を適宜選択することで電池出力を調整することが可能である。
【0078】
【発明の効果】
以上説明したように、本発明によれば、簡素な構造を有し、高出力かつ小型化・薄型化された固体高分子型燃料電池を提供することが可能となる。
【図面の簡単な説明】
【図1】参照例にかかる燃料電池を示す図である。
【図2】本発明の燃料電池の一例を示す図である。
【図3】本発明の燃料電池の一例を示す図である。
【図4】本発明の燃料電池の一例を示す図である。
【図5】本発明の燃料電池の一例を示す図である。
【符号の説明】
102、102a、102b 燃料極
108、108a、108b 酸化剤極
114 固体高分子電解質膜
120、121、122、123 集電体
124 接続電極
125 燃料
126 酸化剤
302 溝部
303 凹部
304 絶縁性フィルム
305 絶縁性樹脂

Claims (6)

  1. 固体電解質膜と、該固体電解質膜の一方の面に配置された第一の燃料極および前記第一の燃料極に隣接して設けられた第二の燃料極と、
    該固体電解質膜の他方の面に前記第一および第二の燃料極とそれぞれ対向して配置された第一の酸化剤極および第二の酸化剤極と
    前記第一の燃料極、前記第一の酸化剤極および前記固体電解質膜により構成された第一の単位セルと、前記第二の燃料極、前記第二の酸化剤極および前記固体電解質膜により構成された第二の単位セルとを電気的に直列に接続する導電部材と、を含み、
    前記第一および第二の単位セル間の領域に、前記導電部材から離隔して設けられた低イオン伝導性領域が形成されたことを特徴とする燃料電池。
  2. 固体電解質膜と、該固体電解質膜の一方の面に配置された第一の燃料極および前記第一の燃料極に隣接して設けられた第二の燃料極と、
    該固体電解質膜の他方の面に前記第一および第二の燃料極とそれぞれ対向して配置された第一の酸化剤極および第二の酸化剤極と、
    前記第一の燃料極、前記第一の酸化剤極および前記固体電解質膜により構成された第一の単位セルと、前記第二の燃料極、前記第二の酸化剤極および前記固体電解質膜により構成された第二の単位セルとを電気的に直列に接続する導電部材と、を含み、
    前記第一および第二の単位セル間の領域に、前記固体電解質膜に溝部が形成されてなる低イオン伝導性領域が形成されたことを特徴とする燃料電池。
  3. 請求項2に記載の燃料電池において、前記溝部に絶縁性樹脂が充填されたことを特徴とする燃料電池。
  4. 固体電解質膜と、該固体電解質膜の一方の面に配置された第一の燃料極および前記第一の燃料極に隣接して設けられた第二の燃料極と、
    該固体電解質膜の他方の面に前記第一および第二の燃料極とそれぞれ対向して配置された第一の酸化剤極および第二の酸化剤極と、
    前記第一の燃料極、前記第一の酸化剤極および前記固体電解質膜により構成された第一の単位セルと、前記第二の燃料極、前記第二の酸化剤極および前記固体電解質膜により構成された第二の単位セルとを電気的に直列に接続する導電部材と、
    を含み、
    前記第一および第二の単位セル間の領域に、前記導電部材から離隔して設けられるとともに前記固体電解質膜に凹部が形成されてなる低イオン伝導性領域が設けられたことを特徴とする燃料電池。
  5. 請求項4に記載の燃料電池において、前記凹部に絶縁性樹脂が充填されたことを特徴とする燃料電池。
  6. 請求項3または5に記載の燃料電池において、前記絶縁性樹脂が、フッ素系樹脂、ポリイミド系樹脂、フェノール系樹脂、エポキシ系樹脂のいずれかであることを特徴とする燃料電池。
JP2002166558A 2002-06-07 2002-06-07 燃料電池 Expired - Fee Related JP3575477B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002166558A JP3575477B2 (ja) 2002-06-07 2002-06-07 燃料電池
TW092114236A TWI256170B (en) 2002-06-07 2003-05-27 Fuel cell
CA002488162A CA2488162A1 (en) 2002-06-07 2003-05-30 Fuel cell
PCT/JP2003/006801 WO2003105264A1 (ja) 2002-06-07 2003-05-30 燃料電池
EP03730700A EP1515386A4 (en) 2002-06-07 2003-05-30 COMBUSTIBLE CELL
KR1020047019685A KR100747366B1 (ko) 2002-06-07 2003-05-30 연료전지
CNB038131986A CN1316667C (zh) 2002-06-07 2003-05-30 燃料电池
US10/727,549 US20040241516A1 (en) 2002-06-07 2003-12-05 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166558A JP3575477B2 (ja) 2002-06-07 2002-06-07 燃料電池

Publications (2)

Publication Number Publication Date
JP2004014314A JP2004014314A (ja) 2004-01-15
JP3575477B2 true JP3575477B2 (ja) 2004-10-13

Family

ID=29727634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166558A Expired - Fee Related JP3575477B2 (ja) 2002-06-07 2002-06-07 燃料電池

Country Status (8)

Country Link
US (1) US20040241516A1 (ja)
EP (1) EP1515386A4 (ja)
JP (1) JP3575477B2 (ja)
KR (1) KR100747366B1 (ja)
CN (1) CN1316667C (ja)
CA (1) CA2488162A1 (ja)
TW (1) TWI256170B (ja)
WO (1) WO2003105264A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004075331A1 (ja) * 2003-02-18 2006-06-01 日本電気株式会社 燃料電池およびその製造方法
KR100707113B1 (ko) * 2005-12-20 2007-04-16 한국과학기술연구원 고립 전해질을 이용한 단실형 고체 산화물 연료전지
JP5430958B2 (ja) * 2008-03-31 2014-03-05 三洋電機株式会社 膜電極接合体および燃料電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648955A (en) * 1985-04-19 1987-03-10 Ivac Corporation Planar multi-junction electrochemical cell
US5336570A (en) * 1992-08-21 1994-08-09 Dodge Jr Cleveland E Hydrogen powered electricity generating planar member
US5783324A (en) * 1994-10-06 1998-07-21 The United States Of America As Represented By The Secretary Of The Army Fuel cell including a single sheet of a polymer electrolyte membrane (PEM), the PEM being divided into regions of varying electrical and ionic conductivity
JPH08130023A (ja) * 1994-10-27 1996-05-21 Aisin Seiki Co Ltd 燃料電池
DE4443945C1 (de) * 1994-12-09 1996-05-23 Fraunhofer Ges Forschung PEM-Brennstoffzelle
DE19921816C1 (de) * 1999-05-11 2000-10-26 Andre Peine Brennstoffzellen-System und Brennstoffzelle für derartiges System
JP4767406B2 (ja) * 2000-01-20 2011-09-07 日本碍子株式会社 電気化学装置および集積電気化学装置
DE10013900C1 (de) * 2000-03-21 2001-10-04 Piller Gmbh Brennstoffzelle mit einer Durchbrechungen aufweisenden und elektrisch kontaktierten Flächenelektrode
DE10121176B4 (de) * 2000-05-02 2008-05-21 Honda Giken Kogyo K.K. Brennstoffzelle, die ein Dichtmittel aufweist, um eine Festpolymerelektrolytmembran abzudichten Brennstoffzellenstapel und Verfahren zu dessen Herstellung
US6680139B2 (en) * 2000-06-13 2004-01-20 California Institute Of Technology Reduced size fuel cell for portable applications
JP2002056855A (ja) * 2000-08-08 2002-02-22 Mitsubishi Electric Corp 平面型燃料電池
JP2002110215A (ja) * 2000-09-27 2002-04-12 Kansai Research Institute 小型燃料電池
CA2436009A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte membrane, a method of rproducing thereof and a polymer electrolyte type fuel cell using the same
US6689502B2 (en) * 2001-03-16 2004-02-10 Samsung Electronics Co., Ltd. Monopolar cell pack of direct methanol fuel cell
CA2436018C (en) * 2001-12-28 2008-11-25 Dai Nippon Insatsu Kabushiki Kaisha Polymer electrolyte fuel cell and separator for polymer electrolyte fuel cell
JP2003197225A (ja) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd 高分子電解質型燃料電池

Also Published As

Publication number Publication date
WO2003105264A1 (ja) 2003-12-18
KR100747366B1 (ko) 2007-08-07
CN1316667C (zh) 2007-05-16
TW200308118A (en) 2003-12-16
EP1515386A4 (en) 2009-12-30
EP1515386A1 (en) 2005-03-16
JP2004014314A (ja) 2004-01-15
KR20050005528A (ko) 2005-01-13
TWI256170B (en) 2006-06-01
CN1659735A (zh) 2005-08-24
US20040241516A1 (en) 2004-12-02
CA2488162A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
US7166381B2 (en) Air breathing direct methanol fuel cell pack
JP3608565B2 (ja) 燃料電池およびその製造方法
JP3747888B2 (ja) 燃料電池、燃料電池用電極およびそれらの製造方法
JP4860264B2 (ja) 燃料電池およびその製造方法
JP3693039B2 (ja) 液体燃料供給型燃料電池
JP4781626B2 (ja) 燃料電池
JPWO2004075331A1 (ja) 燃料電池およびその製造方法
JP2007329072A (ja) 燃料電池用電極の製造方法
JP4945887B2 (ja) セルモジュール及び固体高分子電解質型燃料電池
JP3575477B2 (ja) 燃料電池
JP2005174770A (ja) 燃料電池
JP2008269847A (ja) 燃料電池触媒層用インク及びその製造方法、燃料電池用膜電極接合体
JP2006244715A (ja) 複合膜およびそれを用いた燃料電池
JP3608564B2 (ja) 燃料電池およびその製造方法
JP4018500B2 (ja) 燃料電池
US7655343B2 (en) Liquid fuel supply type fuel cell
JP2006216404A (ja) 燃料電池
JP2006040633A (ja) 燃料電池用電極、その製造方法及びそれを用いた燃料電池
JP2006040703A (ja) 固体高分子型燃料電池の触媒担持方法、膜電極接合体
JP2004140000A (ja) 燃料電池、燃料電池用電極およびそれらの製造方法
JP5597281B2 (ja) 膜電極接合体および燃料電池
WO2013114801A1 (ja) 燃料電池
JP2004253399A (ja) 燃料電池およびその製造方法
JP2006210117A (ja) 固体高分子型燃料電池
JP2003109603A (ja) 高分子電解質型燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees